Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30830_irnt_Whole_Blood.Rmd) and HTML (docs/ukb-d-30830_irnt_Whole_Blood.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd da9f015 wesleycrouse 2021-08-07 adding more reports
html da9f015 wesleycrouse 2021-08-07 adding more reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait SHBG (quantile) using Whole_Blood gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30830_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Whole_Blood eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11095
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1129  747  624  400  479  621  560  383  404  430  682  652  192  362  331 
  16   17   18   19   20   21   22 
 551  725  159  911  313  130  310 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.762776

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0120859107 0.0001862757 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
20.29972 29.53435 
#report sample size
print(sample_size)
[1] 312215
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11095 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.008718523 0.153255452 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.02911682 2.52514533

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
      genename region_tag susie_pip    mu2     PVE      z
5673     PSEN2      1_116     0.982  23.56 7.4e-05  -4.35
2002       AES       19_4     0.981  62.75 2.0e-04  -8.01
8523    ZNF217      20_31     0.977  27.20 8.5e-05   4.90
4972     PGBD1       6_22     0.973  31.53 9.8e-05  -5.30
5095   DNAJC13       3_82     0.968  24.47 7.6e-05  -2.39
10954   NYNRIN       14_3     0.965  44.49 1.4e-04  -5.21
9736      H1FX       3_80     0.964  25.11 7.8e-05   5.05
6609     TMED6      16_37     0.955  23.92 7.3e-05  -4.80
9284   SERTAD2       2_42     0.947  95.68 2.9e-04  13.85
8572     PDZD3      11_71     0.943  31.27 9.5e-05  -2.16
9079     MIEF2      17_15     0.938  34.57 1.0e-04  -7.07
5025     THBS1      15_13     0.928  21.87 6.5e-05  -4.34
3499  MAPK8IP1      11_28     0.925  26.28 7.8e-05   4.61
6590     NTAN1      16_15     0.921  64.85 1.9e-04  -8.81
7960  SERPINF2       17_2     0.893 186.85 5.3e-04 -11.58
4360     TRIM5       11_4     0.888  35.93 1.0e-04  -5.03
10772    TCEA3       1_16     0.869  44.33 1.2e-04   5.78
7810      TAC3      12_35     0.864  21.83 6.0e-05  -4.57
10194 SLC35E2B        1_1     0.853  24.24 6.6e-05  -4.39
2072      TYK2       19_9     0.829  24.18 6.4e-05  -4.56
4011    VPREB3       22_6     0.825  19.75 5.2e-05  -3.94
8876   ARHGAP1      11_28     0.801  23.49 6.0e-05  -4.50

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
         genename region_tag susie_pip       mu2     PVE      z
1980        FCGRT      19_34         0 121541.69 0.0e+00  -6.96
5520         RCN3      19_34         0  38818.61 0.0e+00  -8.47
4733         AHI1       6_89         0   9803.63 0.0e+00   2.05
8165        CPT1C      19_34         0   8482.37 0.0e+00   4.30
4687       TMEM60       7_49         0   6194.67 0.0e+00  -5.03
11526     TNFSF12       17_7         0   5397.77 0.0e+00  65.40
4093       ATP1B2       17_7         0   3268.79 0.0e+00 -72.82
571       SLC6A16      19_34         0   2154.73 0.0e+00  -0.24
10492 CTC-301O7.4      19_34         0   2048.60 0.0e+00  -1.13
8293       CHRNB1       17_7         0   1973.26 0.0e+00   1.39
9608        PSMG1      21_19         0   1953.69 0.0e+00   5.30
7008      TNFSF13       17_7         0   1414.85 0.0e+00  -1.92
11220        ADM5      19_34         0   1295.17 0.0e+00   0.17
5427         SAT2       17_7         0   1278.98 0.0e+00 -11.18
6980     ALDH16A1      19_34         0   1221.93 0.0e+00   0.44
846         TEAD2      19_34         0   1217.01 0.0e+00  -0.66
7255       EIF5A2      3_104         0   1043.12 3.2e-14   2.68
5425       WRAP53       17_7         0   1040.92 0.0e+00 -43.17
11094        APTR       7_49         0    992.40 0.0e+00  -0.43
9834        BRWD1      21_19         0    974.91 0.0e+00   0.32

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
      genename region_tag susie_pip    mu2     PVE      z
7960  SERPINF2       17_2     0.893 186.85 5.3e-04 -11.58
9820     TLCD2       17_2     0.769 193.94 4.8e-04  -7.05
9284   SERTAD2       2_42     0.947  95.68 2.9e-04  13.85
2002       AES       19_4     0.981  62.75 2.0e-04  -8.01
6590     NTAN1      16_15     0.921  64.85 1.9e-04  -8.81
546       PIGV       1_18     0.354 120.15 1.4e-04  14.70
6089     FADS1      11_34     0.435  98.45 1.4e-04 -10.07
10954   NYNRIN       14_3     0.965  44.49 1.4e-04  -5.21
1267    PABPC4       1_24     0.524  78.41 1.3e-04   9.75
1145      ACHE       7_62     0.283 127.62 1.2e-04  11.93
1185      TGDS      13_47     0.575  63.69 1.2e-04   7.90
10772    TCEA3       1_16     0.869  44.33 1.2e-04   5.78
5074   EMILIN1       2_16     0.685  56.43 1.2e-04  -8.91
6943  PPP1R16A       8_94     0.730  49.07 1.1e-04  -8.11
5035     RMDN3      15_14     0.649  51.21 1.1e-04  -6.18
5318      USP3      15_29     0.564  62.00 1.1e-04  -8.84
4398       UNK      17_42     0.792  45.05 1.1e-04  -7.09
4360     TRIM5       11_4     0.888  35.93 1.0e-04  -5.03
9079     MIEF2      17_15     0.938  34.57 1.0e-04  -7.07
4972     PGBD1       6_22     0.973  31.53 9.8e-05  -5.30

