Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30830_irnt_Liver.Rmd) and HTML (docs/ukb-d-30830_irnt_Liver.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd 627a4e1 wesleycrouse 2021-09-07 adding heritability
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait SHBG (quantile) using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30830_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1070  768  652  417  494  611  548  408  405  434  634  629  195  365  354 
  16   17   18   19   20   21   22 
 526  663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8366205

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0233427958 0.0001676304 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
23.01551 31.86722 
#report sample size
print(sample_size)
[1] 312215
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10901 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.01875798 0.14880895 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.05162072 3.80924281

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip    mu2     PVE      z
1144          ASAP3       1_16     1.000  44.36 1.4e-04   7.83
1114           SRRT       7_62     0.998 129.45 4.1e-04  11.98
10856        ZNF845      19_36     0.996  36.27 1.2e-04   5.89
10090       SULT1A1      16_23     0.993  23.75 7.6e-05  -3.50
9017           ERN1      17_37     0.992  26.99 8.6e-05  -4.84
1954            AES       19_4     0.991  63.06 2.0e-04  -8.00
8378         ZNF217      20_31     0.991  27.73 8.8e-05   4.93
3133          DHDDS       1_18     0.989  47.15 1.5e-04   3.85
2678           TFEB       6_32     0.988 124.69 3.9e-04  11.06
2173       TMEM176B       7_93     0.987  94.90 3.0e-04  -8.91
3273          NRDE2      14_45     0.987  22.93 7.2e-05   4.51
11889 RP11-327J17.2      15_46     0.985 157.32 5.0e-04 -10.46
5415          SYTL1       1_19     0.982 121.02 3.8e-04  11.21
3212          CCND2       12_4     0.981 196.86 6.2e-04  14.46
8428          PDZD3      11_71     0.978  31.94 1.0e-04   2.29
666           COASY      17_25     0.978  42.99 1.3e-04  -6.27
6509          NTAN1      16_15     0.977  66.59 2.1e-04  -8.87
12621 RP11-714M23.2      18_30     0.976  29.30 9.2e-05   6.58
9457           CBX6      22_15     0.975  22.71 7.1e-05  -3.58
3774         ZNF436       1_16     0.974  30.06 9.4e-05  -6.86
12074  RP11-131K5.2      17_12     0.974  76.99 2.4e-04  -8.86
10303       UGT2B17       4_48     0.973  78.09 2.4e-04  11.80
2204           AKNA       9_59     0.966  60.08 1.9e-04  -7.78
1946          STX10      19_10     0.959  23.38 7.2e-05   4.53
2261           GBF1      10_65     0.958  40.64 1.2e-04   6.22
9102          ZFPM1      16_53     0.957  34.72 1.1e-04   5.59
8502           RELA      11_36     0.951  28.34 8.6e-05   4.81
8238         CHCHD7       8_44     0.950  22.24 6.8e-05  -4.60
6100           ALLC        2_2     0.949  25.25 7.7e-05   4.74
4239          TRIM5       11_4     0.947  36.73 1.1e-04  -5.03
5632          CAND2        3_9     0.939  22.63 6.8e-05   4.69
2731        PCDHB15       5_83     0.938  18.80 5.6e-05  -3.86
5161          NAA30      14_26     0.938  19.33 5.8e-05   3.99
9855          PALM3      19_11     0.938  40.14 1.2e-04   6.12
4736            HLX      1_112     0.937  54.54 1.6e-04  -8.08
5400          EPHA2       1_11     0.931  98.22 2.9e-04 -10.17
8803          DLEU1      13_21     0.923  29.45 8.7e-05  -6.00
4608          REPS1       6_92     0.910  28.06 8.2e-05   4.95
8716        ARHGAP1      11_28     0.905  22.55 6.5e-05  -4.34
4271          H3F3B      17_42     0.899  45.58 1.3e-04   7.09
6592           MRAS       3_85     0.893  20.57 5.9e-05   4.01
3861           UBR4       1_13     0.892  23.83 6.8e-05  -4.54
10557     LINC01270      20_30     0.889  23.73 6.8e-05   4.35
7671           NAV2      11_14     0.888  18.42 5.2e-05  -3.77
10731       EXOC3L4      14_54     0.886  20.44 5.8e-05  -4.09
9635          TLCD2       17_2     0.881 201.10 5.7e-04   7.05
49             LIG3      17_21     0.876  19.92 5.6e-05   3.91
6526          TMED6      16_37     0.871  20.85 5.8e-05  -4.41
5639        ARL6IP5       3_46     0.868  21.33 5.9e-05   4.22
6792           ADAR       1_75     0.866 109.13 3.0e-04 -10.70
5089         SCAF11      12_29     0.866  20.32 5.6e-05   4.41
5224           EFL1      15_38     0.858  26.22 7.2e-05  -5.18
12704       EXOC3L2      19_32     0.851  37.78 1.0e-04  -6.02
7965          ADAM9       8_34     0.850  19.21 5.2e-05   3.73
6481         UBE2L6      11_32     0.847  19.84 5.4e-05   3.54
6494          PHKG2      16_24     0.847  34.45 9.3e-05   4.88
5358         CCDC97      19_28     0.847  20.03 5.4e-05   4.02
5038         SCARB2       4_52     0.846  62.40 1.7e-04   9.72
990        KIAA0141       5_84     0.846  20.03 5.4e-05   3.90
10004      SLC35E2B        1_1     0.838  21.07 5.7e-05  -4.07
3800          NR1D1      17_23     0.825  43.49 1.1e-04   6.78
6223         GPR180      13_47     0.819  61.01 1.6e-04   7.86
4925         IFT172       2_16     0.812  54.69 1.4e-04  -9.79
7825            SRR       17_3     0.804  22.40 5.8e-05   4.35
1116        ATXN7L3      17_26     0.804  18.06 4.6e-05   2.57
3539           ATF1      12_31     0.801  47.22 1.2e-04  -8.67

