Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30880_irnt_Liver.Rmd) and HTML (docs/ukb-d-30880_irnt_Liver.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd da9f015 wesleycrouse 2021-08-07 adding more reports
html da9f015 wesleycrouse 2021-08-07 adding more reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Urate (quantile) using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30880_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1070  768  652  417  494  611  548  408  405  434  634  629  195  365  354 
  16   17   18   19   20   21   22 
 526  663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8366205

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0069694825 0.0002153448 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
17.43942 18.05307 
#report sample size
print(sample_size)
[1] 343836
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10901 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.00385343 0.09833775 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.01619088 0.72192971

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
        genename region_tag susie_pip    mu2     PVE     z
11575 DNAJC3-AS1      13_48     0.984  38.79 1.1e-04 -6.74
8238      CHCHD7       8_44     0.969  25.45 7.2e-05  4.81
3212       CCND2       12_4     0.969  50.41 1.4e-04 -7.13
8040       THBS3       1_76     0.964 205.02 5.7e-04 16.74
1552       PPM1A      14_27     0.955  25.32 7.0e-05 -4.75
9062     KLHDC7A       1_13     0.924  24.74 6.7e-05  4.58
10303    UGT2B17       4_48     0.915  25.94 6.9e-05  4.68
10684    FAM216A      12_67     0.898  32.47 8.5e-05 -4.17
10625       MSH5       6_26     0.891  53.21 1.4e-04 -5.67
5639     ARL6IP5       3_46     0.882  54.11 1.4e-04 -7.54
3426       CCRL2       3_32     0.880  32.64 8.4e-05 -5.80
9635       TLCD2       17_2     0.870  24.89 6.3e-05  4.79
7794        TMC4      19_37     0.855  26.90 6.7e-05 -4.86
8431      PRSS27       16_3     0.853  21.12 5.2e-05 -4.03
10567     GIGYF2      2_137     0.845  28.68 7.0e-05 -4.84
5415       SYTL1       1_19     0.834  47.88 1.2e-04 -6.75
1233       CERS4       19_7     0.799  33.32 7.7e-05 -5.73
10004   SLC35E2B        1_1     0.784  22.91 5.2e-05  4.19
10574    ZDHHC18       1_18     0.770  45.77 1.0e-04  8.19
3459      FAM35A      10_55     0.759  46.32 1.0e-04 -8.35

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag susie_pip     mu2     PVE      z
12674    GHET1       7_92     0.000 5943.86 0.0e+00  -1.93
4556    TMEM60       7_49     0.000 5544.01 0.0e+00   3.84
4634     EGLN1      1_118     0.000 5091.54 0.0e+00  -2.19
3058     EXOC8      1_118     0.000 4255.18 0.0e+00   2.49
742       WDR1       4_11     0.000 1386.23 0.0e+00  52.73
10227   ZNF786       7_92     0.000 1296.83 0.0e+00  -1.72
2412    SLC2A9       4_11     0.000 1293.52 0.0e+00 -45.30
6419     PDIA4       7_92     0.000 1293.08 0.0e+00  -0.75
10903     APTR       7_49     0.000 1067.89 0.0e+00   1.99
9811    RSBN1L       7_49     0.000  594.18 0.0e+00   1.64
92       PHTF2       7_49     0.000  425.49 0.0e+00   0.39
10693   ZNF425       7_92     0.000  366.66 0.0e+00  -0.60
2452     NRXN2      11_36     0.000  322.31 2.3e-08  19.86
3201      SPP1       4_59     0.000  288.51 1.6e-07  19.69
7888     BATF2      11_36     0.013  248.31 9.6e-06  10.45
2662    TRIM38       6_20     0.006  225.05 3.8e-06 -20.02
2887     NRBP1       2_16     0.026  219.88 1.6e-05  15.98
10831     ARL2      11_36     0.000  205.30 2.3e-07  -9.02
8040     THBS3       1_76     0.964  205.02 5.7e-04  16.74
2443     SNX15      11_36     0.005  204.02 2.9e-06   6.51

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
        genename region_tag susie_pip    mu2     PVE      z
8040       THBS3       1_76     0.964 205.02 5.7e-04  16.74
5639     ARL6IP5       3_46     0.882  54.11 1.4e-04  -7.54
10625       MSH5       6_26     0.891  53.21 1.4e-04  -5.67
3212       CCND2       12_4     0.969  50.41 1.4e-04  -7.13
5415       SYTL1       1_19     0.834  47.88 1.2e-04  -6.75
11575 DNAJC3-AS1      13_48     0.984  38.79 1.1e-04  -6.74
10574    ZDHHC18       1_18     0.770  45.77 1.0e-04   8.19
2891       SNX17       2_16     0.223 158.09 1.0e-04 -12.95
3459      FAM35A      10_55     0.759  46.32 1.0e-04  -8.35
5400       EPHA2       1_11     0.733  45.40 9.7e-05  -5.19
10684    FAM216A      12_67     0.898  32.47 8.5e-05  -4.17
3426       CCRL2       3_32     0.880  32.64 8.4e-05  -5.80
8037       LMAN2      5_106     0.640  44.70 8.3e-05   7.93
1233       CERS4       19_7     0.799  33.32 7.7e-05  -5.73
840        MARK3      14_54     0.707  35.11 7.2e-05  -5.91
8238      CHCHD7       8_44     0.969  25.45 7.2e-05   4.81
6951      FAAP20        1_2     0.728  33.51 7.1e-05  -5.69
10567     GIGYF2      2_137     0.845  28.68 7.0e-05  -4.84
1552       PPM1A      14_27     0.955  25.32 7.0e-05  -4.75
10303    UGT2B17       4_48     0.915  25.94 6.9e-05   4.68

