Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30870_irnt_Whole_Blood.Rmd) and HTML (docs/ukb-d-30870_irnt_Whole_Blood.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd da9f015 wesleycrouse 2021-08-07 adding more reports
html da9f015 wesleycrouse 2021-08-07 adding more reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Triglycerides (quantile) using Whole_Blood gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30870_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Whole_Blood eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11095
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1129  747  624  400  479  621  560  383  404  430  682  652  192  362  331 
  16   17   18   19   20   21   22 
 551  725  159  911  313  130  310 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.762776

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0122979289 0.0002065494 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
56.11433 23.46084 
#report sample size
print(sample_size)
[1] 343992
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11095 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.02225793 0.12251943 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.103603 1.259050

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
       genename region_tag susie_pip      mu2     PVE     z
7089       USP1       1_39     1.000  1055.09 3.1e-03 33.23
1980      FCGRT      19_34     1.000 25707.57 7.5e-02 -3.74
6089      FADS1      11_34     0.999   417.22 1.2e-03 21.00
11023     SIPA1      11_36     0.998    62.32 1.8e-04  8.65
5839      TIMD4       5_92     0.995   278.89 8.1e-04 15.00
3804      OPRL1      20_38     0.985    51.89 1.5e-04  7.76
6590      NTAN1      16_15     0.976    96.82 2.7e-04 12.08
4198   KIAA1683      19_14     0.967    27.60 7.8e-05  4.80
4610       ACP2      11_29     0.956   222.51 6.2e-04  9.99
90      SPATA20      17_29     0.926    29.35 7.9e-05  5.08
5421       NPC1      18_12     0.902    30.06 7.9e-05  0.78
3271     PMFBP1      16_38     0.898    29.06 7.6e-05  4.94
5834    TNFAIP8       5_72     0.888    69.61 1.8e-04  8.38
4564      PSRC1       1_67     0.881    23.59 6.0e-05 -4.40
1386      ITPR3       6_28     0.877    25.45 6.5e-05  4.58
1839       LMF1       16_1     0.859    35.39 8.8e-05 -5.33
9322         F2      11_28     0.852    86.67 2.1e-04  9.17
2119    TMEM147      19_24     0.851    32.68 8.1e-05  5.28
6686  HIST1H2BD       6_20     0.850    30.17 7.5e-05  5.76
7945      DAPK3       19_4     0.832    24.64 6.0e-05  4.57

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
            genename region_tag susie_pip      mu2     PVE      z
1980           FCGRT      19_34     1.000 25707.57 7.5e-02  -3.74
12570 RP11-147L13.11      17_39     0.000  8429.34 3.1e-16  -3.63
5520            RCN3      19_34     0.000  8213.14 6.5e-07  -4.91
9505           KPNA2      17_39     0.000  5661.36 4.6e-11  -5.95
12534 RP11-147L13.13      17_39     0.000  5640.39 5.5e-18  -3.29
4687          TMEM60       7_49     0.000  4020.31 0.0e+00   1.47
2551          PTPMT1      11_29     0.000  3213.04 3.8e-14   6.81
2496            ZPR1      11_70     0.044  3041.24 3.9e-04 -47.41
881           ZNF37A      10_28     0.000  2912.27 0.0e+00   0.79
9952        C17orf58      17_39     0.000  2282.52 0.0e+00  -3.27
4609          MYBPC3      11_29     0.000  2281.85 0.0e+00  -3.06
6984            MPP3      17_26     0.000  2214.71 6.7e-09   4.52
8165           CPT1C      19_34     0.001  1869.08 6.4e-06   5.02
8899             LPL       8_21     0.000  1274.24 0.0e+00 -46.68
8552         C1QTNF4      11_29     0.000  1214.79 0.0e+00  -5.12
12146  RP11-147L13.8      17_39     0.000  1150.90 0.0e+00  -2.47
7089            USP1       1_39     1.000  1055.09 3.1e-03  33.23
3102           DOCK7       1_39     0.010   868.15 2.5e-05  30.17
2953           NRBP1       2_16     0.004   761.68 8.2e-06  26.36
2497           FNBP4      11_29     0.000   743.96 0.0e+00   1.29

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
           genename region_tag susie_pip      mu2     PVE      z
1980          FCGRT      19_34     1.000 25707.57 0.07500  -3.74
7089           USP1       1_39     1.000  1055.09 0.00310  33.23
6089          FADS1      11_34     0.999   417.22 0.00120  21.00
5839          TIMD4       5_92     0.995   278.89 0.00081  15.00
7786       CATSPER2      15_16     0.669   362.20 0.00070  19.03
4610           ACP2      11_29     0.956   222.51 0.00062   9.99
2496           ZPR1      11_70     0.044  3041.24 0.00039 -47.41
6590          NTAN1      16_15     0.976    96.82 0.00027  12.08
10765       ZDHHC18       1_18     0.706   122.81 0.00025  10.81
9322             F2      11_28     0.852    86.67 0.00021   9.17
1267         PABPC4       1_24     0.790    77.45 0.00018  -8.95
5834        TNFAIP8       5_72     0.888    69.61 0.00018   8.38
11023         SIPA1      11_36     0.998    62.32 0.00018   8.65
12307 RP11-459I19.1      2_129     0.754    78.68 0.00017  -8.33
5318           USP3      15_29     0.758    77.57 0.00017   9.81
11634         GSTA2       6_39     0.707    73.39 0.00015   8.46
11727      DNAH10OS      12_75     0.549    91.26 0.00015 -11.45
3804          OPRL1      20_38     0.985    51.89 0.00015   7.76
5057         IFT172       2_16     0.527    92.09 0.00014 -12.84
1087           GCKR       2_16     0.439    91.91 0.00012  12.86