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
       genename region_tag susie_pip       mu2     PVE     z
5389      RPS11      19_34         0 137431.25 0.0e+00 -6.80
1227     FLT3LG      19_34         0 118630.64 0.0e+00  6.13
5393       RCN3      19_34         0  44814.90 0.0e+00  8.52
1931      FCGRT      19_34         0  40894.36 0.0e+00  7.29
3804      PRRG2      19_34         0  19977.64 0.0e+00  4.54
11357     TUSC8      13_18         0  18736.12 0.0e+00 -4.36
3805      SCAF1      19_34         0  13594.89 0.0e+00  2.92
3803      PRMT1      19_34         0  13560.41 0.0e+00  4.56
3270    ALDH6A1      14_34         0  13313.06 5.1e-09 -5.00
4556     TMEM60       7_49         0  13227.64 0.0e+00 -3.87
3802       IRF3      19_34         0  13212.07 0.0e+00  2.85
11199 LINC00271       6_89         0  11567.86 0.0e+00  2.05
1940    SLC17A7      19_34         0   9579.39 0.0e+00  0.57
10602      RNF5       6_26         0   6492.48 3.0e-08  3.09
10742     LIN52      14_34         0   5965.34 1.6e-10 -3.67
11007      PPT2       6_26         0   5615.15 1.4e-07 -2.72
10848     CLIC1       6_26         0   4897.91 2.5e-08 -0.76
1932     PIH1D1      19_34         0   4146.87 0.0e+00 -1.16
11541       C4A       6_26         0   4062.21 1.8e-06  0.65
4604       AHI1       6_89         0   3995.77 0.0e+00  0.70

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
           genename region_tag susie_pip     mu2     PVE      z
5799        SLC22A3      6_104     0.479 2403.08 0.00370  14.15
3212          CCND2       12_4     0.981  196.86 0.00062  14.46
9635          TLCD2       17_2     0.881  201.10 0.00057   7.05
10495         PRMT6       1_66     0.526  307.24 0.00052 -18.10
11889 RP11-327J17.2      15_46     0.985  157.32 0.00050 -10.46
10712        ZBTB10       8_57     0.783  181.44 0.00046  14.64
1114           SRRT       7_62     0.998  129.45 0.00041  11.98
2678           TFEB       6_32     0.988  124.69 0.00039  11.06
5415          SYTL1       1_19     0.982  121.02 0.00038  11.21
6792           ADAR       1_75     0.866  109.13 0.00030 -10.70
2173       TMEM176B       7_93     0.987   94.90 0.00030  -8.91
5400          EPHA2       1_11     0.931   98.22 0.00029 -10.17
10303       UGT2B17       4_48     0.973   78.09 0.00024  11.80
12074  RP11-131K5.2      17_12     0.974   76.99 0.00024  -8.86
6778           PKN3       9_66     0.740   91.17 0.00022  -9.80
6509          NTAN1      16_15     0.977   66.59 0.00021  -8.87
1058           GCKR       2_16     0.494  126.01 0.00020  14.34
10987       C2orf16       2_16     0.494  126.01 0.00020  14.34
1954            AES       19_4     0.991   63.06 0.00020  -8.00
2204           AKNA       9_59     0.966   60.08 0.00019  -7.78

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip     mu2     PVE      z
6880   TNFSF13       17_7     0.000 3120.75 0.0e+00  76.93
3991    ATP1B2       17_7     0.000 3037.00 0.0e+00 -68.57
11399  TNFSF12       17_7     0.000 2123.88 0.0e+00  47.66
5311    WRAP53       17_7     0.000 1906.91 0.0e+00 -43.17
6883    EIF4A1       17_7     0.000 2074.67 0.0e+00 -40.42
9477     DNAH2       17_7     0.000 1018.23 0.0e+00  37.37
6881     SENP3       17_7     0.000  775.17 0.0e+00  23.93
7355      BRI3       7_60     0.033  324.25 3.4e-05 -23.22
9851    PLSCR3       17_6     0.000  299.35 0.0e+00  19.38
2887     NRBP1       2_16     0.011  313.76 1.1e-05 -18.63
10495    PRMT6       1_66     0.526  307.24 5.2e-04 -18.10
5313      SAT2       17_7     0.000 1607.07 0.0e+00 -16.77
9229   TMEM102       17_7     0.000  142.62 0.0e+00 -16.57
9052      RMI1       9_41     0.068  226.42 4.9e-05 -15.79
773      ACAP1       17_6     0.000  263.05 0.0e+00 -15.68
8284      RBKS       2_16     0.036  179.20 2.1e-05 -15.40
8651      MSL2       3_84     0.031  229.62 2.3e-05  15.34
8389     THOP1       19_3     0.064  209.30 4.3e-05  14.92
7656  CATSPER2      15_16     0.112  230.64 8.3e-05 -14.91
5414      GPN2       1_18     0.009  172.71 4.9e-06 -14.65

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.03504266
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip     mu2     PVE      z
6880   TNFSF13       17_7     0.000 3120.75 0.0e+00  76.93
3991    ATP1B2       17_7     0.000 3037.00 0.0e+00 -68.57
11399  TNFSF12       17_7     0.000 2123.88 0.0e+00  47.66
5311    WRAP53       17_7     0.000 1906.91 0.0e+00 -43.17
6883    EIF4A1       17_7     0.000 2074.67 0.0e+00 -40.42
9477     DNAH2       17_7     0.000 1018.23 0.0e+00  37.37
6881     SENP3       17_7     0.000  775.17 0.0e+00  23.93
7355      BRI3       7_60     0.033  324.25 3.4e-05 -23.22
9851    PLSCR3       17_6     0.000  299.35 0.0e+00  19.38
2887     NRBP1       2_16     0.011  313.76 1.1e-05 -18.63
10495    PRMT6       1_66     0.526  307.24 5.2e-04 -18.10
5313      SAT2       17_7     0.000 1607.07 0.0e+00 -16.77
9229   TMEM102       17_7     0.000  142.62 0.0e+00 -16.57
9052      RMI1       9_41     0.068  226.42 4.9e-05 -15.79
773      ACAP1       17_6     0.000  263.05 0.0e+00 -15.68
8284      RBKS       2_16     0.036  179.20 2.1e-05 -15.40
8651      MSL2       3_84     0.031  229.62 2.3e-05  15.34
8389     THOP1       19_3     0.064  209.30 4.3e-05  14.92
7656  CATSPER2      15_16     0.112  230.64 8.3e-05 -14.91
5414      GPN2       1_18     0.009  172.71 4.9e-06 -14.65