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
         genename region_tag susie_pip     mu2     PVE      z
742          WDR1       4_11     0.000 1386.23 0.0e+00  52.73
2412       SLC2A9       4_11     0.000 1293.52 0.0e+00 -45.30
2662       TRIM38       6_20     0.006  225.05 3.8e-06 -20.02
2452        NRXN2      11_36     0.000  322.31 2.3e-08  19.86
3201         SPP1       4_59     0.000  288.51 1.6e-07  19.69
3641      SLC17A1       6_20     0.023  164.90 1.1e-05  16.91
8040        THBS3       1_76     0.964  205.02 5.7e-04  16.74
2887        NRBP1       2_16     0.026  219.88 1.6e-05  15.98
2660      SLC17A2       6_20     0.005  123.71 1.8e-06 -13.58
2891        SNX17       2_16     0.223  158.09 1.0e-04 -12.95
8041      SLC50A1       1_76     0.001  122.82 3.0e-07 -12.74
10571      ASAH2B      10_33     0.021  146.05 8.8e-06  12.46
9736       BTN3A2       6_20     0.014   88.18 3.7e-06 -12.29
7139        PPM1K       4_59     0.000   72.63 2.6e-09 -12.23
12337 RP1-86C11.7       6_21     0.000  197.23 1.5e-07 -12.06
7944        STIP1      11_36     0.000  196.78 5.7e-08 -11.67
7040        INHBB       2_70     0.029   99.03 8.3e-06  11.62
8489     RNASEH2C      11_36     0.000  195.72 2.8e-10 -11.60
8284         RBKS       2_16     0.015  111.97 4.8e-06  11.06
9169    HIST1H2AC       6_20     0.005   51.87 7.2e-07 -10.66

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.0243097
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
         genename region_tag susie_pip     mu2     PVE      z
742          WDR1       4_11     0.000 1386.23 0.0e+00  52.73
2412       SLC2A9       4_11     0.000 1293.52 0.0e+00 -45.30
2662       TRIM38       6_20     0.006  225.05 3.8e-06 -20.02
2452        NRXN2      11_36     0.000  322.31 2.3e-08  19.86
3201         SPP1       4_59     0.000  288.51 1.6e-07  19.69
3641      SLC17A1       6_20     0.023  164.90 1.1e-05  16.91
8040        THBS3       1_76     0.964  205.02 5.7e-04  16.74
2887        NRBP1       2_16     0.026  219.88 1.6e-05  15.98
2660      SLC17A2       6_20     0.005  123.71 1.8e-06 -13.58
2891        SNX17       2_16     0.223  158.09 1.0e-04 -12.95
8041      SLC50A1       1_76     0.001  122.82 3.0e-07 -12.74
10571      ASAH2B      10_33     0.021  146.05 8.8e-06  12.46
9736       BTN3A2       6_20     0.014   88.18 3.7e-06 -12.29
7139        PPM1K       4_59     0.000   72.63 2.6e-09 -12.23
12337 RP1-86C11.7       6_21     0.000  197.23 1.5e-07 -12.06
7944        STIP1      11_36     0.000  196.78 5.7e-08 -11.67
7040        INHBB       2_70     0.029   99.03 8.3e-06  11.62
8489     RNASEH2C      11_36     0.000  195.72 2.8e-10 -11.60
8284         RBKS       2_16     0.015  111.97 4.8e-06  11.06
9169    HIST1H2AC       6_20     0.005   51.87 7.2e-07 -10.66

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 4_11"
     genename region_tag susie_pip     mu2 PVE      z
2412   SLC2A9       4_11         0 1293.52   0 -45.30
742      WDR1       4_11         0 1386.23   0  52.73
8982  ZNF518B       4_11         0   49.50   0  -2.20

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 6_20"
       genename region_tag susie_pip    mu2     PVE      z
5755    SLC17A4       6_20     0.013  27.10 9.9e-07   3.06
3641    SLC17A1       6_20     0.023 164.90 1.1e-05  16.91
3640    SLC17A3       6_20     0.064  83.09 1.5e-05  -7.47
2660    SLC17A2       6_20     0.005 123.71 1.8e-06 -13.58
2662     TRIM38       6_20     0.006 225.05 3.8e-06 -20.02
12334 U91328.19       6_20     0.023  14.93 9.9e-07  -2.63
12379 U91328.22       6_20     0.005  84.87 1.2e-06  -4.40
9850   HIST1H1C       6_20     0.005  87.71 1.2e-06   4.09
167         HFE       6_20     0.006  28.49 4.7e-07  -6.38
9169  HIST1H2AC       6_20     0.005  51.87 7.2e-07 -10.66
6602  HIST1H2BD       6_20     0.006  33.14 6.3e-07  -5.23
12482 HIST1H2BE       6_20     0.005  10.90 1.6e-07  -3.03
12602 HIST1H2BF       6_20     0.004   7.50 9.6e-08  -2.39
12502  HIST1H3E       6_20     0.011  11.46 3.6e-07  -0.28
12544 HIST1H2BH       6_20     0.004  13.83 1.8e-07  -1.79
6604   HIST1H4H       6_20     0.005  15.24 2.2e-07   4.56
9736     BTN3A2       6_20     0.014  88.18 3.7e-06 -12.29
3635     BTN2A2       6_20     0.005  50.02 7.5e-07  -8.79
298      BTN3A1       6_20     0.005  16.34 2.3e-07  -4.69
2597     BTN3A3       6_20     0.004   6.52 8.5e-08   1.20
2702     BTN2A1       6_20     0.009  13.40 3.7e-07  -1.80
9373      HMGN4       6_20     0.008   9.49 2.2e-07   0.93
5765       ABT1       6_20     0.009   9.44 2.5e-07   0.13
9231     ZNF322       6_20     0.009  12.57 3.2e-07   1.06

