Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30860_irnt_Liver.Rmd) and HTML (docs/ukb-d-30860_irnt_Liver.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Total protein (quantile) using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30860_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1070  768  652  417  494  611  548  408  405  434  634  629  195  365  354 
  16   17   18   19   20   21   22 
 526  663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8366205

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0141893445 0.0002066997 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
24.96773 13.68896 
#report sample size
print(sample_size)
[1] 314921
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10901 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.01226327 0.07814382 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.6111292 4.4067088

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip       mu2     PVE      z
1144          ASAP3       1_16     1.000     43.34 1.4e-04   6.44
5389          RPS11      19_34     1.000 184046.32 5.8e-01  17.58
2173       TMEM176B       7_93     0.996     57.31 1.8e-04  -7.80
15           MAD1L1        7_4     0.995   1231.05 3.9e-03  -5.58
3212          CCND2       12_4     0.992     62.94 2.0e-04  -8.03
12467 RP11-219B17.3      15_27     0.982     62.91 2.0e-04  -7.94
4514         COL4A2      13_59     0.975     62.20 1.9e-04  -7.76
11582        BCKDHA      19_28     0.973     35.21 1.1e-04  -5.66
8865           FUT2      19_33     0.973    114.87 3.5e-04 -14.64
7656       CATSPER2      15_16     0.969    152.08 4.7e-04  12.68
2771         HMGXB3       5_88     0.958     30.75 9.4e-05  -5.61
4275          EIF5A       17_6     0.950     41.28 1.2e-04  -6.20
12704       EXOC3L2      19_32     0.948     63.83 1.9e-04  -7.88
12074  RP11-131K5.2      17_12     0.944     25.74 7.7e-05  -4.76
6100           ALLC        2_2     0.941     27.97 8.4e-05   5.04
1429         SH3BP1      22_15     0.914     21.53 6.2e-05   3.87
8765          ZNF77       19_3     0.900     20.29 5.8e-05   3.96
7915         GLYCTK       3_36     0.895     40.94 1.2e-04  -6.21
11296        NPIPB2      16_12     0.886     39.61 1.1e-04   4.52
7297        PRIMPOL      4_119     0.876     23.68 6.6e-05  -4.75
12151   AC008746.12      19_37     0.876     24.41 6.8e-05  -4.58
3714         MBOAT7      19_37     0.835     24.92 6.6e-05  -4.46
2128           NOD1       7_24     0.830     22.48 5.9e-05   4.12

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag susie_pip       mu2  PVE      z
5389     RPS11      19_34         1 184046.32 0.58  17.58
1227    FLT3LG      19_34         0 158985.39 0.00 -16.02
12683    HCP5B       6_24         0  73110.93 0.00 -13.94
5393      RCN3      19_34         0  59395.14 0.00 -13.40
1931     FCGRT      19_34         0  54193.89 0.00  -4.80
10663   TRIM31       6_24         0  38631.61 0.00  13.23
4833     FLOT1       6_24         0  37452.27 0.00 -18.00
10602     RNF5       6_26         0  28412.33 0.00  20.97
3804     PRRG2      19_34         0  26744.09 0.00 -21.45
11007     PPT2       6_26         0  24714.17 0.00 -21.52
10848    CLIC1       6_26         0  21672.92 0.00  19.82
3803     PRMT1      19_34         0  18081.45 0.00  -9.54
3805     SCAF1      19_34         0  17994.77 0.00 -10.70
11541      C4A       6_26         0  17896.28 0.00  18.62
3802      IRF3      19_34         0  17474.82 0.00 -10.31
10651    ABCF1       6_24         0  17010.90 0.00 -11.81
5766   PPP1R18       6_24         0  14686.05 0.00  -9.98
10601     AGER       6_26         0  13266.56 0.00 -11.31
10599   NOTCH4       6_26         0  13183.03 0.00  16.17
1940   SLC17A7      19_34         0  12770.37 0.00  -6.08

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
           genename region_tag susie_pip       mu2     PVE      z
5389          RPS11      19_34     1.000 184046.32 0.58000  17.58
15           MAD1L1        7_4     0.995   1231.05 0.00390  -5.58
7656       CATSPER2      15_16     0.969    152.08 0.00047  12.68
8865           FUT2      19_33     0.973    114.87 0.00035 -14.64
4733            BLK       8_15     0.780    114.37 0.00028 -11.28
3212          CCND2       12_4     0.992     62.94 0.00020  -8.03
12467 RP11-219B17.3      15_27     0.982     62.91 0.00020  -7.94
10085          RFX8       2_59     0.705     84.76 0.00019  -9.46
4514         COL4A2      13_59     0.975     62.20 0.00019  -7.76
12704       EXOC3L2      19_32     0.948     63.83 0.00019  -7.88
2173       TMEM176B       7_93     0.996     57.31 0.00018  -7.80
5991          FADS1      11_34     0.304    175.67 0.00017 -12.98
5918         SEC16A       9_73     0.607     79.12 0.00015   8.94
5175          WDR20      14_53     0.770     60.13 0.00015  -7.68
1144          ASAP3       1_16     1.000     43.34 0.00014   6.44
5655          SRPRB       3_83     0.697     52.71 0.00012  -7.15
7915         GLYCTK       3_36     0.895     40.94 0.00012  -6.21
4275          EIF5A       17_6     0.950     41.28 0.00012  -6.20
11558     LINC01184       5_78     0.642     56.28 0.00011   7.42
2308          TUBD1      17_35     0.496     72.81 0.00011 -10.67

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip       mu2     PVE      z
5460    FCGR2A       1_79     0.000    518.06 1.5e-17  25.73
11007     PPT2       6_26     0.000  24714.17 0.0e+00 -21.52
3804     PRRG2      19_34     0.000  26744.09 0.0e+00 -21.45
10602     RNF5       6_26     0.000  28412.33 0.0e+00  20.97
10848    CLIC1       6_26     0.000  21672.92 0.0e+00  19.82
11541      C4A       6_26     0.000  17896.28 0.0e+00  18.62
4833     FLOT1       6_24     0.000  37452.27 0.0e+00 -18.00
10137 HLA-DQA1       6_26     0.000   6333.49 0.0e+00  17.65
5389     RPS11      19_34     1.000 184046.32 5.8e-01  17.58
4233     FCRLA       1_79     0.000    236.75 0.0e+00 -16.48
10599   NOTCH4       6_26     0.000  13183.03 0.0e+00  16.17
1227    FLT3LG      19_34     0.000 158985.39 0.0e+00 -16.02
4838     VARS2       6_25     0.000    198.81 6.6e-13  15.17
10591  HLA-DMA       6_27     0.000    220.04 3.6e-09 -15.05
11478  HLA-DMB       6_27     0.000    193.90 2.2e-09 -15.04
8865      FUT2      19_33     0.973    114.87 3.5e-04 -14.64
10603   AGPAT1       6_26     0.000   6592.97 0.0e+00 -14.32
12683    HCP5B       6_24     0.000  73110.93 0.0e+00 -13.94
10625     MSH5       6_26     0.000   6703.38 0.0e+00  13.60
5393      RCN3      19_34     0.000  59395.14 0.0e+00 -13.40

