Last updated: 2022-06-18

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 9621c0e. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    analysis/figure/

Untracked files:
    Untracked:  group_enrichment_results.RData
    Untracked:  plot_test.R
    Untracked:  temp.regionlist.RDS
    Untracked:  temp.regions.txt
    Untracked:  temp.susieIrss.txt
    Untracked:  temp.temp.susieIrssres.Rd
    Untracked:  temp_LDR/
    Untracked:  temp_ld_R_chr1.txt
    Untracked:  temp_ld_R_chr10.txt
    Untracked:  temp_ld_R_chr11.txt
    Untracked:  temp_ld_R_chr12.txt
    Untracked:  temp_ld_R_chr13.txt
    Untracked:  temp_ld_R_chr14.txt
    Untracked:  temp_ld_R_chr15.txt
    Untracked:  temp_ld_R_chr16.txt
    Untracked:  temp_ld_R_chr17.txt
    Untracked:  temp_ld_R_chr18.txt
    Untracked:  temp_ld_R_chr19.txt
    Untracked:  temp_ld_R_chr2.txt
    Untracked:  temp_ld_R_chr20.txt
    Untracked:  temp_ld_R_chr21.txt
    Untracked:  temp_ld_R_chr22.txt
    Untracked:  temp_ld_R_chr3.txt
    Untracked:  temp_ld_R_chr4.txt
    Untracked:  temp_ld_R_chr5.txt
    Untracked:  temp_ld_R_chr6.txt
    Untracked:  temp_ld_R_chr7.txt
    Untracked:  temp_ld_R_chr8.txt
    Untracked:  temp_ld_R_chr9.txt
    Untracked:  temp_reg.txt
    Untracked:  workspace.RData
    Untracked:  workspace2.RData
    Untracked:  workspace3.RData
    Untracked:  workspace4.RData
    Untracked:  workspace5.RData
    Untracked:  workspace6.RData
    Untracked:  workspace7.RData
    Untracked:  workspace8.RData
    Untracked:  z_snp_pos_ebi-a-GCST004131.RData
    Untracked:  z_snp_pos_ebi-a-GCST004132.RData
    Untracked:  z_snp_pos_ebi-a-GCST004133.RData
    Untracked:  z_snp_pos_ukb-d-30780_irnt.RData

Unstaged changes:
    Modified:   analysis/ukb-d-30780_irnt_Liver_nolnc_known.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30780_irnt_Liver_nolnc_known.Rmd) and HTML (docs/ukb-d-30780_irnt_Liver_nolnc_known.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 9621c0e wesleycrouse 2022-06-17 plots again
Rmd 00235c6 wesleycrouse 2022-06-17 plots
html 00235c6 wesleycrouse 2022-06-17 plots
Rmd 8e7ebf3 wesleycrouse 2022-06-17 working on locus plots
html 8e7ebf3 wesleycrouse 2022-06-17 working on locus plots
Rmd a147e61 wesleycrouse 2022-06-17 updated tables
Rmd 39e5422 wesleycrouse 2022-06-14 summary table for IBDQ
Rmd 061cee5 wesleycrouse 2022-06-14 updating LDL locus plots
html 061cee5 wesleycrouse 2022-06-14 updating LDL locus plots
Rmd 0136d2e wesleycrouse 2022-06-10 reports without lncRNA
html 0136d2e wesleycrouse 2022-06-10 reports without lncRNA
Rmd 299fa01 wesleycrouse 2022-06-03 adding plots for all detected genes in liver
html 299fa01 wesleycrouse 2022-06-03 adding plots for all detected genes in liver
Rmd 37b2a2c wesleycrouse 2022-05-29 dropping lncRNAs
html 37b2a2c wesleycrouse 2022-05-29 dropping lncRNAs

Overview

These are the results of a ctwas analysis of the UK Biobank trait LDL direct using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30780_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 9881
#number of imputed weights by chromosome
table(qclist_all$chr)

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18 
988 679 612 373 438 554 501 359 370 397 595 561 163 329 313 480 601 133 
 19  20  21  22 
816 270  92 257 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8344297

Load ctwas results

Check convergence of parameters

library(ggplot2)
library(cowplot)

load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))

group_size <- c(nrow(ctwas_gene_res), n_snps)

#estimated group prior (all iterations)
estimated_group_prior_all <- group_prior_rec
rownames(estimated_group_prior_all) <- c("gene", "snp")
estimated_group_prior_all["snp",] <- estimated_group_prior_all["snp",]*thin #adjust parameter to account for thin argument

#estimated group prior variance (all iterations)
estimated_group_prior_var_all <- group_prior_var_rec
rownames(estimated_group_prior_var_all) <- c("gene", "snp")

#estimated group PVE (all iterations)
estimated_group_pve_all <- estimated_group_prior_var_all*estimated_group_prior_all*group_size/sample_size #check PVE calculation
rownames(estimated_group_pve_all) <- c("gene", "snp")

#estimated enrichment of genes (all iterations)
estimated_enrichment_all <- estimated_group_prior_all["gene",]/estimated_group_prior_all["snp",]
  
df <- data.frame(niter = rep(1:ncol(estimated_group_prior_all), 2),
                 value = c(estimated_group_prior_all["gene",], estimated_group_prior_all["snp",]),
                 group = rep(c("Gene", "SNP"), each = ncol(estimated_group_prior_all)))
df$group <- as.factor(df$group)

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Proportion Causal") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(estimated_group_prior_var_all ), 2),
                 value = c(estimated_group_prior_var_all["gene",], estimated_group_prior_var_all["snp",]),
                 group = rep(c("Gene", "SNP"), each = ncol(estimated_group_prior_var_all)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Effect Size") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(estimated_group_pve_all ), 2),
                 value = c(estimated_group_pve_all["gene",], estimated_group_pve_all["snp",]),
                 group = rep(c("Gene", "SNP"), each = ncol(estimated_group_pve_all)))
df$group <- as.factor(df$group)
p_pve <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(h^2[G])) +
  ggtitle("PVE") +
  theme_cowplot()

df <- data.frame(niter = 1:length(estimated_enrichment_all),
                 value = estimated_enrichment_all,
                 group = rep("Gene", length(estimated_enrichment_all)))
df$group <- as.factor(df$group)
p_enrich <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi[G]/pi[S])) +
  ggtitle("Enrichment") +
  theme_cowplot()


plot_grid(p_pi, p_sigma2, p_enrich, p_pve)

Version Author Date
37b2a2c wesleycrouse 2022-05-29
#estimated group prior
estimated_group_prior <- estimated_group_prior_all[,ncol(group_prior_rec)]
print(estimated_group_prior)
        gene          snp 
0.0107025505 0.0001718723 
#estimated group prior variance
estimated_group_prior_var <- estimated_group_prior_var_all[,ncol(group_prior_var_rec)]
print(estimated_group_prior_var)
     gene       snp 
40.619731  9.974189 
#estimated enrichment
estimated_enrichment <- estimated_enrichment_all[ncol(group_prior_var_rec)]
print(estimated_enrichment)
[1] 62.27037
#report sample size
print(sample_size)
[1] 343621
#report group size
print(group_size)
[1]    9881 8696600
#estimated group PVE
estimated_group_pve <- estimated_group_pve_all[,ncol(group_prior_rec)] #check PVE calculation
print(estimated_group_pve)
      gene        snp 
0.01250102 0.04338636 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.02499501 0.33624483

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
37b2a2c wesleycrouse 2022-05-29
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
      genename region_tag susie_pip        mu2          PVE          z
4433     PSRC1       1_67 1.0000000 1665.51987 4.846968e-03 -41.687336
11327      HPR      16_38 1.0000000  208.67866 6.072931e-04 -17.240252
5561     ABCG8       2_27 0.9999422  311.81584 9.073887e-04 -20.293982
3720    INSIG2       2_69 0.9997803   62.17379 1.808974e-04  -9.364196
5542     CNIH4      1_114 0.9996422   48.18514 1.401774e-04   6.721857
5988     FADS1      11_34 0.9994871  159.67335 4.644404e-04  12.825883
10612   TRIM39       6_24 0.9986727   71.90981 2.089930e-04   8.848422
1999     PRKD2      19_33 0.9963912   32.34148 9.377996e-05   5.289849
7405     ABCA1       9_53 0.9954963   70.08104 2.030301e-04   7.982017
1597      PLTP      20_28 0.9882944   61.32685 1.763832e-04  -5.732491
9365      GAS6      13_62 0.9882298   71.05673 2.043541e-04  -8.923688
8523      TNKS       8_12 0.9844747   73.24908 2.098587e-04  11.026034
7036     INHBB       2_70 0.9823634   73.74261 2.108196e-04  -8.518936
4702     DDX56       7_32 0.9758705   58.50014 1.661382e-04   9.446271
2092       SP4       7_19 0.9755655  101.89697 2.892930e-04  10.693191
6090   CSNK1G3       5_75 0.9742306   83.77427 2.375159e-04   9.116291
6992      ACP6       1_73 0.9725331   25.56527 7.235610e-05   4.648193
6217      PELO       5_31 0.9674928   71.81942 2.022134e-04   8.426917
11257   CYP2A6      19_28 0.9650171   31.83853 8.941458e-05   5.407028
8853      FUT2      19_33 0.9632310  104.20907 2.921166e-04 -11.927107
233     NPC1L1       7_32 0.9616984   89.37061 2.501232e-04 -10.761931
3247      KDSR      18_35 0.9603219   24.58082 6.869632e-05  -4.526287
3562    ACVR1C       2_94 0.9455956   26.22522 7.216804e-05  -4.737778
6774      PKN3       9_66 0.9378574   47.47394 1.295724e-04  -6.620563
6387    TTC39B       9_13 0.9354672   22.88090 6.229051e-05  -4.287139
1114      SRRT       7_62 0.9333933   32.80410 8.910727e-05   5.547715
6953      USP1       1_39 0.8940409  252.56947 6.571410e-04  16.258211
3300  C10orf88      10_77 0.8876146   35.59929 9.195728e-05  -6.634448
9046   KLHDC7A       1_13 0.8395101   22.16088 5.414188e-05   4.124187
8918   CRACR2B       11_1 0.8307262   21.48944 5.195212e-05  -3.989585
9054   SPTY2D1      11_13 0.8249847   33.39049 8.016578e-05  -5.557123
5413     SYTL1       1_19 0.8166110   22.13862 5.261215e-05  -3.962854
8411      POP7       7_62 0.8146972   39.94144 9.469787e-05  -5.845258
6097      ALLC        2_2 0.8129463   27.99536 6.623205e-05   4.919066
3212     CCND2       12_4 0.8045730   22.61893 5.296121e-05  -4.065830
      num_eqtl
4433         1
11327        2
5561         1
3720         3
5542         2
5988         2
10612        3
1999         2
7405         1
1597         1
9365         1
8523         2
7036         1
4702         2
2092         1
6090         1
6992         2
6217         2
11257        1
8853         1
233          1
3247         1
3562         2
6774         1
6387         3
1114         2
6953         1
3300         2
9046         1
8918         1
9054         1
5413         1
8411         1
6097         1
3212         1

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
37b2a2c wesleycrouse 2022-05-29
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag    susie_pip       mu2          PVE          z
4433     PSRC1       1_67 1.000000e+00 1665.5199 4.846968e-03 -41.687336
5434     PSMA5       1_67 9.411618e-03 1206.9631 3.305815e-05 -35.413811
4560     SRPK2       7_65 0.000000e+00  542.1968 0.000000e+00  -1.462246
6966   ATXN7L2       1_67 1.102891e-02  365.1551 1.172007e-05 -19.242744
5561     ABCG8       2_27 9.999422e-01  311.8158 9.073887e-04 -20.293982
781        PVR      19_32 0.000000e+00  294.1122 0.000000e+00 -10.078252
6953      USP1       1_39 8.940409e-01  252.5695 6.571410e-04  16.258211
4315   ANGPTL3       1_39 1.169369e-01  248.3556 8.451734e-05  16.132229
3441      POLK       5_45 4.675801e-03  218.7219 2.976244e-06  17.515765
11327      HPR      16_38 1.000000e+00  208.6787 6.072931e-04 -17.240252
5429     SYPL2       1_67 1.954636e-02  197.5862 1.123939e-05 -14.147875
5375    GEMIN7      19_32 0.000000e+00  192.5889 0.000000e+00  10.943229
5988     FADS1      11_34 9.994871e-01  159.6734 4.644404e-04  12.825883
5238     NLRC5      16_31 9.580707e-02  158.2500 4.412265e-05  11.860211
9948   ANKDD1B       5_45 4.782518e-03  146.4283 2.037990e-06  15.066983
538     ZNF112      19_32 0.000000e+00  145.9980 0.000000e+00  10.386054
7950      FEN1      11_34 7.575672e-03  144.4306 3.184203e-06  12.072635
4505     FADS2      11_34 7.575672e-03  144.4306 3.184203e-06  12.072635
2465     APOA5      11_70 3.601944e-02  144.0485 1.509962e-05 -11.359910
4112     ATG4D       19_9 1.362244e-13  133.8377 5.305833e-17  -9.701891
      num_eqtl
4433         1
5434         2
4560         1
6966         2
5561         1
781          2
6953         1
4315         1
3441         1
11327        2
5429         2
5375         2
5988         2
5238         1
9948         2
538          1
7950         1
4505         1
2465         1
4112         1

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
      genename region_tag susie_pip        mu2          PVE          z
4433     PSRC1       1_67 1.0000000 1665.51987 0.0048469677 -41.687336
5561     ABCG8       2_27 0.9999422  311.81584 0.0009073887 -20.293982
6953      USP1       1_39 0.8940409  252.56947 0.0006571410  16.258211
11327      HPR      16_38 1.0000000  208.67866 0.0006072931 -17.240252
5988     FADS1      11_34 0.9994871  159.67335 0.0004644404  12.825883
8853      FUT2      19_33 0.9632310  104.20907 0.0002921166 -11.927107
2092       SP4       7_19 0.9755655  101.89697 0.0002892930  10.693191
233     NPC1L1       7_32 0.9616984   89.37061 0.0002501232 -10.761931
6090   CSNK1G3       5_75 0.9742306   83.77427 0.0002375159   9.116291
7036     INHBB       2_70 0.9823634   73.74261 0.0002108196  -8.518936
8523      TNKS       8_12 0.9844747   73.24908 0.0002098587  11.026034
10612   TRIM39       6_24 0.9986727   71.90981 0.0002089930   8.848422
9365      GAS6      13_62 0.9882298   71.05673 0.0002043541  -8.923688
7405     ABCA1       9_53 0.9954963   70.08104 0.0002030301   7.982017
6217      PELO       5_31 0.9674928   71.81942 0.0002022134   8.426917
3720    INSIG2       2_69 0.9997803   62.17379 0.0001808974  -9.364196
1597      PLTP      20_28 0.9882944   61.32685 0.0001763832  -5.732491
4702     DDX56       7_32 0.9758705   58.50014 0.0001661382   9.446271
5542     CNIH4      1_114 0.9996422   48.18514 0.0001401774   6.721857
6774      PKN3       9_66 0.9378574   47.47394 0.0001295724  -6.620563
      num_eqtl
4433         1
5561         1
6953         1
11327        2
5988         2
8853         1
2092         1
233          1
6090         1
7036         1
8523         2
10612        3
9365         1
7405         1
6217         2
3720         3
1597         1
4702         2
5542         2
6774         1

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag    susie_pip        mu2          PVE         z
4433     PSRC1       1_67 1.000000e+00 1665.51987 4.846968e-03 -41.68734
5434     PSMA5       1_67 9.411618e-03 1206.96307 3.305815e-05 -35.41381
5561     ABCG8       2_27 9.999422e-01  311.81584 9.073887e-04 -20.29398
6966   ATXN7L2       1_67 1.102891e-02  365.15507 1.172007e-05 -19.24274
3441      POLK       5_45 4.675801e-03  218.72189 2.976244e-06  17.51576
11327      HPR      16_38 1.000000e+00  208.67866 6.072931e-04 -17.24025
6953      USP1       1_39 8.940409e-01  252.56947 6.571410e-04  16.25821
4315   ANGPTL3       1_39 1.169369e-01  248.35557 8.451734e-05  16.13223
9948   ANKDD1B       5_45 4.782518e-03  146.42833 2.037990e-06  15.06698
5429     SYPL2       1_67 1.954636e-02  197.58621 1.123939e-05 -14.14787
1930   PPP1R37      19_32 0.000000e+00  124.08861 0.000000e+00 -12.89212
5988     FADS1      11_34 9.994871e-01  159.67335 4.644404e-04  12.82588
4505     FADS2      11_34 7.575672e-03  144.43061 3.184203e-06  12.07264
7950      FEN1      11_34 7.575672e-03  144.43061 3.184203e-06  12.07264
4111     YIPF2       19_9 2.861794e-09  127.10364 1.058563e-12  11.94206
8853      FUT2      19_33 9.632310e-01  104.20907 2.921166e-04 -11.92711
5238     NLRC5      16_31 9.580707e-02  158.24999 4.412265e-05  11.86021
1053      APOB       2_13 1.760336e-11   62.33368 3.193293e-15 -11.72589
2465     APOA5      11_70 3.601944e-02  144.04854 1.509962e-05 -11.35991
3873   SMARCA4       19_9 1.879041e-11   52.92021 2.893864e-15  11.14069
      num_eqtl
4433         1
5434         2
5561         1
6966         2
3441         1
11327        2
6953         1
4315         1
9948         2
5429         2
1930         2
5988         2
4505         1
7950         1
4111         1
8853         1
5238         1
1053         1
2465         1
3873         2

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
37b2a2c wesleycrouse 2022-05-29
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
37b2a2c wesleycrouse 2022-05-29
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.02115171
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag    susie_pip        mu2          PVE         z
4433     PSRC1       1_67 1.000000e+00 1665.51987 4.846968e-03 -41.68734
5434     PSMA5       1_67 9.411618e-03 1206.96307 3.305815e-05 -35.41381
5561     ABCG8       2_27 9.999422e-01  311.81584 9.073887e-04 -20.29398
6966   ATXN7L2       1_67 1.102891e-02  365.15507 1.172007e-05 -19.24274
3441      POLK       5_45 4.675801e-03  218.72189 2.976244e-06  17.51576
11327      HPR      16_38 1.000000e+00  208.67866 6.072931e-04 -17.24025
6953      USP1       1_39 8.940409e-01  252.56947 6.571410e-04  16.25821
4315   ANGPTL3       1_39 1.169369e-01  248.35557 8.451734e-05  16.13223
9948   ANKDD1B       5_45 4.782518e-03  146.42833 2.037990e-06  15.06698
5429     SYPL2       1_67 1.954636e-02  197.58621 1.123939e-05 -14.14787
1930   PPP1R37      19_32 0.000000e+00  124.08861 0.000000e+00 -12.89212
5988     FADS1      11_34 9.994871e-01  159.67335 4.644404e-04  12.82588
4505     FADS2      11_34 7.575672e-03  144.43061 3.184203e-06  12.07264
7950      FEN1      11_34 7.575672e-03  144.43061 3.184203e-06  12.07264
4111     YIPF2       19_9 2.861794e-09  127.10364 1.058563e-12  11.94206
8853      FUT2      19_33 9.632310e-01  104.20907 2.921166e-04 -11.92711
5238     NLRC5      16_31 9.580707e-02  158.24999 4.412265e-05  11.86021
1053      APOB       2_13 1.760336e-11   62.33368 3.193293e-15 -11.72589
2465     APOA5      11_70 3.601944e-02  144.04854 1.509962e-05 -11.35991
3873   SMARCA4       19_9 1.879041e-11   52.92021 2.893864e-15  11.14069
      num_eqtl
4433         1
5434         2
5561         1
6966         2
3441         1
11327        2
6953         1
4315         1
9948         2
5429         2
1930         2
5988         2
4505         1
7950         1
4111         1
8853         1
5238         1
1053         1
2465         1
3873         2