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 11_36"
            genename region_tag susie_pip    mu2     PVE      z
3808           FLRT1      11_36     0.000  25.23 2.1e-15   5.44
4357         MACROD1      11_36     0.000  65.93 6.5e-13   5.16
7944           STIP1      11_36     0.000 196.78 5.7e-08 -11.67
6021          FERMT3      11_36     0.000  61.53 3.8e-13   5.00
3801           PRDX5      11_36     0.000  10.73 3.2e-16  -2.09
8550           FKBP2      11_36     0.000  12.01 3.1e-16   1.22
11826 RP11-783K16.13      11_36     0.000  66.29 4.0e-13   7.17
6022           PLCB3      11_36     0.000  70.83 7.5e-12   2.17
12               BAD      11_36     0.000   6.80 1.5e-16   1.19
10975          TEX40      11_36     0.000  24.36 4.1e-15  -2.73
8509         TRMT112      11_36     0.000  31.92 5.1e-15  -3.51
7892         CCDC88B      11_36     0.000  23.72 4.0e-15   2.51
2452           NRXN2      11_36     0.000 322.31 2.3e-08  19.86
680             PYGM      11_36     0.000  37.57 7.4e-13  -6.54
7890             SF1      11_36     0.000   8.53 2.2e-16   1.32
8291        CDC42BPG      11_36     0.000 108.61 1.2e-10  -6.30
2446            EHD1      11_36     0.000 108.03 1.7e-11  -6.56
2445           ATG2A      11_36     0.000 136.03 2.3e-10  -7.20
679          PPP2R5B      11_36     0.000  82.18 1.4e-12   6.15
7891           MAJIN      11_36     0.000  48.48 5.6e-14   3.37
7888           BATF2      11_36     0.013 248.31 9.6e-06  10.45
10831           ARL2      11_36     0.000 205.30 2.3e-07  -9.02
2443           SNX15      11_36     0.005 204.02 2.9e-06   6.51
7887          SAC3D1      11_36     0.000   6.93 1.5e-16  -0.77
6024           VPS51      11_36     0.000  17.30 4.0e-16   4.50
8625          ZNHIT2      11_36     0.000  38.07 2.6e-15   6.57
223            CAPN1      11_36     0.000  11.70 2.5e-16   3.45
6023        CDC42EP2      11_36     0.000   8.56 2.0e-16  -3.49
8585           TIGD3      11_36     0.000  12.68 2.7e-16  -4.06
11554          NEAT1      11_36     0.000  20.57 4.4e-15  -1.49
7886           LTBP3      11_36     0.000  13.50 6.1e-16  -1.46
8869          FAM89B      11_36     0.000  12.36 4.8e-16   1.36
8545         EHBP1L1      11_36     0.000  19.76 4.1e-15  -0.21
8534         MAP3K11      11_36     0.000  45.06 6.5e-14   5.06
10828          SIPA1      11_36     0.000  67.69 6.7e-12   4.16
8502            RELA      11_36     0.000  48.72 1.4e-15  -8.93
8489        RNASEH2C      11_36     0.000 195.72 2.8e-10 -11.60
11745          AP5B1      11_36     0.000  72.43 6.7e-14   7.03
8457          EFEMP2      11_36     0.000  16.55 3.4e-16  -5.33
8447            CTSW      11_36     0.000  25.55 2.4e-15  -2.27
8444            FIBP      11_36     0.000  83.58 7.1e-11   1.45
8753        C11orf68      11_36     0.000  13.77 7.9e-16  -0.77
8743           SART1      11_36     0.000  38.49 7.4e-16   7.82
8728           BANF1      11_36     0.000  41.94 1.3e-15   7.11
8733          EIF1AD      11_36     0.000  28.95 1.0e-15  -6.66
8725            CST6      11_36     0.000  23.78 4.2e-15  -1.02
1132           SF3B2      11_36     0.000  16.42 4.2e-16   3.24
8705           PACS1      11_36     0.000  10.02 2.2e-16  -2.19

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 4_59"
     genename region_tag susie_pip    mu2     PVE      z
5683  SLC10A6       4_59     0.000  46.04 2.6e-08  -4.89
7135  C4orf36       4_59     0.000   9.91 3.0e-10   0.04
8206 HSD17B13       4_59     0.000  20.14 1.3e-09  -3.25
8205    NUDT9       4_59     0.000   9.57 2.7e-10  -3.48
6212  SPARCL1       4_59     0.000  13.20 3.9e-10  -3.65
3201     SPP1       4_59     0.000 288.51 1.6e-07  19.69
3200     PKD2       4_59     0.002  40.80 2.8e-07  -2.35
7139    PPM1K       4_59     0.000  72.63 2.6e-09 -12.23

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 1_76"
            genename region_tag susie_pip    mu2     PVE      z
5524           KCNN3       1_76     0.001  11.92 4.5e-08   3.22
12211 RP11-307C12.13       1_76     0.002  17.31 1.2e-07   4.17
6789            SHC1       1_76     0.001   7.36 2.1e-08  -0.78
5514          ADAM15       1_76     0.003  24.49 1.9e-07  -0.62
7073           DCST2       1_76     0.025  18.61 1.3e-06   5.23
7074           DCST1       1_76     0.007  15.21 3.2e-07   4.22
5523           EFNA3       1_76     0.003  31.28 2.7e-07   4.67
8041         SLC50A1       1_76     0.001 122.82 3.0e-07 -12.74
8042           EFNA1       1_76     0.001  64.23 2.0e-07   6.74
9069            DPM3       1_76     0.002  31.54 1.8e-07   4.80
8040           THBS3       1_76     0.964 205.02 5.7e-04  16.74
8924             GBA       1_76     0.001  74.68 1.8e-07   2.93
6795         FAM189B       1_76     0.001   9.09 2.9e-08  -1.43
8829            CLK2       1_76     0.001  86.03 2.8e-07  -1.35
4294            DAP3       1_76     0.001   8.86 2.0e-08   0.93
7076          YY1AP1       1_76     0.004  34.03 3.8e-07   5.82
3021           GON4L       1_76     0.001  69.72 2.3e-07  -0.93
4300           SYT11       1_76     0.011  80.89 2.6e-06  -1.33
5527            RIT1       1_76     0.002  64.70 2.9e-07  -1.40
3022         ARHGEF2       1_76     0.004  45.85 5.3e-07  -1.56
7094            SSR2       1_76     0.001   8.31 2.2e-08  -2.69
3023         LAMTOR2       1_76     0.001   6.60 1.7e-08  -0.72
6798        SLC25A44       1_76     0.002  16.30 1.0e-07   2.37
6797            PMF1       1_76     0.009  30.38 8.3e-07   3.31
7093          TMEM79       1_76     0.005  22.88 3.2e-07  -2.46
6796           PAQR6       1_76     0.005  23.42 3.5e-07  -2.15
10515           SMG5       1_76     0.002  16.19 1.1e-07  -1.67
10442           GLMP       1_76     0.005  22.75 3.3e-07  -2.03
7092           TSACC       1_76     0.001   5.31 1.3e-08   0.50