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 17_7"
          genename region_tag susie_pip     mu2 PVE      z
9229       TMEM102       17_7         0  142.62   0 -16.57
6882         FGF11       17_7         0  113.48   0   2.88
11885      SLC35G6       17_7         0  878.91   0  12.59
11399      TNFSF12       17_7         0 2123.88   0  47.66
6880       TNFSF13       17_7         0 3120.75   0  76.93
6881         SENP3       17_7         0  775.17   0  23.93
6883        EIF4A1       17_7         0 2074.67   0 -40.42
5313          SAT2       17_7         0 1607.07   0 -16.77
3991        ATP1B2       17_7         0 3037.00   0 -68.57
5311        WRAP53       17_7         0 1906.91   0 -43.17
9477         DNAH2       17_7         0 1018.23   0  37.37
7853        TMEM88       17_7         0   37.51   0   5.89
9115    AC025335.1       17_7         0   42.41   0   5.02
8143        KCNAB3       17_7         0   89.20   0  -3.14
8142        CNTROB       17_7         0   67.21   0  -1.44
10982        VAMP2       17_7         0   66.96   0  -2.88
9063       TMEM107       17_7         0  120.38   0  -4.38
9059         AURKB       17_7         0  107.05   0  -4.87
9053          CTC1       17_7         0   65.77   0   3.94
9046          PFAS       17_7         0   26.18   0   3.29
12191 RP11-849F2.9       17_7         0   34.30   0   0.15
3703      SLC25A35       17_7         0   70.52   0   3.11
9538         KRBA2       17_7         0   11.59   0  -2.31

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 7_60"
     genename region_tag susie_pip    mu2     PVE      z
79       TAC1       7_60     0.023   9.70 7.0e-07   2.70
725      ASNS       7_60     0.023   5.58 4.1e-07   0.89
7356    LMTK2       7_60     0.025   8.19 6.6e-07   1.63
9166  BHLHA15       7_60     0.026   6.84 5.8e-07   0.93
7355     BRI3       7_60     0.033 324.25 3.4e-05 -23.22
86   BAIAP2L1       7_60     0.027  69.56 6.0e-06 -11.74
2136    NPTX2       7_60     0.023   5.23 3.9e-07  -0.47

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 17_6"
           genename region_tag susie_pip    mu2     PVE      z
10506      KIAA0753       17_6         0   5.60 0.0e+00  -0.40
3990        TXNDC17       17_6         0  55.86 0.0e+00  -3.38
11821     C17orf100       17_6         0   5.41 0.0e+00   0.56
12016  CTC-281F24.1       17_6         0  21.81 0.0e+00   2.03
5309        SLC13A5       17_6         0   6.62 0.0e+00  -0.89
4278           XAF1       17_6         0  10.01 0.0e+00   0.55
8894         FBXO39       17_6         0   7.80 0.0e+00  -0.54
2357         ALOX12       17_6         0  35.71 0.0e+00   2.22
12018 RP11-589P10.5       17_6         0  20.07 0.0e+00   1.76
10974        RNASEK       17_6         0  35.33 0.0e+00   2.15
6879          BCL6B       17_6         0  38.45 0.0e+00   2.36
8630       SLC16A13       17_6         0   7.26 0.0e+00   1.20
4276        CLEC10A       17_6         0  34.85 0.0e+00   1.00
4279           DLG4       17_6         0  22.17 0.0e+00   1.76
42             DVL2       17_6         0  23.81 0.0e+00   0.42
8173           ELP5       17_6         0  74.11 0.0e+00   8.14
8775        CTDNEP1       17_6         0  80.90 0.0e+00   6.80
9272          CLDN7       17_6         0 109.96 0.0e+00  -1.41
75             YBX2       17_6         0  13.50 0.0e+00  -3.55
9270         SLC2A4       17_6         0  13.50 0.0e+00  -3.55
4275          EIF5A       17_6         0  60.16 0.0e+00   3.18
4277           GPS2       17_6         0  21.00 0.0e+00   2.02
10937        NEURL4       17_6         0 122.02 0.0e+00  -8.09
773           ACAP1       17_6         0 263.05 0.0e+00 -15.68
8627           TNK1       17_6         0 157.50 0.0e+00   4.55
9851         PLSCR3       17_6         0 299.35 0.0e+00  19.38
10735       TMEM256       17_6         0  26.05 0.0e+00  -1.98
8136          NLGN2       17_6         0 208.56 4.5e-14  -9.76

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 2_16"
      genename region_tag susie_pip    mu2     PVE      z
2881     CENPA       2_16     0.014  10.69 4.8e-07  -2.68
11149     OST4       2_16     0.154  29.97 1.5e-05  -4.08
4939   EMILIN1       2_16     0.011  25.21 9.2e-07   6.68
4927       KHK       2_16     0.017  10.74 6.0e-07  -2.86
4935      PREB       2_16     0.016  21.43 1.1e-06  -4.87
4941    ATRAID       2_16     0.021 131.28 8.9e-06  12.02
4936    SLC5A6       2_16     0.022 134.37 9.5e-06 -12.12
1060       CAD       2_16     0.012  75.23 2.8e-06  -7.43
2885   SLC30A3       2_16     0.066  56.63 1.2e-05  -6.31
7169       UCN       2_16     0.016  36.82 1.8e-06  -8.00
2891     SNX17       2_16     0.019 182.96 1.1e-05  13.27
7170    ZNF513       2_16     0.012  59.87 2.3e-06  -6.60
2887     NRBP1       2_16     0.011 313.76 1.1e-05 -18.63
4925    IFT172       2_16     0.812  54.69 1.4e-04  -9.79
1058      GCKR       2_16     0.494 126.01 2.0e-04  14.34
10987  C2orf16       2_16     0.494 126.01 2.0e-04  14.34
10407     GPN1       2_16     0.014  85.01 3.8e-06  -7.72
8847   CCDC121       2_16     0.013  15.32 6.2e-07   3.11
6575       BRE       2_16     0.013  35.27 1.5e-06   7.87
8284      RBKS       2_16     0.036 179.20 2.1e-05 -15.40

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 1_66"
      genename region_tag susie_pip    mu2     PVE     z
10495    PRMT6       1_66     0.526 307.24 0.00052 -18.1