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
     genename region_tag susie_pip     mu2     PVE      z
2496     ZPR1      11_70     0.044 3041.24 3.9e-04 -47.41
8899      LPL       8_21     0.000 1274.24 0.0e+00 -46.68
7089     USP1       1_39     1.000 1055.09 3.1e-03  33.23
3102    DOCK7       1_39     0.010  868.15 2.5e-05  30.17
2953    NRBP1       2_16     0.004  761.68 8.2e-06  26.36
5007    BUD13      11_70     0.000  619.45 0.0e+00  26.11
2956    SNX17       2_16     0.017  688.91 3.5e-05  23.54
6089    FADS1      11_34     0.999  417.22 1.2e-03  21.00
9915    BACE1      11_70     0.000  214.04 0.0e+00 -19.43
7786 CATSPER2      15_16     0.669  362.20 7.0e-04  19.03
4137     MAU2      19_15     0.003  241.95 2.2e-06  17.96
7304   ZNF513       2_16     0.000  335.09 4.6e-07  16.40
5076   ATRAID       2_16     0.001  229.46 3.8e-07 -16.30
4636    FADS2      11_34     0.007  252.22 5.4e-06  15.79
2131  ATP13A1      19_15     0.004  169.52 2.0e-06 -15.71
7782    CASC4      15_17     0.015  247.64 1.1e-05 -15.60
5839    TIMD4       5_92     0.995  278.89 8.1e-04  15.00
1652    PCIF1      20_28     0.007  202.64 4.3e-06  14.40
1087     GCKR       2_16     0.439   91.91 1.2e-04  12.86
5057   IFT172       2_16     0.527   92.09 1.4e-04 -12.84

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.0308247
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
     genename region_tag susie_pip     mu2     PVE      z
2496     ZPR1      11_70     0.044 3041.24 3.9e-04 -47.41
8899      LPL       8_21     0.000 1274.24 0.0e+00 -46.68
7089     USP1       1_39     1.000 1055.09 3.1e-03  33.23
3102    DOCK7       1_39     0.010  868.15 2.5e-05  30.17
2953    NRBP1       2_16     0.004  761.68 8.2e-06  26.36
5007    BUD13      11_70     0.000  619.45 0.0e+00  26.11
2956    SNX17       2_16     0.017  688.91 3.5e-05  23.54
6089    FADS1      11_34     0.999  417.22 1.2e-03  21.00
9915    BACE1      11_70     0.000  214.04 0.0e+00 -19.43
7786 CATSPER2      15_16     0.669  362.20 7.0e-04  19.03
4137     MAU2      19_15     0.003  241.95 2.2e-06  17.96
7304   ZNF513       2_16     0.000  335.09 4.6e-07  16.40
5076   ATRAID       2_16     0.001  229.46 3.8e-07 -16.30
4636    FADS2      11_34     0.007  252.22 5.4e-06  15.79
2131  ATP13A1      19_15     0.004  169.52 2.0e-06 -15.71
7782    CASC4      15_17     0.015  247.64 1.1e-05 -15.60
5839    TIMD4       5_92     0.995  278.89 8.1e-04  15.00
1652    PCIF1      20_28     0.007  202.64 4.3e-06  14.40
1087     GCKR       2_16     0.439   91.91 1.2e-04  12.86
5057   IFT172       2_16     0.527   92.09 1.4e-04 -12.84

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 11_70"
     genename region_tag susie_pip     mu2     PVE      z
5007    BUD13      11_70     0.000  619.45 0.00000  26.11
2496     ZPR1      11_70     0.044 3041.24 0.00039 -47.41
3237    APOA1      11_70     0.000  164.84 0.00000   3.42
6898     SIK3      11_70     0.000   94.53 0.00000  -5.93
8030 PAFAH1B2      11_70     0.000  443.78 0.00000  -3.65
6104    TAGLN      11_70     0.000  130.16 0.00000  -3.20
6902    PCSK7      11_70     0.000  133.73 0.00000  -4.29
7873   RNF214      11_70     0.000   35.89 0.00000  -1.80
9915    BACE1      11_70     0.000  214.04 0.00000 -19.43
2530   CEP164      11_70     0.000   85.32 0.00000  -5.80
5018    FXYD2      11_70     0.000    5.81 0.00000   0.39
5017    FXYD6      11_70     0.000    6.77 0.00000   0.50

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 8_21"
       genename region_tag susie_pip     mu2 PVE      z
5936 CSGALNACT1       8_21         0  108.25   0  -9.94
1947     INTS10       8_21         0  103.42   0  -8.85
8899        LPL       8_21         0 1274.24   0 -46.68

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 1_39"
     genename region_tag susie_pip     mu2     PVE     z
7088    TM2D1       1_39     0.010    6.66 2.0e-07  1.53
4449     PATJ       1_39     0.041   18.67 2.2e-06  1.86
7089     USP1       1_39     1.000 1055.09 3.1e-03 33.23
3102    DOCK7       1_39     0.010  868.15 2.5e-05 30.17
3822    ATG4C       1_39     0.012    6.82 2.3e-07 -0.32

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 2_16"
      genename region_tag susie_pip    mu2     PVE      z
11045  SLC35F6       2_16     0.000  28.28 3.5e-08  -5.95
3366   TMEM214       2_16     0.003  14.67 1.3e-07   0.21
5074   EMILIN1       2_16     0.001  70.18 1.6e-07   9.33
5061       KHK       2_16     0.004  16.31 2.0e-07  -0.26
5059    CGREF1       2_16     0.003  15.50 1.1e-07   0.15
5070      PREB       2_16     0.000  20.21 2.7e-08  -3.74
5076    ATRAID       2_16     0.001 229.46 3.8e-07 -16.30
1090       CAD       2_16     0.002  50.24 3.2e-07  -7.86
5071    SLC5A6       2_16     0.001  50.74 1.7e-07   5.10
7303       UCN       2_16     0.001  57.96 8.7e-08 -10.37
2952    GTF3C2       2_16     0.001  54.15 8.0e-08  10.16
2956     SNX17       2_16     0.017 688.91 3.5e-05  23.54
7304    ZNF513       2_16     0.000 335.09 4.6e-07  16.40
2953     NRBP1       2_16     0.004 761.68 8.2e-06  26.36
5057    IFT172       2_16     0.527  92.09 1.4e-04 -12.84
1087      GCKR       2_16     0.439  91.91 1.2e-04  12.86
10613     GPN1       2_16     0.001  96.96 2.5e-07   7.15
9018   CCDC121       2_16     0.001  13.49 2.1e-08  -1.90
6660       BRE       2_16     0.002  74.42 4.2e-07  10.36