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                id region_tag susie_pip     mu2     PVE      z
6294    rs79598313       1_18     1.000   93.44 2.7e-04  11.36
11285   rs10788884       1_30     1.000   41.18 1.2e-04   6.38
32725  rs185073199       1_73     1.000  306.70 8.9e-04 -18.84
57243  rs766167074      1_118     1.000 5685.07 1.7e-02  -2.94
72541     rs780093       2_16     1.000  430.18 1.3e-03 -22.26
113494   rs7565788      2_103     1.000  140.03 4.1e-04 -11.91
113556   rs6433115      2_103     1.000   50.48 1.5e-04   7.40
115849    rs863678      2_106     1.000  101.88 3.0e-04   6.01
117790  rs11690832      2_110     1.000   59.09 1.7e-04   8.04
127449   rs2068218      2_128     1.000   44.81 1.3e-04  -6.60
199976 rs141435299       4_10     1.000  511.27 1.5e-03  -1.03
200180  rs57136958       4_11     1.000  377.26 1.1e-03 -10.08
200236  rs13115469       4_11     1.000 9480.84 2.8e-02 133.38
200271   rs3775948       4_11     1.000 9725.80 2.8e-02 131.05
200297  rs75968456       4_11     1.000  659.02 1.9e-03  -2.69
200600   rs6831973       4_12     1.000   85.44 2.5e-04  -9.83
200626  rs76285604       4_12     1.000  134.07 3.9e-04 -11.85
200713 rs142309009       4_12     1.000   73.32 2.1e-04  -9.06
225574 rs149027545       4_59     1.000 2231.75 6.5e-03  53.88
225640  rs10022462       4_60     1.000   99.15 2.9e-04 -12.99
230022  rs35518360       4_67     1.000   45.34 1.3e-04  -6.68
276576    rs255749       5_31     1.000   71.91 2.1e-04   8.64
277347  rs10077826       5_33     1.000   35.85 1.0e-04  -5.73
281784  rs10942549       5_43     1.000  170.57 5.0e-04 -15.21
318593    rs630258        6_7     1.000  163.21 4.7e-04 -17.15
325060   rs7754961       6_19     1.000  122.96 3.6e-04  15.01
325099  rs12213398       6_19     1.000   45.81 1.3e-04  -4.69
325743   rs6908155       6_21     1.000   62.92 1.8e-04  -2.88
328906   rs2856992       6_27     1.000   50.41 1.5e-04  -5.75
358175  rs10782229       6_84     1.000   42.78 1.2e-04   5.77
373398  rs78148157        7_2     1.000  114.99 3.3e-04  -9.55
373399  rs13241427        7_2     1.000   86.19 2.5e-04   8.10
399842 rs761767938       7_49     1.000 6206.94 1.8e-02  -3.88
399850   rs1544459       7_49     1.000 6242.46 1.8e-02  -4.00
449493   rs2941484       8_56     1.000  159.09 4.6e-04  15.49
484112  rs56030777       9_25     1.000  104.08 3.0e-04  -4.38
497675   rs1800977       9_53     1.000   48.13 1.4e-04  -6.96
524397  rs35182775      10_33     1.000  203.32 5.9e-04  15.09
527532  rs11510917      10_39     1.000  214.51 6.2e-04 -19.07
527545   rs1171619      10_39     1.000  332.66 9.7e-04  21.17
533780 rs149429992      10_52     1.000 7775.47 2.3e-02   2.53
544826  rs10886117      10_72     1.000   54.68 1.6e-04   7.40
562269 rs369062552      11_21     1.000  192.36 5.6e-04  11.72
562279  rs34830202      11_21     1.000  191.76 5.6e-04 -12.09
598568  rs11056397      12_13     1.000   35.26 1.0e-04  -5.84
611264   rs6581124      12_35     1.000  101.89 3.0e-04 -10.40
611283   rs7397189      12_36     1.000  340.88 9.9e-04 -20.09
630291   rs2701194      12_74     1.000   71.55 2.1e-04   8.03
634624  rs76734539      12_82     1.000   60.46 1.8e-04   7.62
647399 rs566812111      13_25     1.000 2938.63 8.5e-03   2.56
676810  rs72681869      14_20     1.000   65.44 1.9e-04  -8.26
709562   rs2472297      15_35     1.000   66.82 1.9e-04  -9.72
709804 rs145727191      15_35     1.000   51.53 1.5e-04   8.91
709833   rs2955742      15_36     1.000   42.91 1.2e-04   7.22
717310  rs59646751      15_48     1.000  149.48 4.3e-04  14.47
730557  rs12927956      16_27     1.000   68.93 2.0e-04   7.55
759024   rs3794748      17_32     1.000  171.00 5.0e-04 -13.59
794944  rs10401485       19_7     1.000   66.75 1.9e-04   9.35
827264    rs209955      20_32     1.000   36.39 1.1e-04   5.89
839063    rs219783      21_17     1.000   88.38 2.6e-04  -9.60
937590 rs140927145       7_92     1.000 8749.76 2.5e-02  -2.70
958461 rs542984928      11_36     1.000  241.16 7.0e-04  23.70
32727    rs1058534       1_73     0.999   39.27 1.1e-04   4.74
551845   rs3842748       11_2     0.999   84.95 2.5e-04  -8.12
571635   rs1203614      11_37     0.999   50.14 1.5e-04   6.02
647403  rs12430288      13_25     0.999 2966.38 8.6e-03   2.63
754251      rs2688      17_22     0.999   32.12 9.3e-05  -5.49
760345  rs11650989      17_36     0.999   40.76 1.2e-04   7.88
803393  rs56287732      19_23     0.999   41.14 1.2e-04   5.41
958490  rs12363578      11_36     0.999  494.47 1.4e-03 -26.87
150985 rs113569731       3_33     0.998   34.67 1.0e-04   6.69
200719  rs61795273       4_12     0.998   54.55 1.6e-04  -7.25
314395 rs139078584      5_106     0.998   32.11 9.3e-05   6.53
533782   rs2152629      10_52     0.998 7794.14 2.3e-02   2.47
774641    rs527616      18_14     0.998   31.06 9.0e-05  -5.57
200396   rs4140694       4_11     0.997  862.78 2.5e-03  16.31
243507   rs4521364       4_95     0.997   56.31 1.6e-04  -5.84
617762   rs1848968      12_48     0.997   45.86 1.3e-04  -6.75
847453    rs740219      22_10     0.997   35.50 1.0e-04   6.06
318416 rs200823080        6_6     0.996   33.69 9.8e-05   5.68
550630   rs2767419      10_85     0.996   34.75 1.0e-04  -5.65
762453 rs113408695      17_39     0.996   31.77 9.2e-05  -5.55
806859    rs814573      19_32     0.996   31.06 9.0e-05  -5.56
406243  rs45467892       7_61     0.995   41.78 1.2e-04  -6.54
205121    rs358256       4_20     0.994   33.87 9.8e-05   5.69
325576  rs13191326       6_21     0.994  231.18 6.7e-04  13.59
937586   rs6954405       7_92     0.994 8729.37 2.5e-02  -2.37
87127    rs7561263       2_46     0.993   35.30 1.0e-04  -6.03
173655  rs11712964       3_78     0.993   30.31 8.8e-05   5.45
711351   rs7174325      15_38     0.993   28.54 8.2e-05   4.89
828985   rs1407040      20_34     0.993   29.63 8.6e-05  -5.21
84689     rs778147       2_40     0.992   47.99 1.4e-04   6.79
803247  rs71176165      19_23     0.992   69.52 2.0e-04  -9.09
92278   rs10196697       2_54     0.991   32.46 9.4e-05  -5.64
180547 rs145422957       3_92     0.991   30.16 8.7e-05  -5.47
803431    rs889140      19_23     0.991   29.72 8.6e-05  -4.20
512622  rs72777711      10_10     0.990   30.40 8.8e-05  -5.28
717317   rs8037855      15_48     0.990   64.84 1.9e-04  10.82
399846  rs11972122       7_49     0.988 5768.82 1.7e-02  -3.92
691061  rs73349296      14_50     0.988   43.23 1.2e-04  -6.59
449531   rs2941432       8_56     0.987   69.92 2.0e-04  11.61
736271  rs72799826      16_38     0.987   33.06 9.5e-05  -5.84
178134 rs115604285       3_87     0.986   32.63 9.4e-05   6.16
714094 rs113404146      15_42     0.986   34.61 9.9e-05   5.81
589923  rs73022311      11_77     0.985   26.53 7.6e-05  -4.89
683267  rs10151620      14_34     0.985   36.53 1.0e-04   6.06
390782    rs700752       7_34     0.983   48.41 1.4e-04   6.67
33769    rs1979575       1_75     0.980   26.03 7.4e-05  -4.39
230797   rs2903386       4_69     0.979   34.33 9.8e-05   5.82
792922   rs2074457       19_3     0.979   26.64 7.6e-05   4.44
394303 rs140420256       7_39     0.976   25.42 7.2e-05   4.74
539944   rs7900763      10_64     0.976   26.79 7.6e-05  -4.72
211123  rs12639940       4_32     0.974   25.87 7.3e-05  -4.41
630300  rs80019595      12_74     0.974   54.14 1.5e-04  -6.72
888117  rs17050272       2_70     0.974  114.74 3.2e-04  12.28
609350   rs1878234      12_31     0.972   29.37 8.3e-05  -5.23
237787  rs62323480       4_83     0.970   25.85 7.3e-05   4.40
151688  rs62259692       3_36     0.969   35.31 9.9e-05   7.65
205918  rs34811474       4_21     0.969   35.27 9.9e-05  -5.82
429354  rs17151140       8_13     0.969   55.61 1.6e-04   5.11
711207   rs8024096      15_37     0.969   28.33 8.0e-05   5.11
735932  rs56259873      16_37     0.968   90.15 2.5e-04  10.62
774682    rs162000      18_14     0.968   25.57 7.2e-05   4.95
247504 rs139212650      4_102     0.966   24.92 7.0e-05   4.61
329108   rs1126511       6_27     0.966   49.78 1.4e-04   5.39
141873   rs6778028       3_12     0.961   25.37 7.1e-05   4.59
422421  rs11761498       7_98     0.961   32.77 9.2e-05   5.26
479485  rs10964603       9_16     0.961   25.16 7.0e-05  -4.52
277508 rs536916238       5_33     0.960   31.95 8.9e-05  -0.30
439750 rs111965375       8_34     0.955   25.74 7.2e-05   5.22
225594  rs28366540       4_59     0.952  558.03 1.5e-03 -33.87
332608  rs10223666       6_34     0.952  191.31 5.3e-04  14.34
572083   rs6591334      11_37     0.952   38.49 1.1e-04  -5.74
70531   rs62112223       2_12     0.951   30.01 8.3e-05  -5.32
828854  rs73185042      20_34     0.950   25.29 7.0e-05  -4.69
316738   rs1272694        6_3     0.947   34.69 9.6e-05  -5.95
326523  rs13437375       6_23     0.943   29.91 8.2e-05   2.72
277490    rs173964       5_33     0.941  104.18 2.9e-04   8.09
424792 rs117950418        8_4     0.936   24.65 6.7e-05  -4.62
681701  rs34528648      14_32     0.936   32.14 8.7e-05   5.45
719548   rs2601781       16_4     0.934   25.44 6.9e-05   4.71
32400  rs146141366       1_73     0.933   32.24 8.7e-05  -6.41
441040  rs12543287       8_37     0.932   34.56 9.4e-05  -5.67
717293  rs75422555      15_47     0.932   31.12 8.4e-05  -6.41
505789 rs201421930       9_69     0.931   34.84 9.4e-05  -5.88
72738    rs7606480       2_17     0.926   25.69 6.9e-05  -4.89
158345  rs56324130       3_49     0.926   23.92 6.4e-05  -4.43
550576  rs75184896      10_84     0.926   26.63 7.2e-05   5.47
236957  rs72680231       4_81     0.924   24.44 6.6e-05  -4.66
464077    rs921719       8_83     0.924   27.01 7.3e-05  -5.17
66954  rs139638572        2_6     0.922   27.95 7.5e-05   4.44
610539  rs11608918      12_33     0.922   25.08 6.7e-05   4.71
352403  rs12196331       6_71     0.921   28.69 7.7e-05   5.24
236094  rs41278087       4_79     0.917   24.04 6.4e-05  -4.60
465396  rs36041912       8_85     0.917   24.31 6.5e-05  -4.56
716994 rs116887089      15_47     0.916   24.33 6.5e-05   4.45
186960   rs1290790      3_104     0.915   69.86 1.9e-04   6.15
271834  rs13170671       5_23     0.913   70.77 1.9e-04   8.54
522692  rs58434594      10_30     0.912   27.69 7.3e-05   4.83
155878  rs56145049       3_43     0.910   24.80 6.6e-05  -4.67
315649   rs6873880      5_109     0.906   28.18 7.4e-05  -5.03
420509  rs10224210       7_94     0.905  131.87 3.5e-04  11.82
230088  rs13140033       4_68     0.904   24.32 6.4e-05  -4.46
212858 rs112161979       4_35     0.900   23.67 6.2e-05   4.56
346480 rs118165878       6_58     0.899   23.86 6.2e-05   4.44
805755  rs11671669      19_28     0.896   24.00 6.3e-05   4.49
190228  rs17593458      3_110     0.895   25.72 6.7e-05   4.52
504688  rs11545664       9_66     0.895   25.56 6.7e-05   4.37
709774 rs553274247      15_35     0.891  122.44 3.2e-04  -5.27
194788   rs7642977      3_119     0.890   29.72 7.7e-05   5.14
151871   rs2276816       3_36     0.889   32.28 8.3e-05  -0.96
281193   rs6886422       5_42     0.889   25.33 6.5e-05  -4.52
783269    rs784218      18_30     0.889   27.03 7.0e-05   4.29
811810   rs2003700       20_1     0.878   24.14 6.2e-05   4.41
562194   rs3781846      11_21     0.877   34.31 8.8e-05  -6.10
32718   rs36107432       1_73     0.875   91.25 2.3e-04 -10.06
287232   rs3952745       5_53     0.875   32.65 8.3e-05  -6.44
572424  rs10752584      11_38     0.874   30.10 7.7e-05   4.73
325013  rs62392365       6_19     0.873   72.24 1.8e-04  11.55
798747  rs11668601      19_14     0.871   35.15 8.9e-05   7.11
354504   rs1997649       6_76     0.870   23.80 6.0e-05   4.28
199559  rs28680668        4_9     0.864   33.07 8.3e-05   5.66
331859  rs17328707       6_32     0.863   24.27 6.1e-05  -4.44
543559  rs11196217      10_70     0.863   25.08 6.3e-05  -4.56
551832  rs11042594       11_2     0.861   67.84 1.7e-04   6.63
571658    rs509533      11_37     0.857   45.29 1.1e-04   7.93
613719 rs113897089      12_40     0.857   29.33 7.3e-05   5.22
6777     rs7516039       1_20     0.856   25.69 6.4e-05   4.71
697307  rs62004133       15_8     0.854   25.07 6.2e-05  -4.56
960801   rs5792371      11_36     0.853  267.41 6.6e-04  18.90
227624  rs11722010       4_63     0.850   25.08 6.2e-05  -4.49
739611  rs76862947      16_44     0.849  139.30 3.4e-04 -11.76
958110  rs78915580      11_36     0.849   65.82 1.6e-04  -7.09
949639   rs3824359       9_73     0.846   43.67 1.1e-04   6.60
794928  rs11085216       19_7     0.844   61.29 1.5e-04  -8.96
24773    rs9432440       1_58     0.842   25.38 6.2e-05   4.55
302516    rs356486       5_82     0.842   29.54 7.2e-05   5.01
827294 rs570322378      20_32     0.841   27.15 6.6e-05   4.45
40689     rs604388       1_87     0.840   24.57 6.0e-05   4.43
446808  rs71553284       8_50     0.839   25.37 6.2e-05   4.39
123087  rs56059523      2_120     0.838   29.74 7.2e-05   4.32
399114   rs1179610       7_48     0.834   25.92 6.3e-05   4.72
784839  rs17773471      18_33     0.834   35.74 8.7e-05   7.37
103431  rs71862935       2_79     0.832   27.39 6.6e-05  -4.89
735867  rs72799382      16_37     0.832   42.87 1.0e-04  -6.78
111131  rs12467636       2_96     0.830   35.50 8.6e-05   5.79
579952  rs57569860      11_52     0.829   23.66 5.7e-05   3.53
151474  rs78342753       3_35     0.828   34.08 8.2e-05   5.19
87142   rs72837990       2_46     0.826   24.50 5.9e-05  -4.42
484081  rs10971408       9_25     0.826   28.16 6.8e-05  -3.63
601350   rs4077798      12_17     0.825   30.31 7.3e-05  -5.30
814218    rs235763       20_5     0.825   25.95 6.2e-05  -4.66
735501  rs12599580      16_36     0.824   28.33 6.8e-05   5.66
448127  rs34650318       8_54     0.819   26.07 6.2e-05  -4.51
141191   rs9846767       3_11     0.816   25.01 5.9e-05   4.59
331155   rs2815103       6_30     0.815   28.30 6.7e-05   4.85
406907   rs7803747       7_63     0.815   26.81 6.4e-05   5.00
446574  rs17397411       8_50     0.814   25.24 6.0e-05   4.24
435750   rs4871905       8_24     0.813  131.14 3.1e-04  12.10
547435   rs1693628      10_78     0.812   26.32 6.2e-05  -4.38
639726   rs9315009       13_9     0.807   36.74 8.6e-05   5.93