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip     mu2     PVE      z
4093    ATP1B2       17_7     0.000 3268.79 0.0e+00 -72.82
11526  TNFSF12       17_7     0.000 5397.77 0.0e+00  65.40
5425    WRAP53       17_7     0.000 1040.92 0.0e+00 -43.17
9555     NAA38       17_7     0.000  761.42 0.0e+00  34.38
4096     MPDU1       17_7     0.000  683.99 0.0e+00 -26.22
9403    POLR2A       17_7     0.000  288.41 0.0e+00  24.87
7009     SENP3       17_7     0.000  581.83 0.0e+00  23.93
8788      TNK1       17_6     0.000  308.57 0.0e+00 -20.05
4402     KDM6B       17_7     0.000  219.79 0.0e+00 -19.95
10765  ZDHHC18       1_18     0.002  265.14 1.5e-06 -19.64
5430      TP53       17_7     0.000  390.61 0.0e+00  18.69
7846     GNGT2      17_28     0.000  144.51 1.2e-11 -17.26
2953     NRBP1       2_16     0.033  295.74 3.1e-05 -17.20
811      ACAP1       17_6     0.000  255.39 0.0e+00 -15.54
2956     SNX17       2_16     0.015  261.15 1.2e-05 -15.28
7786  CATSPER2      15_16     0.045  227.75 3.3e-05 -14.91
546       PIGV       1_18     0.354  120.15 1.4e-04  14.70
9225      RMI1       9_41     0.025  189.10 1.5e-05  14.63
8532    ZNF554       19_4     0.000  183.62 4.5e-08  14.02
9284   SERTAD2       2_42     0.947   95.68 2.9e-04  13.85

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.03073457
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip     mu2     PVE      z
4093    ATP1B2       17_7     0.000 3268.79 0.0e+00 -72.82
11526  TNFSF12       17_7     0.000 5397.77 0.0e+00  65.40
5425    WRAP53       17_7     0.000 1040.92 0.0e+00 -43.17
9555     NAA38       17_7     0.000  761.42 0.0e+00  34.38
4096     MPDU1       17_7     0.000  683.99 0.0e+00 -26.22
9403    POLR2A       17_7     0.000  288.41 0.0e+00  24.87
7009     SENP3       17_7     0.000  581.83 0.0e+00  23.93
8788      TNK1       17_6     0.000  308.57 0.0e+00 -20.05
4402     KDM6B       17_7     0.000  219.79 0.0e+00 -19.95
10765  ZDHHC18       1_18     0.002  265.14 1.5e-06 -19.64
5430      TP53       17_7     0.000  390.61 0.0e+00  18.69
7846     GNGT2      17_28     0.000  144.51 1.2e-11 -17.26
2953     NRBP1       2_16     0.033  295.74 3.1e-05 -17.20
811      ACAP1       17_6     0.000  255.39 0.0e+00 -15.54
2956     SNX17       2_16     0.015  261.15 1.2e-05 -15.28
7786  CATSPER2      15_16     0.045  227.75 3.3e-05 -14.91
546       PIGV       1_18     0.354  120.15 1.4e-04  14.70
9225      RMI1       9_41     0.025  189.10 1.5e-05  14.63
8532    ZNF554       19_4     0.000  183.62 4.5e-08  14.02
9284   SERTAD2       2_42     0.947   95.68 2.9e-04  13.85

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 17_7"
        genename region_tag susie_pip     mu2 PVE      z
7010       FGF11       17_7         0  107.56   0  -2.88
8293      CHRNB1       17_7         0 1973.26   0   1.39
9403      POLR2A       17_7         0  288.41   0  24.87
11526    TNFSF12       17_7         0 5397.77   0  65.40
7008     TNFSF13       17_7         0 1414.85   0  -1.92
7009       SENP3       17_7         0  581.83   0  23.93
4096       MPDU1       17_7         0  683.99   0 -26.22
5427        SAT2       17_7         0 1278.98   0 -11.18
4093      ATP1B2       17_7         0 3268.79   0 -72.82
5425      WRAP53       17_7         0 1040.92   0 -43.17
5430        TP53       17_7         0  390.61   0  18.69
4402       KDM6B       17_7         0  219.79   0 -19.95
7989      TMEM88       17_7         0   15.14   0   3.17
9555       NAA38       17_7         0  761.42   0  34.38
8272        CHD3       17_7         0   68.74   0  -4.90
9286  AC025335.1       17_7         0   32.75   0   5.02
8279      KCNAB3       17_7         0  198.05   0  -3.44
8277      CNTROB       17_7         0  201.16   0  -1.44
8278     TRAPPC1       17_7         0   37.83   0   5.89
11172      VAMP2       17_7         0   61.05   0  -3.43
9234     TMEM107       17_7         0  120.51   0   4.38
10292     BORCS6       17_7         0    9.75   0  -1.68
9228   LINC00324       17_7         0   14.14   0  -1.05
9218        PFAS       17_7         0    5.41   0   1.27
9226        CTC1       17_7         0   46.35   0  -3.01
3790    SLC25A35       17_7         0   57.78   0   5.94
9716       KRBA2       17_7         0    9.01   0  -2.31
7011       RPL26       17_7         0   32.90   0   3.26

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 17_6"
           genename region_tag susie_pip    mu2 PVE      z
4089         FAM64A       17_6         0  31.15   0  -1.99
1296        PITPNM3       17_6         0   6.35   0   0.75
4092        TXNDC17       17_6         0   5.24   0   0.40
10704      KIAA0753       17_6         0  10.45   0   1.09
11876     C17orf100       17_6         0   5.29   0  -0.46
12045  CTC-281F24.1       17_6         0   5.15   0  -0.40
4405           XAF1       17_6         0  29.82   0  -1.66
2420         ALOX12       17_6         0  38.57   0   2.23
12048 RP11-589P10.5       17_6         0   5.89   0   0.50
11164        RNASEK       17_6         0  43.57   0  -2.48
11905      C17orf49       17_6         0  40.24   0   2.25
7006          BCL6B       17_6         0  37.39   0  -2.37
8792       SLC16A13       17_6         0   7.21   0  -1.20
4403        CLEC10A       17_6         0   6.46   0  -1.23
7007          ASGR2       17_6         0  14.82   0  -1.61
5428          ASGR1       17_6         0  18.23   0   2.51
4406           DLG4       17_6         0  21.93   0   1.76
50             DVL2       17_6         0  23.48   0  -0.42
386           PHF23       17_6         0  16.05   0   2.87
8313        GABARAP       17_6         0 326.46   0 -11.55
8311           ELP5       17_6         0  67.46   0  -6.31
10044        PLSCR3       17_6         0 325.58   0  11.55
9448          CLDN7       17_6         0  21.14   0  -2.60
8941        CTDNEP1       17_6         0  87.99   0   6.86
86             YBX2       17_6         0   6.77   0  -0.36
9446         SLC2A4       17_6         0   9.21   0   0.40
4401          EIF5A       17_6         0  18.11   0  -1.38
4404           GPS2       17_6         0 106.11   0   7.85
11127        NEURL4       17_6         0  49.11   0   6.68
811           ACAP1       17_6         0 255.39   0 -15.54
11056        KCTD11       17_6         0  12.25   0   0.65
8788           TNK1       17_6         0 308.57   0 -20.05
10927       TMEM256       17_6         0  45.29   0  -5.34
8787          ZBTB4       17_6         0 375.56   0 -10.97