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip        mu2          PVE
14015     rs2495502       1_34 1.0000000  286.94798 8.350711e-04
56552     rs6663780      1_121 1.0000000  106.61595 3.102719e-04
68385     rs1042034       2_13 1.0000000  234.08427 6.812281e-04
68391      rs934197       2_13 1.0000000  415.33044 1.208688e-03
70121      rs780093       2_16 1.0000000  161.08154 4.687768e-04
365222   rs12208357      6_103 1.0000000  236.05251 6.869560e-04
401871  rs763798411       7_65 1.0000000 3590.16375 1.044803e-02
752593  rs113408695      17_39 1.0000000  143.73231 4.182873e-04
786009   rs73013176       19_9 1.0000000  237.86682 6.922360e-04
796150   rs62117204      19_32 1.0000000  825.53922 2.402470e-03
796168  rs111794050      19_32 1.0000000  765.09134 2.226556e-03
796201     rs814573      19_32 1.0000000 2209.78000 6.430864e-03
796203  rs113345881      19_32 1.0000000  773.92309 2.252258e-03
796206   rs12721109      19_32 1.0000000 1344.06611 3.911478e-03
1028397    rs964184      11_70 1.0000000  239.74592 6.977045e-04
56551      rs678615      1_121 1.0000000  121.55283 3.537410e-04
752619    rs8070232      17_39 1.0000000  145.49000 4.234025e-04
788819    rs2285626      19_15 1.0000000  247.57657 7.204931e-04
806478   rs34507316      20_13 1.0000000   78.76838 2.292304e-04
68336    rs11679386       2_12 1.0000000  128.40125 3.736711e-04
68394      rs548145       2_13 1.0000000  658.15088 1.915340e-03
68471     rs1848922       2_13 1.0000000  230.23024 6.700121e-04
499867  rs115478735       9_70 1.0000000  303.27403 8.825829e-04
1106367   rs1800961      20_28 1.0000000   71.00463 2.066365e-04
751677    rs1801689      17_38 1.0000000   79.96865 2.327234e-04
795864   rs73036721      19_30 1.0000000   57.55499 1.674956e-04
75799    rs72800939       2_28 1.0000000   55.32218 1.609977e-04
439673    rs4738679       8_45 1.0000000  107.00250 3.113969e-04
786047  rs137992968       19_9 1.0000000  112.96354 3.287446e-04
365406   rs56393506      6_104 1.0000000   94.56176 2.751920e-04
582496    rs4937122      11_77 0.9999999   77.20880 2.246917e-04
14026    rs10888896       1_34 0.9999999  132.03812 3.842551e-04
7471     rs79598313       1_18 0.9999997   46.42290 1.350991e-04
459334   rs13252684       8_83 0.9999992  218.82381 6.368168e-04
438278  rs140753685       8_42 0.9999981   54.48735 1.585679e-04
795909   rs62115478      19_30 0.9999960  180.32127 5.247658e-04
52932     rs2807848      1_112 0.9999942   54.96826 1.599668e-04
788844    rs3794991      19_15 0.9999926  212.42629 6.181948e-04
13985    rs11580527       1_34 0.9999830   87.90005 2.558009e-04
14033      rs471705       1_34 0.9999654  208.18967 6.058491e-04
346659    rs9496567       6_67 0.9999510   38.39385 1.117276e-04
317444   rs11376017       6_13 0.9998673   64.54030 1.877992e-04
786073    rs4804149      19_10 0.9998574   45.49392 1.323768e-04
56507     rs6586405      1_121 0.9998316   48.86383 1.421787e-04
365370  rs117733303      6_104 0.9998040  106.89562 3.110248e-04
806477    rs6075251      20_13 0.9997794   51.83753 1.508234e-04
786033    rs3745677       19_9 0.9997665   89.07621 2.591675e-04
538221   rs17875416      10_71 0.9992143   37.24195 1.082957e-04
786038    rs1569372       19_9 0.9991577  270.57732 7.867663e-04
786126     rs322144      19_10 0.9989897   54.91436 1.596494e-04
602922    rs7397189      12_36 0.9988925   33.53615 9.748824e-05
788803   rs12981966      19_15 0.9988161   91.58113 2.662023e-04
786030  rs147985405       19_9 0.9985028 2253.07632 6.547047e-03
428005    rs1495743       8_20 0.9975590   40.17639 1.166352e-04
788484    rs2302209      19_14 0.9967254   42.29646 1.226874e-04
278851    rs7701166       5_45 0.9961689   32.40538 9.394429e-05
321530     rs454182       6_22 0.9959069   31.82348 9.223309e-05
400801    rs3197597       7_61 0.9953507   32.12899 9.306652e-05
439641   rs56386732       8_45 0.9953404   34.22564 9.913878e-05
811431   rs76981217      20_24 0.9949357   35.11398 1.016706e-04
607288  rs148481241      12_44 0.9920670   27.01601 7.799783e-05
619506     rs653178      12_67 0.9920331   91.78187 2.649741e-04
321967    rs3130253       6_23 0.9892603   28.55381 8.220438e-05
1061496  rs12445804      16_12 0.9888001   33.24784 9.567363e-05
136943     rs709149        3_9 0.9849860   35.52833 1.018416e-04
401882    rs4997569       7_65 0.9845468 3614.52676 1.035638e-02
278792   rs10062361       5_45 0.9845134  200.66961 5.749414e-04
727330    rs4396539      16_37 0.9817509   26.90142 7.685937e-05
143953    rs9834932       3_24 0.9789839   64.97218 1.851072e-04
623595   rs11057830      12_76 0.9786612   25.41999 7.239824e-05
811382    rs6029132      20_24 0.9783469   38.74403 1.103108e-04
811435   rs73124945      20_24 0.9779200   32.09284 9.133387e-05
243404  rs114756490      4_100 0.9653552   25.82239 7.254441e-05
459323   rs79658059       8_83 0.9624570  261.06864 7.312339e-04
563573    rs6591179      11_36 0.9605897   25.88098 7.235008e-05
385033  rs141379002       7_33 0.9587086   25.11247 7.006422e-05
819436   rs62219001       21_2 0.9586942   25.72512 7.177244e-05
220675    rs1458038       4_54 0.9581252   51.34150 1.431565e-04
474581    rs1556516       9_16 0.9546131   71.80180 1.994725e-04
755752    rs4969183      17_44 0.9522692   47.99507 1.330077e-04
588405   rs11048034       12_9 0.9502287   34.89093 9.648527e-05
467386    rs7024888        9_3 0.9445567   25.79678 7.091103e-05
320991   rs75080831       6_19 0.9419955   55.73423 1.527887e-04
321938   rs28986304       6_23 0.9409079   42.12103 1.153364e-04
622460    rs1169300      12_74 0.9406884   66.77571 1.828035e-04
617599    rs1196760      12_63 0.9384395   25.44863 6.950099e-05
68388    rs78610189       2_13 0.9204789   58.47091 1.566296e-04
349395   rs12199109       6_73 0.9197359   24.41968 6.536171e-05
192300    rs5855544      3_120 0.9169182   23.61210 6.300653e-05
423682  rs117037226       8_11 0.9079424   23.67146 6.254658e-05
14016     rs1887552       1_34 0.9064705  330.15072 8.709360e-04
365216    rs9456502      6_103 0.9052669   32.60986 8.591043e-05
194087   rs36205397        4_4 0.8928419   37.54741 9.756069e-05
504817   rs10905277       10_8 0.8903127   27.59226 7.149081e-05
168125     rs189174       3_74 0.8885539   43.13609 1.115436e-04
723438     rs821840      16_31 0.8878515  154.88470 4.001927e-04
537932   rs12244851      10_70 0.8855768   35.72090 9.205957e-05
802123   rs74273659       20_5 0.8853401   24.39863 6.286310e-05
786114     rs322125      19_10 0.8846549   99.08897 2.551053e-04
576213  rs201912654      11_59 0.8681008   39.43582 9.962797e-05
788893   rs12984303      19_15 0.8653188   24.54159 6.180152e-05
814934   rs10641149      20_32 0.8639797   26.86314 6.754304e-05
196312    rs2002574       4_10 0.8616376   24.62082 6.173727e-05
1067484    rs763665      16_38 0.8595535  138.70304 3.469598e-04
119040    rs7569317      2_120 0.8587137   44.34050 1.108075e-04
68188     rs6531234       2_12 0.8549806   41.81365 1.040386e-04
826677    rs2835302      21_17 0.8525894   25.63456 6.360424e-05
799933   rs34003091      19_39 0.8508036  102.09391 2.527839e-04
786083   rs58495388      19_10 0.8494953   33.39436 8.255710e-05
482567   rs11144506       9_35 0.8443547   26.76504 6.576778e-05
811400    rs6102034      20_24 0.8439730   95.51954 2.346071e-04
838765  rs145678077      22_17 0.8424105   24.96982 6.121523e-05
355598    rs9321207       6_86 0.8410268   30.21196 7.394504e-05
582499   rs74612335      11_77 0.8387027   75.30263 1.837970e-04
278815    rs3843482       5_45 0.8346551  392.79571 9.541004e-04
810176   rs11167269      20_21 0.8283799   55.68354 1.342384e-04
934799  rs535137438       5_31 0.8262694   31.19598 7.501371e-05
752604    rs9303012      17_39 0.8106065  136.87257 3.228842e-04
532111   rs10882161      10_59 0.8104541   29.51025 6.960198e-05
806458   rs78348000      20_13 0.8042643   29.88160 6.993956e-05
                 z
14015    -6.292225
56552    -7.904745
68385   -16.573036
68391   -33.060888
70121    14.142603
365222  -12.282337
401871   -3.272149
752593  -12.768796
786009   16.232742
796150   44.672230
796168   33.599649
796201  -55.537887
796203   34.318568
796206   46.325818
1028397  16.661098
56551    -9.275730
752619    8.091491
788819   18.215134
806478    6.814661
68336   -11.909428
68394   -33.086010
68471   -25.412292
499867  -19.011790
1106367   8.896957
751677   -9.396430
795864    7.787947
75799     7.845728
439673   11.699924
786047   10.752566
365406  -14.088321
582496  -12.147947
14026   -11.893801
7471     -7.024638
459334  -11.964411
438278   -7.799241
795909   14.326186
52932     7.882775
788844   21.492060
13985    11.167216
14033   -16.262997
346659    6.340216
317444    8.507919
786073   -6.519414
56507    -8.960936
365370  -10.097959
806477    2.329832
786033   -9.335807
538221    6.266313
786038  -10.005506
786126   -3.946578
602922    5.770964
788803   -1.822895
786030   48.935175
428005    6.515969
788484   -6.636049
278851    2.484790
321530   -4.779053
400801    5.045242
439641    7.012272
811431   -7.692477
607288   -5.095452
619506  -11.050062
321967   -5.641451
1061496  -5.772374
136943    6.781974
401882    2.984117
278792  -20.320600
727330    5.232860
143953    8.481579
623595   -4.929635
811382    6.762459
811435    7.775426
243404   -4.988910
459323   16.022043
563573   -4.893333
385033   -4.896981
819436    4.948445
220675    7.417851
474581    8.992146
755752   -7.169275
588405   -6.133690
467386    5.055827
320991    7.906709
321938   -7.382502
622460   -8.685477
617599    4.866700
68388     8.385467
349395   -4.857045
192300    4.593724
423682   -4.192202
14016     9.868570
365216   -5.963991
194087   -6.159378
504817   -5.125802
168125   -6.767794
723438   13.475251
537932    4.883085
802123   -4.646762
786114    7.470403
576213    6.305597
788893   -4.516645
814934   -5.075761
196312    4.558284
1067484  11.285714
119040   -7.900653
68188     7.170830
826677    4.653743
799933   10.423688
786083   -5.531347
482567   -5.042667
811400   11.189979
838765    4.868601
355598   -5.401634
582499  -11.904831
278815  -25.034352
810176    7.795037
934799    5.067634
752604   -2.259115
532111    5.475649
806458   -5.220624

SNPs with largest effect sizes

#plot PIP vs effect size
#plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag    susie_pip      mu2          PVE
401882   rs4997569       7_65 9.845468e-01 3614.527 1.035638e-02
401874  rs10274607       7_65 6.325209e-02 3604.541 6.635064e-04
401877  rs13230660       7_65 1.688853e-01 3601.611 1.770146e-03
401889   rs6952534       7_65 6.446398e-03 3599.702 6.753112e-05
401888   rs4730069       7_65 1.571430e-03 3596.204 1.644597e-05
401871 rs763798411       7_65 1.000000e+00 3590.164 1.044803e-02
401881  rs10242713       7_65 4.310751e-05 3582.761 4.494601e-07
401884  rs10249965       7_65 4.706681e-07 3554.131 4.868200e-09
401896   rs1013016       7_65 0.000000e+00 3399.619 0.000000e+00
401921   rs8180737       7_65 0.000000e+00 3239.401 0.000000e+00
401914  rs17778396       7_65 0.000000e+00 3237.700 0.000000e+00
401915   rs2237621       7_65 0.000000e+00 3236.398 0.000000e+00
401948  rs10224564       7_65 0.000000e+00 3230.279 0.000000e+00
401886  rs71562637       7_65 0.000000e+00 3229.727 0.000000e+00
401933  rs10255779       7_65 0.000000e+00 3229.202 0.000000e+00
401950  rs78132606       7_65 0.000000e+00 3212.939 0.000000e+00
401953   rs4610671       7_65 0.000000e+00 3207.717 0.000000e+00
401955  rs12669532       7_65 0.000000e+00 3077.304 0.000000e+00
401912   rs2237618       7_65 0.000000e+00 3020.338 0.000000e+00
401957 rs118089279       7_65 0.000000e+00 2995.505 0.000000e+00
401944  rs73188303       7_65 0.000000e+00 2987.461 0.000000e+00
401954 rs560364150       7_65 0.000000e+00 2365.113 0.000000e+00
786030 rs147985405       19_9 9.985028e-01 2253.076 6.547047e-03
786025  rs73015020       19_9 8.776130e-04 2241.116 5.723844e-06
786023 rs138175288       19_9 4.130511e-04 2239.319 2.691783e-06
786026  rs77140532       19_9 6.163770e-05 2235.921 4.010728e-07
786024 rs138294113       19_9 1.015721e-04 2235.335 6.607504e-07
786028  rs10412048       19_9 1.268236e-05 2232.638 8.240220e-08
786027 rs112552009       19_9 3.078378e-05 2231.674 1.999278e-07
786022  rs55997232       19_9 1.032052e-08 2212.161 6.644138e-11
796201    rs814573      19_32 1.000000e+00 2209.780 6.430864e-03
401940  rs10261738       7_65 0.000000e+00 1952.112 0.000000e+00
786031  rs17248769       19_9 9.237338e-07 1697.035 4.562027e-09
786032   rs2228671       19_9 6.384010e-07 1685.967 3.132297e-09
796196  rs34878901      19_32 0.000000e+00 1535.402 0.000000e+00
401895 rs368909701       7_65 0.000000e+00 1475.542 0.000000e+00
873762  rs12740374       1_67 5.715194e-04 1453.724 2.417871e-06
873758   rs7528419       1_67 5.738889e-04 1449.705 2.421184e-06
873769    rs646776       1_67 4.879467e-04 1448.424 2.056782e-06
796193   rs8106922      19_32 0.000000e+00 1446.094 0.000000e+00
873768    rs629301       1_67 4.510593e-04 1444.703 1.896411e-06
873780    rs583104       1_67 4.916119e-04 1404.390 2.009234e-06
873783   rs4970836       1_67 4.826291e-04 1401.507 1.968471e-06
873785   rs1277930       1_67 4.929933e-04 1396.840 2.004048e-06
873786    rs599839       1_67 5.081917e-04 1395.916 2.064463e-06
873766   rs3832016       1_67 3.427818e-04 1357.009 1.353695e-06
873763    rs660240       1_67 3.417373e-04 1349.852 1.342452e-06
796206  rs12721109      19_32 1.000000e+00 1344.066 3.911478e-03
873781    rs602633       1_67 3.859416e-04 1328.810 1.492467e-06
796121  rs62120566      19_32 0.000000e+00 1324.002 0.000000e+00
                 z
401882   2.9841166
401874   2.8669582
401877   2.9479628
401889   2.8884240
401888   2.8658735
401871  -3.2721491
401881   2.8123983
401884   2.8497381
401896  -2.3988524
401921   2.8328454
401914   2.7980012
401915   2.8029605
401948   2.7911904
401886   2.6635936
401933   2.8135791
401950   2.7728082
401953   2.7249742
401955   2.7702573
401912   2.4663255
401957   2.6667208
401944   2.4217031
401954   1.8694582
786030  48.9351750
786025  48.7956295
786023  48.7806894
786026  48.7379874
786024  48.7519286
786028  48.7012269
786027  48.7051628
786022  48.5243103
796201 -55.5378874
401940   2.6665109
786031  40.8424908
786032  40.7026250
796196 -16.3492722
401895   0.7778883
873762  41.7934744
873758  41.7369129
873769 -41.7333995
796193 -15.6770531
873768 -41.6873361
873780 -41.0870961
873783 -41.0454951
873785 -40.9759931
873786 -40.9589874
873766 -40.3959842
873763 -40.2895814
796206  46.3258178
873781 -39.9564086
796121  33.7353904

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag  susie_pip        mu2          PVE
401871  rs763798411       7_65 1.00000000 3590.16375 0.0104480336
401882    rs4997569       7_65 0.98454680 3614.52676 0.0103563832
786030  rs147985405       19_9 0.99850277 2253.07632 0.0065470473
796201     rs814573      19_32 1.00000000 2209.78000 0.0064308642
796206   rs12721109      19_32 1.00000000 1344.06611 0.0039114784
796150   rs62117204      19_32 1.00000000  825.53922 0.0024024702
796203  rs113345881      19_32 1.00000000  773.92309 0.0022522578
796168  rs111794050      19_32 1.00000000  765.09134 0.0022265558
68394      rs548145       2_13 1.00000000  658.15088 0.0019153395
401877   rs13230660       7_65 0.16888534 3601.61076 0.0017701458
68391      rs934197       2_13 1.00000000  415.33044 0.0012086876
278815    rs3843482       5_45 0.83465505  392.79571 0.0009541004
499867  rs115478735       9_70 1.00000000  303.27403 0.0008825829
14016     rs1887552       1_34 0.90647049  330.15072 0.0008709360
14015     rs2495502       1_34 1.00000000  286.94798 0.0008350711
786038    rs1569372       19_9 0.99915766  270.57732 0.0007867663
459323   rs79658059       8_83 0.96245697  261.06864 0.0007312339
788819    rs2285626      19_15 1.00000000  247.57657 0.0007204931
1028397    rs964184      11_70 1.00000000  239.74592 0.0006977045
786009   rs73013176       19_9 1.00000000  237.86682 0.0006922360
365222   rs12208357      6_103 1.00000000  236.05251 0.0006869560
68385     rs1042034       2_13 1.00000000  234.08427 0.0006812281
68471     rs1848922       2_13 1.00000000  230.23024 0.0006700121
401874   rs10274607       7_65 0.06325209 3604.54102 0.0006635064
459334   rs13252684       8_83 0.99999917  218.82381 0.0006368168
788844    rs3794991      19_15 0.99999261  212.42629 0.0006181948
14033      rs471705       1_34 0.99996540  208.18967 0.0006058491
278792   rs10062361       5_45 0.98451344  200.66961 0.0005749414
795909   rs62115478      19_30 0.99999604  180.32127 0.0005247658
902867    rs6544713       2_27 0.76370020  223.73084 0.0004972434
70121      rs780093       2_16 1.00000000  161.08154 0.0004687768
752619    rs8070232      17_39 1.00000000  145.49000 0.0004234025
365236    rs3818678      6_103 0.75531753  191.74544 0.0004214780
752593  rs113408695      17_39 1.00000000  143.73231 0.0004182873
723438     rs821840      16_31 0.88785149  154.88470 0.0004001927
14026    rs10888896       1_34 0.99999991  132.03812 0.0003842551
68336    rs11679386       2_12 1.00000000  128.40125 0.0003736711
56551      rs678615      1_121 1.00000000  121.55283 0.0003537410
1067484    rs763665      16_38 0.85955352  138.70304 0.0003469598
303694   rs12657266       5_92 0.74973245  153.85722 0.0003356947
1067491  rs77303550      16_38 0.70740437  161.75974 0.0003330109
786047  rs137992968       19_9 0.99999998  112.96354 0.0003287446
752604    rs9303012      17_39 0.81060654  136.87257 0.0003228842
439673    rs4738679       8_45 0.99999998  107.00250 0.0003113969
365370  rs117733303      6_104 0.99980401  106.89562 0.0003110248
56552     rs6663780      1_121 1.00000000  106.61595 0.0003102719
459322    rs2980875       8_83 0.56911540  184.76261 0.0003060094
365406   rs56393506      6_104 0.99999997   94.56176 0.0002751920
788803   rs12981966      19_15 0.99881606   91.58113 0.0002662023
619506     rs653178      12_67 0.99203306   91.78187 0.0002649741
                 z
401871   -3.272149
401882    2.984117
786030   48.935175
796201  -55.537887
796206   46.325818
796150   44.672230
796203   34.318568
796168   33.599649
68394   -33.086010
401877    2.947963
68391   -33.060888
278815  -25.034352
499867  -19.011790
14016     9.868570
14015    -6.292225
786038  -10.005506
459323   16.022043
788819   18.215134
1028397  16.661098
786009   16.232742
365222  -12.282337
68385   -16.573036
68471   -25.412292
401874    2.866958
459334  -11.964411
788844   21.492060
14033   -16.262997
278792  -20.320600
795909   14.326186
902867   20.377651
70121    14.142603
752619    8.091491
365236    9.947776
752593  -12.768796
723438   13.475251
14026   -11.893801
68336   -11.909428
56551    -9.275730
1067484  11.285714
303694  -13.894754
1067491  13.732910
786047   10.752566
752604   -2.259115
439673   11.699924
365370  -10.097959
56552    -7.904745
459322   22.102229
365406  -14.088321
788803   -1.822895
619506  -11.050062