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 11_34"
           genename region_tag susie_pip    mu2     PVE     z
10165       FAM111B      11_34     0.003   6.98 6.1e-08 -0.95
7794        FAM111A      11_34     0.016  21.29 1.0e-06 -1.71
2506           DTX4      11_34     0.003   5.33 4.1e-08 -0.70
10468         MPEG1      11_34     0.005  11.21 1.5e-07  1.42
2515         MS4A6A      11_34     0.003  14.39 1.2e-07  3.14
7815          PATL1      11_34     0.006  14.52 2.4e-07 -2.00
7817           STX3      11_34     0.003   5.13 3.9e-08 -0.22
7818         MRPL16      11_34     0.003   5.01 3.8e-08  0.08
4634            GIF      11_34     0.007  16.70 3.4e-07  2.21
4638           TCN1      11_34     0.003   5.92 4.8e-08  0.78
6096          MS4A2      11_34     0.008  24.43 5.7e-07 -4.14
11819    AP001257.1      11_34     0.003   5.47 4.5e-08 -0.05
11116        MS4A4E      11_34     0.679  30.85 6.1e-05  5.44
2516         MS4A4A      11_34     0.003  12.02 9.8e-08  2.37
7825         MS4A6E      11_34     0.003  14.85 1.3e-07 -3.47
7826          MS4A7      11_34     0.004  10.64 1.1e-07  2.05
7827         MS4A14      11_34     0.003   7.54 6.8e-08 -1.25
2519         CCDC86      11_34     0.003   5.17 4.0e-08 -0.26
9570         PTGDR2      11_34     0.003   5.73 4.8e-08 -0.29
6093            ZP1      11_34     0.004   9.46 1.0e-07 -1.39
2520         PRPF19      11_34     0.003   5.92 5.1e-08  0.17
2521        TMEM109      11_34     0.004   7.90 8.4e-08  0.65
2546        SLC15A3      11_34     0.003   6.23 5.6e-08 -0.48
2547            CD5      11_34     0.003   6.21 4.7e-08  1.25
8008         VPS37C      11_34     0.003   6.94 6.9e-08 -0.14
11874          PGA5      11_34     0.006  17.95 3.2e-07  3.02
11340          PGA3      11_34     0.006  17.08 2.9e-07  2.93
8009           VWCE      11_34     0.003  11.73 1.2e-07  2.37
6088        TMEM138      11_34     0.016  19.22 9.1e-07 -0.38
7030       CYB561A3      11_34     0.016  19.22 9.1e-07 -0.38
9981        TMEM216      11_34     0.022  27.30 1.7e-06  2.68
11871 RP11-286N22.8      11_34     0.010  18.24 5.3e-07  1.92
4631          DAGLA      11_34     0.005  45.20 6.3e-07 -6.24
3765           MYRF      11_34     0.003  37.67 3.2e-07  5.89
4636          FADS2      11_34     0.007 252.22 5.4e-06 15.79
4637        TMEM258      11_34     0.008  93.35 2.2e-06  9.12
6089          FADS1      11_34     0.999 417.22 1.2e-03 21.00
11190         FADS3      11_34     0.003  11.45 9.9e-08 -2.59
8011          BEST1      11_34     0.003  34.86 3.4e-07  5.66
6092         INCENP      11_34     0.006  17.46 2.8e-07  2.93
7032         ASRGL1      11_34     0.003   5.95 5.0e-08 -0.11