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 1_18"
          genename region_tag susie_pip    mu2     PVE      z
3213          SYF2       1_18     0.003  11.51 1.0e-07   2.03
3214         RSRP1       1_18     0.002  30.37 1.7e-07  -5.49
9637       TMEM50A       1_18     0.002  30.37 1.7e-07  -5.49
9978           RHD       1_18     0.002  30.37 1.7e-07  -5.49
10768       TMEM57       1_18     0.002   6.18 4.4e-08   0.98
10121         RHCE       1_18     0.129  52.36 2.2e-05   7.48
11243 RP11-70P17.1       1_18     0.002   9.18 7.2e-08   1.39
3217        MAN1C1       1_18     0.011  24.66 8.4e-07  -2.92
7057       SELENON       1_18     0.018  19.81 1.1e-06  -1.33
6659        PAFAH2       1_18     0.002   6.09 3.4e-08   0.90
6661        TRIM63       1_18     0.002   7.48 4.8e-08   1.81
8858        PDIK1L       1_18     0.003   7.69 6.2e-08   1.45
10401      FAM110D       1_18     0.002   5.65 4.0e-08   1.01
5531        CNKSR1       1_18     0.003  14.29 1.5e-07   2.42
4215         CEP85       1_18     0.003   9.02 7.8e-08  -0.97
6665        UBXN11       1_18     0.038  25.26 3.1e-06  -1.93
8205          CD52       1_18     0.007  24.01 5.7e-07   2.81
8964         AIM1L       1_18     0.002   9.63 5.8e-08   2.53
3219         DHDDS       1_18     0.458  50.18 7.4e-05   5.60
10674        HMGN2       1_18     0.028  29.41 2.6e-06   4.25
3222        ARID1A       1_18     0.002   7.08 4.8e-08   1.26
546           PIGV       1_18     0.354 120.15 1.4e-04  14.70
10765      ZDHHC18       1_18     0.002 265.14 1.5e-06 -19.64
5539          GPN2       1_18     0.003  12.59 1.3e-07   5.21
1254          NUDC       1_18     0.003  19.45 2.0e-07  -2.99

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 17_28"
            genename region_tag susie_pip    mu2     PVE      z
84            OSBPL7      17_28     0.000  25.60 6.5e-12   3.19
5401          LRRC46      17_28     0.000  21.86 3.0e-12   2.99
6750          MRPL10      17_28     0.002  80.08 4.2e-07   4.99
5402           SCRN2      17_28     0.000   9.28 7.2e-13  -0.53
7861             SP2      17_28     0.000   5.48 4.1e-13   1.14
2370            PNPO      17_28     0.000   9.68 8.5e-13  -2.28
7862          PRR15L      17_28     0.000  39.41 4.7e-11   4.96
2373        CDK5RAP3      17_28     0.000  32.20 5.2e-11  -1.13
64             COPZ2      17_28     0.000  12.05 2.7e-12   1.35
1043          NFE2L1      17_28     0.000  23.65 5.2e-12  -4.27
12573   RP5-890E16.5      17_28     0.000  42.63 1.0e-10   4.91
2374            CBX1      17_28     0.000  42.79 7.1e-11  -5.18
21             SNX11      17_28     0.000  37.95 5.5e-11  -4.78
5400           SKAP1      17_28     0.000  11.95 1.2e-12  -1.31
3394           HOXB3      17_28     0.000   6.59 5.0e-13  -0.22
9531           HOXB4      17_28     0.000   6.52 4.9e-13  -0.27
8755           HOXB2      17_28     0.000   9.52 2.3e-12   0.20
8369           HOXB9      17_28     0.000  21.47 9.5e-12  -1.16
11962          HOXB7      17_28     0.000  41.66 1.7e-10  -2.30
11650      LINC02086      17_28     0.000  49.72 6.3e-10  -2.54
4852        CALCOCO2      17_28     0.000  24.37 1.3e-09   1.96
6759          ATP5G1      17_28     0.000  58.13 2.7e-09   4.79
6761           UBE2Z      17_28     0.000  74.35 1.8e-08   5.66
6762            SNF8      17_28     0.000  48.58 6.3e-11  -5.81
7846           GNGT2      17_28     0.000 144.51 1.2e-11 -17.26
2412            ABI3      17_28     0.000  37.64 7.6e-12  -5.68
8749        PHOSPHO1      17_28     0.000  31.66 3.8e-11  -0.01
11703 RP11-1079K10.3      17_28     0.000 113.14 1.9e-11  -1.31

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 2_16"
      genename region_tag susie_pip    mu2     PVE      z
11045  SLC35F6       2_16     0.008  21.12 5.5e-07   5.23
3366   TMEM214       2_16     0.013   9.78 4.0e-07  -2.93
5074   EMILIN1       2_16     0.685  56.43 1.2e-04  -8.91
5061       KHK       2_16     0.011   9.00 3.1e-07   2.86
5059    CGREF1       2_16     0.012   8.75 3.3e-07   2.30
5070      PREB       2_16     0.013  10.41 4.3e-07   0.54
5076    ATRAID       2_16     0.007 107.14 2.3e-06  11.67
1090       CAD       2_16     0.444  32.22 4.6e-05   6.15
5071    SLC5A6       2_16     0.007  30.82 7.2e-07  -4.51
7303       UCN       2_16     0.010  31.28 1.0e-06   8.00
2952    GTF3C2       2_16     0.010  30.79 9.7e-07  -7.94
2956     SNX17       2_16     0.015 261.15 1.2e-05 -15.28
7304    ZNF513       2_16     0.015 149.14 7.2e-06 -11.19
2953     NRBP1       2_16     0.033 295.74 3.1e-05 -17.20
5057    IFT172       2_16     0.169  59.68 3.2e-05   9.79
1087      GCKR       2_16     0.135  58.43 2.5e-05  -9.76
10613     GPN1       2_16     0.007  35.10 7.5e-07  -5.02
9018   CCDC121       2_16     0.013  11.23 4.8e-07   1.20
6660       BRE       2_16     0.016  39.32 2.0e-06  -7.57