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip       mu2     PVE      z
50432     rs1223802      1_108     1.000     62.51 2.0e-04 -10.01
141327   rs11719769       3_18     1.000     90.80 2.9e-04  -8.77
148350  rs113569731       3_33     1.000     46.20 1.5e-04  -7.57
149053   rs62259692       3_36     1.000     47.49 1.5e-04  -6.89
194198  rs114524202        4_4     1.000     67.92 2.2e-04  11.06
194214    rs3748034        4_4     1.000     92.67 3.0e-04  13.72
194215    rs3752442        4_4     1.000    100.52 3.2e-04 -15.97
194229   rs36205397        4_4     1.000    101.63 3.3e-04  17.79
221078   rs28529445       4_58     1.000     86.14 2.8e-04  -9.95
221265   rs71633359       4_59     1.000    195.78 6.3e-04 -16.88
227970   rs17039766       4_72     1.000     45.76 1.5e-04   6.65
273660   rs58477254       5_33     1.000     50.69 1.6e-04  -7.31
332488  rs112354376       6_46     1.000   1674.96 5.4e-03  -3.29
332489     rs208453       6_46     1.000   1664.12 5.3e-03  -0.53
354432  rs199804242       6_89     1.000  53751.81 1.7e-01  -3.57
362060   rs60425481      6_104     1.000  14665.15 4.7e-02  10.63
392966  rs761767938       7_49     1.000  15156.68 4.9e-02   4.57
392974    rs1544459       7_49     1.000  15257.92 4.9e-02   4.45
394370    rs3839804       7_51     1.000     48.28 1.5e-04  -6.55
407725     rs125124       7_80     1.000     56.02 1.8e-04   7.98
433640   rs12543287       8_37     1.000    149.18 4.8e-04   8.71
436999    rs4738679       8_45     1.000     83.95 2.7e-04   9.38
443715     rs382796       8_57     1.000     94.49 3.0e-04  13.00
499261    rs1886296       9_73     1.000     67.42 2.2e-04   7.78
524725    rs2186235      10_51     1.000    117.64 3.8e-04 -11.10
559377   rs12804411      11_38     1.000    129.49 4.1e-04  12.03
587247   rs66720652      12_15     1.000    105.40 3.4e-04   9.08
596678    rs7397189      12_36     1.000    139.68 4.5e-04  12.07
607417   rs61935502      12_55     1.000     64.34 2.1e-04  -7.76
609830  rs375115050      12_59     1.000    109.51 3.5e-04 -11.08
613205   rs75622376      12_67     1.000    146.82 4.7e-04  12.42
632245  rs566812111      13_25     1.000   6188.72 2.0e-02  -2.84
632249   rs12430288      13_25     1.000   6236.94 2.0e-02  -2.67
660511   rs72681869      14_20     1.000     88.33 2.8e-04   9.60
667268   rs13379043      14_34     1.000     73.23 2.3e-04   7.25
667399  rs369107859      14_34     1.000  19214.82 6.2e-02  -0.33
673272   rs11439803      14_48     1.000    511.68 1.6e-03   2.33
673279    rs1243165      14_48     1.000    569.33 1.8e-03   6.12
675537   rs35007880      14_52     1.000     66.17 2.1e-04  -8.22
685453    rs4363819      15_21     1.000     50.86 1.6e-04  -3.50
685472    rs2414183      15_22     1.000    217.48 7.0e-04 -13.29
685714   rs72743115      15_22     1.000    134.65 4.3e-04 -11.63
720781     rs889639      16_48     1.000     42.58 1.4e-04   6.61
720799    rs2255451      16_48     1.000     75.26 2.4e-04   8.90
725019   rs35985803       17_6     1.000    326.42 1.0e-03 -19.38
725034    rs7223885       17_6     1.000    403.47 1.3e-03 -22.29
725035     rs968580       17_6     1.000    245.12 7.9e-04 -13.61
725036   rs73233955       17_6     1.000    284.12 9.1e-04 -11.43
725059  rs116560331       17_7     1.000   1912.32 6.1e-03 -64.18
725085   rs11078694       17_7     1.000   3238.52 1.0e-02 -82.59
725101   rs62059839       17_7     1.000   4847.89 1.6e-02  88.82
725112   rs72829446       17_7     1.000   1015.62 3.3e-03  30.00
730050   rs56032910      17_19     1.000    741.77 2.4e-03  -2.90
730051    rs3744618      17_19     1.000    612.95 2.0e-03  -2.45
732806    rs1814451      17_29     1.000     43.78 1.4e-04   3.96
732810    rs1000787      17_29     1.000     76.79 2.5e-04  -6.38
736695    rs1801689      17_38     1.000    134.55 4.3e-04 -11.80
768162   rs10401485       19_7     1.000    113.27 3.6e-04 -10.90
770730  rs141356897      19_14     1.000    264.86 8.5e-04  16.44
775705     rs889140      19_23     1.000     53.01 1.7e-04   5.95
776298    rs4806075      19_24     1.000    145.40 4.7e-04  -4.36
776968  rs140965448      19_26     1.000     41.63 1.3e-04  -5.90
790553  rs547713677      20_20     1.000     57.54 1.8e-04   3.60
793312    rs3212201      20_28     1.000    188.67 6.0e-04  14.22
861340  rs140584594       1_67     1.000     99.78 3.2e-04 -10.15
882660    rs1260326       2_16     1.000    705.60 2.3e-03  30.11
934745  rs139439683      5_106     1.000   5535.82 1.8e-02  -2.67
934880   rs13172121      5_106     1.000   5539.97 1.8e-02  -2.57
949273    rs9279507       6_26     1.000  10380.12 3.3e-02  -2.07
975840   rs17256042       7_93     1.000     58.39 1.9e-04  -2.68
998633   rs72766607       9_70     1.000     47.93 1.5e-04  -7.01
1006028  rs10995596      10_42     1.000  99247.57 3.2e-01  10.99
1006046 rs773090945      10_42     1.000  99389.15 3.2e-01  11.08
1028485  rs11601507       11_4     1.000     57.60 1.8e-04   7.02
1083354  rs78750369      13_18     1.000  26018.73 8.3e-02   3.38
1083359   rs7320922      13_18     1.000  25931.57 8.3e-02   3.38
1091118  rs36179992      13_21     1.000     60.90 2.0e-04   7.08
1108289  rs11621792       14_3     1.000    241.34 7.7e-04 -15.30
1142647  rs56332871      15_46     1.000    687.40 2.2e-03  25.92
1178612  rs11078597       17_2     1.000    255.76 8.2e-04  13.37
1210825  rs17637241      17_28     1.000    243.86 7.8e-04  16.29
1260449  rs61371437      19_34     1.000 144284.05 4.6e-01   6.86
1260458 rs113176985      19_34     1.000 144531.16 4.6e-01   7.00
1260461 rs374141296      19_34     1.000 145307.45 4.7e-01   6.36
82524    rs12466865       2_42     0.999     77.99 2.5e-04 -11.93
129106   rs11682084      2_135     0.999     34.25 1.1e-04  -5.80
351722   rs58321169       6_84     0.999     39.84 1.3e-04  -6.49
545844   rs34623292      11_10     0.999     39.69 1.3e-04  -7.89
730037   rs62062359      17_19     0.999     81.70 2.6e-04  -3.62
771021   rs11668601      19_14     0.999     93.67 3.0e-04  -9.58
944275    rs1050556       6_25     0.999     82.21 2.6e-04  -8.33
1230277  rs60018147       19_4     0.999     40.54 1.3e-04   6.21
94205     rs3789066       2_66     0.998     46.60 1.5e-04  -6.67
399009    rs4268041       7_60     0.998    342.27 1.1e-03  23.71
443782    rs2400362       8_57     0.998     81.89 2.6e-04  11.26
520057    rs4746440      10_43     0.998     31.69 1.0e-04   5.27
685446    rs8032322      15_21     0.998     51.97 1.7e-04  -4.17
221061  rs116755775       4_58     0.997     34.09 1.1e-04   6.48
392970   rs11972122       7_49     0.997  13951.88 4.5e-02   3.99
399355  rs138124694       7_61     0.997     47.13 1.5e-04   7.46
737637    rs8070232      17_39     0.997     59.15 1.9e-04  -1.02
587454   rs56020380      12_16     0.996     75.30 2.4e-04  -8.11
609810   rs11837065      12_59     0.996     33.79 1.1e-04  -6.16
639943    rs7323648      13_40     0.996     31.27 1.0e-04   5.28
676363    rs4983559      14_55     0.996     49.04 1.6e-04  -7.16
743097  rs117823974       18_3     0.996     30.67 9.8e-05  -5.10
1083355   rs1555718      13_18     0.995  25905.97 8.3e-02   3.36
1132583  rs12591786      15_27     0.995     43.46 1.4e-04   6.42
443646   rs11994858       8_57     0.994     91.59 2.9e-04  10.84
541977    rs2239681       11_2     0.994     48.20 1.5e-04   7.93
558081    rs1047739      11_34     0.994     42.66 1.4e-04   6.18
463923    rs1016565        9_1     0.993     31.31 1.0e-04  -5.39
466157    rs1616572        9_7     0.993     33.04 1.1e-04  -5.83
587322   rs10841577      12_15     0.993     32.23 1.0e-04  -4.82
587615    rs4149081      12_16     0.992    301.35 9.6e-04 -18.14
685708    rs8040040      15_22     0.992     65.22 2.1e-04  -7.71
869765    rs2642438      1_112     0.992     75.65 2.4e-04  10.16
218580    rs6838435       4_51     0.991     45.87 1.5e-04  -6.60
780131   rs11084395      19_38     0.991     29.87 9.5e-05   4.96
325485    rs1005230       6_33     0.990     29.52 9.4e-05  -5.10
608289   rs55692966      12_56     0.990     30.53 9.7e-05   5.25
45152    rs10801583       1_98     0.989     40.49 1.3e-04  -8.37
498398   rs34755157       9_71     0.987     30.04 9.5e-05   5.10
588345   rs78444263      12_18     0.987    138.90 4.4e-04 -11.99
53498     rs3845509      1_115     0.986     32.40 1.0e-04   5.24
725387    rs1465650       17_8     0.986     27.62 8.7e-05  -4.73
141332    rs6803476       3_18     0.985     30.80 9.7e-05  -3.70
407734   rs12533527       7_80     0.979     27.39 8.6e-05  -5.03
485183   rs78648697       9_45     0.979     28.21 8.8e-05  -4.98
13979    rs79574044       1_38     0.977     27.03 8.5e-05  -5.13
383037  rs150560724       7_32     0.976     29.96 9.4e-05  -5.04
894642    rs2249407        3_9     0.972     51.42 1.6e-04  -5.13
75100    rs34636718       2_26     0.971     54.40 1.7e-04   7.24
286641  rs114964731       5_60     0.971     29.81 9.3e-05  -5.22
483285     rs796003       9_41     0.971    287.33 8.9e-04  17.80
661722   rs12881212      14_23     0.970     26.94 8.4e-05  -4.76
221209   rs13120301       4_59     0.968     81.29 2.5e-04 -14.39
730052   rs62063894      17_19     0.968     99.43 3.1e-04  -4.37
238804    rs1579737       4_94     0.964     30.77 9.5e-05   5.36
776297    rs1688031      19_24     0.964    103.55 3.2e-04  11.19
172069    rs6794445       3_80     0.960     26.40 8.1e-05   4.56
241501   rs72727873       4_98     0.960     30.55 9.4e-05  -5.19
273514     rs173964       5_33     0.958    205.66 6.3e-04 -12.13
184697  rs149368105      3_105     0.956     47.51 1.5e-04  -7.98
354448    rs6923513       6_89     0.956  53785.74 1.6e-01  -3.26
83065    rs62143990       2_43     0.955     30.39 9.3e-05   5.32
232737   rs68018489       4_80     0.954     27.74 8.5e-05  -5.03
770613  rs138466679      19_14     0.953     34.43 1.1e-04   5.73
2634     rs10746487        1_6     0.952     25.42 7.8e-05   4.61
1115581   rs1005421      14_45     0.952     45.33 1.4e-04   6.54
649483     rs750598      13_59     0.951     28.71 8.7e-05   5.12
240145   rs34690971       4_96     0.949     86.25 2.6e-04  -9.47
94281     rs2166862       2_66     0.948     31.70 9.6e-05  -5.35
50385      rs340835      1_108     0.947     69.16 2.1e-04  -7.18
725100  rs112885647       17_7     0.946   1870.19 5.7e-03 -48.76
775699   rs16968072      19_23     0.945     29.45 8.9e-05  -3.03
313207   rs55792466        6_7     0.944     39.40 1.2e-04   6.88
465348   rs10758593        9_4     0.943     27.11 8.2e-05  -4.98
600719    rs2137537      12_44     0.940     24.48 7.4e-05  -4.42
766280    rs4807612       19_2     0.940     42.37 1.3e-04   6.30
794036    rs6066141      20_29     0.940     32.15 9.7e-05   5.65
667396    rs7156583      14_34     0.936  19231.91 5.8e-02  -4.20
673299   rs72692809      14_48     0.935     50.51 1.5e-04   7.82
6520      rs7516039       1_20     0.934     26.80 8.0e-05  -4.86
813797   rs78668392       22_9     0.934     24.80 7.4e-05   3.78
613206  rs147598676      12_67     0.933     63.00 1.9e-04   7.93
323420   rs41270056       6_28     0.926     27.73 8.2e-05   4.92
129516   rs62192912      2_137     0.921     29.06 8.6e-05   4.42
8541     rs71642659       1_24     0.913     28.31 8.3e-05   6.02
148593    rs4974078       3_35     0.910     42.14 1.2e-04  -7.36
546574  rs201519335      11_12     0.908     32.32 9.4e-05   2.32
319891    rs9379832       6_20     0.907     32.76 9.5e-05   6.62
610651    rs4764939      12_62     0.906    177.34 5.1e-04 -13.66
295561   rs10057561       5_77     0.903     28.57 8.3e-05  -5.24
202150    rs2946394       4_20     0.901     24.93 7.2e-05   4.27
81006    rs35510572       2_39     0.900     24.94 7.2e-05   4.09
1244716 rs117090198      19_27     0.896     29.92 8.6e-05   4.74
272577    rs1694060       5_31     0.894     29.71 8.5e-05  -4.71
1210832  rs12952581      17_28     0.892    350.61 1.0e-03 -28.36
239342   rs11727676       4_94     0.889     24.76 7.1e-05  -4.45
616213    rs2393775      12_74     0.889    184.37 5.3e-04  14.43
732827   rs62079262      17_29     0.889     28.99 8.3e-05  -3.73
415539   rs11761498       7_98     0.887     25.00 7.1e-05  -4.45
776836  rs149349299      19_25     0.887     46.03 1.3e-04  -6.44
809441    rs9975329      21_22     0.887     26.52 7.5e-05   4.75
8717      rs4660293       1_24     0.886     84.39 2.4e-04 -10.04
383022  rs149901303       7_32     0.879     24.63 6.9e-05  -4.28
10993   rs112681075       1_33     0.878     26.37 7.4e-05   4.58
23072      rs164899       1_55     0.877     28.16 7.9e-05  -5.42
77106    rs55761545       2_31     0.877     30.52 8.6e-05  -5.48
399091  rs117501142       7_60     0.865     24.41 6.8e-05   4.39
498459   rs12351482       9_71     0.865     98.24 2.7e-04  10.02
732834  rs112147932      17_29     0.861     26.55 7.3e-05  -4.19
346284  rs117864346       6_73     0.851     30.37 8.3e-05   5.16
407483    rs4731639       7_79     0.849     34.82 9.5e-05   5.78
109516    rs1460670       2_99     0.847     26.32 7.1e-05   4.61
1142730 rs142035705      15_46     0.845     35.84 9.7e-05  -6.70
735317    rs2632527      17_34     0.841     25.81 7.0e-05  -4.53
202141  rs112396442       4_20     0.839     25.03 6.7e-05  -4.25
322081    rs3094124       6_24     0.836     29.70 8.0e-05  -4.67
184718     rs234043      3_106     0.833     39.30 1.0e-04  -5.98
408139    rs4731855       7_80     0.833     25.60 6.8e-05  -4.41
493525    rs2808798       9_58     0.832     24.88 6.6e-05   4.41
408971    rs2551778       7_82     0.831     47.39 1.3e-04  -6.65
811039     rs175169       22_4     0.830     35.86 9.5e-05   6.10
576100   rs10750224      11_75     0.821     25.88 6.8e-05   4.43
243335   rs17285611      4_102     0.817     41.55 1.1e-04  -2.34
117789   rs10202868      2_113     0.806     55.44 1.4e-04  -7.73
1092359    rs536338      13_21     0.805     41.21 1.1e-04  -6.60
443685   rs28435511       8_57     0.804     71.82 1.8e-04  -5.24
843576  rs114165349       1_18     0.803    464.76 1.2e-03 -21.20
546146    rs7946907      11_11     0.802     27.87 7.2e-05   4.85