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip      mu2     PVE      z
57719      rs878811      1_116     1.000    37.03 1.1e-04  -5.84
58296    rs11122453      1_117     1.000   294.72 8.6e-04 -19.86
72720     rs1042034       2_13     1.000   730.01 2.1e-03  26.49
72721     rs1801699       2_13     1.000    49.06 1.4e-04  -4.43
74456      rs780093       2_16     1.000  1481.34 4.3e-03 -42.23
185376    rs9817452       3_97     1.000    47.82 1.4e-04  -6.86
199970    rs3748034        4_4     1.000    64.76 1.9e-04  10.20
199971    rs3752442        4_4     1.000    50.77 1.5e-04  -8.94
228245    rs7439032       4_58     1.000    38.02 1.1e-04  -6.59
233405   rs35518360       4_67     1.000    52.42 1.5e-04   7.21
288516  rs115912456       5_49     1.000    39.24 1.1e-04  -6.22
361411  rs540973884       6_92     1.000   145.89 4.2e-04 -12.42
365349  rs746369662       6_99     1.000   237.06 6.9e-04  -4.33
367403   rs56393506      6_104     1.000   195.34 5.7e-04  -8.17
397164   rs13235543       7_47     1.000   731.09 2.1e-03 -37.24
397165   rs12539160       7_47     1.000    92.43 2.7e-04  -5.06
397251  rs199603307       7_48     1.000    87.42 2.5e-04  -9.22
398228  rs761767938       7_49     1.000  8808.29 2.6e-02  -2.70
398236    rs1544459       7_49     1.000  8561.70 2.5e-02  -3.09
432611    rs1495743       8_20     1.000   174.14 5.1e-04 -13.73
433326   rs78963197       8_21     1.000  1377.66 4.0e-03 -50.50
433358   rs75835816       8_21     1.000   482.11 1.4e-03  23.18
433394   rs11986461       8_21     1.000   373.10 1.1e-03 -23.75
444280    rs4738679       8_45     1.000    96.82 2.8e-04 -10.23
463946    rs4604455       8_83     1.000    95.75 2.8e-04  16.84
463984   rs10956254       8_83     1.000    75.67 2.2e-04  12.55
521873   rs71007692      10_28     1.000  6661.57 1.9e-02   2.46
584248    rs1176746      11_67     1.000  3421.59 9.9e-03  -3.60
584250    rs2307599      11_67     1.000  3367.72 9.8e-03  -3.57
585041    rs7927993      11_69     1.000    36.18 1.1e-04   5.98
585163    rs9326246      11_70     1.000  2394.44 7.0e-03 -54.85
585195       rs5130      11_70     1.000   824.69 2.4e-03 -35.89
585388  rs147611518      11_70     1.000   331.40 9.6e-04  19.13
608784    rs7397189      12_36     1.000    67.63 2.0e-04 -10.46
636460    rs1340819       13_7     1.000    35.17 1.0e-04  -5.52
644758    rs7999449      13_25     1.000 22053.06 6.4e-02   3.35
644760  rs775834524      13_25     1.000 22006.33 6.4e-02   3.46
663686  rs143614549      13_62     1.000    65.55 1.9e-04   8.74
663717   rs75680340      13_62     1.000    60.29 1.8e-04  -7.87
702950   rs62000868      15_27     1.000    90.36 2.6e-04   9.84
702956    rs2070895      15_27     1.000   255.53 7.4e-04  16.65
716368     rs895394      15_50     1.000    42.82 1.2e-04   6.42
737510   rs12443634      16_46     1.000   115.98 3.4e-04 -11.82
757578    rs1801689      17_38     1.000    91.24 2.7e-04  -9.37
789079  rs111500536       19_8     1.000    91.63 2.7e-04  -8.89
789082  rs116843064       19_8     1.000   703.88 2.0e-03 -27.25
792090    rs3794991      19_15     1.000   399.41 1.2e-03 -21.01
792121  rs113619686      19_15     1.000    68.76 2.0e-04   1.58
798464     rs440446      19_31     1.000   724.64 2.1e-03  24.46
798469  rs113345881      19_31     1.000   227.06 6.6e-04  22.31
815833    rs6066141      20_29     1.000    46.02 1.3e-04  -7.62
898913    rs9378248       6_26     1.000   157.87 4.6e-04  14.88
941500    rs3072639      11_29     1.000 19414.95 5.6e-02   3.17
1003850 rs202007993      17_26     1.000  4387.00 1.3e-02  -2.66
1003880   rs7209751      17_26     1.000  4371.75 1.3e-02   8.02
1003882  rs72836561      17_26     1.000   492.76 1.4e-03  21.38
1016201 rs764858365      17_39     1.000 30403.23 8.8e-02  -4.05
1054683  rs41523449      19_24     1.000   213.99 6.2e-04   8.26
1054687 rs749726391      19_24     1.000   254.70 7.4e-04  -1.45
1064564 rs374141296      19_34     1.000 24540.91 7.1e-02   3.60
55184    rs56056346      1_111     0.999    91.31 2.7e-04  -4.78
359671     rs212776       6_88     0.999    41.67 1.2e-04   6.61
433324   rs17091881       8_21     0.999   574.52 1.7e-03  22.21
585037   rs28480969      11_69     0.999    37.54 1.1e-04   6.58
594905   rs12824533      12_11     0.999    32.85 9.5e-05   5.49
598104   rs67981690      12_16     0.999    95.75 2.8e-04   9.34
629157   rs35658692      12_75     0.999    92.01 2.7e-04  11.46
788612   rs10401485       19_7     0.999    39.25 1.1e-04   6.88
798462   rs34878901      19_31     0.999   633.71 1.8e-03  -4.29
1003418 rs117380643      17_25     0.999    93.78 2.7e-04   9.72
14831      rs213501       1_34     0.998    36.81 1.1e-04  -5.89
463943   rs13252684       8_83     0.998   323.55 9.4e-04   9.33
819378    rs6099671      20_33     0.998    42.22 1.2e-04   6.56
74457     rs6744393       2_16     0.997   197.47 5.7e-04 -18.28
74481     rs9679004       2_16     0.997    41.38 1.2e-04   2.69
471204    rs1016565        9_1     0.997    30.58 8.9e-05   5.40
528433    rs2393730      10_42     0.997    34.78 1.0e-04  -6.49
643150    rs1326122      13_21     0.997    35.79 1.0e-04  -6.02
813911   rs56206139      20_24     0.997    35.80 1.0e-04  -5.59
597748   rs66720652      12_15     0.996    31.82 9.2e-05  -5.34
373723     rs852386        7_7     0.995    32.78 9.5e-05   5.52
433344   rs11986942       8_21     0.995   718.00 2.1e-03 -42.73
703968   rs10851699      15_28     0.995    38.06 1.1e-04   6.03
331373  rs115482652       6_34     0.994    30.48 8.8e-05   5.86
331374    rs9472126       6_34     0.994    30.62 8.8e-05  -5.22
550693   rs75184896      10_84     0.994    29.56 8.5e-05   5.17
742734   rs11078597       17_2     0.994    48.09 1.4e-04   6.83
280891  rs536916238       5_33     0.993    66.91 1.9e-04   3.25
739722    rs7191098      16_50     0.993    31.43 9.1e-05  -5.37
799327   rs12978750      19_33     0.993    67.24 1.9e-04   9.00
533798    rs2186235      10_51     0.992    28.70 8.3e-05   5.14
556664   rs34623292      11_10     0.992    38.10 1.1e-04   6.41
629460   rs11057830      12_76     0.992    29.96 8.6e-05   5.41
55650    rs61830291      1_112     0.991    62.82 1.8e-04   7.31
428958    rs2251473       8_14     0.991    65.56 1.9e-04 -10.13
497537    rs2254819       9_53     0.990    35.67 1.0e-04  -5.75
328052    rs1233385       6_23     0.989    58.78 1.7e-04  -7.67
605655   rs73108788      12_28     0.989    27.70 8.0e-05   5.07
801441   rs12151142      19_38     0.989    45.99 1.3e-04   8.17
11935     rs1877454       1_27     0.988    32.25 9.3e-05   5.48
82185     rs4566412       2_31     0.986    33.09 9.5e-05   5.35
99093     rs1821968       2_66     0.986    31.22 8.9e-05  -5.43
228417   rs74678260       4_58     0.986    38.25 1.1e-04  -7.72
702874   rs58038553      15_27     0.985    33.63 9.6e-05  -6.85
789019  rs117476590       19_7     0.985    30.67 8.8e-05  -5.67
361420     rs602261       6_93     0.984    27.00 7.7e-05  -3.82
906243   rs28383314       6_26     0.984   250.08 7.2e-04  17.19
48718     rs6427759       1_99     0.983    27.64 7.9e-05  -4.96
55641     rs2642420      1_112     0.983    34.78 9.9e-05   4.32
397763    rs6465120       7_48     0.983    35.74 1.0e-04  -6.43
721573   rs34340800      16_12     0.983    40.45 1.2e-04   6.18
138039    rs4675812      2_144     0.981    31.82 9.1e-05  -5.58
428765    rs7821812       8_14     0.981    80.19 2.3e-04  10.98
567656   rs77377156      11_32     0.979    44.45 1.3e-04   6.26
438777   rs12675945       8_34     0.977    26.02 7.4e-05  -4.71
396901   rs13227753       7_46     0.976    51.34 1.5e-04  -7.26
280873     rs173964       5_33     0.974   278.94 7.9e-04  13.39
413350    rs6961342       7_80     0.974    78.03 2.2e-04  12.34
556936  rs547219635      11_11     0.974    31.30 8.9e-05  -4.99
307012   rs76957426       5_85     0.972    38.73 1.1e-04   5.19
524508   rs71508062      10_33     0.971    26.61 7.5e-05   5.10
527651    rs1171619      10_39     0.966    41.07 1.2e-04   6.18
663666    rs7400029      13_62     0.966    36.11 1.0e-04   6.20
733595   rs71401830      16_37     0.965    25.89 7.3e-05   4.39
228550   rs74939203       4_59     0.959    50.08 1.4e-04  -4.15
937833   rs55971594      11_28     0.959    33.91 9.5e-05   6.64
7503    rs564646712       1_17     0.958    25.51 7.1e-05   4.52
328419  rs181268076       6_27     0.958    69.39 1.9e-04   8.71
585173    rs3135506      11_70     0.956  2976.91 8.3e-03  48.30
40775     rs9425587       1_84     0.955    35.87 1.0e-04  -5.74
130412   rs62191851      2_129     0.953    25.63 7.1e-05   4.15
428081     rs330078       8_12     0.953    31.34 8.7e-05   6.55
382280    rs6959252       7_23     0.952   110.25 3.0e-04   3.68
432350  rs145696392       8_19     0.952    32.84 9.1e-05   5.22
748253  rs139356332      17_16     0.951    24.15 6.7e-05   4.51
449358   rs34582181       8_55     0.945    25.03 6.9e-05   4.66
382358  rs118007210       7_23     0.944    39.47 1.1e-04   6.19
729718   rs12720926      16_31     0.944    96.18 2.6e-04 -13.39
143339   rs10602803        3_9     0.940    44.35 1.2e-04   4.67
429183    rs1736062       8_15     0.940    49.35 1.3e-04  -9.57
113602    rs6722159       2_96     0.938    29.82 8.1e-05  -5.44
583688  rs117978300      11_66     0.938    26.65 7.3e-05  -5.59
16661   rs141797847       1_38     0.934    24.50 6.7e-05   4.51
762421    rs2279396      17_47     0.934    26.01 7.1e-05  -4.72
603835  rs117339363      12_25     0.933    23.88 6.5e-05  -4.64
840078    rs9610329      22_14     0.932    38.13 1.0e-04   6.08
759730    rs1671012      17_42     0.931    29.05 7.9e-05  -5.91
398232   rs11972122       7_49     0.930  8636.61 2.3e-02  -3.36
561607   rs56133711      11_19     0.930    39.54 1.1e-04   6.26
803893    rs6139182       20_5     0.928    27.57 7.4e-05   4.86
41276   rs375413887       1_85     0.926    23.87 6.4e-05  -4.34
492421   rs12236183       9_45     0.922    34.96 9.4e-05   7.02
233471   rs13140033       4_68     0.920    23.97 6.4e-05   4.44
470262    rs7832515       8_94     0.919    27.77 7.4e-05  -5.15
960799   rs71468663      11_36     0.919   122.43 3.3e-04  11.42
297375    rs2165929       5_67     0.918    29.19 7.8e-05   5.68
768615    rs9963938      18_11     0.918    42.58 1.1e-04  -6.38
797517    rs6508974      19_30     0.918    31.77 8.5e-05  -4.80
367367  rs117733303      6_104     0.915    67.82 1.8e-04  -9.86
545155    rs2420477      10_73     0.915    25.42 6.8e-05  -4.86
1016206  rs11079703      17_39     0.915 30395.36 8.1e-02  -4.00
703596   rs72748766      15_27     0.912    27.84 7.4e-05  -4.87
114600   rs13389219      2_100     0.911   169.92 4.5e-04 -15.59
642926    rs6561525      13_21     0.909    27.75 7.3e-05   4.02
290573   rs11741599       5_53     0.896    30.21 7.9e-05   5.36
331367   rs28357093       6_33     0.894    25.07 6.5e-05  -4.60
7468      rs2742962       1_16     0.893    35.54 9.2e-05   5.73
378484      rs38205       7_16     0.892    40.16 1.0e-04  -6.16
279936    rs1694060       5_31     0.886    26.26 6.8e-05   4.47
427696    rs7826654       8_11     0.885    71.95 1.9e-04 -10.03
349610    rs9496567       6_67     0.883    27.99 7.2e-05  -4.86
322206   rs61439239       6_10     0.878    23.79 6.1e-05   4.37
397163   rs13247874       7_47     0.878   748.04 1.9e-03 -37.21
628788  rs529994558      12_75     0.877    43.94 1.1e-04  -7.87
624738   rs73191121      12_66     0.876    29.64 7.6e-05  -4.78
433500   rs74500831       8_22     0.875    35.53 9.0e-05  -5.70
448544   rs10091362       8_54     0.874    25.24 6.4e-05   4.62
815818    rs1412956      20_29     0.872    31.72 8.0e-05   6.56
55171     rs4846295      1_111     0.868    72.48 1.8e-04   1.38
463942    rs2980858       8_83     0.868   852.54 2.2e-03 -34.02
813771     rs932641      20_24     0.867    31.47 7.9e-05  -5.65
101895   rs10864859       2_70     0.859    29.05 7.3e-05   4.85
357784  rs141281941       6_85     0.858    24.53 6.1e-05   4.41
388284  rs149901303       7_32     0.858    23.57 5.9e-05   4.06
199985   rs36205397        4_4     0.857    48.60 1.2e-04  10.94
365340     rs818442       6_99     0.853   218.30 5.4e-04   1.26
435133  rs145706224       8_24     0.850    24.68 6.1e-05   4.37
585014   rs10047413      11_69     0.849    31.25 7.7e-05   6.72
840864    rs4821764      22_16     0.849    88.70 2.2e-04   9.53
311681   rs56034935       5_96     0.847    24.19 6.0e-05   4.30
698336  rs148470008      15_15     0.844    76.45 1.9e-04   8.88
538087    rs7074206      10_60     0.842    25.21 6.2e-05   4.44
702934   rs28594460      15_27     0.842    31.22 7.6e-05   5.05
228437   rs28529445       4_58     0.840    40.38 9.9e-05   8.05
673966   rs72681869      14_20     0.832    24.55 5.9e-05  -4.32
190474     rs234043      3_106     0.831    24.68 6.0e-05   4.46
937692  rs149903077      11_28     0.831    45.65 1.1e-04  -6.38
284003      rs40087       5_41     0.830    24.55 5.9e-05  -4.33
682226    rs1848401      14_36     0.828    27.33 6.6e-05   4.99
439034   rs72638505       8_34     0.827    24.54 5.9e-05   4.29
143316    rs4684848        3_9     0.822   114.40 2.7e-04  -8.10
328290    rs9276189       6_27     0.820    47.20 1.1e-04   6.86
330366    rs3734554       6_32     0.820    25.03 6.0e-05   4.42
521300    rs7912430      10_27     0.820    24.57 5.9e-05   4.30
254408   rs13110927      4_109     0.817    24.79 5.9e-05   4.38
729715   rs12446515      16_31     0.816   122.60 2.9e-04 -14.28
592232   rs79988477       12_4     0.814    26.03 6.2e-05  -4.47
716268    rs7175132      15_50     0.814    26.97 6.4e-05  -4.82
367363    rs3127599      6_104     0.812   183.73 4.3e-04   7.74
208661   rs56147366       4_22     0.805    52.20 1.2e-04   8.62
367410  rs374071816      6_104     0.804    95.21 2.2e-04  -7.93
199888  rs112820797        4_4     0.801    52.44 1.2e-04  -7.53
428560   rs13249929       8_13     0.801    46.22 1.1e-04  -9.07
744568    rs4968186       17_7     0.801    28.28 6.6e-05  -5.54