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip       mu2     PVE      z
7831     rs79598313       1_18     1.000    349.82 1.1e-03 -21.18
30408     rs1730862       1_66     1.000    315.64 1.0e-03 -18.15
34854     rs9427104       1_75     1.000    111.52 3.6e-04  10.68
53160     rs1223802      1_108     1.000     62.32 2.0e-04 -10.01
55367     rs2642420      1_112     1.000     86.40 2.8e-04  -8.06
97373     rs3789066       2_66     1.000     46.41 1.5e-04  -6.67
145727   rs11719769       3_18     1.000     90.59 2.9e-04  -8.77
152750  rs113569731       3_33     1.000     45.17 1.4e-04  -7.57
153453   rs62259692       3_36     1.000     46.75 1.5e-04  -6.89
197693  rs114524202        4_4     1.000     67.80 2.2e-04  11.06
197709    rs3748034        4_4     1.000     92.52 3.0e-04  13.72
197710    rs3752442        4_4     1.000    100.50 3.2e-04 -15.97
197724   rs36205397        4_4     1.000    101.77 3.3e-04  17.79
222144    rs6811535       4_52     1.000     81.85 2.6e-04   9.84
225278   rs28529445       4_58     1.000     85.66 2.7e-04  -9.95
225465   rs71633359       4_59     1.000    195.17 6.3e-04 -16.88
232170   rs17039766       4_71     1.000     44.47 1.4e-04   6.65
277860   rs58477254       5_33     1.000     50.41 1.6e-04  -7.31
331783   rs34880700       6_32     1.000     96.62 3.1e-04  -9.47
339315  rs112354376       6_46     1.000   1543.47 4.9e-03  -3.29
339316     rs208453       6_46     1.000   1532.61 4.9e-03  -0.53
361259  rs199804242       6_89     1.000  45828.19 1.5e-01  -3.57
369226   rs60425481      6_104     1.000  12549.87 4.0e-02  10.63
400132  rs761767938       7_49     1.000  14034.20 4.5e-02   4.57
400140    rs1544459       7_49     1.000  14126.84 4.5e-02   4.45
401536    rs3839804       7_51     1.000     48.01 1.5e-04  -6.55
406175    rs4268041       7_60     1.000    338.89 1.1e-03  23.71
415287     rs125124       7_80     1.000     59.29 1.9e-04   7.98
441278   rs12543287       8_37     1.000    146.87 4.7e-04   8.71
445418    rs4738679       8_45     1.000     82.41 2.6e-04   9.38
452134     rs382796       8_57     1.000     93.18 3.0e-04  13.00
508428    rs1886296       9_73     1.000     66.83 2.1e-04   7.78
534027    rs2186235      10_51     1.000    117.14 3.8e-04 -11.10
571701   rs12804411      11_38     1.000    129.02 4.1e-04  12.03
599817   rs66720652      12_15     1.000    104.75 3.4e-04   9.08
610041    rs7397189      12_36     1.000    137.99 4.4e-04  12.07
620780   rs61935502      12_55     1.000     63.56 2.0e-04  -7.76
623193  rs375115050      12_59     1.000    109.24 3.5e-04 -11.08
626568   rs75622376      12_67     1.000    146.27 4.7e-04  12.42
643251    rs9533828      13_18     1.000   1057.97 3.4e-03   4.04
643252   rs58290986      13_18     1.000    154.05 4.9e-04  -0.42
643261   rs78750369      13_18     1.000   1135.42 3.6e-03   3.38
643264    rs9567428      13_18     1.000    927.02 3.0e-03   4.16
646014  rs566812111      13_25     1.000   5750.21 1.8e-02  -2.84
675201   rs72681869      14_20     1.000     88.17 2.8e-04   9.60
682538   rs13379043      14_34     1.000     64.86 2.1e-04   7.25
687445    rs2110705      14_45     1.000     37.79 1.2e-04   5.84
689119   rs11439803      14_49     1.000    497.91 1.6e-03   2.33
689126    rs1243165      14_49     1.000    555.00 1.8e-03   6.12
692857    rs2494743      14_55     1.000     52.91 1.7e-04   6.05
700958    rs4363819      15_21     1.000     50.18 1.6e-04  -3.50
700977    rs2414183      15_22     1.000    214.20 6.9e-04 -13.29
701219   rs72743115      15_22     1.000    134.15 4.3e-04 -11.63
714488   rs58217463      15_46     1.000    299.13 9.6e-04  18.25
714490    rs8028588      15_46     1.000    177.21 5.7e-04  12.63
714493     rs961229      15_46     1.000    103.00 3.3e-04  16.57
739171     rs889639      16_49     1.000     42.62 1.4e-04   6.61
739189    rs2255451      16_49     1.000     75.76 2.4e-04   8.90
744141   rs35985803       17_6     1.000    325.19 1.0e-03 -19.38
744156    rs7223885       17_6     1.000    402.08 1.3e-03 -22.29
744157     rs968580       17_6     1.000    243.60 7.8e-04 -13.61
744158   rs73233955       17_6     1.000    281.98 9.0e-04 -11.43
746137   rs62053897      17_12     1.000     52.22 1.7e-04  -7.13
752943    rs4794044      17_28     1.000    193.17 6.2e-04  10.12
756563    rs1801689      17_38     1.000    134.57 4.3e-04 -11.80
778236    rs1217565      18_30     1.000     43.58 1.4e-04  -7.39
788548   rs10401485       19_7     1.000    110.89 3.6e-04 -10.90
790436  rs141356897      19_14     1.000    261.87 8.4e-04  16.44
796004    rs4806075      19_24     1.000    142.05 4.5e-04  -4.36
796674  rs140965448      19_26     1.000     41.61 1.3e-04  -5.90
798684   rs58701309      19_32     1.000    178.20 5.7e-04  -1.86
798685    rs7259871      19_32     1.000    295.71 9.5e-04  10.96
815394    rs3212201      20_28     1.000    186.81 6.0e-04  14.22
859979  rs140584594       1_67     1.000     99.82 3.2e-04 -10.15
868976    rs1260326       2_16     1.000    796.08 2.5e-03  30.11
891788  rs200216446      3_104     1.000   4399.90 1.4e-02  -4.20
921421   rs17256042       7_94     1.000     57.48 1.8e-04  -2.68
941270   rs11601507       11_4     1.000     58.73 1.9e-04   7.02
974511   rs36179992      13_21     1.000     59.72 1.9e-04   7.08
982740   rs11621792       14_3     1.000    239.97 7.7e-04 -15.30
1008779  rs11078597       17_2     1.000    252.80 8.1e-04  13.37
1016658   rs3867595       17_7     1.000   1967.09 6.3e-03 -68.50
1017164  rs62059837       17_7     1.000   5775.19 1.8e-02  30.95
1017174    rs858519       17_7     1.000   8212.14 2.6e-02  90.66
1017180   rs1799941       17_7     1.000   4987.88 1.6e-02  88.95
1025537  rs56032910      17_19     1.000   2377.54 7.6e-03  -2.90
1030301   rs9897429      17_29     1.000    148.47 4.8e-04 -13.03
1030358 rs139260434      17_29     1.000     78.15 2.5e-04  10.23
1074037  rs61371437      19_34     1.000 125667.97 4.0e-01   6.86
1074046 rs113176985      19_34     1.000 125902.25 4.0e-01   7.00
1074049 rs374141296      19_34     1.000 126581.62 4.1e-01   6.36
1097354  rs34079499      21_19     1.000   6769.83 2.2e-02   4.12
132274   rs11682084      2_135     0.999     34.76 1.1e-04  -5.80
141611   rs10602803        3_9     0.999     49.06 1.6e-04  -5.00
331787   rs12664213       6_32     0.999     40.42 1.3e-04  -4.77
358549   rs58321169       6_84     0.999     39.45 1.3e-04  -6.49
452201    rs2400362       8_57     0.999     82.31 2.6e-04  11.26
556722   rs34623292      11_10     0.999     39.70 1.3e-04  -7.89
646018   rs12430288      13_25     0.999   5795.69 1.9e-02  -2.67
790727   rs11668601      19_14     0.999     92.99 3.0e-04  -9.58
795411     rs889140      19_23     0.999     50.93 1.6e-04   5.95
225261  rs116755775       4_58     0.998     34.05 1.1e-04   6.48
530055    rs4746440      10_43     0.998     31.61 1.0e-04   5.27
700951    rs8032322      15_21     0.998     51.09 1.6e-04  -4.17
1047593  rs60018147       19_4     0.998     41.23 1.3e-04   6.21
400136   rs11972122       7_49     0.997  12927.95 4.1e-02   3.99
406521  rs138124694       7_61     0.997     48.18 1.5e-04   7.46
505688   rs13289095       9_66     0.997     95.88 3.1e-04  -9.94
757505    rs8070232      17_39     0.997     58.50 1.9e-04  -1.02
474363    rs1616572        9_7     0.996     33.78 1.1e-04  -5.83
539691    rs2039616      10_62     0.996     43.57 1.4e-04   6.47
552855    rs2239681       11_2     0.996     48.12 1.5e-04   7.93
600024   rs56020380      12_16     0.996     75.06 2.4e-04  -8.11
653712    rs7323648      13_40     0.996     31.15 9.9e-05   5.28
623173   rs11837065      12_59     0.995     33.42 1.1e-04  -6.16
752856   rs57114236      17_28     0.995     48.56 1.5e-04  -3.39
4768      rs4336844       1_11     0.994     86.84 2.8e-04   9.45
452065   rs11994858       8_57     0.994     91.94 2.9e-04  10.84
570775    rs1047739      11_34     0.994     42.47 1.4e-04   6.18
752567  rs117974417      17_28     0.994     61.40 2.0e-04  -7.62
762965  rs117823974       18_3     0.994     30.09 9.6e-05  -5.10
472129    rs1016565        9_1     0.993     30.97 9.9e-05  -5.39
788804   rs11667165       19_7     0.993     38.46 1.2e-04   5.91
56925     rs3845509      1_115     0.992     33.00 1.0e-04   5.24
599892   rs10841577      12_15     0.992     32.06 1.0e-04  -4.82
600185    rs4149081      12_16     0.992    300.59 9.6e-04 -18.14
701213    rs8040040      15_22     0.992     64.77 2.1e-04  -7.71
332312    rs1005230       6_33     0.989     28.93 9.2e-05  -5.10
452119     rs445036       8_57     0.989    186.85 5.9e-04  14.59
621652   rs55692966      12_56     0.989     30.36 9.6e-05   5.25
222075    rs6838435       4_52     0.988     44.78 1.4e-04  -6.60
501785    rs2763193       9_59     0.988     51.08 1.6e-04   6.64
507565   rs34755157       9_71     0.988     30.00 9.5e-05   5.10
601439   rs78444263      12_18     0.988    139.12 4.4e-04 -11.99
406877    rs3177697       7_62     0.987     39.21 1.2e-04   6.94
47880    rs10801583       1_98     0.986     39.96 1.3e-04  -8.37
145732    rs6803476       3_18     0.986     30.70 9.7e-05  -3.70
744215    rs1465650       17_8     0.986     27.51 8.7e-05  -4.73
327000    rs9267088       6_26     0.985     45.57 1.4e-04  -7.54
790319  rs138466679      19_14     0.984     36.29 1.1e-04   5.73
721915    rs4780401      16_12     0.982     42.42 1.3e-04   5.37
188192  rs149368105      3_105     0.981     47.23 1.5e-04  -7.98
16338    rs79574044       1_38     0.979     26.96 8.5e-05  -5.13
801631   rs11084395      19_38     0.978     28.39 8.9e-05   4.96
390203  rs150560724       7_32     0.977     29.92 9.4e-05  -5.04
415296   rs12533527       7_80     0.976     27.07 8.5e-05  -5.03
796003    rs1688031      19_24     0.976    101.61 3.2e-04  11.19
290112  rs114964731       5_60     0.971     29.54 9.2e-05  -5.22
491491     rs796003       9_41     0.971    283.95 8.8e-04  17.80
676412   rs12881212      14_23     0.971     26.81 8.3e-05  -4.76
78663    rs34636718       2_26     0.970     53.97 1.7e-04   7.24
225409   rs13120301       4_59     0.968     81.22 2.5e-04 -14.39
493389   rs78648697       9_45     0.968     28.04 8.7e-05  -4.98
245701   rs72727873       4_98     0.965     30.94 9.6e-05  -5.19
243004    rs1579737       4_94     0.964     30.73 9.5e-05   5.36
761358   rs62076019      17_46     0.964     48.26 1.5e-04  -6.88
691384   rs35007880      14_52     0.963     65.40 2.0e-04  -8.22
236937   rs68018489       4_80     0.957     27.56 8.4e-05  -5.03
277714     rs173964       5_33     0.957    203.97 6.3e-04 -12.13
473554   rs10758593        9_4     0.954     27.29 8.3e-05  -4.98
86233    rs62143990       2_43     0.953     30.11 9.2e-05   5.32
1097512  rs55740356      21_19     0.953   5955.53 1.8e-02   4.53
244345   rs34690971       4_96     0.949     85.54 2.6e-04  -9.47
664173     rs750598      13_59     0.949     28.53 8.7e-05   5.12
97449     rs2166862       2_66     0.948     31.57 9.6e-05  -5.35
329664   rs41270056       6_28     0.947     27.53 8.4e-05   4.92
795405   rs16968072      19_23     0.947     29.33 8.9e-05  -3.03
1030765 rs184781483      17_29     0.947     35.56 1.1e-04   6.17
1017593 rs117387630       17_7     0.946    776.42 2.4e-03 -38.67
53113      rs340835      1_108     0.945     68.78 2.1e-04  -7.18
318102   rs55792466        6_7     0.942     38.93 1.2e-04   6.88
614082    rs2137537      12_44     0.942     24.24 7.3e-05  -4.42
787068    rs4807612       19_2     0.940     42.97 1.3e-04   6.30
152847  rs140341914       3_34     0.937     24.61 7.4e-05  -3.84
816118    rs6066141      20_29     0.936     31.67 9.5e-05   5.65
835499   rs78668392       22_9     0.935     24.66 7.4e-05   3.78
689146   rs72692809      14_49     0.934     50.40 1.5e-04   7.82
714359   rs11343871      15_46     0.933     40.74 1.2e-04  -7.20
626569  rs147598676      12_67     0.932     62.80 1.9e-04   7.93
594360  rs568620198       12_4     0.926     30.59 9.1e-05   5.67
735957   rs11649531      16_42     0.926     28.62 8.5e-05  -4.99
8314      rs7516039       1_20     0.922     26.50 7.8e-05  -4.86
594301   rs79988477       12_4     0.918     26.03 7.7e-05   4.88
205645    rs2946394       4_20     0.914     24.64 7.2e-05   4.27
361275    rs6923513       6_89     0.912  45862.36 1.3e-01  -3.26
299032   rs10057561       5_77     0.911     28.59 8.3e-05  -5.24
926640   rs76471228       8_58     0.911     31.31 9.1e-05  -5.64
10335    rs71642659       1_24     0.910     28.24 8.2e-05   6.02
624014    rs4764939      12_62     0.909    176.82 5.1e-04 -13.66
557452  rs201519335      11_12     0.907     31.98 9.3e-05   2.32
1069172      rs5112      19_31     0.901     30.57 8.8e-05   5.29
390188  rs149901303       7_32     0.900     24.28 7.0e-05  -4.28
84569    rs35510572       2_39     0.898     24.88 7.2e-05   4.09
751053  rs146909119      17_25     0.895     30.12 8.6e-05   4.38
422659   rs11761498       7_98     0.894     24.87 7.1e-05  -4.45
243542   rs11727676       4_94     0.892     24.62 7.0e-05  -4.45
276777    rs1694060       5_31     0.892     29.61 8.5e-05  -4.71
796542  rs149349299      19_25     0.890     46.37 1.3e-04  -6.44
1025538  rs56024867      17_19     0.889   2377.34 6.8e-03  -3.18
13352   rs112681075       1_33     0.886     26.05 7.4e-05   4.58
153135  rs112874936       3_35     0.884     34.36 9.7e-05  -7.25
25431      rs164899       1_55     0.879     28.01 7.9e-05  -5.42
429231    rs7012814       8_12     0.878     29.87 8.4e-05   6.06
682242   rs61986270      14_34     0.876     26.78 7.5e-05   4.17
80669    rs55761545       2_31     0.870     32.58 9.1e-05  -5.48
629576    rs2393775      12_74     0.870    166.45 4.6e-04  14.43
436997  rs117380715       8_27     0.867     24.45 6.8e-05   4.37
507626   rs12351482       9_71     0.867     97.63 2.7e-04  10.02
406257  rs117501142       7_60     0.865     24.36 6.7e-05   4.39
235311  rs138204164       4_77     0.863     29.12 8.1e-05  -5.05
112684    rs1460670       2_99     0.855     26.09 7.1e-05   4.61
741313   rs12935186      16_54     0.853     65.75 1.8e-04 -10.20
205636  rs112396442       4_20     0.851     24.69 6.7e-05  -4.25
353111  rs117864346       6_73     0.849     30.43 8.3e-05   5.16
754885    rs2632527      17_34     0.846     25.75 7.0e-05  -4.53
588424   rs10750224      11_75     0.838     25.38 6.8e-05   4.43
791083   rs55989964      19_15     0.834     25.48 6.8e-05  -4.35
415701    rs4731855       7_80     0.832     25.50 6.8e-05  -4.41
188213     rs234043      3_106     0.831     39.16 1.0e-04  -5.98
575876   rs11600848      11_46     0.831     29.00 7.7e-05  -5.02
416533    rs2551778       7_82     0.829     46.67 1.2e-04  -6.65
390878    rs7778803       7_34     0.827     29.37 7.8e-05   5.91
557024    rs7946907      11_11     0.822     27.73 7.3e-05   4.85
1031041  rs56371118      17_29     0.819     37.94 1.0e-04  -5.08
501731    rs2808798       9_58     0.815     24.50 6.4e-05   4.41
247535   rs17285611      4_102     0.814     41.15 1.1e-04  -2.34
133251   rs62192912      2_137     0.809     29.62 7.7e-05   4.42
452104   rs28435511       8_57     0.809     73.89 1.9e-04  -5.24
55389    rs11588625      1_112     0.808     27.44 7.1e-05  -3.46
112878    rs7607980      2_100     0.803     58.99 1.5e-04   9.78
120957   rs10202868      2_113     0.801     54.79 1.4e-04  -7.73