SNPs with largest z scores

#histogram of (abs) SNP z scores
hist(abs(ctwas_snp_res$z))

Version Author Date
37b2a2c wesleycrouse 2022-05-29
#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag    susie_pip       mu2          PVE
796201    rs814573      19_32 1.000000e+00 2209.7800 6.430864e-03
786030 rs147985405       19_9 9.985028e-01 2253.0763 6.547047e-03
786025  rs73015020       19_9 8.776130e-04 2241.1165 5.723844e-06
786023 rs138175288       19_9 4.130511e-04 2239.3190 2.691783e-06
786024 rs138294113       19_9 1.015721e-04 2235.3352 6.607504e-07
786026  rs77140532       19_9 6.163770e-05 2235.9215 4.010728e-07
786027 rs112552009       19_9 3.078378e-05 2231.6743 1.999278e-07
786028  rs10412048       19_9 1.268236e-05 2232.6384 8.240220e-08
786022  rs55997232       19_9 1.032052e-08 2212.1609 6.644138e-11
796206  rs12721109      19_32 1.000000e+00 1344.0661 3.911478e-03
796150  rs62117204      19_32 1.000000e+00  825.5392 2.402470e-03
796137   rs1551891      19_32 0.000000e+00  504.0960 0.000000e+00
873762  rs12740374       1_67 5.715194e-04 1453.7238 2.417871e-06
873758   rs7528419       1_67 5.738889e-04 1449.7052 2.421184e-06
873769    rs646776       1_67 4.879467e-04 1448.4237 2.056782e-06
873768    rs629301       1_67 4.510593e-04 1444.7028 1.896411e-06
873780    rs583104       1_67 4.916119e-04 1404.3904 2.009234e-06
873783   rs4970836       1_67 4.826291e-04 1401.5068 1.968471e-06
873785   rs1277930       1_67 4.929933e-04 1396.8404 2.004048e-06
873786    rs599839       1_67 5.081917e-04 1395.9161 2.064463e-06
786031  rs17248769       19_9 9.237338e-07 1697.0346 4.562027e-09
786032   rs2228671       19_9 6.384010e-07 1685.9670 3.132297e-09
873766   rs3832016       1_67 3.427818e-04 1357.0093 1.353695e-06
873763    rs660240       1_67 3.417373e-04 1349.8516 1.342452e-06
873781    rs602633       1_67 3.859416e-04 1328.8097 1.492467e-06
786021   rs9305020       19_9 4.107825e-14 1283.2110 1.534018e-16
796197    rs405509      19_32 0.000000e+00  976.7021 0.000000e+00
873749   rs4970834       1_67 7.924455e-04 1004.5286 2.316605e-06
796203 rs113345881      19_32 1.000000e+00  773.9231 2.252258e-03
796121  rs62120566      19_32 0.000000e+00 1324.0021 0.000000e+00
796168 rs111794050      19_32 1.000000e+00  765.0913 2.226556e-03
68394     rs548145       2_13 1.000000e+00  658.1509 1.915340e-03
796174   rs4802238      19_32 0.000000e+00  978.0785 0.000000e+00
68391     rs934197       2_13 1.000000e+00  415.3304 1.208688e-03
796115 rs188099946      19_32 0.000000e+00 1269.1443 0.000000e+00
796185   rs2972559      19_32 0.000000e+00 1300.6983 0.000000e+00
796109 rs201314191      19_32 0.000000e+00 1177.0284 0.000000e+00
873770   rs3902354       1_67 3.925383e-04  857.2104 9.792414e-07
873759  rs11102967       1_67 3.937012e-04  853.5963 9.780015e-07
873784   rs4970837       1_67 4.554832e-04  850.2094 1.126986e-06
796176  rs56394238      19_32 0.000000e+00  969.5494 0.000000e+00
796153   rs2965169      19_32 0.000000e+00  366.0566 0.000000e+00
796177   rs3021439      19_32 0.000000e+00  864.6665 0.000000e+00
873754    rs611917       1_67 3.712557e-04  804.3661 8.690549e-07
68421   rs12997242       2_13 4.916301e-11  383.7928 5.491053e-14
796184  rs12162222      19_32 0.000000e+00 1114.4719 0.000000e+00
68395     rs478588       2_13 1.290884e-10  606.1183 2.277010e-13
796114  rs62119327      19_32 0.000000e+00 1036.8444 0.000000e+00
68396   rs56350433       2_13 5.337064e-12  351.1642 5.454224e-15
68401   rs56079819       2_13 5.347722e-12  350.3647 5.452674e-15
               z
796201 -55.53789
786030  48.93517
786025  48.79563
786023  48.78069
786024  48.75193
786026  48.73799
786027  48.70516
786028  48.70123
786022  48.52431
796206  46.32582
796150  44.67223
796137  42.26680
873762  41.79347
873758  41.73691
873769 -41.73340
873768 -41.68734
873780 -41.08710
873783 -41.04550
873785 -40.97599
873786 -40.95899
786031  40.84249
786032  40.70262
873766 -40.39598
873763 -40.28958
873781 -39.95641
786021  34.84073
796197  34.63979
873749  34.62492
796203  34.31857
796121  33.73539
796168  33.59965
68394  -33.08601
796174 -33.07569
68391  -33.06089
796115  33.04407
796185 -32.28660
796109  32.06858
873770 -32.00383
873759 -31.93893
873784 -31.85593
796176 -31.55187
796153  31.38057
796177 -31.04506
873754  30.97527
68421  -30.81528
796184 -30.49671
68395  -30.48811
796114  30.41868
68396  -30.23229
68401  -30.19307

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 35
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    print(plotEnrich(GO_enrichment[[db]]))
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
37b2a2c wesleycrouse 2022-05-29
                                                                                            Term
1                                                   peptidyl-serine phosphorylation (GO:0018105)
2                                                      peptidyl-serine modification (GO:0018209)
3                                                                   lipid transport (GO:0006869)
4                                                             cholesterol transport (GO:0030301)
5                                                 intestinal cholesterol absorption (GO:0030299)
6                                             cellular response to sterol depletion (GO:0071501)
7                                        negative regulation of cholesterol storage (GO:0010887)
8                                                       intestinal lipid absorption (GO:0098856)
9                                                           protein phosphorylation (GO:0006468)
10                                                          cholesterol homeostasis (GO:0042632)
11                                                               sterol homeostasis (GO:0055092)
12                                                    cholesterol metabolic process (GO:0008203)
13                                                regulation of cholesterol storage (GO:0010885)
14 positive regulation of cyclin-dependent protein serine/threonine kinase activity (GO:0045737)
15                                               activin receptor signaling pathway (GO:0032924)
16                  positive regulation of cyclin-dependent protein kinase activity (GO:1904031)
17                                             negative regulation of lipid storage (GO:0010888)
18                                                                 sterol transport (GO:0015918)
19                                                               cholesterol efflux (GO:0033344)
20                                           regulation of DNA biosynthetic process (GO:2000278)
21                                                 regulation of cholesterol efflux (GO:0010874)
22                                           secondary alcohol biosynthetic process (GO:1902653)
23                                                 cholesterol biosynthetic process (GO:0006695)
24                                                      organic substance transport (GO:0071702)
25                                            cellular protein modification process (GO:0006464)
26                                                      sterol biosynthetic process (GO:0016126)
   Overlap Adjusted.P.value                                    Genes
1    5/156      0.002452825             CSNK1G3;TNKS;PKN3;PRKD2;GAS6
2    5/169      0.002452825             CSNK1G3;TNKS;PKN3;PRKD2;GAS6
3    4/109      0.005844710                  ABCA1;ABCG8;NPC1L1;PLTP
4     3/51      0.008094936                       ABCA1;ABCG8;NPC1L1
5      2/9      0.008094936                             ABCG8;NPC1L1
6      2/9      0.008094936                            INSIG2;NPC1L1
7     2/10      0.008663628                             ABCA1;TTC39B
8     2/11      0.009255099                             ABCG8;NPC1L1
9    6/496      0.010094391      CSNK1G3;ACVR1C;TNKS;PKN3;PRKD2;GAS6
10    3/71      0.011198147                       ABCA1;ABCG8;TTC39B
11    3/72      0.011198147                       ABCA1;ABCG8;TTC39B
12    3/77      0.012358375                      ABCA1;INSIG2;NPC1L1
13    2/16      0.012358375                             ABCA1;TTC39B
14    2/17      0.012991443                              CCND2;PSRC1
15    2/19      0.014897741                             ACVR1C;INHBB
16    2/20      0.014897741                              CCND2;PSRC1
17    2/20      0.014897741                             ABCA1;TTC39B
18    2/21      0.015534085                             ABCG8;NPC1L1
19    2/24      0.019278087                              ABCA1;ABCG8
20    2/29      0.026792989                               TNKS;PRKD2
21    2/33      0.031663312                              PLTP;TTC39B
22    2/34      0.031663312                            INSIG2;NPC1L1
23    2/35      0.031663312                            INSIG2;NPC1L1
24   3/136      0.031663312                         ABCA1;ABCG8;PLTP
25  7/1025      0.031663312 CSNK1G3;ACVR1C;TNKS;PKN3;PRKD2;FUT2;GAS6
26    2/38      0.035336186                            INSIG2;NPC1L1
[1] "GO_Cellular_Component_2021"

Version Author Date
37b2a2c wesleycrouse 2022-05-29
                                                  Term Overlap
1       high-density lipoprotein particle (GO:0034364)    2/19
2          endoplasmic reticulum membrane (GO:0005789)   6/712
3 serine/threonine protein kinase complex (GO:1902554)    2/37
  Adjusted.P.value                                Genes
1       0.02246907                             HPR;PLTP
2       0.02859981 ABCA1;CYP2A6;INSIG2;KDSR;FADS1;CNIH4
3       0.02859981                         ACVR1C;CCND2
[1] "GO_Molecular_Function_2021"
                                                   Term Overlap
1            cholesterol transfer activity (GO:0120020)    3/18
2                 sterol transfer activity (GO:0120015)    3/19
3 phosphatidylcholine transporter activity (GO:0008525)    2/18
  Adjusted.P.value            Genes
1     0.0002099901 ABCA1;ABCG8;PLTP
2     0.0002099901 ABCA1;ABCG8;PLTP
3     0.0134173287       ABCA1;PLTP
NPC1L1 gene(s) from the input list not found in DisGeNET CURATEDUSP1 gene(s) from the input list not found in DisGeNET CURATEDTNKS gene(s) from the input list not found in DisGeNET CURATEDHPR gene(s) from the input list not found in DisGeNET CURATEDPELO gene(s) from the input list not found in DisGeNET CURATEDPOP7 gene(s) from the input list not found in DisGeNET CURATEDTTC39B gene(s) from the input list not found in DisGeNET CURATEDC10orf88 gene(s) from the input list not found in DisGeNET CURATEDTRIM39 gene(s) from the input list not found in DisGeNET CURATEDACP6 gene(s) from the input list not found in DisGeNET CURATEDCRACR2B gene(s) from the input list not found in DisGeNET CURATEDSPTY2D1 gene(s) from the input list not found in DisGeNET CURATEDPSRC1 gene(s) from the input list not found in DisGeNET CURATEDSYTL1 gene(s) from the input list not found in DisGeNET CURATEDDDX56 gene(s) from the input list not found in DisGeNET CURATEDALLC gene(s) from the input list not found in DisGeNET CURATEDCSNK1G3 gene(s) from the input list not found in DisGeNET CURATEDCNIH4 gene(s) from the input list not found in DisGeNET CURATEDPKN3 gene(s) from the input list not found in DisGeNET CURATED
                         Description       FDR Ratio  BgRatio
5           Blood Platelet Disorders 0.0148423  2/16  16/9703
12              Colorectal Neoplasms 0.0148423  4/16 277/9703
30    Hypercholesterolemia, Familial 0.0148423  2/16  18/9703
46                   Opisthorchiasis 0.0148423  1/16   1/9703
53                   Tangier Disease 0.0148423  1/16   1/9703
69          Caliciviridae Infections 0.0148423  1/16   1/9703
75           Infections, Calicivirus 0.0148423  1/16   1/9703
92   Opisthorchis felineus Infection 0.0148423  1/16   1/9703
93  Opisthorchis viverrini Infection 0.0148423  1/16   1/9703
104        Hypoalphalipoproteinemias 0.0148423  1/16   1/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************

Version Author Date
37b2a2c wesleycrouse 2022-05-29
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
                    description size overlap          FDR       database
1       Coronary Artery Disease  153      10 4.522035e-07 disease_GLAD4U
2                 Dyslipidaemia   84       8 9.473591e-07 disease_GLAD4U
3              Coronary Disease  171       9 9.649467e-06 disease_GLAD4U
4              Arteriosclerosis  173       8 1.446192e-04 disease_GLAD4U
5           Myocardial Ischemia  180       8 1.569571e-04 disease_GLAD4U
6          Hypercholesterolemia   60       5 1.230632e-03 disease_GLAD4U
7   Arterial Occlusive Diseases  174       7 1.314713e-03 disease_GLAD4U
8                Heart Diseases  227       7 6.580586e-03 disease_GLAD4U
9       Cardiovascular Diseases  281       7 2.095676e-02 disease_GLAD4U
10 Fat digestion and absorption   23       3 2.095676e-02   pathway_KEGG
11              Hyperlipidemias   64       4 2.208182e-02 disease_GLAD4U
12       Cholesterol metabolism   31       3 4.337406e-02   pathway_KEGG
13            Vascular Diseases  233       6 4.508633e-02 disease_GLAD4U
                                                           userId
1  PSRC1;ABCG8;INSIG2;NPC1L1;TTC39B;ABCA1;SPTY2D1;FADS1;FUT2;PLTP
2               PSRC1;ABCG8;INSIG2;NPC1L1;TTC39B;ABCA1;FADS1;PLTP
3          PSRC1;ABCG8;INSIG2;NPC1L1;TTC39B;ABCA1;FADS1;FUT2;PLTP
4                  PSRC1;ABCG8;NPC1L1;TTC39B;ABCA1;FADS1;HPR;PLTP
5               PSRC1;ABCG8;INSIG2;NPC1L1;TTC39B;ABCA1;FADS1;PLTP
6                                  ABCG8;INSIG2;NPC1L1;ABCA1;PLTP
7                      PSRC1;ABCG8;NPC1L1;TTC39B;ABCA1;FADS1;PLTP
8                      PSRC1;ABCG8;NPC1L1;TTC39B;ABCA1;FADS1;PLTP
9                        PSRC1;ABCG8;TTC39B;ABCA1;FADS1;GAS6;PLTP
10                                             ABCG8;NPC1L1;ABCA1
11                                        ABCG8;NPC1L1;ABCA1;PLTP
12                                               ABCG8;ABCA1;PLTP
13                             PSRC1;ABCG8;NPC1L1;ABCA1;GAS6;PLTP

Sensitivity, specificity and precision for silver standard genes

library("readxl")

known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

unrelated_genes <- ctwas_gene_res$genename[!(ctwas_gene_res$genename %in% known_annotations)]

#number of genes in known annotations
print(length(known_annotations))
[1] 69
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 46
#assign ctwas, TWAS, and bystander genes
ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh]
novel_genes <- ctwas_genes[!(ctwas_genes %in% twas_genes)]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.562276
#number of ctwas genes
length(ctwas_genes)
[1] 35
#number of TWAS genes
length(twas_genes)
[1] 209
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip      mu2          PVE         z
9046  KLHDC7A       1_13 0.8395101 22.16088 5.414188e-05  4.124187
5413    SYTL1       1_19 0.8166110 22.13862 5.261215e-05 -3.962854
6387   TTC39B       9_13 0.9354672 22.88090 6.229051e-05 -4.287139
8918  CRACR2B       11_1 0.8307262 21.48944 5.195212e-05 -3.989585
3212    CCND2       12_4 0.8045730 22.61893 5.296121e-05 -4.065830
3247     KDSR      18_35 0.9603219 24.58082 6.869632e-05 -4.526287
     num_eqtl
9046        1
5413        1
6387        3
8918        1
3212        1
3247        1
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
     ctwas       TWAS 
0.08695652 0.27536232 
#specificity
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9970513 0.9806812 
#precision / PPV
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
     ctwas       TWAS 
0.17142857 0.09090909 
#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1))

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=2)

Version Author Date
37b2a2c wesleycrouse 2022-05-29

Sensitivity, specificity and precision for silver standard genes - bystanders only

This section first uses imputed silver standard genes to identify bystander genes within 1Mb. The bystander gene list is then subset to only genes with imputed expression in this analysis. Then, the ctwas and TWAS gene lists from this analysis are subset to only genes that are in the (subset) silver standard and bystander genes. These gene lists are then used to compute sensitivity, specificity and precision for ctwas and TWAS.