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.02953857
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip       mu2     PVE      z
5460    FCGR2A       1_79     0.000    518.06 1.5e-17  25.73
11007     PPT2       6_26     0.000  24714.17 0.0e+00 -21.52
3804     PRRG2      19_34     0.000  26744.09 0.0e+00 -21.45
10602     RNF5       6_26     0.000  28412.33 0.0e+00  20.97
10848    CLIC1       6_26     0.000  21672.92 0.0e+00  19.82
11541      C4A       6_26     0.000  17896.28 0.0e+00  18.62
4833     FLOT1       6_24     0.000  37452.27 0.0e+00 -18.00
10137 HLA-DQA1       6_26     0.000   6333.49 0.0e+00  17.65
5389     RPS11      19_34     1.000 184046.32 5.8e-01  17.58
4233     FCRLA       1_79     0.000    236.75 0.0e+00 -16.48
10599   NOTCH4       6_26     0.000  13183.03 0.0e+00  16.17
1227    FLT3LG      19_34     0.000 158985.39 0.0e+00 -16.02
4838     VARS2       6_25     0.000    198.81 6.6e-13  15.17
10591  HLA-DMA       6_27     0.000    220.04 3.6e-09 -15.05
11478  HLA-DMB       6_27     0.000    193.90 2.2e-09 -15.04
8865      FUT2      19_33     0.973    114.87 3.5e-04 -14.64
10603   AGPAT1       6_26     0.000   6592.97 0.0e+00 -14.32
12683    HCP5B       6_24     0.000  73110.93 0.0e+00 -13.94
10625     MSH5       6_26     0.000   6703.38 0.0e+00  13.60
5393      RCN3      19_34     0.000  59395.14 0.0e+00 -13.40

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 1_79"
            genename region_tag susie_pip    mu2     PVE      z
6979          SLAMF9       1_79         0   4.91 0.0e+00   0.05
6980           IGSF8       1_79         0   5.57 0.0e+00  -0.30
5469            PIGM       1_79         0  58.05 0.0e+00  -2.96
3451            COPA       1_79         0   5.17 0.0e+00  -0.02
6982           NCSTN       1_79         0   5.17 0.0e+00   0.02
6983          VANGL2       1_79         0  18.37 0.0e+00   1.71
621             CD84       1_79         0   9.73 0.0e+00  -1.37
3071          SLAMF1       1_79         0   6.24 0.0e+00   0.19
297           SLAMF7       1_79         0 107.41 0.0e+00   4.66
3452           CD244       1_79         0  18.02 0.0e+00  -0.16
9122           ITLN1       1_79         0  75.92 0.0e+00   3.01
6631           ITLN2       1_79         0  19.21 0.0e+00   2.06
6632            F11R       1_79         0  15.42 0.0e+00  -1.65
10959          TSTD1       1_79         0   5.43 0.0e+00  -0.44
6987          KLHDC9       1_79         0  27.42 0.0e+00  -1.96
5463           PFDN2       1_79         0  16.13 0.0e+00   1.07
6635            NIT1       1_79         0  22.34 0.0e+00  -2.24
5458            UFC1       1_79         0  21.87 0.0e+00   2.28
5459            PPOX       1_79         0   8.14 0.0e+00   0.78
6641         B4GALT3       1_79         0  15.83 0.0e+00   1.55
6643         ADAMTS4       1_79         0   6.26 0.0e+00  -0.63
6646          FCER1G       1_79         0   8.54 0.0e+00   1.26
6647         TOMM40L       1_79         0  23.67 0.0e+00  -4.86
11592         PCP4L1       1_79         0  12.10 0.0e+00  -1.03
12708 RP11-122G18.12       1_79         0  16.70 0.0e+00  -2.80
5460          FCGR2A       1_79         0 518.06 1.5e-17  25.73
4233           FCRLA       1_79         0 236.75 0.0e+00 -16.48
6985           FCRLB       1_79         0 328.41 5.8e-19 -11.97
988           DUSP12       1_79         0 343.20 0.0e+00   1.62
3163            ATF6       1_79         0  19.52 0.0e+00  -2.08
11406       C1orf226       1_79         0  76.21 0.0e+00  -4.17

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 6_26"
      genename region_tag susie_pip      mu2 PVE      z
10632     BAG6       6_26         0    59.01   0  -0.62
10634     AIF1       6_26         0    46.76   0  -2.05
10633   PRRC2A       6_26         0   585.14   0   6.88
10631     APOM       6_26         0   160.38   0   3.49
10630  C6orf47       6_26         0   117.75   0   3.60
10629   CSNK2B       6_26         0  1635.34   0  10.64
11414   LY6G5B       6_26         0  1190.86   0  -8.43
10628   LY6G5C       6_26         0   503.43   0  -6.59
10627  ABHD16A       6_26         0   658.93   0   3.88
10626   MPIG6B       6_26         0  7188.56   0  -6.46
10849    DDAH2       6_26         0  6926.16   0  11.65
10625     MSH5       6_26         0  6703.38   0  13.60
10848    CLIC1       6_26         0 21672.92   0  19.82
10623     VWA7       6_26         0   113.25   0  -3.81
10622     LSM2       6_26         0   257.71   0   4.50
10621   HSPA1L       6_26         0   146.05   0   5.18
10619  C6orf48       6_26         0    91.95   0  -5.87
10618  SLC44A4       6_26         0   174.93   0  -3.19
10616    EHMT2       6_26         0  5390.73   0   4.69
10612   SKIV2L       6_26         0   612.95   0   1.57
10610    STK19       6_26         0  2993.98   0   5.09
10611      DXO       6_26         0   929.51   0   5.33
11541      C4A       6_26         0 17896.28   0  18.62
11216  CYP21A2       6_26         0    94.82   0  -6.34
11038      C4B       6_26         0  1243.58   0  -2.14
10844    ATF6B       6_26         0  2641.73   0   7.45
7949      TNXB       6_26         0  1876.44   0  -5.28
10606    FKBPL       6_26         0  5454.84   0  -9.76
11007     PPT2       6_26         0 24714.17   0 -21.52
10605    PRRT1       6_26         0   752.60   0  -4.92
11441    EGFL8       6_26         0  5383.85   0  -1.66
10603   AGPAT1       6_26         0  6592.97   0 -14.32
10601     AGER       6_26         0 13266.56   0 -11.31
10602     RNF5       6_26         0 28412.33   0  20.97
10600     PBX2       6_26         0  1163.31   0   6.00
10599   NOTCH4       6_26         0 13183.03   0  16.17
10597  HLA-DRA       6_26         0  3026.43   0 -12.09
10402 HLA-DRB5       6_26         0  2182.54   0   9.68
10023 HLA-DRB1       6_26         0  2067.64   0   9.58
10137 HLA-DQA1       6_26         0  6333.49   0  17.65
11366 HLA-DQA2       6_26         0  3977.91   0 -11.70
9089  HLA-DQB1       6_26         0  2782.28   0   9.89
11231 HLA-DQB2       6_26         0  4615.96   0 -10.43