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip     mu2     PVE       z
200271   rs3775948       4_11     1.000 9725.80 2.8e-02  131.05
200238   rs6838021       4_11     0.000 9644.63 0.0e+00  133.98
200239   rs6823324       4_11     0.000 9625.69 0.0e+00 -133.15
200242  rs11723439       4_11     0.000 9485.78 0.0e+00 -132.41
200236  rs13115469       4_11     1.000 9480.84 2.8e-02  133.38
937590 rs140927145       7_92     1.000 8749.76 2.5e-02   -2.70
937586   rs6954405       7_92     0.994 8729.37 2.5e-02   -2.37
937585   rs6953180       7_92     0.301 8727.34 7.6e-03   -2.31
937584  rs11971515       7_92     0.092 8725.68 2.3e-03   -2.27
937583  rs11974627       7_92     0.102 8724.43 2.6e-03   -2.27
937588 rs528981137       7_92     0.006 8721.80 1.6e-04   -2.16
937589 rs549027364       7_92     0.007 8721.59 1.8e-04   -2.16
200261   rs7439210       4_11     0.000 8715.70 0.0e+00 -128.12
937580   rs7807788       7_92     0.000 8510.18 1.1e-07   -2.43
937574  rs11546289       7_92     0.000 8486.58 2.5e-09   -2.37
937575  rs13243678       7_92     0.000 8478.19 9.5e-10   -2.36
937576  rs11546290       7_92     0.000 8472.68 3.1e-10   -2.34
937572   rs6952916       7_92     0.000 8432.27 5.9e-12   -2.29
937569   rs7793916       7_92     0.000 8421.15 4.0e-12   -2.30
937570   rs7781312       7_92     0.000 8402.16 5.7e-13   -2.28
937568  rs13247593       7_92     0.000 8393.44 1.1e-11   -2.38
937571   rs6965276       7_92     0.000 8347.45 9.9e-15   -2.28
937593 rs112579924       7_92     0.000 8308.78 0.0e+00   -1.71
937567 rs568222600       7_92     0.000 8271.15 5.6e-17   -2.28
937598  rs12667507       7_92     0.000 8261.11 0.0e+00    2.10
937565 rs112799047       7_92     0.000 8147.73 0.0e+00   -2.31
937566  rs10233906       7_92     0.000 8137.38 0.0e+00   -2.31
937563 rs112684174       7_92     0.000 8128.78 0.0e+00   -2.32
937564 rs112634954       7_92     0.000 8120.51 0.0e+00   -2.32
937558   rs6965440       7_92     0.000 8107.64 0.0e+00   -2.33
937557   rs6464930       7_92     0.000 8096.21 0.0e+00   -2.35
937552   rs6978068       7_92     0.000 8056.14 0.0e+00   -2.28
200329  rs11723742       4_11     0.000 7991.99 0.0e+00 -116.64
937543  rs10233535       7_92     0.000 7957.75 0.0e+00   -2.31
937544  rs56932055       7_92     0.000 7955.42 0.0e+00   -2.32
937548   rs6958855       7_92     0.000 7954.44 0.0e+00   -2.34
937551   rs6963547       7_92     0.000 7951.80 0.0e+00   -2.37
937533  rs10269104       7_92     0.000 7950.62 0.0e+00   -2.30
937549   rs1551926       7_92     0.000 7928.96 0.0e+00    2.45
200413  rs17389602       4_11     0.000 7843.29 0.0e+00 -117.34
200415  rs78917351       4_11     0.000 7831.73 0.0e+00 -117.31
937577   rs2306169       7_92     0.000 7802.72 0.0e+00    2.54
533782   rs2152629      10_52     0.998 7794.14 2.3e-02    2.47
937579   rs2306170       7_92     0.000 7786.32 0.0e+00    2.33
533778   rs7913261      10_52     0.565 7777.68 1.3e-02    2.51
533780 rs149429992      10_52     1.000 7775.47 2.3e-02    2.53
533783   rs1360953      10_52     0.000 7699.10 1.9e-08    2.50
937587   rs6953222       7_92     0.000 7697.89 0.0e+00   -1.43
533788  rs76574695      10_52     0.000 7697.50 1.6e-07    2.40
937582  rs34909003       7_92     0.000 7646.92 0.0e+00   -1.86