# library(biomaRt)
# library(GenomicRanges)
# 
# ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
# G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
# G_list <- G_list[G_list$hgnc_symbol!="",]
# G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
# G_list$start <- G_list$start_position
# G_list$end <- G_list$end_position
# G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)
# 
# #remove genes without imputed expression from gene lists
# known_annotations <- known_annotations[known_annotations %in% ctwas_gene_res$genename]
# 
# known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
# half_window <- 1000000
# known_annotations_positions$start <- known_annotations_positions$start_position - half_window
# known_annotations_positions$end <- known_annotations_positions$end_position + half_window
# known_annotations_positions$start[known_annotations_positions$start<1] <- 1
# known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)
# 
# bystanders <- findOverlaps(known_annotations_granges,G_list_granges)
# bystanders <- unique(subjectHits(bystanders))
# bystanders <- G_list$hgnc_symbol[bystanders]
# bystanders <- unique(bystanders[!(bystanders %in% known_annotations)])
# unrelated_genes <- bystanders
# 
# #save gene lists
# save(known_annotations, file=paste0(results_dir, "/known_annotations.Rd"))
# save(unrelated_genes, file=paste0(results_dir, "/bystanders.Rd"))

load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))

#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 46
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 539
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.562276
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 8
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 60
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
    ctwas      TWAS 
0.1304348 0.4130435 
#specificity / (1 - False Positive Rate)
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9962894 0.9239332 
#precision / PPV / (1 - False Discovery Rate)
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
    ctwas      TWAS 
0.7500000 0.3166667 
#store sensitivity and specificity calculations for plots
sensitivity_plot <- sensitivity
specificity_plot <- specificity

#precision / PPV by PIP bin
pip_range <- c(0.2, 0.4, 0.6, 0.8, 1)
precision_range <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes in PIP bin
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower & ctwas_gene_res_subset$susie_pip<pip_upper]
  
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste(c(0, pip_range[-length(pip_range)]), pip_range,sep=" - ")

barplot(precision_range, ylim=c(0,1), main="Precision by PIP Range", xlab="PIP Range", ylab="Precision")
abline(h=0.2, lty=2)
abline(h=0.4, lty=2)
abline(h=0.6, lty=2)
abline(h=0.8, lty=2)
barplot(precision_range, add=T, col="darkgrey")

Version Author Date
37b2a2c wesleycrouse 2022-05-29
#precision / PPV by PIP threshold
pip_range <- c(0.5, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
number_detected <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes using PIP threshold
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower]
  
  number_detected[i] <- length(ctwas_genes)
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste0(">= ", c(0, pip_range[-length(pip_range)]))

precision_range <- precision_range*100

precision_range <- c(precision_range, precision["TWAS"]*100)
names(precision_range)[4] <- "TWAS Bonferroni"
number_detected <- c(number_detected, length(twas_genes))

barplot(precision_range, ylim=c(0,100), main="Precision for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
37b2a2c wesleycrouse 2022-05-29
#false discovery rate by PIP threshold

barplot(100-precision_range, ylim=c(0,100), main="False Discovery Rate for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% Bystanders in Detected Genes")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(100-precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
37b2a2c wesleycrouse 2022-05-29
#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Version Author Date
37b2a2c wesleycrouse 2022-05-29

PIP Manhattan Plot

library(tibble)
library(tidyverse)
── Attaching packages ────────────────────────────────── tidyverse 1.3.0 ──
✔ tidyr   1.1.0     ✔ dplyr   1.0.9
✔ readr   1.4.0     ✔ stringr 1.4.0
✔ purrr   0.3.4     ✔ forcats 0.4.0
── Conflicts ───────────────────────────────────── tidyverse_conflicts() ──
✖ tidyr::extract() masks disgenet2r::extract()
✖ dplyr::filter()  masks stats::filter()
✖ dplyr::lag()     masks stats::lag()
full.gene.pip.summary <- data.frame(gene_name = ctwas_gene_res$genename, 
                                    gene_pip = ctwas_gene_res$susie_pip, 
                                    gene_id = ctwas_gene_res$id, 
                                    chr = as.integer(ctwas_gene_res$chrom),
                                    start = ctwas_gene_res$pos / 1e3,
                                    is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full.gene.pip.summary$is_highlight <- full.gene.pip.summary$gene_pip > 0.80

don <- full.gene.pip.summary %>% 
  
  # Compute chromosome size
  group_by(chr) %>% 
  summarise(chr_len=max(start)) %>% 
  
  # Calculate cumulative position of each chromosome
  mutate(tot=cumsum(chr_len)-chr_len) %>%
  dplyr::select(-chr_len) %>%
  
  # Add this info to the initial dataset
  left_join(full.gene.pip.summary, ., by=c("chr"="chr")) %>%
  
  # Add a cumulative position of each SNP
  arrange(chr, start) %>%
  mutate( BPcum=start+tot)

axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )

x_axis_labels <- axisdf$chr
x_axis_labels[seq(1,21,2)] <- ""

ggplot(don, aes(x=BPcum, y=gene_pip)) +
  
  # Show all points
  ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=2) +
  scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
  
  scale_x_continuous(label = x_axis_labels,
                     breaks = axisdf$center) +
  
  scale_y_continuous(expand = c(0, 0), limits = c(0,1.25), breaks=(1:5)*0.2, minor_breaks=(1:10)*0.1) + # remove space between plot area and x axis
  
  # Add highlighted points
  ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="orange", size=2) +
  
  # Add label using ggrepel to avoid overlapping
  ggrepel::geom_label_repel(data=subset(don, is_highlight==T), 
                            aes(label=gene_name), 
                            size=4,
                            min.segment.length = 0, 
                            label.size = NA,
                            fill = alpha(c("white"),0)) +
  
  # Custom the theme:
  theme_bw() +
  theme( 
    text = element_text(size = 14),
    legend.position="none",
    panel.border = element_blank(),
    panel.grid.major.x = element_blank(),
    panel.grid.minor.x = element_blank()
  ) +
  xlab("Chromosome") + 
  ylab("cTWAS PIP")
Warning: ggrepel: 12 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
37b2a2c wesleycrouse 2022-05-29

Load gene positions

#####load positions for all genes on autosomes in ENSEMBL, subset to only protein coding and lncRNA with non-missing HGNC symbol
# library(biomaRt)
# 
# ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
# G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype", "ensembl_gene_id", "strand"), values=1:22, mart=ensembl)
# save(G_list, file=paste0("G_list_", trait_id, ".RData"))
load(paste0("G_list_", trait_id, ".RData"))

G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]

G_list$tss <- G_list[,c("end_position", "start_position")][cbind(1:nrow(G_list),G_list$strand/2+1.5)]

Locus Plots - 1_67

library(ctwas)

Attaching package: 'ctwas'
The following object is masked _by_ '.GlobalEnv':

    z_snp
locus_plot <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS"){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  a$pos <- a$pos/1000000
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
  a$ifcausal <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  #legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  #legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  
  legend(min(a$pos), y= 1 ,c("Gene", "SNP","Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = c(22,21,19,19,19), col = c("black", "black", "salmon", "purple", colorsall[1]), cex=0.7, title.adj = 0)

  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"), frame.plot=FALSE, bg = colorsall[1], ylab = "-log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}

#locus_plot("1_67", label="TWAS")

Locus Plots - 5_45 - Thin

locus_plot4 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", xlim=NULL){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$pos <- a$pos/1000000
  
  if (!is.null(xlim)){
    
    if (is.na(xlim[1])){
      xlim[1] <- min(a$pos)
    }
    
    if (is.na(xlim[2])){
      xlim[2] <- max(a$pos)
    }
    
    a <- a[a$pos>=xlim[1] & a$pos<=xlim[2],,drop=F]
  }
  
  a$ifcausal <- 0
  focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
  a$ifcausal <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  #legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="", bty ='n', cex=0.6, title.adj = 0)
  #legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="", bty ='n', cex=0.6, title.adj = 0)
  
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1 ,c("Gene", "SNP","Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = c(22,21,19,19,19), col = c("black", "black", "salmon", "purple", colorsall[1]), cex=0.7, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"), frame.plot=FALSE, bg = colorsall[1], ylab = "-log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}
locus_plot6 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", xlim=NULL, return_table=F){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$pos[a$type=="gene"] <- G_list$start_position[match(sapply(a$id[a$type=="gene"], function(x){unlist(strsplit(x, "[.]"))[1]}) ,G_list$ensembl_gene_id)]
  a$pos <- a$pos/1000000
  
  if (!is.null(xlim)){
    
    if (is.na(xlim[1])){
      xlim[1] <- min(a$pos)
    }
    
    if (is.na(xlim[2])){
      xlim[2] <- max(a$pos)
    }
    
    a <- a[a$pos>=xlim[1] & a$pos<=xlim[2],,drop=F]
  }
  
  a$ifcausal <- 0
  focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
  a$ifcausal <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"), frame.plot=FALSE, bg = colorsall[1], ylab = "-log10(p value)", panel.first = grid(), ylim =c(-(1/6)*max(a$PVALUE), max(a$PVALUE)*1.2), xaxt = 'n')
  
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -(1/6)*max(a$PVALUE), nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))

  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"),frame.plot=FALSE, col = "white", ylim= c(0,1.1), ylab = "cTWAS PIP")
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1 ,c("Gene", "SNP","Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = c(22,21,19,19,19), col = c("black", "black", "salmon", "purple", colorsall[1]), cex=0.7, title.adj = 0)

  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  if (return_table){
    return(a)
  }
}
#locus_plot("5_45", label="TWAS")
#locus_plot4("5_45", label="TWAS",xlim=c(74.5,76.5))
locus_plot6("5_45", label="TWAS",xlim=c(75,76))

Locus Plots - 5_45 - Re-run

#locus_plot4("5_45", label="TWAS",rerun_ctwas = T,xlim=c(74.5,76.5))
locus_plot6("5_45", label="TWAS",rerun_ctwas = T,xlim=c(75,76))

Locus Plots - 8_12

#locus_plot4("8_12", label="cTWAS",xlim=c(NA, 9.6))
a <- locus_plot6("8_12", label="TWAS", xlim=c(NA, 9.7), return_table=T)

Version Author Date
37b2a2c wesleycrouse 2022-05-29
a[a$type=="gene",c("genename", "r2max", "susie_pip")]
     genename r2max susie_pip
8523     TNKS     1 0.9844747

Locus Plots - 19_33

locus_plot6("19_33", label="TWAS", xlim=c(NA,46.85))

Version Author Date
37b2a2c wesleycrouse 2022-05-29

Locus Plots - Exploring known annotations

This section produces locus plots for all silver standard genes with known annotations. The highlighted gene at each region is the silver standard gene. Note that if no genes in a region have PIP>0.8, then only the result using thinned SNPs is displayed.

locus_plot3 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", focus){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[which(a$genename==focus)]
  a$ifcausal <- as.numeric(a$id==focus)

  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}
load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))

for (i in 1:length(known_annotations)){
  focus <- known_annotations[i]
  region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]

  locus_plot3(region_tag, focus=focus)
  mtext(text=region_tag)

  print(focus)
  print(region_tag)
  print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
}

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "ITIH4"
[1] "3_36"
      genename region_tag   susie_pip       mu2          PVE          z
2847      RRP9       3_36 0.010229666  8.003397 2.382627e-07 -0.9533837
374      PARP3       3_36 0.010116980  7.897124 2.325092e-07  0.9395160
11145     ACY1       3_36 0.008123877  5.879794 1.390099e-07 -0.5115172
7239     POC1A       3_36 0.007613147  5.419844 1.200802e-07  0.6100943
11175     TWF2       3_36 0.011937882 10.222198 3.551337e-07 -1.4613887
7240     PPM1M       3_36 0.009371912  7.047848 1.922229e-07 -1.0722712
7910    GLYCTK       3_36 0.023802793 14.326546 9.924068e-07 -1.6364989
7242     WDR82       3_36 0.007939398  5.636058 1.302217e-07 -0.3708077
2853     DNAH1       3_36 0.026104730 17.576064 1.335246e-06  2.8547462
158       PHF7       3_36 0.012328912  9.485712 3.403416e-07  1.0713405
159     SEMA3G       3_36 0.012440537  9.180900 3.323875e-07 -0.4278002
2856     TNNC1       3_36 0.083853407 20.525792 5.008884e-06 -3.4591550
160      NISCH       3_36 0.007402376  5.070165 1.092229e-07  0.2448166
161      STAB1       3_36 0.100608902 21.483627 6.290198e-06  3.5822738
7913    NT5DC2       3_36 0.007418848  5.126980 1.106925e-07 -0.5772516
7198      GNL3       3_36 0.090131351 23.652502 6.204021e-06 -3.6426177
7199     PBRM1       3_36 0.009869192  6.926502 1.989371e-07 -0.8048656
239     GLT8D1       3_36 0.028586572 17.151877 1.426902e-06  2.5357598
2861      NEK4       3_36 0.033369098 18.387670 1.785630e-06 -2.8779547
482      ITIH1       3_36 0.087985322 27.488773 7.038593e-06  3.3942500
6908     ITIH3       3_36 0.125735562 30.937964 1.132062e-05  3.5156979
481      ITIH4       3_36 0.008194962  6.643605 1.584423e-07  0.8376918
11408   MUSTN1       3_36 0.010591578  8.862323 2.731672e-07  2.0802688
10774  TMEM110       3_36 0.008620387  6.903693 1.731923e-07  1.5371064
7197    SFMBT1       3_36 0.011365101  9.736936 3.220445e-07  2.0068207
7196     PRKCD       3_36 0.008294740  6.189174 1.494018e-07 -0.6434864
7195       TKT       3_36 0.019494115 13.479337 7.647022e-07  2.5841158
11411    DCP1A       3_36 0.008620793  6.470276 1.623268e-07  0.5186961
236       CHDH       3_36 0.007459156  5.054396 1.097184e-07  0.1444517
486     IL17RB       3_36 0.007671906  5.285422 1.180058e-07  0.1956411
2783     ACTR8       3_36 0.007672786  5.251434 1.172604e-07  0.3348511
      num_eqtl
2847         1
374          1
11145        1
7239         1
11175        2
7240         3
7910         1
7242         1
2853         2
158          1
159          1
2856         2
160          2
161          1
7913         2
7198         2
7199         1
239          2
2861         1
482          1
6908         1
481          3
11408        2
10774        2
7197         1
7196         1
7195         1
11411        2
236          1
486          2
2783         3

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "EPHX2"
[1] "8_27"
      genename region_tag   susie_pip       mu2          PVE           z
11070    PNMA2       8_27 0.007210084  4.935170 1.035530e-07 -0.21331428
1295    DPYSL2       8_27 0.007172225  4.883640 1.019337e-07  0.04738342
3371    ADRA1A       8_27 0.010304187  8.432238 2.528581e-07 -0.92728371
1869    TRIM35       8_27 0.017641548 13.709077 7.038258e-07  1.42379941
3374     EPHX2       8_27 0.007538279  5.370896 1.178255e-07 -0.24570047
3368       CLU       8_27 0.008760255  6.841913 1.744274e-07  0.59866869
7888    SCARA3       8_27 0.022911050 16.280816 1.085529e-06 -1.50201507
8297     ESCO2       8_27 0.011916698  9.857557 3.418578e-07  1.06980762
5835    CCDC25       8_27 0.014345244 11.677352 4.874977e-07  1.25261686
7889       PBK       8_27 0.007929879  5.866705 1.353883e-07  0.48335074
7890    SCARA5       8_27 0.007169718  4.880217 1.018266e-07 -0.01387977
9968     NUGGC       8_27 0.042577696 22.407873 2.776535e-06  2.06999161
      num_eqtl
11070        1
1295         1
3371         2
1869         2
3374         2
3368         1
7888         2
8297         2
5835         1
7889         1
7890         1
9968         2