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 19_34"
         genename region_tag susie_pip       mu2  PVE      z
2042        BCAT2      19_34         0    135.92 0.00   5.34
1110     HSD17B14      19_34         0     10.24 0.00   0.17
2044      PLEKHA4      19_34         0      8.55 0.00   0.24
1921        NUCB1      19_34         0      7.57 0.00   0.37
1920        TULP2      19_34         0     60.90 0.00   2.04
1922         DHDH      19_34         0     19.70 0.00   0.93
1113          FTL      19_34         0    168.30 0.00   2.39
9401       RUVBL2      19_34         0     38.69 0.00  -1.17
1928      SNRNP70      19_34         0    295.44 0.00   0.25
1929        LIN7B      19_34         0     32.74 0.00   0.75
10994    C19orf73      19_34         0    157.04 0.00  -0.64
8899       PPFIA3      19_34         0    365.83 0.00   0.43
4086        TRPM4      19_34         0     91.67 0.00   5.41
545       SLC6A16      19_34         0   1648.04 0.00  -0.32
10291 CTC-301O7.4      19_34         0   4353.79 0.00   2.81
1940      SLC17A7      19_34         0  12770.37 0.00  -6.08
1932       PIH1D1      19_34         0   5657.97 0.00   5.73
6859     ALDH16A1      19_34         0    663.49 0.00   1.80
1227       FLT3LG      19_34         0 158985.39 0.00 -16.02
5390       RPL13A      19_34         0   1247.21 0.00  -9.14
5389        RPS11      19_34         1 184046.32 0.58  17.58
1931        FCGRT      19_34         0  54193.89 0.00  -4.80
5393         RCN3      19_34         0  59395.14 0.00 -13.40
3804        PRRG2      19_34         0  26744.09 0.00 -21.45
5392        NOSIP      19_34         0    717.18 0.00  -9.42
3805        SCAF1      19_34         0  17994.77 0.00 -10.70
3802         IRF3      19_34         0  17474.82 0.00 -10.31
3803        PRMT1      19_34         0  18081.45 0.00  -9.54
8030        CPT1C      19_34         0   2374.41 0.00   0.41
3807         TSKS      19_34         0    105.33 0.00   3.30
10164       AP2A1      19_34         0     28.06 0.00   0.17
162           FUZ      19_34         0     21.80 0.00   0.31
1958        MED25      19_34         0     20.04 0.00   2.49
365          PNKP      19_34         0     89.29 0.00   0.38
1951      TBC1D17      19_34         0     31.30 0.00   0.26
10797       NUP62      19_34         0     65.25 0.00  -0.93
8028         ATF5      19_34         0    333.91 0.00  -2.02
6860     SIGLEC11      19_34         0    185.17 0.00   0.59
5388       ZNF473      19_34         0     30.17 0.00  -2.39
1967         VRK3      19_34         0     85.34 0.00  -0.49
2009        MYH14      19_34         0      9.72 0.00   0.36
4176        NR1H2      19_34         0     14.40 0.00   1.48
4174        KCNC3      19_34         0      4.88 0.00   0.47
4175        NAPSA      19_34         0     41.41 0.00   3.02
543         POLD1      19_34         0    111.58 0.00  -1.46
12177        SPIB      19_34         0    149.93 0.00  -0.41
1108       MYBPC2      19_34         0     18.76 0.00  -1.14
10671       ASPDH      19_34         0    100.11 0.00   1.94
2030      CLEC11A      19_34         0      5.53 0.00   0.12
7829     C19orf48      19_34         0     11.97 0.00  -1.74
9147    LINC01869      19_34         0     11.59 0.00  -1.63
7830         KLK1      19_34         0     73.83 0.00   1.44
4005        KLK10      19_34         0     23.93 0.00  -1.86
7831        KLK11      19_34         0     22.88 0.00  -1.76

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 6_24"
      genename region_tag susie_pip      mu2 PVE      z
10667    HLA-G       6_24         0  7739.34   0  -2.29
12683    HCP5B       6_24         0 73110.93   0 -13.94
10774    HLA-A       6_24         0   439.92   0   0.18
624      ZNRD1       6_24         0  5660.56   0   2.02
10664    RNF39       6_24         0   924.50   0  -3.53
10663   TRIM31       6_24         0 38631.61   0  13.23
10661   TRIM10       6_24         0  2434.43   0   3.39
11273   TRIM26       6_24         0   492.82   0   6.04
10657   TRIM39       6_24         0   132.43   0   1.68
10651    ABCF1       6_24         0 17010.90   0 -11.81
10649  MRPS18B       6_24         0   326.28   0   0.75
10648 C6orf136       6_24         0  1163.12   0  -5.23
10647    DHX16       6_24         0    39.08   0  -1.73
5766   PPP1R18       6_24         0 14686.05   0  -9.98
4836       NRM       6_24         0  8073.62   0   3.09
4833     FLOT1       6_24         0 37452.27   0 -18.00
11136    HCG20       6_24         0  1100.50   0   6.08