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                 id region_tag susie_pip      mu2     PVE    z
1260461 rs374141296      19_34         1 145307.5 4.7e-01 6.36
1260458 rs113176985      19_34         1 144531.2 4.6e-01 7.00
1260449  rs61371437      19_34         1 144284.0 4.6e-01 6.86
1260451  rs35295508      19_34         0 144129.7 1.6e-14 7.05
1260465   rs2946865      19_34         0 143717.6 0.0e+00 6.96
1260439    rs739349      19_34         0 143707.6 0.0e+00 6.83
1260440    rs756628      19_34         0 143707.6 0.0e+00 6.83
1260456  rs73056069      19_34         0 143628.0 0.0e+00 7.13
1260436    rs739347      19_34         0 143436.7 0.0e+00 6.80
1260453   rs2878354      19_34         0 143304.9 0.0e+00 7.15
1260437   rs2073614      19_34         0 143285.3 0.0e+00 6.76
1260442   rs2077300      19_34         0 142903.7 0.0e+00 6.92
1260432   rs4802613      19_34         0 142653.8 0.0e+00 6.77
1260446  rs73056059      19_34         0 142633.2 0.0e+00 6.97
1260466  rs60815603      19_34         0 141661.2 0.0e+00 7.20
1260469   rs1316885      19_34         0 140990.9 0.0e+00 7.11
1260471  rs60746284      19_34         0 140786.4 0.0e+00 7.33
1260474   rs2946863      19_34         0 140731.1 0.0e+00 7.04
1260430  rs10403394      19_34         0 140666.3 0.0e+00 6.80
1260431  rs17555056      19_34         0 140609.9 0.0e+00 6.75
1260467  rs35443645      19_34         0 140607.2 0.0e+00 7.08
1260447  rs73056062      19_34         0 138969.4 0.0e+00 6.99
1260477 rs553431297      19_34         0 136947.8 0.0e+00 6.78
1260460 rs112283514      19_34         0 136592.7 0.0e+00 6.51
1260462  rs11270139      19_34         0 135655.2 0.0e+00 7.17
1260427  rs10421294      19_34         0 127049.0 0.0e+00 6.07
1260426   rs8108175      19_34         0 127031.7 0.0e+00 6.07
1260419  rs59192944      19_34         0 126790.8 0.0e+00 6.07
1260425   rs1858742      19_34         0 126788.5 0.0e+00 6.04
1260416  rs55991145      19_34         0 126701.0 0.0e+00 6.08
1260411   rs3786567      19_34         0 126651.4 0.0e+00 6.08
1260410   rs4801801      19_34         0 126602.1 0.0e+00 6.05
1260407   rs2271952      19_34         0 126601.3 0.0e+00 6.08
1260406   rs2271953      19_34         0 126461.8 0.0e+00 6.04
1260408   rs2271951      19_34         0 126455.9 0.0e+00 6.05
1260397  rs60365978      19_34         0 126339.9 0.0e+00 6.02
1260403   rs4802612      19_34         0 125840.1 0.0e+00 6.16
1260413   rs2517977      19_34         0 125696.9 0.0e+00 5.83
1260400  rs55893003      19_34         0 125493.7 0.0e+00 6.16
1260392  rs55992104      19_34         0 122543.1 0.0e+00 6.04
1260386  rs60403475      19_34         0 122512.7 0.0e+00 6.03
1260389   rs4352151      19_34         0 122506.7 0.0e+00 6.01
1260383  rs11878448      19_34         0 122419.5 0.0e+00 6.01
1260377   rs9653100      19_34         0 122379.3 0.0e+00 6.04
1260373   rs4802611      19_34         0 122298.8 0.0e+00 6.03
1260365   rs7251338      19_34         0 122112.7 0.0e+00 6.02
1260364  rs59269605      19_34         0 122099.4 0.0e+00 6.05
1260385   rs1042120      19_34         0 121795.9 0.0e+00 6.13
1260381 rs113220577      19_34         0 121688.0 0.0e+00 6.12
1260375   rs9653118      19_34         0 121499.2 0.0e+00 6.16