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "ABCA1"
[1] "9_53"
     genename region_tag   susie_pip       mu2          PVE          z
7405    ABCA1       9_53 0.995496291 70.081041 2.030301e-04  7.9820172
2193     FKTN       9_53 0.001400037  7.313187 2.979658e-08 -0.7642857
1314  TMEM38B       9_53 0.002228321  7.821111 5.071851e-08  0.7019380
     num_eqtl
7405        1
2193        1
1314        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "LPL"
[1] "8_21"
       genename region_tag   susie_pip       mu2          PVE          z
5833 CSGALNACT1       8_21 0.008611592  5.812751 1.456751e-07 -0.8624862
1906     INTS10       8_21 0.011527565  7.749697 2.599816e-07 -0.5466864
8730        LPL       8_21 0.026841378 16.800989 1.312381e-06 -1.8179375
     num_eqtl
5833        1
1906        1
8730        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "APOA5"
[1] "11_70"
     genename region_tag   susie_pip        mu2          PVE            z
4866    BUD13      11_70 0.006681419  36.754149 7.146532e-07   4.11527976
3154    APOA1      11_70 0.004996811   6.626497 9.636009e-08   1.11150616
7893 PAFAH1B2      11_70 0.006429363   7.711100 1.442795e-07  -0.01722766
6002    SIDT2      11_70 0.004840711   5.458052 7.688951e-08   0.50104522
6003    TAGLN      11_70 0.005384250  18.435519 2.888690e-07  -1.55444774
6781    PCSK7      11_70 0.014893056  16.372939 7.096280e-07   0.97935688
7740   RNF214      11_70 0.005593633   6.558001 1.067544e-07  -0.52468931
2466   CEP164      11_70 0.005455634   5.753583 9.134903e-08  -0.30209785
9693    BACE1      11_70 0.005233417  20.995015 3.197583e-07  -4.13706265
4879    FXYD2      11_70 0.005474808   6.112959 9.739590e-08  -0.37435241
2465    APOA5      11_70 0.036019439 144.048541 1.509962e-05 -11.35991043
     num_eqtl
4866        1
3154        2
7893        2
6002        1
6003        1
6781        1
7740        1
2466        2
9693        1
4879        2
2465        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "MTTP"
[1] "4_66"
      genename region_tag   susie_pip       mu2          PVE          z
7975    TSPAN5       4_66 0.016776397 11.125746 5.431855e-07 -1.2321573
6088     EIF4E       4_66 0.010897316  6.926124 2.196494e-07  0.9082871
7217    METAP1       4_66 0.008980055  5.083853 1.328594e-07 -0.1831346
8489      ADH6       4_66 0.011444259  7.558809 2.517453e-07  0.7334699
10084    ADH1B       4_66 0.016886902 11.259415 5.533324e-07 -1.1153042
11178    ADH1C       4_66 0.157537466 31.867251 1.460995e-05 -3.1932254
10026     ADH7       4_66 0.010627336 10.487409 3.243493e-07  1.9684512
5053      MTTP       4_66 0.012587091  7.995964 2.928981e-07 -0.7972018
5684   TRMT10A       4_66 0.013138101  9.083605 3.473051e-07 -1.1240076
      num_eqtl
7975         2
6088         1
7217         1
8489         2
10084        1
11178        3
10026        2
5053         1
5684         1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "DHCR7"
[1] "11_40"
          genename region_tag  susie_pip       mu2          PVE
8480         DHCR7      11_40 0.02034638  6.089805 3.605877e-07
8479       NADSYN1      11_40 0.02117255  6.481546 3.993670e-07
11157     KRTAP5-7      11_40 0.06541827 17.670192 3.364036e-06
11244     KRTAP5-9      11_40 0.01956919  5.706607 3.249908e-07
10606    KRTAP5-10      11_40 0.02822882  9.316914 7.653940e-07
6609       FAM86C1      11_40 0.02081331  6.313096 3.823876e-07
11233 RP11-849H4.2      11_40 0.01838102  5.090569 2.723054e-07
4857        RNF121      11_40 0.09418928 21.347931 5.851640e-06
4849        IL18BP      11_40 0.01799468  4.881721 2.556451e-07
4850         NUMA1      11_40 0.01930697  5.573909 3.131802e-07
9465        LRTOMT      11_40 0.01997651  5.909283 3.435379e-07
2462         FOLR3      11_40 0.01985300  5.848262 3.378883e-07
7448        INPPL1      11_40 0.01802148  4.896349 2.567929e-07
6896          CLPB      11_40 0.02589232  8.464376 6.378025e-07
                z num_eqtl
8480   0.65130261        1
8479   0.72652201        1
11157  2.05073754        1
11244  0.41678412        1
10606 -1.13422621        2
6609   0.45043836        1
11233 -0.32070634        1
4857   2.08692398        2
4849  -0.10323637        2
4850   0.44145029        1
9465  -0.65197454        1
2462  -0.63775295        1
7448   0.05040952        1
6896   1.03637029        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "LIPA"
[1] "10_57"
      genename region_tag  susie_pip       mu2          PVE          z
3295     IFIT2      10_57 0.01244485  6.772284 2.452704e-07 -0.6053359
3294     IFIT3      10_57 0.01072851  5.317163 1.660121e-07 -0.3100521
9629     IFIT1      10_57 0.02584894 13.959459 1.050103e-06  1.4103375
2253      LIPA      10_57 0.01659488  9.597399 4.634980e-07  1.0134814
6224     IFIT5      10_57 0.01049978  5.105953 1.560190e-07  0.2173750
6225     PANK1      10_57 0.01735553 10.037836 5.069887e-07 -1.6480922
4958    KIF20B      10_57 0.01516732  8.713891 3.846284e-07 -1.5022578
10517   IFIT1B      10_57 0.01224748  6.615500 2.357923e-07 -0.6164140
      num_eqtl
3295         1
3294         1
9629         2
2253         1
6224         3
6225         1
4958         1
10517        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "LDLRAP1"
[1] "1_18"
      genename region_tag   susie_pip        mu2          PVE           z
3127      SYF2       1_18 0.008689115   6.648315 1.681154e-07   0.7426202
9755       RHD       1_18 0.007988959  43.718578 1.016428e-06  -6.4603360
9428   TMEM50A       1_18 0.073457312  97.081812 2.075359e-05  10.0815103
9910      RHCE       1_18 0.008582534  64.364405 1.607613e-06   8.1134433
10536   TMEM57       1_18 0.373212450 100.396527 1.090423e-04 -10.2641908
6567   LDLRAP1       1_18 0.008755669   8.877498 2.262040e-07   1.9336337
3130    MAN1C1       1_18 0.008026599   6.032830 1.409201e-07  -1.0646970
6929   SELENON       1_18 0.035337906  19.813337 2.037599e-06  -2.1819486
3129    MTFR1L       1_18 0.014809766  12.539373 5.404361e-07   2.2702594
8691    PDIK1L       1_18 0.041247787  23.240518 2.789760e-06   3.2275633
10174  FAM110D       1_18 0.008579484   6.242879 1.558714e-07   0.6465781
5404    CNKSR1       1_18 0.014526947  12.381267 5.234314e-07   2.3608913
4098     CEP85       1_18 0.015735135  14.783921 6.769871e-07   2.3661103
5403  SH3BGRL3       1_18 0.025771966  18.358029 1.376873e-06  -2.8355236
8060      CD52       1_18 0.018218346  13.627790 7.225280e-07  -1.2648216
6577    UBXN11       1_18 0.018218346  13.627790 7.225280e-07  -1.2648216
8786     AIM1L       1_18 0.007896751   5.498030 1.263502e-07   0.4474766
8784    ZNF683       1_18 0.007625848   5.392038 1.196634e-07   0.5504045
3133     DHDDS       1_18 0.012358623  13.462758 4.841996e-07   2.6796586
10437    HMGN2       1_18 0.007801407   5.588789 1.268852e-07   0.5156134
3132   RPS6KA1       1_18 0.007542194   5.209533 1.143449e-07   0.3917090
525       PIGV       1_18 0.008400965  10.993131 2.687639e-07  -2.2722478
10532  ZDHHC18       1_18 0.007940446   8.641716 1.996941e-07   1.8553085
5412      GPN2       1_18 0.009823503  13.691948 3.914281e-07   2.5894296
11214    TRNP1       1_18 0.039111311  19.123130 2.176615e-06   1.1357927
      num_eqtl
3127         1
9755         1
9428         1
9910         2
10536        1
6567         2
3130         1
6929         1
3129         2
8691         1
10174        1
5404         2
4098         1
5403         1
8060         1
6577         1
8786         1
8784         1
3133         2
10437        1
3132         1
525          2
10532        1
5412         1
11214        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "ANGPTL3"
[1] "1_39"
     genename region_tag  susie_pip        mu2          PVE          z
6952    TM2D1       1_39 0.06436674  22.812799 4.273271e-06  2.1432487
4314    KANK4       1_39 0.01036083   5.063248 1.526667e-07  0.5123038
6953     USP1       1_39 0.89404087 252.569473 6.571410e-04 16.2582110
4315  ANGPTL3       1_39 0.11693691 248.355573 8.451734e-05 16.1322287
3024    DOCK7       1_39 0.01160113  24.241026 8.184112e-07  4.4594815
3732    ATG4C       1_39 0.02926797  80.969082 6.896554e-06 -8.6477262
     num_eqtl
6952        1
4314        1
6953        1
4315        1
3024        1
3732        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "APOB"
[1] "2_13"
     genename region_tag    susie_pip      mu2          PVE         z
1053     APOB       2_13 1.760336e-11 62.33368 3.193293e-15 -11.72589
     num_eqtl
1053        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "APOE"
[1] "19_32"
      genename region_tag susie_pip        mu2 PVE           z num_eqtl
6717    ZNF233      19_32         0 114.741871   0  -9.2725820        2
6718    ZNF235      19_32         0 105.705005   0  -9.2122953        1
538     ZNF112      19_32         0 145.997950   0  10.3860543        1
11373   ZNF285      19_32         0  14.814234   0   0.9962471        2
11479   ZNF229      19_32         0  90.836819   0  10.9591492        2
7755    ZNF180      19_32         0  28.785261   0  -3.9159702        3
781        PVR      19_32         0 294.112183   0 -10.0782525        2
9718  CEACAM19      19_32         0  64.415235   0   9.4554813        2
9782      BCAM      19_32         0 109.428227   0   4.6421318        1
4047   NECTIN2      19_32         0 108.430839   0   6.2443536        2
4049    TOMM40      19_32         0  25.408808   0  -1.4020544        1
4048      APOE      19_32         0  47.756033   0  -2.0092826        1
11016    APOC2      19_32         0  56.914792   0  -9.1630690        2
8225    ZNF296      19_32         0 111.344431   0   5.4593536        1
5375    GEMIN7      19_32         0 192.588938   0  10.9432287        2
104      MARK4      19_32         0  24.060342   0  -2.2463768        1
1930   PPP1R37      19_32         0 124.088611   0 -12.8921201        2
109   TRAPPC6A      19_32         0  30.326228   0   1.8816459        1
9959   BLOC1S3      19_32         0  11.073118   0   2.3014119        1
11497  EXOC3L2      19_32         0  25.546204   0  -1.3436507        1
1933       CKM      19_32         0  15.812708   0  -1.5738464        1
1937     ERCC2      19_32         0  11.387101   0   2.3297330        2
3143    CD3EAP      19_32         0  27.048442   0  -3.0806361        1
3737      FOSB      19_32         0  18.843819   0  -2.3658041        1
196      ERCC1      19_32         0  14.616099   0  -0.2091619        1
10800    PPM1N      19_32         0  31.252331   0   5.4808308        1
3740      RTN2      19_32         0  31.704431   0   5.5300783        1
3741      VASP      19_32         0  12.801289   0   1.8957985        1
3738      OPA3      19_32         0  13.720403   0  -0.4654901        2
1942      KLC3      19_32         0  10.281304   0   1.7718715        1
10801 CEACAM16      19_32         0   7.467418   0   1.8740580        1
11372    APOC4      19_32         0  48.858022   0   8.0662459        2
10892   IGSF23      19_32         0  12.680189   0   1.9670520        1
8895      GPR4      19_32         0  65.929098   0  -3.5802828        1
3739    SNRPD2      19_32         0   9.998395   0   1.0366923        1
189      QPCTL      19_32         0  24.512871   0  -2.0303487        2
1949      DMPK      19_32         0  20.465857   0  -1.8090245        1
9633      DMWD      19_32         0  19.545408   0  -1.7547946        1
3742     SYMPK      19_32         0   4.893028   0  -0.0525717        1
8798     MYPOP      19_32         0  21.162302   0   1.8490001        1
1963    CCDC61      19_32         0  21.029796   0   1.8414612        2
3628     HIF3A      19_32         0  20.353083   0  -1.8024680        2
190      PPP5C      19_32         0  13.399291   0   1.3374649        1
8068     CCDC8      19_32         0   7.370076   0   0.7230949        2
9259    PNMAL1      19_32         0  20.576100   0  -1.8154111        4
10636   PNMAL2      19_32         0   5.234058   0  -0.2727077        1
10987   PPP5D1      19_32         0   6.375206   0  -0.5603345        1
6722     CALM3      19_32         0  54.390437   0   3.2242313        2

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "NPC1L1"
[1] "7_32"
     genename region_tag   susie_pip       mu2          PVE           z
7325   STK17A       7_32 0.007487660  5.398269 1.176308e-07   0.5439997
2177     COA1       7_32 0.013709996  9.852797 3.931128e-07  -0.7042755
2178    BLVRA       7_32 0.007370469  5.141380 1.102796e-07   0.4660052
541    MRPS24       7_32 0.008432916  6.239762 1.531320e-07   0.3827818
2179    URGCP       7_32 0.008628634  6.521935 1.637717e-07  -0.6697027
927    UBE2D4       7_32 0.011337508  9.431167 3.111740e-07   1.1906995
4704     DBNL       7_32 0.009734694  6.890648 1.952103e-07   0.1009981
3488     POLM       7_32 0.007294479  5.186619 1.101029e-07   0.5460441
2183    AEBP1       7_32 0.026169629 20.294222 1.545576e-06  -2.6280619
2184    POLD2       7_32 0.016282595 12.990469 6.155577e-07  -1.4227083
2185     MYL7       7_32 0.008941732  6.642567 1.728534e-07   0.4396483
2186      GCK       7_32 0.007343053  5.099639 1.089774e-07  -0.2515709
500    CAMK2B       7_32 0.013276445  9.006639 3.479885e-07  -1.5162371
233    NPC1L1       7_32 0.961698421 89.370614 2.501232e-04 -10.7619311
4702    DDX56       7_32 0.975870458 58.500144 1.661382e-04   9.4462712
6615    TMED4       7_32 0.013002936 45.160444 1.708913e-06   7.5475920
2101     OGDH       7_32 0.009579444 19.399595 5.408206e-07   0.1499623
     num_eqtl
7325        1
2177        2
2178        1
541         1
2179        2
927         1
4704        2
3488        3
2183        1
2184        2
2185        1
2186        1
500         2
233         1
4702        2
6615        2
2101        2

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "SOAT1"
[1] "1_89"
      genename region_tag  susie_pip       mu2          PVE           z
5475   FAM163A       1_89 0.01075847  4.883579 1.529005e-07 -0.07283498
3000    FAM20B       1_89 0.01157147  5.597767 1.885053e-07  0.42412943
9689     TOR3A       1_89 0.01289334  6.658679 2.498469e-07 -0.64642141
5471      ABL2       1_89 0.01076073  4.885634 1.529969e-07 -0.04638378
488      SOAT1       1_89 0.01077689  4.900351 1.536884e-07 -0.14955596
8115  TOR1AIP2       1_89 0.01376345  7.299475 2.923743e-07  0.78824459
5474  TOR1AIP1       1_89 0.01078574  4.908391 1.540669e-07 -0.06998621
4638    CEP350       1_89 0.05062312 20.158181 2.969754e-06  2.27414775
3008     QSOX1       1_89 0.04156773 18.197972 2.201403e-06 -1.74016201
3408      LHX4       1_89 0.01269843  6.509239 2.405474e-07 -0.58114341
10985    ACBD6       1_89 0.01269203  6.504297 2.402436e-07 -0.61546219
5472      XPR1       1_89 0.03030695 15.069163 1.329082e-06  1.57571425
6242       MR1       1_89 0.01166548  5.677110 1.927304e-07  0.40422440
      num_eqtl
5475         1
3000         2
9689         1
5471         1
488          1
8115         1
5474         1
4638         2
3008         2
3408         1
10985        2
5472         2
6242         1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "MYLIP"
[1] "6_13"
     genename region_tag   susie_pip       mu2          PVE         z
400    DTNBP1       6_13 0.028905307 18.976664 1.596312e-06 1.8923854
124     MYLIP       6_13 0.006393401 39.193237 7.292281e-07 6.1101946
4815     GMPR       6_13 0.011629368  9.804844 3.318311e-07 0.2573808
     num_eqtl
400         1
124         2
4815        2

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "OSBPL5"
[1] "11_2"
      genename region_tag   susie_pip       mu2          PVE          z
926     TOLLIP       11_2 0.006876070 11.220609 2.245314e-07 -1.1132790
9283      MOB2       11_2 0.024317179 23.215698 1.642916e-06  2.2732312
9505     DUSP8       11_2 0.005863698  9.672254 1.650515e-07  1.2015225
10705 KRTAP5-1       11_2 0.011871204 16.696892 5.768338e-07 -1.7341826
11154  IFITM10       11_2 0.004400441  7.159198 9.168132e-08 -0.8538633
3146      CTSD       11_2 0.007331527 11.862112 2.530910e-07  1.2201456
4092     TNNI2       11_2 0.004030858  6.106059 7.162734e-08  0.4977574
11498    PRR33       11_2 0.003636052  6.425336 6.799018e-08  1.2367544
4091     TNNT3       11_2 0.003643583  5.107262 5.415482e-08 -0.1271889
7739      IGF2       11_2 0.003712763  5.245838 5.668033e-08  0.1447958
9430     ASCL2       11_2 0.005508095  8.818255 1.413528e-07 -0.8044614
2490  C11orf21       11_2 0.004997302  8.017693 1.166018e-07 -0.7150719
9483     TSSC4       11_2 0.004999371  8.262778 1.202158e-07 -0.9083240
9230    PHLDA2       11_2 0.042407146 28.298257 3.492360e-06 -2.5765310
10684   NAP1L4       11_2 0.023951373 23.169742 1.614998e-06 -2.2381727
264     OSBPL5       11_2 0.010265421 15.051107 4.496406e-07 -1.6475511
67      ZNF195       11_2 0.006790631 11.123513 2.198226e-07  1.1809650
9121        TH       11_2 0.020045633 22.167178 1.293155e-06  2.0988645
10704 KRTAP5-6       11_2 0.003579598  4.941174 5.147363e-08  0.1958622
      num_eqtl
926          2
9283         2
9505         1
10705        1
11154        1
3146         2
4092         1
11498        2
4091         2
7739         1
9430         1
2490         2
9483         1
9230         1
10684        1
264          1
67           2
9121         1
10704        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "SCARB1"
[1] "12_76"
     genename region_tag  susie_pip      mu2          PVE          z
783    SCARB1      12_76 0.01090677 6.673639 2.118260e-07 -1.3579091
6067      UBC      12_76 0.01632650 8.974302 4.263969e-07  0.9059691
989      AACS      12_76 0.01059134 4.947741 1.525029e-07 -0.1677513
     num_eqtl
783         1
6067        1
989         1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "VDAC3"
[1] "8_37"
     genename region_tag  susie_pip       mu2          PVE          z
726     AP3M2       8_37 0.01122906  5.030523 1.643906e-07 -0.1640405
1883     PLAT       8_37 0.01125718  5.055046 1.656057e-07  0.2157926
916     VDAC3       8_37 0.02428801 12.611651 8.914237e-07 -1.3606126
7956  SLC20A2       8_37 0.01116380  4.973379 1.615786e-07 -0.1602583
8800   SMIM19       8_37 0.01550915  8.199071 3.700606e-07 -0.9418962
4214    THAP1       8_37 0.01122806  5.029646 1.643472e-07  0.2765875
7904    HOOK3       8_37 0.04250910 18.147567 2.245022e-06  1.9222889
3375   RNF170       8_37 0.04250910 18.147567 2.245022e-06  1.9222889
     num_eqtl
726         2
1883        1
916         1
7956        1
8800        1
4214        2
7904        1
3375        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "LRP2"
[1] "2_103"
      genename region_tag  susie_pip       mu2          PVE           z
985       LRP2      2_103 0.02578853  7.599692 5.703518e-07  0.79845416
7037      BBS5      2_103 0.02724318  8.141047 6.454437e-07  0.88589081
11043   KLHL41      2_103 0.02033466  5.259061 3.112185e-07 -0.32742036
4983   FASTKD1      2_103 0.02985878  9.046216 7.860665e-07  0.94743244
4982      PPIG      2_103 0.03419571 10.387178 1.033688e-06 -1.40458148
6339   CCDC173      2_103 0.03283831  9.986361 9.543515e-07 -1.44045674
10748   KLHL23      2_103 0.05299430 14.738542 2.273024e-06  1.90247786
5600  PHOSPHO2      2_103 0.02043823  5.309053 3.157771e-07  0.29104367
4980       SSB      2_103 0.03584526 10.853652 1.132213e-06  1.22773041
4979    METTL5      2_103 0.01962051  4.907303 2.802035e-07  0.11571328
5599      UBR3      2_103 0.01962328  4.908695 2.803225e-07  0.07450539
      num_eqtl
985          1
7037         1
11043        1
4983         1
4982         2
6339         2
10748        2
5600         1
4980         1
4979         1
5599         1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "CETP"
[1] "16_31"
      genename region_tag   susie_pip        mu2          PVE          z
1124     GNAO1      16_31 0.003703611   6.122119 6.598534e-08 -0.5287206
6691      AMFR      16_31 0.004483564   7.445231 9.714532e-08 -0.1575098
7705    NUDT21      16_31 0.003746693   6.390125 6.967512e-08 -0.6747743
3680      BBS2      16_31 0.025236114  23.450429 1.722240e-06 -1.9263988
1122       MT3      16_31 0.003391651   5.265497 5.197216e-08  0.2341288
8089      MT1E      16_31 0.003507800   5.675571 5.793817e-08  0.5732896
10677     MT1M      16_31 0.004980766  11.981588 1.736724e-07  2.0216456
10675     MT1A      16_31 0.005261831  11.126872 1.703846e-07  1.5829980
10351     MT1F      16_31 0.133625135  38.089450 1.481198e-05 -2.7354541
9777      MT1X      16_31 0.003240088   5.043880 4.756000e-08 -0.4099722
1740     NUP93      16_31 0.023942147  24.293017 1.692641e-06  2.2770780
438    HERPUD1      16_31 0.007015346  24.280843 4.957163e-07  3.8389063
1120      CETP      16_31 0.061398998 119.887004 2.142169e-05 10.0796427
5238     NLRC5      16_31 0.095807071 158.249994 4.412265e-05 11.8602110
5237     CPNE2      16_31 0.003444422   5.467088 5.480153e-08  0.2383750
8465   FAM192A      16_31 0.003596836   6.201846 6.491752e-08 -0.7860456
6694    RSPRY1      16_31 0.004996669  11.130083 1.618450e-07 -1.8323801
1745      PLLP      16_31 0.020406298  25.167952 1.494626e-06 -2.6585007
81      CX3CL1      16_31 0.003508527   6.131284 6.260320e-08 -0.8286220
1747     CCL17      16_31 0.005190760   8.972136 1.355336e-07  0.7431888
52     CIAPIN1      16_31 0.013956368  20.009132 8.126826e-07 -2.0356089
1154      COQ9      16_31 0.005133973   9.290544 1.388082e-07 -0.9549661
3684      DOK4      16_31 0.004247457   7.889727 9.752394e-08 -0.9956520
4626  CCDC102A      16_31 0.003382904   5.374869 5.291489e-08  0.4043649
10672   ADGRG1      16_31 0.009725940  15.599463 4.415313e-07 -1.5429173
6684     CES5A      16_31 0.003286565   5.443327 5.206273e-08 -0.6790309
9341    ADGRG3      16_31 0.005665004  10.341746 1.704961e-07 -1.0805254
5239    KATNB1      16_31 0.016564308  20.813991 1.003342e-06 -1.8723683
5240     KIFC3      16_31 0.030743888  26.851673 2.402428e-06 -2.2243116
7566    ZNF319      16_31 0.003266608   4.965238 4.720168e-08  0.1401284
1754      USB1      16_31 0.003395726   5.344116 5.281155e-08  0.3145636
1753     MMP15      16_31 0.010039282  15.926826 4.653205e-07 -1.5466217
729     CFAP20      16_31 0.003323770   5.133966 4.965973e-08  0.2411647
730    CSNK2A2      16_31 0.003276083   4.996339 4.763511e-08 -0.1322483
9256     GINS3      16_31 0.004178134   7.373543 8.965589e-08 -0.7182699
1757     NDRG4      16_31 0.003282422   5.012956 4.788601e-08  0.1679672
3679     CNOT1      16_31 0.032054362  26.923259 2.511511e-06 -2.4928488
1759   SLC38A7      16_31 0.006011462  10.859726 1.899850e-07  1.2166483
3683      GOT2      16_31 0.027039285  25.384467 1.997485e-06  2.3111934
      num_eqtl
1124         1
6691         1
7705         2
3680         2
1122         1
8089         1
10677        1
10675        2
10351        1
9777         1
1740         2
438          2
1120         1
5238         1
5237         1
8465         1
6694         1
1745         2
81           1
1747         1
52           2
1154         2
3684         2
4626         2
10672        3
6684         2
9341         1
5239         2
5240         1
7566         1
1754         1
1753         1
729          2
730          2
9256         2
1757         1
3679         2
1759         1
3683         2