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                 id region_tag susie_pip      mu2     PVE    z
1074049 rs374141296      19_34         1 126581.6 4.1e-01 6.36
1074046 rs113176985      19_34         1 125902.2 4.0e-01 7.00
1074037  rs61371437      19_34         1 125668.0 4.0e-01 6.86
1074039  rs35295508      19_34         0 125547.4 1.6e-12 7.05
1074053   rs2946865      19_34         0 125190.2 0.0e+00 6.96
1074027    rs739349      19_34         0 125165.5 0.0e+00 6.83
1074028    rs756628      19_34         0 125165.4 0.0e+00 6.83
1074044  rs73056069      19_34         0 125113.4 0.0e+00 7.13
1074024    rs739347      19_34         0 124929.4 0.0e+00 6.80
1074041   rs2878354      19_34         0 124830.4 0.0e+00 7.15
1074025   rs2073614      19_34         0 124797.5 0.0e+00 6.76
1074030   rs2077300      19_34         0 124466.9 0.0e+00 6.92
1074020   rs4802613      19_34         0 124247.5 0.0e+00 6.77
1074034  rs73056059      19_34         0 124231.8 0.0e+00 6.97
1074054  rs60815603      19_34         0 123401.5 0.0e+00 7.20
1074057   rs1316885      19_34         0 122817.0 0.0e+00 7.11
1074059  rs60746284      19_34         0 122641.8 0.0e+00 7.33
1074062   rs2946863      19_34         0 122591.1 0.0e+00 7.04
1074018  rs10403394      19_34         0 122516.7 0.0e+00 6.80
1074055  rs35443645      19_34         0 122482.8 0.0e+00 7.08
1074019  rs17555056      19_34         0 122467.5 0.0e+00 6.75
1074035  rs73056062      19_34         0 121041.5 0.0e+00 6.99
1074065 rs553431297      19_34         0 119290.9 0.0e+00 6.78
1074048 rs112283514      19_34         0 118981.9 0.0e+00 6.51
1074050  rs11270139      19_34         0 118167.4 0.0e+00 7.17
1074015  rs10421294      19_34         0 110653.3 0.0e+00 6.07
1074014   rs8108175      19_34         0 110638.1 0.0e+00 6.07
1074007  rs59192944      19_34         0 110428.4 0.0e+00 6.07
1074013   rs1858742      19_34         0 110426.5 0.0e+00 6.04
1074004  rs55991145      19_34         0 110350.3 0.0e+00 6.08
1073999   rs3786567      19_34         0 110307.1 0.0e+00 6.08
1073998   rs4801801      19_34         0 110264.1 0.0e+00 6.05
1073995   rs2271952      19_34         0 110263.5 0.0e+00 6.08
1073994   rs2271953      19_34         0 110141.9 0.0e+00 6.04
1073996   rs2271951      19_34         0 110136.9 0.0e+00 6.05
1073985  rs60365978      19_34         0 110035.5 0.0e+00 6.02
1073991   rs4802612      19_34         0 109601.6 0.0e+00 6.16
1074001   rs2517977      19_34         0 109479.6 0.0e+00 5.83
1073988  rs55893003      19_34         0 109302.1 0.0e+00 6.16
1073980  rs55992104      19_34         0 106729.2 0.0e+00 6.04
1073974  rs60403475      19_34         0 106702.6 0.0e+00 6.03
1073977   rs4352151      19_34         0 106697.5 0.0e+00 6.01
1073971  rs11878448      19_34         0 106621.5 0.0e+00 6.01
1073965   rs9653100      19_34         0 106586.6 0.0e+00 6.04
1073961   rs4802611      19_34         0 106516.4 0.0e+00 6.03
1073953   rs7251338      19_34         0 106354.2 0.0e+00 6.02
1073952  rs59269605      19_34         0 106342.8 0.0e+00 6.05
1073973   rs1042120      19_34         0 106079.6 0.0e+00 6.13
1073969 rs113220577      19_34         0 105985.7 0.0e+00 6.12
1073963   rs9653118      19_34         0 105821.5 0.0e+00 6.16