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip       mu2    PVE      z
1260461 rs374141296      19_34     1.000 145307.45 0.4700   6.36
1260449  rs61371437      19_34     1.000 144284.05 0.4600   6.86
1260458 rs113176985      19_34     1.000 144531.16 0.4600   7.00
1006028  rs10995596      10_42     1.000  99247.57 0.3200  10.99
1006046 rs773090945      10_42     1.000  99389.15 0.3200  11.08
354432  rs199804242       6_89     1.000  53751.81 0.1700  -3.57
354448    rs6923513       6_89     0.956  53785.74 0.1600  -3.26
354431    rs2327654       6_89     0.724  53782.97 0.1200  -3.25
1083354  rs78750369      13_18     1.000  26018.73 0.0830   3.38
1083355   rs1555718      13_18     0.995  25905.97 0.0830   3.36
1083359   rs7320922      13_18     1.000  25931.57 0.0830   3.38
667399  rs369107859      14_34     1.000  19214.82 0.0620  -0.33
667396    rs7156583      14_34     0.936  19231.91 0.0580  -4.20
392966  rs761767938       7_49     1.000  15156.68 0.0490   4.57
392974    rs1544459       7_49     1.000  15257.92 0.0490   4.45
362060   rs60425481      6_104     1.000  14665.15 0.0470  10.63
392970   rs11972122       7_49     0.997  13951.88 0.0450   3.99
949273    rs9279507       6_26     1.000  10380.12 0.0330  -2.07
362057    rs3127598      6_104     0.560  14600.20 0.0260  -6.70
362065    rs3106167      6_104     0.477  14600.14 0.0220  -6.70
632245  rs566812111      13_25     1.000   6188.72 0.0200  -2.84
632249   rs12430288      13_25     1.000   6236.94 0.0200  -2.67
362056    rs3106169      6_104     0.413  14600.15 0.0190  -6.71
934745  rs139439683      5_106     1.000   5535.82 0.0180  -2.67
934880   rs13172121      5_106     1.000   5539.97 0.0180  -2.57
949259    rs3130291       6_26     0.500  10377.22 0.0170  -2.70
725101   rs62059839       17_7     1.000   4847.89 0.0160  88.82
667408    rs2159704      14_34     0.249  19219.19 0.0150  -4.21
949262    rs3130292       6_26     0.444  10377.24 0.0150  -2.70
667406   rs72627160      14_34     0.225  19212.34 0.0140  -4.23
362049   rs11755965      6_104     0.280  14596.33 0.0130  -6.70
934836    rs7703057      5_106     0.721   5370.96 0.0120  -2.87
725085   rs11078694       17_7     1.000   3238.52 0.0100 -82.59
1004999  rs10822163      10_42     0.252   9007.81 0.0073  47.75
725059  rs116560331       17_7     1.000   1912.32 0.0061 -64.18
725100  rs112885647       17_7     0.946   1870.19 0.0057 -48.76
332488  rs112354376       6_46     1.000   1674.96 0.0054  -3.29
332489     rs208453       6_46     1.000   1664.12 0.0053  -0.53
948710   rs35337578       6_26     0.577   2084.83 0.0039  -6.67
725112   rs72829446       17_7     1.000   1015.62 0.0033  30.00
1004992  rs12355784      10_42     0.106   8998.38 0.0031  47.73
948709   rs17207867       6_26     0.394   2080.68 0.0026  -6.62
730050   rs56032910      17_19     1.000    741.77 0.0024  -2.90
882660    rs1260326       2_16     1.000    705.60 0.0023  30.11
1005012  rs10761750      10_42     0.075   8996.26 0.0022  47.72
1142647  rs56332871      15_46     1.000    687.40 0.0022  25.92
730051    rs3744618      17_19     1.000    612.95 0.0020  -2.45
673279    rs1243165      14_48     1.000    569.33 0.0018   6.12
1005008  rs10822164      10_42     0.061   8990.86 0.0018  47.72
673272   rs11439803      14_48     1.000    511.68 0.0016   2.33