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 6_25"
               genename region_tag susie_pip    mu2     PVE      z
10653              DDR1       6_25         0  30.87 1.6e-15  -0.51
4838              VARS2       6_25         0 198.81 6.6e-13  15.17
10854            GTF2H4       6_25         0  22.77 7.0e-16  -3.34
10044             SFTA2       6_25         0  75.02 1.2e-14 -10.43
10646          PSORS1C1       6_25         0  58.79 4.3e-15   0.32
10645          PSORS1C2       6_25         0  52.41 1.7e-15  -6.56
11297             HLA-B       6_25         0  65.19 5.4e-15  -7.06
4832              TCF19       6_25         0  39.29 3.2e-13   8.75
10644            CCHCR1       6_25         0  39.29 3.2e-13   8.75
10643            POU5F1       6_25         0  89.67 4.0e-15 -10.63
10771             HCG27       6_25         0  15.92 7.8e-16  -4.68
10642             HLA-C       6_25         0  58.07 3.8e-15  -6.82
12306 XXbac-BPG181B23.7       6_25         0  41.23 4.8e-08  -4.99
10640              MICA       6_25         0 100.99 1.3e-13   8.01
10639              MICB       6_25         0 105.52 3.4e-14 -10.05
10417            DDX39B       6_25         0  12.09 4.1e-16   2.61
10637           NFKBIL1       6_25         0  17.49 6.9e-16  -1.35
10852          ATP6V1G2       6_25         0  94.97 1.4e-11  -5.19
11110               LTA       6_25         0  20.20 2.2e-15  -3.94
11237               TNF       6_25         0  10.27 4.3e-16   0.93
10635              NCR3       6_25         0  17.04 7.3e-16   3.79