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                id region_tag susie_pip     mu2     PVE      z
200236  rs13115469       4_11     1.000 9480.84 0.02800 133.38
200271   rs3775948       4_11     1.000 9725.80 0.02800 131.05
937586   rs6954405       7_92     0.994 8729.37 0.02500  -2.37
937590 rs140927145       7_92     1.000 8749.76 0.02500  -2.70
533780 rs149429992      10_52     1.000 7775.47 0.02300   2.53
533782   rs2152629      10_52     0.998 7794.14 0.02300   2.47
399842 rs761767938       7_49     1.000 6206.94 0.01800  -3.88
399850   rs1544459       7_49     1.000 6242.46 0.01800  -4.00
57243  rs766167074      1_118     1.000 5685.07 0.01700  -2.94
399846  rs11972122       7_49     0.988 5768.82 0.01700  -3.92
533778   rs7913261      10_52     0.565 7777.68 0.01300   2.51
647403  rs12430288      13_25     0.999 2966.38 0.00860   2.63
647399 rs566812111      13_25     1.000 2938.63 0.00850   2.56
937585   rs6953180       7_92     0.301 8727.34 0.00760  -2.31
225574 rs149027545       4_59     1.000 2231.75 0.00650  53.88
57241    rs2486737      1_118     0.369 5647.25 0.00610  -3.17
57242     rs971534      1_118     0.357 5647.23 0.00590  -3.16
57240   rs10489611      1_118     0.303 5647.08 0.00500  -3.16
57237    rs2790891      1_118     0.290 5646.71 0.00480  -3.16
57238    rs2491405      1_118     0.290 5646.71 0.00480  -3.16
57234    rs2256908      1_118     0.277 5646.68 0.00450  -3.16
647402   rs1579715      13_25     0.395 2936.01 0.00340  -2.77
57249    rs2248646      1_118     0.181 5644.36 0.00300  -3.14
57250    rs2211176      1_118     0.173 5644.56 0.00280  -3.14
57251    rs2790882      1_118     0.173 5644.56 0.00280  -3.14
937583  rs11974627       7_92     0.102 8724.43 0.00260  -2.27
200396   rs4140694       4_11     0.997  862.78 0.00250  16.31
937584  rs11971515       7_92     0.092 8725.68 0.00230  -2.27
200297  rs75968456       4_11     1.000  659.02 0.00190  -2.69
57230    rs1076804      1_118     0.090 5638.03 0.00150  -3.14
199976 rs141435299       4_10     1.000  511.27 0.00150  -1.03
225594  rs28366540       4_59     0.952  558.03 0.00150 -33.87
958490  rs12363578      11_36     0.999  494.47 0.00140 -26.87
72541     rs780093       2_16     1.000  430.18 0.00130 -22.26
57252    rs1416913      1_118     0.072 5637.35 0.00120  -3.13
57246    rs2739509      1_118     0.071 5544.70 0.00110  -3.30
200180  rs57136958       4_11     1.000  377.26 0.00110 -10.08
199971 rs146530806       4_10     0.572  603.57 0.00100   6.59
611283   rs7397189      12_36     1.000  340.88 0.00099 -20.09
199969 rs144362537       4_10     0.558  604.18 0.00098   6.57
527545   rs1171619      10_39     1.000  332.66 0.00097  21.17
199970  rs34658640       4_10     0.536  604.12 0.00094   6.57
32725  rs185073199       1_73     1.000  306.70 0.00089 -18.84
57255    rs2790874      1_118     0.052 5636.55 0.00085  -3.12
958461 rs542984928      11_36     1.000  241.16 0.00070  23.70
325576  rs13191326       6_21     0.994  231.18 0.00067  13.59
960801   rs5792371      11_36     0.853  267.41 0.00066  18.90
527532  rs11510917      10_39     1.000  214.51 0.00062 -19.07
524397  rs35182775      10_33     1.000  203.32 0.00059  15.09
325178   rs1165209       6_20     0.270  726.02 0.00057  32.67