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                 id region_tag susie_pip     mu2     PVE      z
725101   rs62059839       17_7     1.000 4847.89 1.6e-02  88.82
725095  rs149932962       17_7     0.000 3958.80 0.0e+00  84.44
725081    rs8073177       17_7     0.000 3201.34 4.6e-18  82.80
725079    rs9892862       17_7     0.000 3188.32 0.0e+00  82.78
725085   rs11078694       17_7     1.000 3238.52 1.0e-02 -82.59
725082   rs62059797       17_7     0.000 2883.47 0.0e+00  74.35
725080   rs35049113       17_7     0.000 2868.25 0.0e+00  74.25
725086   rs12941509       17_7     0.000 2841.92 0.0e+00  73.74
725091    rs4968212       17_7     0.000 2787.40 0.0e+00 -72.06
725089   rs62059801       17_7     0.000 2688.24 0.0e+00  71.11
725121    rs1641549       17_7     0.000 2029.01 0.0e+00 -69.17
725050   rs34474914       17_7     0.000 2237.50 0.0e+00  64.95
725074  rs142700974       17_7     0.000 1981.83 3.7e-11 -64.87
725059  rs116560331       17_7     1.000 1912.32 6.1e-03 -64.18
725111  rs745412832       17_7     0.000 1343.51 0.0e+00  60.54
725043      rs13290       17_7     0.000  742.81 0.0e+00  58.64
725090   rs12601581       17_7     0.000 1857.53 0.0e+00 -55.97
725103    rs1642797       17_7     0.000 2325.41 0.0e+00  54.83
725104    rs1642808       17_7     0.000 2311.44 0.0e+00  54.70
725105    rs1641538       17_7     0.000 2311.07 0.0e+00  54.69
725106    rs1641531       17_7     0.000 2309.52 0.0e+00  54.67
725107    rs1641528       17_7     0.000 2310.87 0.0e+00  54.67
725108    rs1641522       17_7     0.000 2313.63 0.0e+00  54.66
725040   rs11652328       17_7     0.000 1441.22 0.0e+00  53.21
725044   rs34706172       17_7     0.000  610.04 0.0e+00  52.30
725096   rs58614441       17_7     0.000 2380.36 0.0e+00 -49.67
725046    rs3829603       17_7     0.000  716.28 0.0e+00  49.05
725047   rs12600863       17_7     0.000  682.63 0.0e+00  48.93
725100  rs112885647       17_7     0.946 1870.19 5.7e-03 -48.76
725102       rs6257       17_7     0.054 1863.74 3.2e-04 -48.70
725118    rs4968186       17_7     0.000 1125.62 0.0e+00  48.27
1004999  rs10822163      10_42     0.252 9007.81 7.3e-03  47.75
1004992  rs12355784      10_42     0.106 8998.38 3.1e-03  47.73
1004701  rs10995477      10_42     0.014 9023.36 3.9e-04  47.72
1005004   rs6479896      10_42     0.051 8993.97 1.5e-03  47.72
1005008  rs10822164      10_42     0.061 8990.86 1.8e-03  47.72
1005012  rs10761750      10_42     0.075 8996.26 2.2e-03  47.72
1004710   rs4595427      10_42     0.005 9015.53 1.5e-04  47.70
1005027   rs7076310      10_42     0.024 8990.11 6.9e-04  47.70
1005037   rs4310508      10_42     0.023 8986.80 6.6e-04  47.70
1005266  rs10761771      10_42     0.022 9000.40 6.3e-04  47.70
1004707   rs4400684      10_42     0.003 9021.50 7.3e-05  47.69
1004714   rs4405189      10_42     0.003 9023.96 8.9e-05  47.69
1004814  rs10822153      10_42     0.012 9024.89 3.6e-04  47.69
1005023   rs2893919      10_42     0.004 8934.73 1.1e-04  47.69
1005024   rs2393966      10_42     0.004 8937.59 1.0e-04  47.69
1005040   rs7910927      10_42     0.001 8870.24 3.9e-05  47.69
1005199  rs10509186      10_42     0.012 8992.50 3.4e-04  47.69
1005211  rs10740126      10_42     0.012 8992.00 3.4e-04  47.69
1005228   rs7092784      10_42     0.012 8992.07 3.5e-04  47.69