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip       mu2    PVE      z
1074049 rs374141296      19_34     1.000 126581.62 0.4100   6.36
1074037  rs61371437      19_34     1.000 125667.97 0.4000   6.86
1074046 rs113176985      19_34     1.000 125902.25 0.4000   7.00
361259  rs199804242       6_89     1.000  45828.19 0.1500  -3.57
361275    rs6923513       6_89     0.912  45862.36 0.1300  -3.26
361258    rs2327654       6_89     0.616  45859.55 0.0910  -3.25
400132  rs761767938       7_49     1.000  14034.20 0.0450   4.57
400140    rs1544459       7_49     1.000  14126.84 0.0450   4.45
400136   rs11972122       7_49     0.997  12927.95 0.0410   3.99
369226   rs60425481      6_104     1.000  12549.87 0.0400  10.63
1017174    rs858519       17_7     1.000   8212.14 0.0260  90.66
369223    rs3127598      6_104     0.548  12485.20 0.0220  -6.70
1097354  rs34079499      21_19     1.000   6769.83 0.0220   4.12
369231    rs3106167      6_104     0.473  12485.14 0.0190  -6.70
646018   rs12430288      13_25     0.999   5795.69 0.0190  -2.67
646014  rs566812111      13_25     1.000   5750.21 0.0180  -2.84
1017164  rs62059837       17_7     1.000   5775.19 0.0180  30.95
1097512  rs55740356      21_19     0.953   5955.53 0.0180   4.53
369222    rs3106169      6_104     0.412  12485.15 0.0160  -6.71
1017180   rs1799941       17_7     1.000   4987.88 0.0160  88.95
891788  rs200216446      3_104     1.000   4399.90 0.0140  -4.20
369215   rs11755965      6_104     0.299  12481.93 0.0120  -6.70
1097355  rs34578707      21_19     0.367   6695.85 0.0079   4.17
1097368  rs77090950      21_19     0.364   6697.05 0.0078   4.17
1025537  rs56032910      17_19     1.000   2377.54 0.0076  -2.90
1097318   rs2836974      21_19     0.351   6696.21 0.0075   4.17
1097372  rs35560196      21_19     0.347   6697.04 0.0074   4.17
1025538  rs56024867      17_19     0.889   2377.34 0.0068  -3.18
1016658   rs3867595       17_7     1.000   1967.09 0.0063 -68.50
339315  rs112354376       6_46     1.000   1543.47 0.0049  -3.29
339316     rs208453       6_46     1.000   1532.61 0.0049  -0.53
891831   rs12493271      3_104     0.348   4374.15 0.0049  -2.33
891770   rs61793869      3_104     0.293   4374.46 0.0041  -2.33
643261   rs78750369      13_18     1.000   1135.42 0.0036   3.38
1025540   rs7213689      17_19     0.468   2377.88 0.0036  -3.08
643251    rs9533828      13_18     1.000   1057.97 0.0034   4.04
891779   rs61793896      3_104     0.224   4374.29 0.0031  -2.32
643264    rs9567428      13_18     1.000    927.02 0.0030   4.16
529798    rs6479896      10_42     0.451   1989.90 0.0029  47.72
891824   rs61791061      3_104     0.201   4375.87 0.0028  -2.30
868976    rs1260326       2_16     1.000    796.08 0.0025  30.11
891776   rs61793871      3_104     0.181   4374.18 0.0025  -2.31
369243     rs624319      6_104     0.334   2201.52 0.0024  14.25
891864   rs12490982      3_104     0.175   4370.50 0.0024  -2.34
1017593 rs117387630       17_7     0.946    776.42 0.0024 -38.67
1097306  rs34672724      21_19     0.112   6685.40 0.0024   4.18
891823   rs74402546      3_104     0.167   4375.75 0.0023  -2.29
1097388   rs8128894      21_19     0.109   6690.49 0.0023   4.19
1097389   rs8129147      21_19     0.097   6694.36 0.0021   4.18
369242     rs637614      6_104     0.276   2197.35 0.0019  14.23