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "PLTP"
[1] "20_28"
      genename region_tag   susie_pip       mu2          PVE           z
6004      JPH2      20_28 0.002115427  4.963685 3.055783e-08  0.34475118
4307     OSER1      20_28 0.002529134  6.637105 4.885071e-08 -0.72359138
10183    FITM2      20_28 0.002181293  7.619473 4.836813e-08  1.70850449
4308   SERINC3      20_28 0.004208635 10.932310 1.338978e-07  1.06666707
7969      PKIG      20_28 0.013233401 20.367360 7.843800e-07 -1.92973723
10117      ADA      20_28 0.002167525  6.271526 3.956013e-08 -1.11873945
3615    KCNK15      20_28 0.002569274  6.623045 4.952089e-08 -0.43953756
7686     YWHAB      20_28 0.002942624  7.875478 6.744225e-08  0.92140948
292     TOMM34      20_28 0.002151268  5.176243 3.240631e-08 -0.21559970
1617      STK4      20_28 0.002309197  5.784695 3.887422e-08 -0.65248556
3588      SLPI      20_28 0.002414049  6.067864 4.262872e-08 -0.43426645
3613     RBPJL      20_28 0.005328568 13.927213 2.159708e-07  1.21973824
3594     MATN4      20_28 0.002278251  5.507987 3.651866e-08 -0.72142554
3591      SDC4      20_28 0.626757269 23.873179 4.354416e-05 -3.92072709
10520     SYS1      20_28 0.002121601  4.925323 3.041017e-08 -0.53036749
11155   DBNDD2      20_28 0.002595102  7.572225 5.718712e-08  0.76276385
3616   TP53TG5      20_28 0.002376607  7.333492 5.072109e-08 -1.26808126
3589     WFDC3      20_28 0.002844630 12.638066 1.046229e-07  0.89942952
1683   DNTTIP1      20_28 0.007594899 16.195812 3.579687e-07  1.68660209
8688     UBE2C      20_28 0.003200798 10.090831 9.399515e-08 -1.29063071
3587     SNX21      20_28 0.032819237 29.654784 2.832328e-06 -2.25095415
1685     ACOT8      20_28 0.002713450  7.958255 6.284346e-08  0.21164457
7959    ZSWIM1      20_28 0.300483663 30.810425 2.694256e-05 -0.64131988
1597      PLTP      20_28 0.988294366 61.326849 1.763832e-04 -5.73249075
1598     PCIF1      20_28 0.002149879 21.253014 1.329703e-07  2.96018585
10296   ZNF335      20_28 0.002210432  5.270619 3.390464e-08  0.03190689
1600      MMP9      20_28 0.008172955 18.044865 4.291934e-07  1.76632544
3595     NCOA5      20_28 0.003860415 10.752231 1.207961e-07  1.06921473
1608      CD40      20_28 0.006429597 14.125484 2.643062e-07 -1.05986939
      num_eqtl
6004         1
4307         2
10183        1
4308         2
7969         1
10117        1
3615         2
7686         1
292          1
1617         1
3588         2
3613         1
3594         1
3591         1
10520        1
11155        1
3616         2
3589         1
1683         2
8688         1
3587         1
1685         2
7959         1
1597         1
1598         1
10296        1
1600         1
3595         1
1608         1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "VAPA"
[1] "18_7"
      genename region_tag   susie_pip       mu2          PVE            z
10717    RAB12       18_7 0.006670381  4.952171 9.613169e-08  0.123074043
8965    NDUFV2       18_7 0.017176605 14.224961 7.110641e-07  1.381942467
1703   ANKRD12       18_7 0.008816355  7.682904 1.971219e-07 -0.889300700
240     RALBP1       18_7 0.010377475  9.280180 2.802647e-07  1.171373949
7942     RAB31       18_7 0.006622455  4.881607 9.408104e-08 -0.002933481
1691      VAPA       18_7 0.007854789  6.552015 1.497717e-07  0.657289426
4444      NAPG       18_7 0.008484934  7.307633 1.804453e-07  0.841503954
      num_eqtl
10717        1
8965         2
1703         2
240          1
7942         2
1691         1
4444         2

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "KPNB1"
[1] "17_27"
      genename region_tag   susie_pip       mu2          PVE           z
8491     DCAKD      17_27 0.008593185  5.144730 1.286581e-07 -0.15093721
6674  ARHGAP27      17_27 0.011680686  8.152090 2.771135e-07  1.16027409
10949  PLEKHM1      17_27 0.008462482  4.919153 1.211458e-07  0.03569373
3310    KANSL1      17_27 0.008644388  5.318341 1.337922e-07 -0.08580432
9745      MAPT      17_27 0.009360159  5.878317 1.601240e-07 -0.72635506
8835   LRRC37A      17_27 0.009561056  5.894880 1.640216e-07 -0.35529825
11035 LRRC37A2      17_27 0.015948276 10.656851 4.946100e-07  2.39235673
9637    ARL17A      17_27 0.010763185  7.276569 2.279228e-07  1.91935258
802        NSF      17_27 0.012755445 10.459884 3.882780e-07 -2.06053407
2301      WNT3      17_27 0.017246545 13.012271 6.530937e-07 -1.55730420
2310     GOSR2      17_27 0.023155210 13.702129 9.233303e-07  1.29775360
41       CDC27      17_27 0.009314697  8.407322 2.279012e-07 -1.62384444
11302    ITGB3      17_27 0.011168802  9.471601 3.078579e-07 -1.58019328
9025   EFCAB13      17_27 0.013846680 57.243541 2.306707e-06  7.36590043
5279    NPEPPS      17_27 0.011978005 15.769483 5.496956e-07 -3.02425642
2309     KPNB1      17_27 0.021735134 89.380578 5.653609e-06 -9.51317987
10475   TBKBP1      17_27 0.019196865 89.611497 5.006271e-06 -9.31233452
      num_eqtl
8491         1
6674         2
10949        1
3310         1
9745         1
8835         1
11035        1
9637         2
802          1
2301         1
2310         2
41           1
11302        2
9025         4
5279         1
2309         2
10475        2

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "ALDH2"
[1] "12_67"
      genename region_tag  susie_pip       mu2          PVE          z
5110      TCHP      12_67 0.02841292 13.867918 1.146694e-06 -1.4944146
5109      GIT2      12_67 0.03280473 15.668295 1.495817e-06 -1.8046506
8630  C12orf76      12_67 0.01172705  6.873843 2.345895e-07 -1.0008849
3515     IFT81      12_67 0.01707587 12.184178 6.054794e-07 -2.3268452
10062   ANAPC7      12_67 0.01119809  6.504853 2.119833e-07 -1.0505294
2531     ARPC3      12_67 0.01381835  8.166703 3.284153e-07  1.1143107
10638  FAM216A      12_67 0.01057869  5.606296 1.725951e-07 -0.6987263
2532      GPN3      12_67 0.01322699  8.501556 3.272500e-07 -1.4783205
2533     VPS29      12_67 0.01331983  8.578152 3.325161e-07  1.4871406
10637    TCTN1      12_67 0.03132585 16.858433 1.536881e-06  2.1771229
3517     HVCN1      12_67 0.01040355  5.650191 1.710665e-07 -0.8757995
9690    PPP1CC      12_67 0.01014850  5.259196 1.553251e-07  0.7231339
10340  FAM109A      12_67 0.01019429  5.850802 1.735773e-07  0.8704329
2536     SH2B3      12_67 0.08091527 57.353389 1.350547e-05 -7.8354247
10634    ATXN2      12_67 0.04970969 18.534625 2.681298e-06 -0.7777805
2541     ALDH2      12_67 0.02400954 32.695489 2.284505e-06 -6.4436064
10335  TMEM116      12_67 0.04378686 32.155595 4.097516e-06  5.8049447
1191     ERP29      12_67 0.04378686 32.155595 4.097516e-06 -5.8049447
2544     NAA25      12_67 0.04773762 33.234242 4.617074e-06  5.8544343
8497    HECTD4      12_67 0.04481764 33.331282 4.347316e-06 -5.7749393
9066    PTPN11      12_67 0.01341471 10.384002 4.053837e-07  2.2253869
      num_eqtl
5110         2
5109         2
8630         1
3515         2
10062        1
2531         1
10638        1
2532         1
2533         1
10637        1
3517         1
9690         1
10340        1
2536         1
10634        1
2541         1
10335        1
1191         1
2544         1
8497         2
9066         1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "APOA1"
[1] "11_70"
     genename region_tag   susie_pip        mu2          PVE            z
4866    BUD13      11_70 0.006681419  36.754149 7.146532e-07   4.11527976
3154    APOA1      11_70 0.004996811   6.626497 9.636009e-08   1.11150616
7893 PAFAH1B2      11_70 0.006429363   7.711100 1.442795e-07  -0.01722766
6002    SIDT2      11_70 0.004840711   5.458052 7.688951e-08   0.50104522
6003    TAGLN      11_70 0.005384250  18.435519 2.888690e-07  -1.55444774
6781    PCSK7      11_70 0.014893056  16.372939 7.096280e-07   0.97935688
7740   RNF214      11_70 0.005593633   6.558001 1.067544e-07  -0.52468931
2466   CEP164      11_70 0.005455634   5.753583 9.134903e-08  -0.30209785
9693    BACE1      11_70 0.005233417  20.995015 3.197583e-07  -4.13706265
4879    FXYD2      11_70 0.005474808   6.112959 9.739590e-08  -0.37435241
2465    APOA5      11_70 0.036019439 144.048541 1.509962e-05 -11.35991043
     num_eqtl
4866        1
3154        2
7893        2
6002        1
6003        1
6781        1
7740        1
2466        2
9693        1
4879        2
2465        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "STARD3"
[1] "17_23"
       genename region_tag  susie_pip       mu2          PVE           z
11416      EPOP      17_23 0.01026396  4.955903 1.480328e-07 -0.10662081
11473     PSMB3      17_23 0.03161929 16.021652 1.474279e-06  1.72896001
11459   PIP4K2B      17_23 0.01566520  9.103614 4.150209e-07 -1.00157125
11415     CWC25      17_23 0.01793321 10.432261 5.444484e-07  1.08708711
16        LASP1      17_23 0.04807572 20.176878 2.822930e-06  2.06384703
11341 LINC00672      17_23 0.30125308 39.243937 3.440522e-05  3.53577816
6844     PLXDC1      17_23 0.01198507  6.475680 2.258636e-07 -0.56588683
2297     FBXL20      17_23 0.02234693 12.597358 8.192523e-07  1.93901635
3730       MED1      17_23 0.01577239  9.170716 4.209408e-07 -1.49493107
4201     STARD3      17_23 0.01047077  5.151418 1.569732e-07 -0.38811898
8592       TCAP      17_23 0.01405810  8.040939 3.289679e-07  1.04770013
5341       PNMT      17_23 0.01500363  8.679982 3.789967e-07 -1.18909299
5339      ERBB2      17_23 0.01358187  7.702713 3.044553e-07 -1.13724896
6845      PGAP3      17_23 0.01997195 11.491276 6.678962e-07 -2.14338495
5340       GRB7      17_23 0.01070928  5.372219 1.674304e-07  0.49199960
6846      IKZF3      17_23 0.15804122 32.259953 1.483728e-05  3.46618563
8383     ORMDL3      17_23 0.03149811 15.983634 1.465144e-06  2.64808902
7855      GSDMA      17_23 0.03329848 16.533296 1.602154e-06  2.77074527
2299       CSF3      17_23 0.09703453 27.234351 7.690660e-06 -3.20456334
3799      NR1D1      17_23 0.01382496  7.876710 3.169050e-07  0.81175389
9934       MSL1      17_23 0.01295489  7.238962 2.729167e-07  0.98720359
2300   RAPGEFL1      17_23 0.01525083  8.840313 3.923569e-07  0.89662465
8311      WIPF2      17_23 0.01018487  4.880101 1.446455e-07 -0.18843428
1306       CDC6      17_23 0.01264056  6.997893 2.574268e-07  0.50375876
5342     IGFBP4      17_23 0.01228087  6.714756 2.399825e-07 -0.57588470
4200       TNS4      17_23 0.01018829  4.883384 1.447913e-07  0.02859681
3798       CCR7      17_23 0.01109247  5.716782 1.845441e-07 -0.44220762
793     SMARCE1      17_23 0.01061605  5.286476 1.633239e-07 -0.32396665
10766    KRT222      17_23 0.01022096  4.914764 1.461890e-07  0.11407193
      num_eqtl
11416        2
11473        2
11459        1
11415        3
16           1
11341        2
6844         1
2297         1
3730         2
4201         2
8592         1
5341         2
5339         2
6845         2
5340         3
6846         1
8383         2
7855         2
2299         1
3799         1
9934         1
2300         1
8311         2
1306         2
5342         1
4200         1
3798         1
793          2
10766        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "PPARG"
[1] "3_9"
      genename region_tag   susie_pip       mu2          PVE          z
10217     ATG7        3_9 0.006708330 11.212783 2.189012e-07  1.4232154
5613    TAMM41        3_9 0.004910000  9.595155 1.371051e-07  1.3225877
6513     TIMP4        3_9 0.005740886  8.072340 1.348648e-07  0.2250754
4230     PPARG        3_9 0.003399249 10.972027 1.085401e-07 -2.5953663
6358     TSEN2        3_9 0.040762302 29.562122 3.506829e-06  4.4713068
856      MKRN2        3_9 0.006647215 15.000541 2.901796e-07 -3.4863426
10950  MKRN2OS        3_9 0.048471754 28.876512 4.073369e-06 -4.7387006
4229      RAF1        3_9 0.003250016  5.473382 5.176802e-08  0.8372135
5630     CAND2        3_9 0.024920416 27.501348 1.994479e-06 -3.2762482
5631     RPL32        3_9 0.004363302  7.920886 1.005795e-07 -0.8436264
      num_eqtl
10217        2
5613         3
6513         1
4230         1
6358         1
856          2
10950        2
4229         1
5630         1
5631         2

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "LPIN3"
[1] "20_25"
      genename region_tag   susie_pip      mu2          PVE         z
10463     TOP1      20_25 0.014212855 20.10055 8.313992e-07 -3.533405
3599     PLCG1      20_25 0.052835744 22.28425 3.426464e-06  2.065730
8619      ZHX3      20_25 0.008786526 12.80118 3.273312e-07 -2.767903
4305     LPIN3      20_25 0.013609240 47.08221 1.864709e-06  6.600722
9438   EMILIN3      20_25 0.030445223 94.98217 8.415531e-06  9.450280
3598      CHD6      20_25 0.011590035 11.59242 3.910022e-07 -2.247872
      num_eqtl
10463        2
3599         2
8619         1
4305         2
9438         2
3598         1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "FADS2"
[1] "11_34"
           genename region_tag   susie_pip        mu2          PVE
9952        FAM111B      11_34 0.005221610   5.017036 7.623808e-08
7657        FAM111A      11_34 0.007702534   8.638468 1.936380e-07
2444           DTX4      11_34 0.005257276   5.099679 7.802322e-08
10233         MPEG1      11_34 0.005294591   5.228645 8.056415e-08
7679          PATL1      11_34 0.071519692  30.036371 6.251632e-06
7682           STX3      11_34 0.005161056   4.923424 7.394795e-08
7683         MRPL16      11_34 0.007921287   8.819332 2.033067e-07
5994          MS4A2      11_34 0.009774821  10.858652 3.088908e-07
2453         MS4A6A      11_34 0.005834704   6.012788 1.020975e-07
10858        MS4A4E      11_34 0.006702028   7.569014 1.476270e-07
7692          MS4A7      11_34 0.005133601   4.899926 7.320351e-08
7693         MS4A14      11_34 0.029852883  21.633713 1.879480e-06
2455         CCDC86      11_34 0.006739782   7.351707 1.441964e-07
2456         PRPF19      11_34 0.010426047  12.033095 3.651046e-07
2457        TMEM109      11_34 0.011902564  13.101685 4.538245e-07
2480        SLC15A3      11_34 0.005506251   6.036361 9.672784e-08
2481            CD5      11_34 0.005288143   5.275472 8.118669e-08
7869         VPS37C      11_34 0.006143699   6.285888 1.123872e-07
7870           VWCE      11_34 0.005532627   5.850775 9.420308e-08
6898       CYB561A3      11_34 0.006999419  10.212039 2.080150e-07
5987        TMEM138      11_34 0.006999419  10.212039 2.080150e-07
9761        TMEM216      11_34 0.005138310   4.939101 7.385647e-08
5993          CPSF7      11_34 0.006047511   9.919892 1.745838e-07
11272 RP11-286N22.8      11_34 0.005759527   5.941444 9.958619e-08
6899        PPP1R32      11_34 0.006257040   6.537660 1.190451e-07
4506        TMEM258      11_34 0.040683627  65.607817 7.767756e-06
7950           FEN1      11_34 0.007575672 144.430608 3.184203e-06
4505          FADS2      11_34 0.007575672 144.430608 3.184203e-06
5988          FADS1      11_34 0.999487146 159.673353 4.644404e-04
10926         FADS3      11_34 0.011519846  21.295040 7.139132e-07
7871          BEST1      11_34 0.005504270  18.762512 3.005461e-07
5991         INCENP      11_34 0.005145157   5.781594 8.656983e-08
6900         ASRGL1      11_34 0.005292136   5.189670 7.992655e-08
1196          GANAB      11_34 0.008923829  71.973734 1.869156e-06
                 z num_eqtl
9952  -0.130372989        1
7657   0.788300174        2
2444   0.272926929        2
10233  0.288859011        1
7679   3.303999343        2
7682   0.001285218        2
7683   0.989371951        2
5994  -1.135206653        1
2453   0.544252801        1
10858  0.848247159        1
7692  -0.132073393        2
7693  -1.857701655        3
2455  -0.651729299        3
2456   1.430603519        2
2457   1.421831985        1
2480   0.821410772        1
2481   0.346138465        1
7869   0.024014132        1
7870  -0.638825054        2
6898  -1.782804562        1
5987  -1.782804562        1
9761  -0.251085346        2
5993  -2.061044578        1
11272 -0.427047808        1
6899  -0.382653253        1
4506  -6.946921109        2
7950  12.072635202        1
4505  12.072635202        1
5988  12.825882927        2
10926  3.289416818        1
7871  -3.744804132        1
5991  -0.969291005        2
6900  -0.250084386        1
1196  -8.204723304        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "CD36"
[1] "7_51"
     genename region_tag  susie_pip      mu2          PVE          z
4555     CD36       7_51 0.01203057 5.091815 1.782704e-07 -0.2565559
830    SEMA3C       7_51 0.01536335 7.491551 3.349483e-07 -0.8034967
     num_eqtl
4555        1
830         2