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 66
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
SLC35E2B gene(s) from the input list not found in DisGeNET CURATEDRP11-131K5.2 gene(s) from the input list not found in DisGeNET CURATEDATXN7L3 gene(s) from the input list not found in DisGeNET CURATEDSTX10 gene(s) from the input list not found in DisGeNET CURATEDRP11-714M23.2 gene(s) from the input list not found in DisGeNET CURATEDEXOC3L4 gene(s) from the input list not found in DisGeNET CURATEDCHCHD7 gene(s) from the input list not found in DisGeNET CURATEDSYTL1 gene(s) from the input list not found in DisGeNET CURATEDCCDC97 gene(s) from the input list not found in DisGeNET CURATEDPDZD3 gene(s) from the input list not found in DisGeNET CURATEDZFPM1 gene(s) from the input list not found in DisGeNET CURATEDTMEM176B gene(s) from the input list not found in DisGeNET CURATEDKIAA0141 gene(s) from the input list not found in DisGeNET CURATEDNAA30 gene(s) from the input list not found in DisGeNET CURATEDTLCD2 gene(s) from the input list not found in DisGeNET CURATEDHLX gene(s) from the input list not found in DisGeNET CURATEDAKNA gene(s) from the input list not found in DisGeNET CURATEDDLEU1 gene(s) from the input list not found in DisGeNET CURATEDRP11-327J17.2 gene(s) from the input list not found in DisGeNET CURATEDH3F3B gene(s) from the input list not found in DisGeNET CURATEDLINC01270 gene(s) from the input list not found in DisGeNET CURATEDCBX6 gene(s) from the input list not found in DisGeNET CURATEDPALM3 gene(s) from the input list not found in DisGeNET CURATEDNTAN1 gene(s) from the input list not found in DisGeNET CURATEDNRDE2 gene(s) from the input list not found in DisGeNET CURATEDSCAF11 gene(s) from the input list not found in DisGeNET CURATEDZNF845 gene(s) from the input list not found in DisGeNET CURATEDAES gene(s) from the input list not found in DisGeNET CURATEDALLC gene(s) from the input list not found in DisGeNET CURATEDTMED6 gene(s) from the input list not found in DisGeNET CURATEDGBF1 gene(s) from the input list not found in DisGeNET CURATED
                                         Description        FDR Ratio
51                                     Hydrocephalus 0.03472222  2/35
69                                   Noonan Syndrome 0.03472222  2/35
97                                  LEOPARD Syndrome 0.03472222  2/35
107                             Renal Cell Dysplasia 0.03472222  1/35
127        Symmetrical dyschromatosis of extremities 0.03472222  1/35
136                                     Anhydramnios 0.03472222  1/35
169                             CONE-ROD DYSTROPHY 9 0.03472222  1/35
182                     CATARACT, POSTERIOR POLAR, 1 0.03472222  1/35
190 BONE MINERAL DENSITY QUANTITATIVE TRAIT LOCUS 12 0.03472222  1/35
193                    Age-related cortical cataract 0.03472222  1/35
    BgRatio
51   9/9703
69  24/9703
97  22/9703
107  1/9703
127  1/9703
136  1/9703
169  1/9703
182  1/9703
190  1/9703
193  1/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2