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                 id region_tag susie_pip      mu2     PVE     z
1016201 rs764858365      17_39     1.000 30403.23 8.8e-02 -4.05
1016206  rs11079703      17_39     0.915 30395.36 8.1e-02 -4.00
1016211   rs8079835      17_39     0.523 30387.09 4.6e-02 -4.04
1016191  rs11870061      17_39     0.314 30386.57 2.8e-02 -4.03
1016209   rs8075040      17_39     0.026 30385.39 2.3e-03 -4.03
1016189  rs12938098      17_39     0.101 30383.46 8.9e-03 -4.02
1016193   rs2365412      17_39     0.032 30381.52 2.8e-03 -4.04
1016203   rs9895905      17_39     0.009 30380.15 8.1e-04 -4.02
1016198   rs8072248      17_39     0.047 30378.37 4.1e-03 -4.05
1016227  rs71139197      17_39     0.000 30362.77 4.3e-05 -3.95
1016214  rs11651507      17_39     0.000 30360.42 5.8e-06 -4.00
1016215  rs12949073      17_39     0.000 30360.41 6.0e-06 -4.00
1016217   rs8080933      17_39     0.000 30360.22 6.1e-06 -4.00
1016230  rs62084204      17_39     0.000 30359.24 2.4e-05 -3.95
1016222  rs12941792      17_39     0.000 30348.90 1.8e-07 -3.98
1016224  rs12602159      17_39     0.000 30348.34 1.6e-07 -3.98
1016229   rs8065171      17_39     0.000 30347.34 1.5e-07 -3.98
1016225   rs8077847      17_39     0.000 30344.79 5.4e-08 -3.97
1016231   rs9904849      17_39     0.000 30338.93 1.5e-06 -4.00
1016232   rs9905298      17_39     0.000 30332.64 2.7e-08 -3.98
1016234   rs9911497      17_39     0.000 30331.90 2.6e-08 -3.99
1016235   rs9912436      17_39     0.000 30330.80 9.0e-09 -3.98
1016241  rs12451934      17_39     0.000 30328.43 3.1e-07 -4.00
1016185  rs10744997      17_39     0.000 30306.14 1.1e-09 -3.99
1016244   rs4791080      17_39     0.000 30278.32 3.5e-10 -4.00
1016186  rs10775402      17_39     0.000 30250.49 1.4e-11 -3.96
1016220  rs35098173      17_39     0.000 30219.33 5.0e-12 -3.83
1016248  rs34297832      17_39     0.000 30183.61 1.2e-11 -3.99
1016178  rs66467955      17_39     0.000 28886.15 1.2e-12  3.61
1016261  rs11079704      17_39     0.000 28428.83 2.4e-10 -4.47
1016265   rs9902223      17_39     0.000 28417.27 3.0e-10 -4.50
1016260   rs9894804      17_39     0.000 28415.31 1.7e-10 -4.43
1016130   rs7224576      17_39     0.000 28320.22 7.9e-12 -3.95
1016129   rs7225648      17_39     0.000 28172.99 1.5e-11 -4.05
1016125   rs4791129      17_39     0.000 28080.21 8.8e-12 -4.07
1016146   rs9989439      17_39     0.000 27493.90 8.3e-12  3.85
1016145   rs9303520      17_39     0.000 27492.35 1.7e-12  3.85
1016122 rs146749646      17_39     0.000 26726.78 2.0e-13 -3.46
1016124   rs7209992      17_39     0.000 26509.59 1.8e-12 -3.96
1016126   rs4791128      17_39     0.000 26461.64 1.7e-12 -3.95
1016131   rs7224839      17_39     0.000 26329.98 4.6e-12 -4.03
1016127   rs4791127      17_39     0.000 26184.79 8.3e-12 -4.12
1016128   rs7224665      17_39     0.000 26183.63 8.7e-12 -4.13
1016172   rs4791109      17_39     0.000 25408.22 2.1e-14 -3.41
1016100   rs9912547      17_39     0.000 25205.78 8.9e-14  3.48
1064564 rs374141296      19_34     1.000 24540.91 7.1e-02  3.60
1064568   rs2946865      19_34     0.000 24499.10 1.2e-10  3.74
1064561 rs113176985      19_34     0.000 24482.07 2.7e-09  3.75
1064554  rs35295508      19_34     0.000 24430.91 1.4e-09  3.72
1064559  rs73056069      19_34     0.000 24357.93 8.4e-10  3.68