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip       mu2     PVE      z
30776    rs61788682       1_69     1.000     38.64 1.2e-04  -5.49
36503    rs61804161       1_79     1.000    449.31 1.4e-03  13.50
36507    rs12145843       1_79     1.000    222.26 7.1e-04  25.22
36514    rs61804205       1_79     1.000    899.42 2.9e-03 -30.68
72933      rs780093       2_16     1.000    222.42 7.1e-04 -16.11
74915    rs17013001       2_21     1.000     34.89 1.1e-04  -5.94
97390    rs62161401       2_66     1.000     70.66 2.2e-04   8.25
182990    rs9817452       3_97     1.000     67.10 2.1e-04   8.33
192357    rs9863411      3_114     1.000     65.49 2.1e-04  -8.53
197584    rs3748034        4_4     1.000     80.00 2.5e-04   9.39
273474    rs2859493       5_26     1.000     38.99 1.2e-04   6.24
277590  rs577736887       5_33     1.000     55.78 1.8e-04  -7.92
279381     rs153429       5_37     1.000     77.07 2.4e-04  -4.54
279396  rs745863029       5_37     1.000     64.23 2.0e-04  -2.08
314899   rs58778501        6_1     1.000     86.01 2.7e-04  -5.80
324221  rs115740542       6_20     1.000     94.59 3.0e-04  -7.06
325359    rs1233385       6_23     1.000    126.41 4.0e-04 -14.94
326265    rs2256752       6_25     1.000    170.27 5.4e-04 -18.78
326363    rs2523581       6_25     1.000    126.57 4.0e-04  -7.25
326797    rs9276685       6_27     1.000    135.86 4.3e-04 -11.75
330095    rs7744080       6_32     1.000     42.56 1.4e-04   7.34
367469   rs60425481      6_104     1.000    777.49 2.5e-03  -5.51
371348  rs139588569      6_112     1.000   9143.36 2.9e-02  -4.62
371350   rs59421548      6_112     1.000   9208.95 2.9e-02  -4.32
388392    rs6583438       7_36     1.000     67.79 2.2e-04   7.15
396133  rs761767938       7_49     1.000   3605.80 1.1e-02  -3.74
396141    rs1544459       7_49     1.000   3541.28 1.1e-02  -3.11
404152  rs763798411       7_65     1.000  11193.57 3.6e-02   3.62
411288     rs125124       7_80     1.000     49.27 1.6e-04  -7.24
466777   rs56114972       8_92     1.000     48.94 1.6e-04   5.92
512358   rs17657502      10_14     1.000     62.65 2.0e-04   5.96
570139   rs12283874      11_36     1.000     59.49 1.9e-04   3.81
581979  rs117304134      11_59     1.000     47.09 1.5e-04  -6.51
585464    rs1176746      11_67     1.000   1349.01 4.3e-03   2.77
585466    rs2307599      11_67     1.000   1348.17 4.3e-03   2.96
638405   rs79490353       13_7     1.000    118.23 3.8e-04   9.78
690049    rs1998057      14_48     1.000    135.83 4.3e-04   0.40
690050   rs12893029      14_48     1.000    197.86 6.3e-04  -2.30
693110   rs12588969      14_54     1.000    112.72 3.6e-04 -13.24
706662  rs537559727      15_30     1.000   2077.72 6.6e-03   3.09
706671  rs762746560      15_30     1.000   2069.47 6.6e-03   3.19
743977   rs11078597       17_2     1.000     95.11 3.0e-04  11.98
743981    rs7502910       17_2     1.000     53.46 1.7e-04   9.94
745591    rs4968186       17_7     1.000     64.96 2.1e-04  -9.82
748422   rs11654694      17_15     1.000     56.20 1.8e-04  -7.82
754336    rs1808192      17_27     1.000     72.36 2.3e-04   9.21
759971  rs113408695      17_39     1.000     48.72 1.5e-04  -7.23
783267  rs150377214      18_35     1.000     74.59 2.4e-04  -8.33
801139    rs1688031      19_24     1.000    134.88 4.3e-04  13.97
801140    rs4806075      19_24     1.000    159.46 5.1e-04  -5.92
853195   rs11249215       1_17     1.000  58045.63 1.8e-01 -11.47
853201  rs753570588       1_17     1.000  60106.38 1.9e-01 -12.29
887804  rs142955295       3_35     1.000  13928.46 4.4e-02   4.24
920278    rs1611236       6_24     1.000 142011.88 4.5e-01 -14.25
931537    rs9279507       6_26     1.000  41081.14 1.3e-01   2.87
940482    rs9274442       6_26     1.000  13931.29 4.4e-02 -25.36
943683  rs139991383        7_4     1.000   1152.25 3.7e-03  -3.16
1043023 rs113176985      19_34     1.000 175535.93 5.6e-01 -17.85
1043026 rs374141296      19_34     1.000 176439.81 5.6e-01 -16.57
1057726 rs780018294      22_10     1.000    575.57 1.8e-03   2.17
293042   rs35552666       5_66     0.999     32.18 1.0e-04  -5.80
314892    rs4959611        6_1     0.999     60.60 1.9e-04   5.78
624593    rs2583223      12_62     0.999     35.41 1.1e-04  -5.70
627011  rs141105880      12_67     0.999     81.58 2.6e-04  -9.92
630931   rs12425627      12_76     0.999     36.69 1.2e-04  -6.14
790057   rs55748813       19_2     0.999     45.38 1.4e-04  -7.13
92587    rs10208803       2_54     0.998     73.48 2.3e-04   7.79
97280    rs12622400       2_66     0.998     42.33 1.3e-04   5.70
254613    rs7659414      4_114     0.998     47.09 1.5e-04  -7.21
484057    rs4745108       9_33     0.998     30.73 9.7e-05  -5.45
569097   rs79376486      11_34     0.998     43.29 1.4e-04   5.86
588162    rs1945396      11_75     0.998     34.83 1.1e-04   5.84
645467    rs7997446      13_21     0.998     33.96 1.1e-04   6.01
690067    rs2239651      14_48     0.997     70.88 2.2e-04  -7.09
742821    rs7194426      16_54     0.997     43.51 1.4e-04  -5.86
1069838   rs7287486      22_17     0.997     56.79 1.8e-04  -7.57
223809   rs12507099       4_53     0.996     29.84 9.4e-05  -5.41
325709    rs3095311       6_25     0.996    270.95 8.6e-04 -19.20
236084  rs138204164       4_77     0.995     60.14 1.9e-04  -7.95
333232    rs6458803       6_38     0.995     32.88 1.0e-04   5.71
534670   rs10887917      10_56     0.995     48.04 1.5e-04   7.04
587125     rs666741      11_71     0.995     64.63 2.0e-04  -8.52
630852    rs2229840      12_75     0.995     30.45 9.6e-05  -5.48
706669   rs11858985      15_30     0.995   2026.60 6.4e-03   2.96
50249     rs3813977      1_105     0.994     33.70 1.1e-04   5.48
84730    rs13012253       2_39     0.994     29.15 9.2e-05  -5.37
132206    rs1834748      2_135     0.994     36.64 1.2e-04   6.44
193236   rs79692229      3_116     0.992     40.01 1.3e-04   6.67
839697   rs12166267       22_7     0.992     32.37 1.0e-04   5.49
231153  rs144812644       4_68     0.991     29.36 9.2e-05  -6.53
753507    rs8072356      17_26     0.991     29.90 9.4e-05   5.11
796194   rs71332143      19_15     0.990     29.65 9.3e-05  -5.44
513924  rs148678804      10_16     0.989     27.88 8.8e-05   4.86
260044   rs56023411        5_2     0.988     37.69 1.2e-04   6.31
324200   rs72834643       6_20     0.988     33.10 1.0e-04  -3.68
694040   rs61310292      14_56     0.988     48.72 1.5e-04  -7.41
765145    rs9954032       18_1     0.988     30.55 9.6e-05  -5.43
745570  rs148093673       17_7     0.987     34.44 1.1e-04   5.42
671277    rs8011368      14_10     0.984     27.30 8.5e-05   5.02
782001   rs12960077      18_32     0.983     34.40 1.1e-04  -5.85
424680   rs11775663       8_10     0.982     27.93 8.7e-05  -5.28
1008090 rs148272371       17_6     0.982     31.19 9.7e-05  -5.05
431838    rs4871845       8_24     0.981     40.96 1.3e-04   6.44
462158    rs2720659       8_84     0.981     33.64 1.0e-04  -5.88
664307   rs73609086      13_57     0.981     26.41 8.2e-05  -4.91
544257   rs11199973      10_75     0.980     31.57 9.8e-05  -5.52
123931     rs231811      2_120     0.979     53.18 1.7e-04   7.75
304615   rs12189018       5_87     0.979     25.84 8.0e-05   4.88
325522    rs2246856       6_23     0.977     61.19 1.9e-04  -5.56
614391    rs2137537      12_44     0.977     29.99 9.3e-05  -5.45
326659  rs112357706       6_27     0.976     38.88 1.2e-04   5.80
397537    rs3839804       7_51     0.972     29.42 9.1e-05  -5.44
690158    rs2069987      14_48     0.972     33.09 1.0e-04  -5.58
676224    rs2883893      14_20     0.971     28.16 8.7e-05  -5.85
742800   rs11642017      16_53     0.967     26.09 8.0e-05   4.69
783307    rs4940573      18_35     0.967    119.48 3.7e-04  10.74
141311   rs17776482        3_9     0.965     27.05 8.3e-05  -5.33
570075   rs59286748      11_36     0.964     40.48 1.2e-04  -5.94
570080   rs11227230      11_36     0.964     52.76 1.6e-04  -5.29
197585    rs3752442        4_4     0.962     48.34 1.5e-04  -9.89
125921   rs62203749      2_124     0.958     25.97 7.9e-05  -4.49
770741   rs35796589      18_10     0.957     24.61 7.5e-05  -4.64
426120    rs7821812       8_14     0.955     94.62 2.9e-04 -11.91
727379    rs8061729      16_24     0.955     36.88 1.1e-04   5.12
424886   rs12543422       8_10     0.954     25.08 7.6e-05   4.59
696846    rs7497631       15_7     0.954     24.64 7.5e-05  -4.59
507717    rs1972409       10_7     0.952     34.19 1.0e-04   6.24
481644   rs11557154       9_26     0.949     36.06 1.1e-04  -5.67
790762   rs67868323       19_4     0.949     59.49 1.8e-04   8.04
74311   rs115472871       2_20     0.947     24.94 7.5e-05  -4.83
407385      rs38913       7_71     0.944     27.27 8.2e-05   5.22
590236    rs7932045      11_80     0.940     30.44 9.1e-05   7.01
314915    rs6942338        6_1     0.938     84.18 2.5e-04  10.28
324706  rs187257713       6_21     0.938     25.20 7.5e-05  -3.89
512373    rs2497836      10_14     0.938     40.49 1.2e-04  -3.55
497991    rs2812398       9_58     0.936     31.22 9.3e-05   5.52
326612  rs138924536       6_25     0.935     62.32 1.8e-04  -5.98
837222   rs12626883      21_24     0.934     24.66 7.3e-05  -4.68
107097   rs60882035       2_85     0.933     36.08 1.1e-04  -6.19
30774    rs56894897       1_69     0.932     26.08 7.7e-05  -3.72
141529   rs56395424        3_9     0.931     32.16 9.5e-05  -4.58
503614     rs495828       9_70     0.930     36.53 1.1e-04   5.32
318992   rs45449792       6_10     0.929     23.37 6.9e-05   4.49
638407    rs7989654       13_7     0.928     63.70 1.9e-04   5.76
931526    rs3130292       6_26     0.927  41374.56 1.2e-01 -19.06
610350    rs7397189      12_36     0.925     26.25 7.7e-05  -4.79
197589    rs1203107        4_4     0.924     70.80 2.1e-04   8.52
368699     rs766167      6_106     0.923     25.16 7.4e-05  -4.85
372238   rs79206451        7_3     0.923     24.13 7.1e-05  -4.55
380537   rs10228771       7_21     0.923     24.02 7.0e-05  -4.46
368596    rs9365555      6_106     0.922     24.25 7.1e-05  -4.61
667331   rs35477689       14_3     0.919     39.85 1.2e-04  -6.86
683375   rs61987084      14_34     0.919     28.80 8.4e-05  -5.11
689862   rs12588988      14_47     0.916     23.82 6.9e-05   4.62
377865  rs111683935       7_17     0.913     31.54 9.1e-05  -5.58
469954   rs10120959        9_4     0.913     23.79 6.9e-05  -4.51
74952    rs13388394       2_21     0.910     25.95 7.5e-05  -5.05
626936     rs653178      12_67     0.910     55.30 1.6e-04  -8.35
10235     rs2045791       1_23     0.909     23.55 6.8e-05  -4.39
1008456 rs149438782       17_6     0.908     30.76 8.9e-05   5.63
214768  rs768294452       4_39     0.905     23.54 6.8e-05   3.88
324180  rs140264349       6_20     0.904     31.95 9.2e-05  -4.78
594760   rs10734885       12_7     0.903     26.77 7.7e-05  -4.76
819522   rs74178731      20_29     0.902     28.91 8.3e-05   5.34
34880     rs1685606       1_75     0.897     42.59 1.2e-04   8.39
64584     rs4335411      1_131     0.897     23.86 6.8e-05  -4.41
404158   rs13230660       7_65     0.897  11122.87 3.2e-02   4.37
396137   rs11972122       7_49     0.895   3324.75 9.5e-03  -3.63
33797    rs12124727       1_73     0.892     25.54 7.2e-05   3.48
503992    rs7043538       9_71     0.891     24.99 7.1e-05  -4.64
748445    rs3751985      17_15     0.890    447.65 1.3e-03  25.61
425184    rs7833103       8_11     0.887     37.27 1.1e-04   7.32
92655   rs200937710       2_54     0.883     30.34 8.5e-05   5.02
348238    rs2388334       6_67     0.882     36.21 1.0e-04  -5.94
99671     rs2422391       2_69     0.879     28.43 7.9e-05  -5.00
590208    rs6590334      11_80     0.879     38.06 1.1e-04   7.28
8393      rs2491141       1_20     0.875     24.93 6.9e-05   4.71
884017   rs13063578       3_33     0.873     48.06 1.3e-04  -6.79
535711   rs11187129      10_59     0.871     30.77 8.5e-05   3.80
1026554 rs148933445      19_32     0.871     33.40 9.2e-05  -5.54
503946   rs56406717       9_70     0.870     25.50 7.0e-05  -4.87
148442  rs116823501       3_24     0.869     23.82 6.6e-05   3.20
231123   rs17032996       4_68     0.866     31.99 8.8e-05   6.69
282525     rs250722       5_45     0.861     30.74 8.4e-05   6.19
594860    rs4883268       12_7     0.859     28.95 7.9e-05  -4.98
226476  rs114646961       4_59     0.856     24.35 6.6e-05   4.50
495821   rs10733564       9_54     0.854     24.55 6.7e-05   4.45
189618    rs2141598      3_109     0.848     24.11 6.5e-05   4.45
553271     rs360130       11_8     0.846     44.49 1.2e-04  -5.27
47799   rs112840522       1_99     0.845     23.89 6.4e-05  -4.19
295686   rs71583081       5_71     0.845     23.27 6.2e-05  -4.32
511417   rs10906857      10_13     0.844     23.50 6.3e-05  -4.31
726987     rs153105      16_23     0.844     27.74 7.4e-05   5.78
754796  rs145023944      17_28     0.842     25.62 6.8e-05  -4.24
178044    rs9862179       3_86     0.839     24.47 6.5e-05  -4.46
756964    rs1040261      17_33     0.837     29.74 7.9e-05  -5.32
431896    rs4581062       8_24     0.833     26.39 7.0e-05   4.93
717217   rs10902585      15_49     0.833     24.79 6.6e-05   4.58
664326   rs17381234      13_57     0.832     25.81 6.8e-05   4.74
54968    rs61830291      1_112     0.831     47.65 1.3e-04   7.06
47413    rs74213209       1_98     0.827     34.91 9.2e-05  -5.83
276798   rs28499105       5_31     0.826     31.37 8.2e-05   5.33
364224   rs10872678       6_99     0.822     32.86 8.6e-05   5.60
95867     rs6711659       2_63     0.821     25.35 6.6e-05   4.59
206301   rs10007850       4_22     0.821    145.06 3.8e-04   2.08
815851     rs291675      20_20     0.819     35.50 9.2e-05   5.87
372297   rs12671734        7_5     0.818     26.08 6.8e-05   4.50
570328  rs574546203      11_37     0.818     25.64 6.7e-05   4.62
197567  rs115019205        4_4     0.816     26.28 6.8e-05   4.69
744114    rs3760230       17_3     0.813    137.14 3.5e-04 -12.48
487939     rs930340       9_41     0.810     60.34 1.6e-04  -8.21
572060     rs366066      11_40     0.808     24.10 6.2e-05   4.29
994585     rs455378      16_12     0.807     32.34 8.3e-05   4.98
328034    rs9348980       6_29     0.805     34.83 8.9e-05   5.33
667351   rs12885436       14_3     0.805     29.71 7.6e-05  -5.63
838097   rs62222326       22_4     0.804     29.87 7.6e-05  -5.05
821741  rs140571612      20_32     0.802     24.35 6.2e-05  -4.33