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "CYP27A1"
[1] "2_129"
      genename region_tag   susie_pip       mu2          PVE           z
3880      VIL1      2_129 0.784027761 26.828693 6.121407e-05  4.72553123
9866     RUFY4      2_129 0.013237886  9.061756 3.491012e-07  1.02099255
9168     CXCR2      2_129 0.020787801 12.086470 7.311868e-07 -1.47518963
7085     CXCR1      2_129 0.010259835  6.021142 1.797792e-07  0.56376400
7086     ARPC2      2_129 0.036061825 17.061579 1.790553e-06 -1.94043222
3881      AAMP      2_129 0.043278356 18.269245 2.300974e-06 -1.90836173
3882      PNKD      2_129 0.061141376 21.698601 3.860888e-06 -2.20803733
4653    TMBIM1      2_129 0.045951929 18.816604 2.516317e-06 -1.92761030
243    SLC11A1      2_129 0.009446499  5.213412 1.433221e-07  0.05100451
4647     USP37      2_129 0.037460955 20.458234 2.230321e-06 -3.97558895
5616     CNOT9      2_129 0.020237405 17.630047 1.038314e-06  3.65097314
2934     PLCD4      2_129 0.023375462 18.195877 1.237809e-06 -3.71953627
813      BCS1L      2_129 0.009603821  6.005941 1.678593e-07 -0.95838574
2936    ZNF142      2_129 0.009525895  5.901783 1.636098e-07  0.93284395
7090     STK36      2_129 0.013226462 15.708131 6.046283e-07  3.44963509
4654   CYP27A1      2_129 0.009559341  8.413099 2.340476e-07  1.82913381
9812     NHEJ1      2_129 0.029412363 17.138519 1.466978e-06  1.96641989
10802  SLC23A3      2_129 0.011231295  6.607900 2.159800e-07  0.30848047
5615   FAM134A      2_129 0.026571050 14.635970 1.131750e-06 -1.33896546
2941    CNPPD1      2_129 0.012317799  7.779472 2.788711e-07 -0.77901195
2943     ABCB6      2_129 0.030261566 17.008597 1.497891e-06  1.84732093
10472    ATG9A      2_129 0.014499935  9.663085 4.077577e-07 -1.13410218
7096    ANKZF1      2_129 0.015440398 10.306127 4.630995e-07 -1.21232145
7099     GLB1L      2_129 0.009712998  5.434992 1.536287e-07 -0.12917630
3879    TUBA4A      2_129 0.011284064  6.863208 2.253788e-07 -0.56762321
4652    DNAJB2      2_129 0.010050861  5.821124 1.702670e-07 -0.48915334
3580     DNPEP      2_129 0.029251601 16.526203 1.406835e-06  1.83086497
8690       DES      2_129 0.039601867 19.522259 2.249915e-06  2.01667108
758       SPEG      2_129 0.009282712  5.090259 1.375102e-07  0.08326323
5618     GMPPA      2_129 0.011638600  7.302907 2.473528e-07 -0.73851578
3579      CHPF      2_129 0.009721838  5.608242 1.586702e-07  0.41418410
3582     OBSL1      2_129 0.016065299 10.828594 5.062688e-07 -1.30597047
      num_eqtl
3880         1
9866         2
9168         1
7085         1
7086         1
3881         1
3882         1
4653         2
243          1
4647         3
5616         1
2934         1
813          1
2936         1
7090         2
4654         2
9812         2
10802        1
5615         1
2941         2
2943         1
10472        1
7096         2
7099         1
3879         1
4652         1
3580         2
8690         1
758          1
5618         1
3579         1
3582         1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "NPC1"
[1] "18_12"
     genename region_tag  susie_pip       mu2          PVE           z
4475  CABLES1      18_12 0.01211412  5.040374 1.776949e-07 -0.14555775
4474  TMEM241      18_12 0.03243365 14.732411 1.390561e-06 -1.84256728
1708    RIOK3      18_12 0.02446132 11.947671 8.505177e-07 -1.34902775
5302  C18orf8      18_12 0.03278696 14.839865 1.415961e-06  1.67075330
5304     NPC1      18_12 0.07292423 22.804370 4.839608e-06 -2.39576123
454     LAMA3      18_12 0.01191750  4.879896 1.692451e-07  0.01316175
7909   TTC39C      18_12 0.04555039 18.100175 2.399358e-06  1.78195458
6307    CABYR      18_12 0.01191881  4.880973 1.693010e-07 -0.02760888
     num_eqtl
4475        1
4474        2
1708        1
5302        2
5304        1
454         2
7909        3
6307        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "ABCG8"
[1] "2_27"
        genename region_tag    susie_pip        mu2          PVE
5561       ABCG8       2_27 9.999422e-01 311.815840 9.073887e-04
2977       THADA       2_27 1.981621e-06   8.148336 4.699046e-11
6205     PLEKHH2       2_27 7.241211e-06  16.054462 3.383197e-10
10938 C1GALT1C1L       2_27 4.439962e-06  24.182149 3.124600e-10
4928    DYNC2LI1       2_27 9.736101e-07   8.217065 2.328210e-11
4941      LRPPRC       2_27 2.870631e-06  12.532815 1.046999e-10
                 z num_eqtl
5561  -20.29398177        1
2977   -2.34643541        2
6205   -2.96266114        2
10938   3.06095256        2
4928   -0.02538894        1
4941   -0.91853212        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "NCEH1"
[1] "3_106"
     genename region_tag  susie_pip     mu2          PVE          z
5659    NCEH1      3_106 0.01354186 6.98747 2.753712e-07 -0.6532732
     num_eqtl
5659        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "STAR"
[1] "8_34"
     genename region_tag   susie_pip       mu2          PVE           z
5840    PROSC       8_34 0.018539548 12.371879 6.675059e-07 -1.18549708
4028    ASH2L       8_34 0.065216545 24.836310 4.713735e-06 -2.41270520
5839     STAR       8_34 0.077023552 26.509202 5.942107e-06 -2.50033778
8718     LSM1       8_34 0.008640370  4.881689 1.227504e-07  0.14152273
5847     NSD3       8_34 0.008641383  4.882838 1.227937e-07 -0.06923734
7406    LETM2       8_34 0.009233101  5.531604 1.486343e-07 -0.48761003
900     FGFR1       8_34 0.013667708  9.377190 3.729827e-07 -0.93406568
5843    TACC1       8_34 0.008670932  4.916274 1.240573e-07 -0.11708259
8063  PLEKHA2       8_34 0.023527059 14.717021 1.007646e-06  1.82472982
8062    TM2D2       8_34 0.012619522  8.594182 3.156223e-07  0.85605170
7960    ADAM9       8_34 0.248785513 38.725448 2.803767e-05  3.23657677
     num_eqtl
5840        1
4028        1
5839        1
8718        1
5847        2
7406        2
900         1
5843        2
8063        1
8062        2
7960        2

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "FADS1"
[1] "11_34"
           genename region_tag   susie_pip        mu2          PVE
9952        FAM111B      11_34 0.005221610   5.017036 7.623808e-08
7657        FAM111A      11_34 0.007702534   8.638468 1.936380e-07
2444           DTX4      11_34 0.005257276   5.099679 7.802322e-08
10233         MPEG1      11_34 0.005294591   5.228645 8.056415e-08
7679          PATL1      11_34 0.071519692  30.036371 6.251632e-06
7682           STX3      11_34 0.005161056   4.923424 7.394795e-08
7683         MRPL16      11_34 0.007921287   8.819332 2.033067e-07
5994          MS4A2      11_34 0.009774821  10.858652 3.088908e-07
2453         MS4A6A      11_34 0.005834704   6.012788 1.020975e-07
10858        MS4A4E      11_34 0.006702028   7.569014 1.476270e-07
7692          MS4A7      11_34 0.005133601   4.899926 7.320351e-08
7693         MS4A14      11_34 0.029852883  21.633713 1.879480e-06
2455         CCDC86      11_34 0.006739782   7.351707 1.441964e-07
2456         PRPF19      11_34 0.010426047  12.033095 3.651046e-07
2457        TMEM109      11_34 0.011902564  13.101685 4.538245e-07
2480        SLC15A3      11_34 0.005506251   6.036361 9.672784e-08
2481            CD5      11_34 0.005288143   5.275472 8.118669e-08
7869         VPS37C      11_34 0.006143699   6.285888 1.123872e-07
7870           VWCE      11_34 0.005532627   5.850775 9.420308e-08
6898       CYB561A3      11_34 0.006999419  10.212039 2.080150e-07
5987        TMEM138      11_34 0.006999419  10.212039 2.080150e-07
9761        TMEM216      11_34 0.005138310   4.939101 7.385647e-08
5993          CPSF7      11_34 0.006047511   9.919892 1.745838e-07
11272 RP11-286N22.8      11_34 0.005759527   5.941444 9.958619e-08
6899        PPP1R32      11_34 0.006257040   6.537660 1.190451e-07
4506        TMEM258      11_34 0.040683627  65.607817 7.767756e-06
7950           FEN1      11_34 0.007575672 144.430608 3.184203e-06
4505          FADS2      11_34 0.007575672 144.430608 3.184203e-06
5988          FADS1      11_34 0.999487146 159.673353 4.644404e-04
10926         FADS3      11_34 0.011519846  21.295040 7.139132e-07
7871          BEST1      11_34 0.005504270  18.762512 3.005461e-07
5991         INCENP      11_34 0.005145157   5.781594 8.656983e-08
6900         ASRGL1      11_34 0.005292136   5.189670 7.992655e-08
1196          GANAB      11_34 0.008923829  71.973734 1.869156e-06
                 z num_eqtl
9952  -0.130372989        1
7657   0.788300174        2
2444   0.272926929        2
10233  0.288859011        1
7679   3.303999343        2
7682   0.001285218        2
7683   0.989371951        2
5994  -1.135206653        1
2453   0.544252801        1
10858  0.848247159        1
7692  -0.132073393        2
7693  -1.857701655        3
2455  -0.651729299        3
2456   1.430603519        2
2457   1.421831985        1
2480   0.821410772        1
2481   0.346138465        1
7869   0.024014132        1
7870  -0.638825054        2
6898  -1.782804562        1
5987  -1.782804562        1
9761  -0.251085346        2
5993  -2.061044578        1
11272 -0.427047808        1
6899  -0.382653253        1
4506  -6.946921109        2
7950  12.072635202        1
4505  12.072635202        1
5988  12.825882927        2
10926  3.289416818        1
7871  -3.744804132        1
5991  -0.969291005        2
6900  -0.250084386        1
1196  -8.204723304        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "VDAC2"
[1] "10_49"
     genename region_tag  susie_pip       mu2          PVE          z
8451    AGAP5      10_49 0.02167655 12.152439 7.666090e-07 -1.3182844
3503     PLAU      10_49 0.03091338 15.653590 1.408253e-06 -1.6531888
9550    AP3M1      10_49 0.01038104  4.922158 1.487019e-07 -0.1414585
6442      ADK      10_49 0.01040030  4.940331 1.495279e-07  0.1263619
7471    VDAC2      10_49 0.09079139 26.413458 6.978952e-06  2.9474923
7472   COMTD1      10_49 0.09015451 26.342078 6.911269e-06  2.9437974
5933 C10orf11      10_49 0.16640687 32.656678 1.581479e-05  2.9550655
     num_eqtl
8451        1
3503        1
9550        1
6442        2
7471        1
7472        1
5933        2

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "LIPC"
[1] "15_26"
     genename region_tag   susie_pip       mu2          PVE          z
7542     LIPC      15_26 0.005392159 41.666645 6.538400e-07 -5.9117767
4903   ADAM10      15_26 0.006243483  7.013646 1.274357e-07  0.8412995
4887     SLTM      15_26 0.005382336  5.473371 8.573259e-08 -0.7158866
6532   RNF111      15_26 0.005133967  4.964302 7.417057e-08 -0.2997052
8379  LDHAL6B      15_26 0.005188986  5.062865 7.645381e-08 -0.4439394
     num_eqtl
7542        2
4903        2
4887        1
6532        1
8379        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "SOAT2"
[1] "12_33"
      genename region_tag  susie_pip       mu2          PVE          z
7829      KRT1      12_33 0.01572701  6.885919 3.151581e-07 -0.5707147
8183     KRT78      12_33 0.01301299  5.152603 1.951300e-07 -0.3499992
2519     KRT18      12_33 0.01876609  8.951629 4.888730e-07  1.0385365
8182      KRT8      12_33 0.04413528 17.051797 2.190162e-06  2.1131126
544      EIF4B      12_33 0.01290368  4.981936 1.870820e-07 -0.2219413
2521      TNS2      12_33 0.01626737  7.303411 3.457510e-07 -0.9622725
7833    SPRYD3      12_33 0.02325454 10.336665 6.995336e-07  1.3387675
7834    IGFBP6      12_33 0.01296864  5.030002 1.898379e-07 -0.5122792
7835     SOAT2      12_33 0.02791132 12.310915 9.999794e-07 -1.8512201
5136    ZNF740      12_33 0.08388523 22.631584 5.524853e-06  2.5465203
5131      CSAD      12_33 0.02530234 11.080090 8.158762e-07 -1.1787012
5129     ITGB7      12_33 0.01275753  4.880818 1.812089e-07  0.2190571
9308     MFSD5      12_33 0.04568414 15.735524 2.092026e-06  1.2739816
4593     ESPL1      12_33 0.02166337 10.457480 6.592854e-07  1.6368406
10674    PRR13      12_33 0.17349277 18.693814 9.438427e-06 -3.7752633
5122    TARBP2      12_33 0.02728484 13.275442 1.054121e-06 -3.0239203
4577    ATP5G2      12_33 0.01521602  9.290757 4.114078e-07  2.1165089
203   CALCOCO1      12_33 0.02933043 13.243860 1.130455e-06 -1.4132763
3549     SMUG1      12_33 0.01403334  5.834231 2.382676e-07  0.3968124
1308      CBX5      12_33 0.01463342  6.238484 2.656716e-07  0.6527662
      num_eqtl
7829         1
8183         1
2519         1
8182         1
544          1
2521         2
7833         1
7834         1
7835         1
5136         2
5131         1
5129         2
9308         2
4593         3
10674        1
5122         1
4577         2
203          1
3549         1
1308         1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "CYP7A1"
[1] "8_45"
      genename region_tag   susie_pip      mu2          PVE         z
10870   UBXN2B       8_45 0.010437493 25.84700 7.851031e-07 -3.437080
7854    CYP7A1       8_45 0.006296922 73.13411 1.340197e-06 -7.392476
      num_eqtl
10870        3
7854         1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "TNKS"
[1] "8_12"
     genename region_tag susie_pip      mu2          PVE        z num_eqtl
8523     TNKS       8_12 0.9844747 73.24908 0.0002098587 11.02603        2

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "ADH1B"
[1] "4_66"
      genename region_tag   susie_pip       mu2          PVE          z
7975    TSPAN5       4_66 0.016776397 11.125746 5.431855e-07 -1.2321573
6088     EIF4E       4_66 0.010897316  6.926124 2.196494e-07  0.9082871
7217    METAP1       4_66 0.008980055  5.083853 1.328594e-07 -0.1831346
8489      ADH6       4_66 0.011444259  7.558809 2.517453e-07  0.7334699
10084    ADH1B       4_66 0.016886902 11.259415 5.533324e-07 -1.1153042
11178    ADH1C       4_66 0.157537466 31.867251 1.460995e-05 -3.1932254
10026     ADH7       4_66 0.010627336 10.487409 3.243493e-07  1.9684512
5053      MTTP       4_66 0.012587091  7.995964 2.928981e-07 -0.7972018
5684   TRMT10A       4_66 0.013138101  9.083605 3.473051e-07 -1.1240076
      num_eqtl
7975         2
6088         1
7217         1
8489         2
10084        1
11178        3
10026        2
5053         1
5684         1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "LPA"
[1] "6_104"
      genename region_tag    susie_pip       mu2          PVE          z
10399      LPA      6_104 5.049781e-06 33.167639 4.874246e-10  8.1196160
3449       PLG      6_104 8.081204e-06 24.664373 5.800514e-10  2.4097623
5797   SLC22A3      6_104 1.898541e-06 21.582036 1.192430e-10 -6.5929784
1074    MAP3K4      6_104 1.920923e-06  7.028513 3.929106e-11  0.7795492
      num_eqtl
10399        1
3449         1
5797         1
1074         1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "VDAC1"
[1] "5_80"
        genename region_tag  susie_pip       mu2          PVE           z
7306       SEPT8       5_80 0.02619067 12.408164 9.457458e-07  1.30260276
7307     SHROOM1       5_80 0.01641237  7.807944 3.729309e-07  0.89963346
7308        GDF9       5_80 0.01218485  4.884394 1.732014e-07  0.03182872
760         AFF4       5_80 0.01784798  8.632026 4.483552e-07  1.02990725
6396     ZCCHC10       5_80 0.01233951  5.008099 1.798420e-07 -0.15509357
8211       HSPA4       5_80 0.01218368  4.883450 1.731512e-07 -0.07597330
2763     C5orf15       5_80 0.01302346  5.537293 2.098669e-07  0.41873673
10776      VDAC1       5_80 0.04647665 18.087393 2.446420e-06  1.82176093
978         TCF7       5_80 0.03259373 14.568372 1.381864e-06  1.55983246
2759        SKP1       5_80 0.02180083 10.600216 6.725244e-07 -1.31317545
2761      PPP2CA       5_80 0.02463709 11.805157 8.464112e-07  1.40300081
102        CDKL3       5_80 0.01520661  7.058456 3.123650e-07  0.87889673
3214       UBE2B       5_80 0.01520661  7.058456 3.123650e-07  0.87889673
11029 CDKN2AIPNL       5_80 0.02232181 10.832774 7.037029e-07 -1.07306079
7335       CAMLG       5_80 0.01218893  4.887675 1.733757e-07  0.10493598
9253     C5orf24       5_80 0.01229772  4.974825 1.780421e-07 -0.20162988
4281       PCBD2       5_80 0.01626623  7.720072 3.654505e-07  0.78727304
681        PITX1       5_80 0.01377983  6.091253 2.442703e-07  0.52096477
      num_eqtl
7306         1
7307         2
7308         1
760          1
6396         1
8211         2
2763         1
10776        1
978          1
2759         1
2761         2
102          1
3214         1
11029        2
7335         1
9253         1
4281         1
681          1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "FADS3"
[1] "11_34"
           genename region_tag   susie_pip        mu2          PVE
9952        FAM111B      11_34 0.005221610   5.017036 7.623808e-08
7657        FAM111A      11_34 0.007702534   8.638468 1.936380e-07
2444           DTX4      11_34 0.005257276   5.099679 7.802322e-08
10233         MPEG1      11_34 0.005294591   5.228645 8.056415e-08
7679          PATL1      11_34 0.071519692  30.036371 6.251632e-06
7682           STX3      11_34 0.005161056   4.923424 7.394795e-08
7683         MRPL16      11_34 0.007921287   8.819332 2.033067e-07
5994          MS4A2      11_34 0.009774821  10.858652 3.088908e-07
2453         MS4A6A      11_34 0.005834704   6.012788 1.020975e-07
10858        MS4A4E      11_34 0.006702028   7.569014 1.476270e-07
7692          MS4A7      11_34 0.005133601   4.899926 7.320351e-08
7693         MS4A14      11_34 0.029852883  21.633713 1.879480e-06
2455         CCDC86      11_34 0.006739782   7.351707 1.441964e-07
2456         PRPF19      11_34 0.010426047  12.033095 3.651046e-07
2457        TMEM109      11_34 0.011902564  13.101685 4.538245e-07
2480        SLC15A3      11_34 0.005506251   6.036361 9.672784e-08
2481            CD5      11_34 0.005288143   5.275472 8.118669e-08
7869         VPS37C      11_34 0.006143699   6.285888 1.123872e-07
7870           VWCE      11_34 0.005532627   5.850775 9.420308e-08
6898       CYB561A3      11_34 0.006999419  10.212039 2.080150e-07
5987        TMEM138      11_34 0.006999419  10.212039 2.080150e-07
9761        TMEM216      11_34 0.005138310   4.939101 7.385647e-08
5993          CPSF7      11_34 0.006047511   9.919892 1.745838e-07
11272 RP11-286N22.8      11_34 0.005759527   5.941444 9.958619e-08
6899        PPP1R32      11_34 0.006257040   6.537660 1.190451e-07
4506        TMEM258      11_34 0.040683627  65.607817 7.767756e-06
7950           FEN1      11_34 0.007575672 144.430608 3.184203e-06
4505          FADS2      11_34 0.007575672 144.430608 3.184203e-06
5988          FADS1      11_34 0.999487146 159.673353 4.644404e-04
10926         FADS3      11_34 0.011519846  21.295040 7.139132e-07
7871          BEST1      11_34 0.005504270  18.762512 3.005461e-07
5991         INCENP      11_34 0.005145157   5.781594 8.656983e-08
6900         ASRGL1      11_34 0.005292136   5.189670 7.992655e-08
1196          GANAB      11_34 0.008923829  71.973734 1.869156e-06
                 z num_eqtl
9952  -0.130372989        1
7657   0.788300174        2
2444   0.272926929        2
10233  0.288859011        1
7679   3.303999343        2
7682   0.001285218        2
7683   0.989371951        2
5994  -1.135206653        1
2453   0.544252801        1
10858  0.848247159        1
7692  -0.132073393        2
7693  -1.857701655        3
2455  -0.651729299        3
2456   1.430603519        2
2457   1.421831985        1
2480   0.821410772        1
2481   0.346138465        1
7869   0.024014132        1
7870  -0.638825054        2
6898  -1.782804562        1
5987  -1.782804562        1
9761  -0.251085346        2
5993  -2.061044578        1
11272 -0.427047808        1
6899  -0.382653253        1
4506  -6.946921109        2
7950  12.072635202        1
4505  12.072635202        1
5988  12.825882927        2
10926  3.289416818        1
7871  -3.744804132        1
5991  -0.969291005        2
6900  -0.250084386        1
1196  -8.204723304        1