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip      mu2    PVE      z
1016201 rs764858365      17_39     1.000 30403.23 0.0880  -4.05
1016206  rs11079703      17_39     0.915 30395.36 0.0810  -4.00
1064564 rs374141296      19_34     1.000 24540.91 0.0710   3.60
644758    rs7999449      13_25     1.000 22053.06 0.0640   3.35
644760  rs775834524      13_25     1.000 22006.33 0.0640   3.46
941500    rs3072639      11_29     1.000 19414.95 0.0560   3.17
1016211   rs8079835      17_39     0.523 30387.09 0.0460  -4.04
1016191  rs11870061      17_39     0.314 30386.57 0.0280  -4.03
398228  rs761767938       7_49     1.000  8808.29 0.0260  -2.70
398236    rs1544459       7_49     1.000  8561.70 0.0250  -3.09
398232   rs11972122       7_49     0.930  8636.61 0.0230  -3.36
521873   rs71007692      10_28     1.000  6661.57 0.0190   2.46
521872    rs2474565      10_28     0.657  6694.49 0.0130   2.57
941506   rs11039670      11_29     0.236 19414.37 0.0130   3.26
1003850 rs202007993      17_26     1.000  4387.00 0.0130  -2.66
1003880   rs7209751      17_26     1.000  4371.75 0.0130   8.02
941515   rs11039671      11_29     0.221 19414.44 0.0120   3.26
941541    rs9651621      11_29     0.201 19414.36 0.0110   3.26
941521    rs4436573      11_29     0.185 19414.33 0.0100   3.26
941527   rs10838872      11_29     0.183 19411.86 0.0100   3.27
941529   rs11039675      11_29     0.185 19414.33 0.0100   3.26
941538    rs7124318      11_29     0.179 19414.12 0.0100   3.26
584248    rs1176746      11_67     1.000  3421.59 0.0099  -3.60
584250    rs2307599      11_67     1.000  3367.72 0.0098  -3.57
521879    rs2472183      10_28     0.471  6694.33 0.0092   2.56
1016189  rs12938098      17_39     0.101 30383.46 0.0089  -4.02
585173    rs3135506      11_70     0.956  2976.91 0.0083  48.30
521882   rs11011452      10_28     0.407  6694.34 0.0079   2.55
585163    rs9326246      11_70     1.000  2394.44 0.0070 -54.85
941502    rs7949513      11_29     0.086 19412.49 0.0049   3.24
74456      rs780093       2_16     1.000  1481.34 0.0043 -42.23
1016198   rs8072248      17_39     0.047 30378.37 0.0041  -4.05
433326   rs78963197       8_21     1.000  1377.66 0.0040 -50.50
521870    rs9299760      10_28     0.159  6690.23 0.0031   2.56
1003893   rs4793041      17_26     0.256  4205.34 0.0031   8.38
941546   rs12295434      11_29     0.051 19405.46 0.0029   3.21
941555   rs11039677      11_29     0.050 19405.38 0.0028   3.21
1016193   rs2365412      17_39     0.032 30381.52 0.0028  -4.04
941556    rs7119161      11_29     0.049 19408.15 0.0027   3.23
941564    rs7946068      11_29     0.047 19407.94 0.0026   3.23
585195       rs5130      11_70     1.000   824.69 0.0024 -35.89
1016209   rs8075040      17_39     0.026 30385.39 0.0023  -4.03
463942    rs2980858       8_83     0.868   852.54 0.0022 -34.02
72720     rs1042034       2_13     1.000   730.01 0.0021  26.49
397164   rs13235543       7_47     1.000   731.09 0.0021 -37.24
433344   rs11986942       8_21     0.995   718.00 0.0021 -42.73
798464     rs440446      19_31     1.000   724.64 0.0021  24.46
1003892  rs34462326      17_26     0.168  4207.10 0.0021   8.37
789082  rs116843064       19_8     1.000   703.88 0.0020 -27.25
397163   rs13247874       7_47     0.878   748.04 0.0019 -37.21