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                 id region_tag susie_pip      mu2  PVE      z
1043026 rs374141296      19_34         1 176439.8 0.56 -16.57
1043023 rs113176985      19_34         1 175535.9 0.56 -17.85
1043014  rs61371437      19_34         0 175528.8 0.00 -17.74
1043016  rs35295508      19_34         0 175179.0 0.00 -17.73
1043004    rs739349      19_34         0 175092.3 0.00 -17.67
1043005    rs756628      19_34         0 175090.6 0.00 -17.67
1043001    rs739347      19_34         0 174817.5 0.00 -17.75
1043002   rs2073614      19_34         0 174622.5 0.00 -17.75
1043030   rs2946865      19_34         0 174593.7 0.00 -17.84
1043021  rs73056069      19_34         0 174467.8 0.00 -17.77
1042997   rs4802613      19_34         0 174195.6 0.00 -17.66
1043018   rs2878354      19_34         0 174147.2 0.00 -17.74
1043007   rs2077300      19_34         0 174077.2 0.00 -17.69
1043011  rs73056059      19_34         0 173738.2 0.00 -17.73
1042995  rs10403394      19_34         0 172900.5 0.00 -17.58
1042996  rs17555056      19_34         0 172770.5 0.00 -17.63
1043031  rs60815603      19_34         0 172048.0 0.00 -17.84
1043034   rs1316885      19_34         0 171272.7 0.00 -17.95
1043036  rs60746284      19_34         0 170966.9 0.00 -17.92
1043039   rs2946863      19_34         0 170943.7 0.00 -18.01
1043032  rs35443645      19_34         0 170825.5 0.00 -18.08
1043012  rs73056062      19_34         0 169145.2 0.00 -17.00
1043042 rs553431297      19_34         0 166355.7 0.00 -17.07
1043025 rs112283514      19_34         0 165909.5 0.00 -16.37
1043027  rs11270139      19_34         0 164877.2 0.00 -16.89
1042992  rs10421294      19_34         0 156257.8 0.00 -16.76
1042991   rs8108175      19_34         0 156238.5 0.00 -16.77
1042984  rs59192944      19_34         0 155954.6 0.00 -16.75
1042990   rs1858742      19_34         0 155943.2 0.00 -16.77
1042981  rs55991145      19_34         0 155847.9 0.00 -16.79
1042976   rs3786567      19_34         0 155791.2 0.00 -16.78
1042972   rs2271952      19_34         0 155733.6 0.00 -16.79
1042975   rs4801801      19_34         0 155730.9 0.00 -16.79
1042971   rs2271953      19_34         0 155562.4 0.00 -16.82
1042973   rs2271951      19_34         0 155554.4 0.00 -16.82
1042962  rs60365978      19_34         0 155432.8 0.00 -16.84
1042968   rs4802612      19_34         0 154794.0 0.00 -16.81
1042978   rs2517977      19_34         0 154478.2 0.00 -16.80
1042965  rs55893003      19_34         0 154276.5 0.00 -16.85
1042957  rs55992104      19_34         0 150717.4 0.00 -15.98
1042951  rs60403475      19_34         0 150685.8 0.00 -15.96
1042954   rs4352151      19_34         0 150673.7 0.00 -15.99
1042948  rs11878448      19_34         0 150570.9 0.00 -15.98
1042942   rs9653100      19_34         0 150525.4 0.00 -15.97
1042938   rs4802611      19_34         0 150430.7 0.00 -15.98
1042930   rs7251338      19_34         0 150219.0 0.00 -15.99
1042929  rs59269605      19_34         0 150202.4 0.00 -16.00
1042950   rs1042120      19_34         0 149791.1 0.00 -16.00
1042946 rs113220577      19_34         0 149663.5 0.00 -16.00
1042940   rs9653118      19_34         0 149431.8 0.00 -15.98