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                 id region_tag susie_pip     mu2     PVE      z
1017174    rs858519       17_7         1 8212.14 2.6e-02  90.66
1017190    rs727428       17_7         0 8186.08 4.1e-10  90.59
1017188    rs858516       17_7         0 8152.13 1.1e-15  90.49
1017180   rs1799941       17_7         1 4987.88 1.6e-02  88.95
1017177  rs62059839       17_7         0 4967.62 7.8e-06  88.82
1017146  rs12150660       17_7         0 4548.33 0.0e+00  85.02
1017156  rs62059835       17_7         0 4546.16 0.0e+00  85.01
1017153  rs62059834       17_7         0 4542.10 0.0e+00  84.96
1017122 rs149932962       17_7         0 4503.03 0.0e+00  84.44
1017178    rs858518       17_7         0 7337.09 0.0e+00  83.74
1016940   rs9902027       17_7         0 2325.92 0.0e+00  82.83
1016986  rs77294902       17_7         0 2363.24 0.0e+00 -82.81
1016938   rs8073177       17_7         0 2320.13 0.0e+00  82.80
1016930   rs9892862       17_7         0 2309.73 0.0e+00  82.78
1016969  rs11078694       17_7         0 2331.33 0.0e+00 -82.59
1016968  rs11651783       17_7         0 2329.42 0.0e+00 -82.58
1016963   rs9900162       17_7         0 2321.75 0.0e+00 -82.48
1017162 rs142675740       17_7         0 4512.91 0.0e+00  82.47
1017163  rs62059836       17_7         0 4511.47 0.0e+00  82.46
1017147  rs57828263       17_7         0 4527.09 0.0e+00  82.35
1016962  rs11656013       17_7         0 2294.94 0.0e+00 -82.32
1017116  rs12452603       17_7         0 4494.37 0.0e+00  81.96
1017107  rs73242239       17_7         0 4495.37 0.0e+00  81.95
1017141  rs62059833       17_7         0 4486.50 0.0e+00  81.83
1017091      rs4227       17_7         0 4389.24 0.0e+00 -80.79
1017103   rs3933469       17_7         0 4257.10 0.0e+00  79.91
1017270   rs1641523       17_7         0 6673.32 0.0e+00  79.14
1017297   rs1642762       17_7         0 6535.07 0.0e+00  78.88
1017294   rs1624085       17_7         0 6542.38 0.0e+00  78.86
1017022  rs78744936       17_7         0 3770.34 0.0e+00  76.93
1016990  rs62059804       17_7         0 3692.23 0.0e+00  75.86
1016989   rs9899183       17_7         0 3682.70 0.0e+00 -75.66
1017015  rs11078696       17_7         0 1460.72 0.0e+00  75.34
1017013 rs116600817       17_7         0 3663.62 0.0e+00  75.26
1016982  rs12945977       17_7         0 3622.43 0.0e+00  75.20
1016983  rs34790908       17_7         0 3622.69 0.0e+00  75.20
1016981  rs12945084       17_7         0 3620.67 0.0e+00  75.18
1016970  rs34951138       17_7         0 3619.01 0.0e+00  75.14
1016993  rs62059805       17_7         0 3638.91 0.0e+00  75.11
1016924  rs62059793       17_7         0 3557.78 0.0e+00  74.38
1016948  rs62059797       17_7         0 3547.06 0.0e+00  74.35
1016933  rs35049113       17_7         0 3542.69 0.0e+00  74.25
1017001  rs12602989       17_7         0 1839.48 0.0e+00 -74.19
1016988  rs80067372       17_7         0 3536.93 0.0e+00  74.07
1016991  rs12940684       17_7         0 3799.77 0.0e+00 -74.06
1016922   rs6503037       17_7         0 3629.87 0.0e+00 -73.79
1016971  rs12941509       17_7         0 3505.18 0.0e+00  73.74
1016975  rs12948869       17_7         0 3502.80 0.0e+00  73.72
1017302   rs1642764       17_7         0 5493.71 0.0e+00  73.61
1016952   rs4968222       17_7         0 3486.16 0.0e+00 -73.46