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip     mu2   PVE       z
200238   rs6838021       4_11         0 9644.63 0.000  133.98
200236  rs13115469       4_11         1 9480.84 0.028  133.38
200239   rs6823324       4_11         0 9625.69 0.000 -133.15
200242  rs11723439       4_11         0 9485.78 0.000 -132.41
200271   rs3775948       4_11         1 9725.80 0.028  131.05
200261   rs7439210       4_11         0 8715.70 0.000 -128.12
200413  rs17389602       4_11         0 7843.29 0.000 -117.34
200415  rs78917351       4_11         0 7831.73 0.000 -117.31
200329  rs11723742       4_11         0 7991.99 0.000 -116.64
200467  rs11722185       4_11         0 7641.23 0.000 -115.64
200453  rs11727390       4_11         0 7646.53 0.000 -115.57
200459   rs4697745       4_11         0 7029.54 0.000 -110.85
200490 rs546391476       4_11         0 6944.82 0.000 -110.51
200441  rs10489070       4_11         0 6824.81 0.000 -109.37
200279   rs9291642       4_11         0 5583.73 0.000  103.74
200376   rs4697717       4_11         0 6460.03 0.000 -103.72
200398    rs887732       4_11         0 6243.84 0.000 -103.53
200301   rs7349721       4_11         0 5356.95 0.000  100.68
200245   rs7375643       4_11         0 4135.50 0.000  -90.99
200265  rs11723970       4_11         0 4129.19 0.000   90.75
200244   rs7375599       4_11         0 4106.76 0.000  -90.71
200497   rs5856057       4_11         0 4541.67 0.000  -86.60
200259   rs6449177       4_11         0 3550.06 0.000  -85.49
200272  rs34501273       4_11         0 3884.81 0.000   84.99
200274   rs3733586       4_11         0 3885.37 0.000   84.99
200275  rs35438220       4_11         0 3884.22 0.000   84.99
200278  rs12507330       4_11         0 3883.30 0.000   84.97
200269  rs17187075       4_11         0 3735.98 0.000   84.09
200241  rs12498956       4_11         0 3433.44 0.000  -83.90
200283   rs3756236       4_11         0 3717.48 0.000   83.79
200298  rs11727199       4_11         0 3718.14 0.000   83.20
200299  rs10939665       4_11         0 3715.67 0.000   83.17
200300  rs12508991       4_11         0 3716.39 0.000   83.17
200312  rs35501905       4_11         0 3713.33 0.000   83.12
200233  rs35955619       4_11         0 3188.83 0.000  -82.89
200251   rs6844316       4_11         0 3331.64 0.000  -82.84
200256   rs4295261       4_11         0 3333.13 0.000  -82.84
200249  rs34297373       4_11         0 3330.44 0.000  -82.82
200252  rs28837683       4_11         0 3326.06 0.000  -82.81
200258   rs7434391       4_11         0 3333.44 0.000  -82.79
200295  rs13148371       4_11         0 3694.27 0.000   82.73
200243   rs7376155       4_11         0 3307.88 0.000  -82.67
200247   rs4314284       4_11         0 3307.91 0.000  -82.67
200316   rs7678211       4_11         0 3821.79 0.000   82.60
200337   rs4235356       4_11         0 3340.56 0.000  -80.91
200286   rs6827785       4_11         0 3246.53 0.000   79.26
200311  rs13120348       4_11         0 3235.31 0.000   78.51
200303  rs13122689       4_11         0 3225.75 0.000   78.50
200304  rs12504565       4_11         0 3226.18 0.000   78.50
200296  rs12506122       4_11         0 3239.20 0.000   78.48