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip     mu2     PVE      z
585163   rs9326246      11_70     1.000 2394.44 7.0e-03 -54.85
585161   rs1558861      11_70     0.000 2376.95 2.5e-06 -54.63
433326  rs78963197       8_21     1.000 1377.66 4.0e-03 -50.50
433340   rs6999813       8_21     0.000 1391.01 1.4e-07 -50.45
433319  rs10645926       8_21     0.000 1340.62 0.0e+00 -50.15
433331  rs17489226       8_21     0.000 1311.95 2.2e-15 -49.74
433357   rs7816447       8_21     0.000 1365.32 8.6e-16 -49.70
433359  rs11984698       8_21     0.000 1352.77 5.8e-17 -49.64
433352  rs28675909       8_21     0.000 1345.26 1.0e-17 -49.60
433355  rs11989309       8_21     0.000 1345.82 1.0e-17 -49.60
433354   rs7004149       8_21     0.000 1341.94 4.3e-18 -49.58
433353  rs79198716       8_21     0.000 1341.35 3.5e-18 -49.57
585173   rs3135506      11_70     0.956 2976.91 8.3e-03  48.30
433321   rs1569209       8_21     0.000 1226.93 0.0e+00 -47.91
433323  rs80073370       8_21     0.000 1156.75 0.0e+00 -47.40
585172 rs140050044      11_70     0.000 2883.15 0.0e+00  47.24
433335   rs2410620       8_21     0.000  789.27 1.7e-10 -46.93
433342   rs1441762       8_21     0.000  786.79 1.4e-10 -46.91
433345   rs4126104       8_21     0.000  771.07 8.7e-12 -46.86
585171  rs12274192      11_70     0.000 2823.59 0.0e+00  46.83
585170  rs17120029      11_70     0.000 2819.17 0.0e+00  46.78
433341  rs35878331       8_21     0.000  769.68 7.1e-12 -46.67
585167  rs11825181      11_70     0.000 2743.46 0.0e+00  46.49
433384  rs80026582       8_21     0.000 1194.54 0.0e+00 -46.30
433346  rs35369244       8_21     0.000  737.95 2.1e-14 -46.24
585165  rs12280724      11_70     0.000 2644.21 0.0e+00  45.54
433315 rs149553676       8_21     0.000  691.70 0.0e+00 -45.10
433314       rs287       8_21     0.000  703.87 0.0e+00 -44.83
433344  rs11986942       8_21     0.995  718.00 2.1e-03 -42.73
74456     rs780093       2_16     1.000 1481.34 4.3e-03 -42.23
585176   rs4938313      11_70     0.000 1297.91 0.0e+00 -40.88
585156   rs4938302      11_70     0.000  731.21 0.0e+00 -40.78
463931   rs2980875       8_83     0.076  553.20 1.2e-04 -38.83
585120    rs509728      11_70     0.000 1153.95 0.0e+00  38.77
463927   rs2001844       8_83     0.465  543.30 7.3e-04 -38.69
463929   rs2980886       8_83     0.457  543.26 7.2e-04 -38.69
433337   rs4083261       8_21     0.005  725.81 1.1e-05 -38.68
585162  rs57232565      11_70     0.000 1862.64 0.0e+00  38.33
585155  rs74849419      11_70     0.000 1534.61 0.0e+00  38.22
463938  rs10808546       8_83     0.002  568.04 3.2e-06 -38.16
433336  rs12541912       8_21     0.000  720.30 1.4e-13 -37.86
463937   rs2954031       8_83     0.000  530.39 1.1e-08 -37.70
585144  rs57984552      11_70     0.000  623.08 0.0e+00  37.37
397164  rs13235543       7_47     1.000  731.09 2.1e-03 -37.24
397163  rs13247874       7_47     0.878  748.04 1.9e-03 -37.21
397156  rs35659126       7_47     0.066  738.23 1.4e-04 -36.99
397158   rs9638180       7_47     0.057  737.87 1.2e-04 -36.99
397160  rs35173225       7_47     0.000  689.47 2.4e-07 -36.32
397154 rs368981495       7_47     0.000  703.15 2.4e-07 -36.15
585195      rs5130      11_70     1.000  824.69 2.4e-03 -35.89