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip       mu2    PVE      z
1043023 rs113176985      19_34     1.000 175535.93 0.5600 -17.85
1043026 rs374141296      19_34     1.000 176439.81 0.5600 -16.57
920278    rs1611236       6_24     1.000 142011.88 0.4500 -14.25
853201  rs753570588       1_17     1.000  60106.38 0.1900 -12.29
920332    rs2394171       6_24     0.427 142619.12 0.1900 -14.32
920334    rs2893981       6_24     0.423 142618.89 0.1900 -14.32
853195   rs11249215       1_17     1.000  58045.63 0.1800 -11.47
853220   rs11249219       1_17     0.798  57900.77 0.1500 -13.55
931537    rs9279507       6_26     1.000  41081.14 0.1300   2.87
931526    rs3130292       6_26     0.927  41374.56 0.1200 -19.06
920264    rs1611228       6_24     0.168 142617.47 0.0760 -14.31
920330    rs1611267       6_24     0.162 142618.35 0.0740 -14.31
920253    rs1737020       6_24     0.134 142617.36 0.0610 -14.31
920254    rs1737019       6_24     0.134 142617.36 0.0610 -14.31
1043111  rs10419198      19_34     0.567  34148.09 0.0610 -25.81
931523    rs3130291       6_26     0.432  41373.39 0.0570 -19.05
853211   rs12407074       1_17     0.306  57923.53 0.0560 -13.56
1043136  rs36013629      19_34     0.433  33561.70 0.0460 -25.88
920301    rs1611248       6_24     0.099 142618.01 0.0450 -14.30
887804  rs142955295       3_35     1.000  13928.46 0.0440   4.24
940482    rs9274442       6_26     1.000  13931.29 0.0440 -25.36
920196    rs1633033       6_24     0.087 142617.59 0.0400 -14.31
853209    rs7555518       1_17     0.211  57923.23 0.0390 -13.55
404152  rs763798411       7_65     1.000  11193.57 0.0360   3.62
853217    rs7513156       1_17     0.182  57922.41 0.0330 -13.55
404158   rs13230660       7_65     0.897  11122.87 0.0320   4.37
371348  rs139588569      6_112     1.000   9143.36 0.0290  -4.62
371350   rs59421548      6_112     1.000   9208.95 0.0290  -4.32
404163    rs4997569       7_65     0.764  11147.81 0.0270   4.29
853218   rs10903121       1_17     0.129  57921.74 0.0240 -13.55
853214    rs7550635       1_17     0.123  57922.62 0.0230 -13.55
920209    rs2844838       6_24     0.052 142616.12 0.0230 -14.31
404170    rs6952534       7_65     0.570  11121.98 0.0200   4.44
853216    rs7542123       1_17     0.107  57922.12 0.0200 -13.55
853213    rs7550552       1_17     0.103  57922.27 0.0190 -13.55
404155   rs10274607       7_65     0.376  11138.26 0.0130   4.32
920322    rs1611260       6_24     0.026 142617.35 0.0120 -14.30
396133  rs761767938       7_49     1.000   3605.80 0.0110  -3.74
396141    rs1544459       7_49     1.000   3541.28 0.0110  -3.11
920247    rs1633020       6_24     0.025 142601.22 0.0110 -14.32
920251    rs1633018       6_24     0.025 142600.46 0.0110 -14.32
920305    rs1611252       6_24     0.024 142617.55 0.0110 -14.30
920328    rs1611265       6_24     0.025 142617.23 0.0110 -14.30
396137   rs11972122       7_49     0.895   3324.75 0.0095  -3.63
920257    rs2508055       6_24     0.017 142616.95 0.0077 -14.29
920260  rs111734624       6_24     0.017 142616.99 0.0077 -14.29
706662  rs537559727      15_30     1.000   2077.72 0.0066   3.09
706671  rs762746560      15_30     1.000   2069.47 0.0066   3.19
706669   rs11858985      15_30     0.995   2026.60 0.0064   2.96
887711   rs12381242       3_35     0.135  13974.69 0.0060  -4.27