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 16
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
PPM1A gene(s) from the input list not found in DisGeNET CURATEDTLCD2 gene(s) from the input list not found in DisGeNET CURATEDTMC4 gene(s) from the input list not found in DisGeNET CURATEDFAM216A gene(s) from the input list not found in DisGeNET CURATEDPRSS27 gene(s) from the input list not found in DisGeNET CURATEDSYTL1 gene(s) from the input list not found in DisGeNET CURATEDCHCHD7 gene(s) from the input list not found in DisGeNET CURATEDDNAJC3-AS1 gene(s) from the input list not found in DisGeNET CURATED
                                                          Description
64                   BONE MINERAL DENSITY QUANTITATIVE TRAIT LOCUS 12
67                                 PROSTATE CANCER, SUSCEPTIBILITY TO
70 MEGALENCEPHALY-POLYMICROGYRIA-POLYDACTYLY-HYDROCEPHALUS SYNDROME 3
71        PARKINSON DISEASE 11, AUTOSOMAL DOMINANT, SUSCEPTIBILITY TO
73                                       PREMATURE OVARIAN FAILURE 13
35                                             POLYDACTYLY, POSTAXIAL
58                                               Perisylvian syndrome
59  Megalanecephaly Polymicrogyria-Polydactyly Hydrocephalus Syndrome
60                                      POSTAXIAL POLYDACTYLY, TYPE B
62                                                   Alcohol Toxicity
          FDR Ratio BgRatio
64 0.01220367   1/8  1/9703
67 0.01220367   1/8  1/9703
70 0.01220367   1/8  1/9703
71 0.01220367   1/8  1/9703
73 0.01220367   1/8  1/9703
35 0.02031744   1/8  4/9703
58 0.02031744   1/8  4/9703
59 0.02031744   1/8  4/9703
60 0.02031744   1/8  3/9703
62 0.02031744   1/8  2/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2