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 20
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
KIAA1683 gene(s) from the input list not found in DisGeNET CURATEDHIST1H2BD gene(s) from the input list not found in DisGeNET CURATEDSPATA20 gene(s) from the input list not found in DisGeNET CURATEDPSRC1 gene(s) from the input list not found in DisGeNET CURATEDTMEM147 gene(s) from the input list not found in DisGeNET CURATEDUSP1 gene(s) from the input list not found in DisGeNET CURATEDNTAN1 gene(s) from the input list not found in DisGeNET CURATEDFCGRT gene(s) from the input list not found in DisGeNET CURATED
                      Description         FDR Ratio BgRatio
9                     Brucellosis 0.009677344  1/12  1/9703
18                     Dysarthria 0.009677344  1/12  2/9703
25 Inherited Factor II deficiency 0.009677344  1/12  1/9703
37                Ophthalmoplegia 0.009677344  1/12  2/9703
41 Sinus Thrombosis, Intracranial 0.009677344  1/12  2/9703
57       External Ophthalmoplegia 0.009677344  1/12  2/9703
58        Skin Diseases, Vascular 0.009677344  1/12  1/9703
60   Niemann-Pick Disease, Type C 0.009677344  1/12  2/9703
64           Dysarthria, Scanning 0.009677344  1/12  2/9703
68   Mesenteric Venous Thrombosis 0.009677344  1/12  2/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
           description size overlap         FDR       database
1        Dyslipidaemia   81       5 0.001448182 disease_GLAD4U
2 Therapeutic abortion   12       3 0.002147689 disease_GLAD4U
                     userId
1 PSRC1;TIMD4;F2;FADS1;LMF1
2             F2;ACP2;SIPA1

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2