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 22
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
                                                                             Term
1                     negative regulation of cGMP-mediated signaling (GO:0010754)
2                      negative regulation of plasminogen activation (GO:0010757)
3                              regulation of cGMP-mediated signaling (GO:0010752)
4                                negative regulation of fibrinolysis (GO:0051918)
5  positive regulation of transforming growth factor beta production (GO:0071636)
6                               regulation of plasminogen activation (GO:0010755)
7                                         regulation of fibrinolysis (GO:0051917)
8                          negative regulation of protein processing (GO:0010955)
9                           positive regulation of blood coagulation (GO:0030194)
10           positive regulation of smooth muscle cell proliferation (GO:0048661)
11                    regulation of smooth muscle cell proliferation (GO:0048660)
   Overlap Adjusted.P.value          Genes
1      2/5      0.001838521    PDZD3;THBS1
2      2/5      0.001838521 SERPINF2;THBS1
3      2/7      0.002570519    PDZD3;THBS1
4      2/9      0.003300566 SERPINF2;THBS1
5     2/11      0.004025987 SERPINF2;THBS1
6     2/12      0.004025987 SERPINF2;THBS1
7     2/13      0.004075561 SERPINF2;THBS1
8     2/15      0.004794157 SERPINF2;THBS1
9     2/17      0.005512280 SERPINF2;THBS1
10    2/46      0.037033337 SERPINF2;THBS1
11    2/49      0.038176870 SERPINF2;THBS1
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
TCEA3 gene(s) from the input list not found in DisGeNET CURATEDSLC35E2B gene(s) from the input list not found in DisGeNET CURATEDVPREB3 gene(s) from the input list not found in DisGeNET CURATEDAES gene(s) from the input list not found in DisGeNET CURATEDPDZD3 gene(s) from the input list not found in DisGeNET CURATEDTMED6 gene(s) from the input list not found in DisGeNET CURATEDNYNRIN gene(s) from the input list not found in DisGeNET CURATEDMIEF2 gene(s) from the input list not found in DisGeNET CURATEDNTAN1 gene(s) from the input list not found in DisGeNET CURATEDSERTAD2 gene(s) from the input list not found in DisGeNET CURATEDH1FX gene(s) from the input list not found in DisGeNET CURATED
                                                Description        FDR
65                             Tyrosine Kinase 2 Deficiency 0.01859410
66                     ALPHA-2-PLASMIN INHIBITOR DEFICIENCY 0.01859410
67                              Cardiomyopathy, Dilated, 1V 0.01859410
70                      Anti-plasmin deficiency, congenital 0.01859410
72 HYPOGONADOTROPIC HYPOGONADISM 10 WITH OR WITHOUT ANOSMIA 0.01859410
33                                   Lymphomatoid Papulosis 0.02323065
57         Primary Cutaneous Anaplastic Large Cell Lymphoma 0.02323065
63                                      ALZHEIMER DISEASE 4 0.02323065
3                                       Asphyxia Neonatorum 0.06182082
14                                    Diabetic Angiopathies 0.06709444
   Ratio BgRatio
65  1/11  1/9703
66  1/11  1/9703
67  1/11  1/9703
70  1/11  1/9703
72  1/11  1/9703
33  1/11  2/9703
57  1/11  2/9703
63  1/11  2/9703
3   1/11  6/9703
14  1/11 16/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2