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                 id region_tag susie_pip      mu2     PVE      z
36514    rs61804205       1_79     1.000   899.42 2.9e-03 -30.68
36490   rs189026820       1_79     0.000   766.82 0.0e+00 -27.18
36510    rs74816838       1_79     0.000   649.65 0.0e+00 -26.47
36469     rs7518087       1_79     0.000   499.48 8.8e-19 -25.90
1043136  rs36013629      19_34     0.433 33561.70 4.6e-02 -25.88
1043111  rs10419198      19_34     0.567 34148.09 6.1e-02 -25.81
748445    rs3751985      17_15     0.890   447.65 1.3e-03  25.61
748443    rs3794776      17_15     0.112   457.74 1.6e-04  25.37
940482    rs9274442       6_26     1.000 13931.29 4.4e-02 -25.36
36507    rs12145843       1_79     1.000   222.26 7.1e-04  25.22
748440   rs16961828      17_15     0.002   440.55 2.6e-06  25.04
940686    rs3852215       6_26     0.000 10930.86 1.7e-12 -24.97
940581    rs3891176       6_26     0.000 10325.40 2.6e-13 -24.90
940527    rs9274474       6_26     0.000 10949.42 2.6e-12 -24.81
940052    rs4993988       6_26     0.000 10449.13 3.5e-13 -24.79
940268    rs9274114       6_26     0.000 10472.33 2.3e-13 -24.78
940092    rs9273494       6_26     0.000 10348.28 1.3e-13 -24.76
940126    rs9273529       6_26     0.000 10357.42 1.4e-13 -24.76
940591    rs3891175       6_26     0.000 10353.23 1.2e-13 -24.76
940127    rs9273530       6_26     0.000 10351.68 9.8e-14 -24.75
940227    rs9273902       6_26     0.000 10347.11 1.0e-13 -24.75
940102    rs9273504       6_26     0.000 10351.96 8.0e-14 -24.74
940114    rs9273519       6_26     0.000 10353.28 8.2e-14 -24.74
940115  rs281875165       6_26     0.000 10353.28 8.2e-14 -24.74
940116  rs398122357       6_26     0.000 10353.28 8.2e-14 -24.74
940206    rs9273803       6_26     0.000 10343.20 6.3e-14 -24.73
940209    rs9273807       6_26     0.000 10342.06 6.6e-14 -24.73
940572    rs9274514       6_26     0.000 10344.75 5.2e-14 -24.72
940224    rs9273873       6_26     0.000 10392.90 2.7e-14 -24.70
940512    rs9274465       6_26     0.000 10387.05 2.2e-14 -24.68
940543    rs9274497       6_26     0.000 10342.07 1.6e-14 -24.67
940202    rs9273786       6_26     0.000 10289.32 5.9e-15 -24.64
940335   rs17613643       6_26     0.000 10532.04 1.7e-14 -24.64
940064    rs9273463       6_26     0.000 10001.05 5.4e-16 -24.57
940266    rs9274107       6_26     0.000  9745.73 2.7e-16 -24.57
940654    rs4988888       6_26     0.000 10311.80 1.2e-15 -24.57
940710    rs9274623       6_26     0.000 10411.84 8.6e-16 -24.56
940058    rs9273455       6_26     0.000  9501.98 1.7e-17 -24.49
940691    rs3844313       6_26     0.000 10117.20 0.0e+00 -24.31
940540    rs9274490       6_26     0.000 10021.40 0.0e+00 -24.23
940546    rs9274498       6_26     0.000  9871.21 0.0e+00 -24.19
940162    rs9273595       6_26     0.000  9797.87 0.0e+00 -23.97
940078    rs9273480       6_26     0.000  9913.81 0.0e+00 -23.93
940139    rs9273542       6_26     0.000  8852.83 0.0e+00 -23.91
940136    rs9273539       6_26     0.000  8852.48 0.0e+00 -23.87
1043194 rs111476047      19_34     0.000 31814.18 0.0e+00 -23.78
940314   rs17613599       6_26     0.000  8662.87 0.0e+00 -23.71
940317   rs17613606       6_26     0.000  8656.81 0.0e+00 -23.70
36485    rs61801830       1_79     0.000   218.87 2.1e-09 -23.65
940259    rs9274079       6_26     0.000  8195.94 0.0e+00 -23.59

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 23
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
RP11-219B17.3 gene(s) from the input list not found in DisGeNET CURATEDRP11-131K5.2 gene(s) from the input list not found in DisGeNET CURATEDZNF77 gene(s) from the input list not found in DisGeNET CURATEDTMEM176B gene(s) from the input list not found in DisGeNET CURATEDALLC gene(s) from the input list not found in DisGeNET CURATEDAC008746.12 gene(s) from the input list not found in DisGeNET CURATEDHMGXB3 gene(s) from the input list not found in DisGeNET CURATEDNPIPB2 gene(s) from the input list not found in DisGeNET CURATEDRPS11 gene(s) from the input list not found in DisGeNET CURATEDSH3BP1 gene(s) from the input list not found in DisGeNET CURATED
                                           Description         FDR Ratio
14                                       Hydrocephalus 0.006114723  2/13
36                            Caliciviridae Infections 0.008625799  1/13
41                             Infections, Calicivirus 0.008625799  1/13
44                                Renal Cell Dysplasia 0.008625799  1/13
51                                 D-Glyceric aciduria 0.008625799  1/13
57                                        Anhydramnios 0.008625799  1/13
63                                  D-glycericacidemia 0.008625799  1/13
70                  Maple Syrup Urine Disease, Type IA 0.008625799  1/13
78 VITAMIN B12 PLASMA LEVEL QUANTITATIVE TRAIT LOCUS 1 0.008625799  1/13
84                                      PORENCEPHALY 2 0.008625799  1/13
   BgRatio
14  9/9703
36  1/9703
41  1/9703
44  1/9703
51  1/9703
57  1/9703
63  1/9703
70  1/9703
78  1/9703
84  1/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2