Version Author Date
37b2a2c wesleycrouse 2022-05-29
[1] "APOC2"
[1] "19_32"
      genename region_tag susie_pip        mu2 PVE           z num_eqtl
6717    ZNF233      19_32         0 114.741871   0  -9.2725820        2
6718    ZNF235      19_32         0 105.705005   0  -9.2122953        1
538     ZNF112      19_32         0 145.997950   0  10.3860543        1
11373   ZNF285      19_32         0  14.814234   0   0.9962471        2
11479   ZNF229      19_32         0  90.836819   0  10.9591492        2
7755    ZNF180      19_32         0  28.785261   0  -3.9159702        3
781        PVR      19_32         0 294.112183   0 -10.0782525        2
9718  CEACAM19      19_32         0  64.415235   0   9.4554813        2
9782      BCAM      19_32         0 109.428227   0   4.6421318        1
4047   NECTIN2      19_32         0 108.430839   0   6.2443536        2
4049    TOMM40      19_32         0  25.408808   0  -1.4020544        1
4048      APOE      19_32         0  47.756033   0  -2.0092826        1
11016    APOC2      19_32         0  56.914792   0  -9.1630690        2
8225    ZNF296      19_32         0 111.344431   0   5.4593536        1
5375    GEMIN7      19_32         0 192.588938   0  10.9432287        2
104      MARK4      19_32         0  24.060342   0  -2.2463768        1
1930   PPP1R37      19_32         0 124.088611   0 -12.8921201        2
109   TRAPPC6A      19_32         0  30.326228   0   1.8816459        1
9959   BLOC1S3      19_32         0  11.073118   0   2.3014119        1
11497  EXOC3L2      19_32         0  25.546204   0  -1.3436507        1
1933       CKM      19_32         0  15.812708   0  -1.5738464        1
1937     ERCC2      19_32         0  11.387101   0   2.3297330        2
3143    CD3EAP      19_32         0  27.048442   0  -3.0806361        1
3737      FOSB      19_32         0  18.843819   0  -2.3658041        1
196      ERCC1      19_32         0  14.616099   0  -0.2091619        1
10800    PPM1N      19_32         0  31.252331   0   5.4808308        1
3740      RTN2      19_32         0  31.704431   0   5.5300783        1
3741      VASP      19_32         0  12.801289   0   1.8957985        1
3738      OPA3      19_32         0  13.720403   0  -0.4654901        2
1942      KLC3      19_32         0  10.281304   0   1.7718715        1
10801 CEACAM16      19_32         0   7.467418   0   1.8740580        1
11372    APOC4      19_32         0  48.858022   0   8.0662459        2
10892   IGSF23      19_32         0  12.680189   0   1.9670520        1
8895      GPR4      19_32         0  65.929098   0  -3.5802828        1
3739    SNRPD2      19_32         0   9.998395   0   1.0366923        1
189      QPCTL      19_32         0  24.512871   0  -2.0303487        2
1949      DMPK      19_32         0  20.465857   0  -1.8090245        1
9633      DMWD      19_32         0  19.545408   0  -1.7547946        1
3742     SYMPK      19_32         0   4.893028   0  -0.0525717        1
8798     MYPOP      19_32         0  21.162302   0   1.8490001        1
1963    CCDC61      19_32         0  21.029796   0   1.8414612        2
3628     HIF3A      19_32         0  20.353083   0  -1.8024680        2
190      PPP5C      19_32         0  13.399291   0   1.3374649        1
8068     CCDC8      19_32         0   7.370076   0   0.7230949        2
9259    PNMAL1      19_32         0  20.576100   0  -1.8154111        4
10636   PNMAL2      19_32         0   5.234058   0  -0.2727077        1
10987   PPP5D1      19_32         0   6.375206   0  -0.5603345        1
6722     CALM3      19_32         0  54.390437   0   3.2242313        2
#run APOE locus again using full SNPs
# focus <- "APOE"
# region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]
# 
# locus_plot(region_tag, label="TWAS", rerun_ctwas = T)
# 
# mtext(text=region_tag)
# 
# print(focus)
# print(region_tag)
# print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])

Locus Plots - False positives

This section produces locus plots for all bystander genes with PIP>0.8 (false positives). The highlighted gene at each region is the false positive gene.

false_positives <- ctwas_gene_res$genename[ctwas_gene_res$genename %in% unrelated_genes & ctwas_gene_res$susie_pip>0.8]

for (i in 1:length(false_positives)){
  focus <- false_positives[i]
  region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]

  locus_plot3(region_tag, focus=focus)
  mtext(text=region_tag)

  print(focus)
  print(region_tag)
  print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
  
  #genes at this locus that are in known annotations
  ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag][ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag] %in% known_annotations]
}

Locus Plots - All detected genes

This section produces locus plots for all detected genes with PIP>0.8. The highlighted gene at each region is the detected gene.

ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

for (i in 1:length(ctwas_genes)){
  focus <- ctwas_genes[i]
  region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]

  locus_plot3(region_tag, focus=focus)
  mtext(text=region_tag)

  print(focus)
  print(region_tag)
  print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
  
  #genes at this locus that are in known annotations
  ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag][ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag] %in% known_annotations]
}

Genes with many eQTL

#distribution of number of eQTL for all imputed genes (after dropping ambiguous variants)
table(ctwas_gene_res$num_eqtl)

   1    2    3    4    5 
6546 2969  343   18    5 
#all genes with 4+ eQTL
ctwas_gene_res[ctwas_gene_res$num_eqtl>3,]
      chrom                 id       pos type region_tag1 region_tag2
9844      3 ENSG00000188086.13  46740510 gene           3          33
9134      3 ENSG00000180376.16  56557027 gene           3          39
5029      4 ENSG00000138744.14  75919602 gene           4          51
7247      4 ENSG00000164111.14 121685788 gene           4          78
10990     6  ENSG00000231852.6  32037872 gene           6          26
9071      6 ENSG00000179344.16  32668036 gene           6          26
3487      7 ENSG00000122674.11   5882180 gene           7           9
10012     7 ENSG00000196247.11  64665954 gene           7          44
2211      9 ENSG00000107099.15    211762 gene           9           1
4762      9 ENSG00000136866.13 113056669 gene           9          58
4471     10 ENSG00000134463.14  11740178 gene          10          10
3819     14 ENSG00000126790.11  59473099 gene          14          27
9407     16 ENSG00000183549.10  20409006 gene          16          19
5257     16 ENSG00000140995.16  89919436 gene          16          54
7821     17 ENSG00000167723.14   3557863 gene          17           3
9025     17 ENSG00000178852.15  47322830 gene          17          27
9306     17 ENSG00000182534.13  76686803 gene          17          43
8576     17 ENSG00000173818.16  80415678 gene          17          45
9259     19 ENSG00000182013.17  46471505 gene          19          32
1478     22 ENSG00000100299.17  50625049 gene          22          24
4430      1 ENSG00000134201.10 109704237 gene           1          67
9605     11  ENSG00000185522.8    559466 gene          11           1
3790     13 ENSG00000126231.13 113146308 gene          13          62
      cs_index   susie_pip       mu2 region_tag          PVE genename
9844         0 0.011464097  5.761154       3_33 1.922072e-07   PRSS45
9134         0 0.015798013  6.193569       3_39 2.847500e-07   CCDC66
5029         0 0.010886285  5.921804       4_51 1.876091e-07     NAAA
7247         0 0.022800889 13.333997       4_78 8.847742e-07    ANXA5
10990        0 0.009786222 26.193037       6_26 7.459697e-07  CYP21A2
9071         0 0.003836234 24.369958       6_26 2.720697e-07 HLA-DQB1
3487         0 0.020048702 18.790911        7_9 1.096363e-06     CCZ1
10012        0 0.006302778  6.296022       7_44 1.154831e-07   ZNF107
2211         0 0.016989012  7.465792        9_1 3.691173e-07    DOCK8
4762         0 0.025619873  9.728508       9_58 7.253432e-07    ZFP37
4471         0 0.156534985 33.447394      10_10 1.523681e-05   ECHDC3
3819         0 0.017125210  5.056108      14_27 2.519837e-07  L3HYPDH
9407         0 0.012592154  5.616807      16_19 2.058306e-07    ACSM5
5257         0 0.073369611 20.105227      16_54 4.292848e-06     DEF8
7821         0 0.013985703  8.021455       17_3 3.264809e-07    TRPV3
9025         0 0.013846680 57.243541      17_27 2.306707e-06  EFCAB13
9306         0 0.010333495  5.270104      17_43 1.584845e-07    MXRA7
8576         0 0.013802164  4.895806      17_45 1.966490e-07    ENDOV
9259         0 0.000000000 20.576100      19_32 0.000000e+00   PNMAL1
1478         0 0.012431295  5.366252      22_24 1.941367e-07     ARSA
4430         0 0.016665061 14.852427       1_67 7.203186e-07    GSTM5
9605         0 0.013291879  5.513016       11_1 2.132534e-07   LMNTD2
3790         0 0.019031395 13.234197      13_62 7.329739e-07     PROZ
           gene_type           z num_eqtl
9844  protein_coding  0.44793194        4
9134  protein_coding -0.92699620        4
5029  protein_coding -0.45129769        4
7247  protein_coding -1.37617072        5
10990 protein_coding  3.53603409        4
9071  protein_coding  5.01066331        4
3487  protein_coding  1.62284981        5
10012 protein_coding -0.52202720        4
2211  protein_coding -0.79491899        5
4762  protein_coding -1.16499741        4
4471  protein_coding  3.24989823        5
3819  protein_coding -0.25254601        4
9407  protein_coding -0.21729721        4
5257  protein_coding  1.97803190        4
7821  protein_coding  0.89399610        4
9025  protein_coding  7.36590043        4
9306  protein_coding -0.27986200        4
8576  protein_coding  0.06847957        4
9259  protein_coding -1.81541107        4
1478  protein_coding  0.08026791        4
4430  protein_coding  2.37982269        5
9605  protein_coding  0.63337315        4
3790  protein_coding  2.48358935        4
#distribution of number of eQTL for genes with PIP>0.8
table(ctwas_gene_res$num_eqtl[ctwas_gene_res$susie_pip>0.8])/sum(ctwas_gene_res$susie_pip>0.8)

         1          2          3 
0.60000000 0.31428571 0.08571429 
#genes with 2+ eQTL and PIP>0.8
ctwas_gene_res[ctwas_gene_res$num_eqtl>1 & ctwas_gene_res$susie_pip>0.8,]
      chrom                 id       pos type region_tag1 region_tag2
6992      1 ENSG00000162836.11 147646379 gene           1          73
5542      1 ENSG00000143771.11 224356827 gene           1         114
3720      2 ENSG00000125629.14 118088372 gene           2          69
3562      2 ENSG00000123612.15 157625480 gene           2          94
6217      5 ENSG00000152684.10  52787392 gene           5          31
10612     6 ENSG00000204599.14  30324306 gene           6          24
4702      7 ENSG00000136271.10  44575121 gene           7          32
1114      7 ENSG00000087087.18 100875204 gene           7          62
8523      8 ENSG00000173273.15   9315699 gene           8          12
6387      9 ENSG00000155158.20  15280189 gene           9          13
3300     10 ENSG00000119965.12 122945179 gene          10          77
5988     11 ENSG00000149485.18  61829161 gene          11          34
11327    16  ENSG00000261701.6  72063820 gene          16          38
1999     19 ENSG00000105287.12  46713856 gene          19          33
      cs_index susie_pip       mu2 region_tag          PVE genename
6992         1 0.9725331  25.56527       1_73 7.235610e-05     ACP6
5542         1 0.9996422  48.18514      1_114 1.401774e-04    CNIH4
3720         1 0.9997803  62.17379       2_69 1.808974e-04   INSIG2
3562         1 0.9455956  26.22522       2_94 7.216804e-05   ACVR1C
6217         1 0.9674928  71.81942       5_31 2.022134e-04     PELO
10612        1 0.9986727  71.90981       6_24 2.089930e-04   TRIM39
4702         2 0.9758705  58.50014       7_32 1.661382e-04    DDX56
1114         2 0.9333933  32.80410       7_62 8.910727e-05     SRRT
8523         1 0.9844747  73.24908       8_12 2.098587e-04     TNKS
6387         0 0.9354672  22.88090       9_13 6.229051e-05   TTC39B
3300         1 0.8876146  35.59929      10_77 9.195728e-05 C10orf88
5988         1 0.9994871 159.67335      11_34 4.644404e-04    FADS1
11327        1 1.0000000 208.67866      16_38 6.072931e-04      HPR
1999         2 0.9963912  32.34148      19_33 9.377996e-05    PRKD2
           gene_type          z num_eqtl
6992  protein_coding   4.648193        2
5542  protein_coding   6.721857        2
3720  protein_coding  -9.364196        3
3562  protein_coding  -4.737778        2
6217  protein_coding   8.426917        2
10612 protein_coding   8.848422        3
4702  protein_coding   9.446271        2
1114  protein_coding   5.547715        2
8523  protein_coding  11.026034        2
6387  protein_coding  -4.287139        3
3300  protein_coding  -6.634448        2
5988  protein_coding  12.825883        2
11327 protein_coding -17.240252        2
1999  protein_coding   5.289849        2

cTWAS genes in GO terms enriched for silver standard genes

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

# #GO enrichment analysis for silver standard genes
# dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
# genes <- known_annotations
# GO_enrichment <- enrichr(genes, dbs)
# 
# for (db in dbs){
#   print(db)
#   df <- GO_enrichment[[db]]
#   df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
#   plotEnrich(GO_enrichment[[db]])
#   print(df)
# }
# 
# GO_known_annotations <- do.call(rbind, GO_enrichment)
# GO_known_annotations <- GO_known_annotations[GO_known_annotations$Adjusted.P.value<0.05,]
# 
# #GO enrichment analysis for cTWAS genes
# 
# genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
# GO_enrichment <- enrichr(genes, dbs)
# 
# GO_ctwas_genes <- do.call(rbind, GO_enrichment)
# 
# #optionally subset to only significant GO terms
# #GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Adjusted.P.value<0.05,]
# 
# #identify cTWAS genes in silver standard enriched GO terms
# GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Term %in% GO_known_annotations$Term,]
# 
# overlap_genes <- lapply(GO_ctwas_genes$Genes, function(x){unlist(strsplit(x, ";"))})
# overlap_genes <- -sort(-table(unlist(overlap_genes)))
# 
# #ctwas genes in silver standard enriched GO terms, not already in silver standard
# overlap_genes[!(names(overlap_genes) %in% known_annotations)]
# 
# save(overlap_genes, file=paste0(results_dir, "/overlap_genes.Rd"))
load(paste0(results_dir, "/overlap_genes.Rd"))

overlap_genes <- overlap_genes[!(names(overlap_genes) %in% known_annotations)]
overlap_genes

   GAS6  INSIG2  TTC39B   INHBB    ACP6     HPR   PRKD2  CYP2A6  ACVR1C 
     14      12      10       8       5       4       4       3       2 
   KDSR   CNIH4 CSNK1G3 SPTY2D1 
      2       1       1       1 
overlap_genes <- names(overlap_genes)
#ctwas_gene_res[ctwas_gene_res$genename %in% overlap_genes, report_cols,]

Results for Paper

out_table <- ctwas_gene_res

report_cols <- report_cols[!(report_cols %in% c("mu2", "PVE"))]
report_cols <- c(report_cols,"silver","GO_overlap_silver", "bystander")

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

out_table$silver <- F
out_table$silver[out_table$genename %in% known_annotations] <- T

#create extended bystanders list (all silver standard, not just imputed silver standard)
# library(biomaRt)
# library(GenomicRanges)
# 
# ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
# G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
# G_list <- G_list[G_list$hgnc_symbol!="",]
# G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
# G_list$start <- G_list$start_position
# G_list$end <- G_list$end_position
# G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)
# 
# known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
# half_window <- 1000000
# known_annotations_positions$start <- known_annotations_positions$start_position - half_window
# known_annotations_positions$end <- known_annotations_positions$end_position + half_window
# known_annotations_positions$start[known_annotations_positions$start<1] <- 1
# known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)
# 
# bystanders_extended <- findOverlaps(known_annotations_granges,G_list_granges)
# bystanders_extended <- unique(subjectHits(bystanders_extended))
# bystanders_extended <- G_list$hgnc_symbol[bystanders_extended]
# bystanders_extended <- unique(bystanders_extended[!(bystanders_extended %in% known_annotations)])
# 
# save(bystanders_extended, file=paste0(results_dir, "/bystanders_extended.Rd"))

load(paste0(results_dir, "/bystanders_extended.Rd"))

#add extended bystanders list to output
out_table$bystander <- F
out_table$bystander[out_table$genename %in% bystanders_extended] <- T

#reload GO overlaps with silver standard
load(paste0(results_dir, "/overlap_genes.Rd"))

out_table$GO_overlap_silver <- NA
out_table$GO_overlap_silver[out_table$susie_pip>0.8] <- 0

for (i in names(overlap_genes)){
  out_table$GO_overlap_silver[out_table$genename==i] <- overlap_genes[i]
}

#report number of weights before imputation
nrow(gene_info)
[1] 11502

cTWAS identifies high-confidence liver genes associated with LDL cholesterol

png(filename = "output/LDL_manhattan_plot.png", width = 8, height = 5, units = "in", res=150)

full.gene.pip.summary <- data.frame(gene_name = ctwas_gene_res$genename, 
                                    gene_pip = ctwas_gene_res$susie_pip, 
                                    gene_id = ctwas_gene_res$id, 
                                    chr = as.integer(ctwas_gene_res$chrom),
                                    start = ctwas_gene_res$pos / 1e3,
                                    is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full.gene.pip.summary$is_highlight <- full.gene.pip.summary$gene_pip > 0.80

don <- full.gene.pip.summary %>% 
  
  # Compute chromosome size
  group_by(chr) %>% 
  summarise(chr_len=max(start)) %>% 
  
  # Calculate cumulative position of each chromosome
  mutate(tot=cumsum(chr_len)-chr_len) %>%
  dplyr::select(-chr_len) %>%
  
  # Add this info to the initial dataset
  left_join(full.gene.pip.summary, ., by=c("chr"="chr")) %>%
  
  # Add a cumulative position of each SNP
  arrange(chr, start) %>%
  mutate( BPcum=start+tot)


nudge_x <- rep(0, sum(don$is_highlight))
names(nudge_x) <- don$gene_name[don$is_highlight]
nudge_x["USP1"] <- 0.2

nudge_y <- rep(0, sum(don$is_highlight))
names(nudge_y) <- don$gene_name[don$is_highlight]
nudge_y["USP1"] <- 0.25

axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )

x_axis_labels <- axisdf$chr
x_axis_labels[seq(1,21,2)] <- ""

ggplot(don, aes(x=BPcum, y=gene_pip)) +
  
  # Show all points
  ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=2) +
  scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
  
  scale_x_continuous(label = x_axis_labels,
                     breaks = axisdf$center,
                     limits=) +
  
  scale_y_continuous(expand = c(0, 0), limits = c(0,1.25), breaks=(1:5)*0.2, minor_breaks=(1:10)*0.1) + # remove space between plot area and x axis
  
  # Add highlighted points
  ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="orange", size=2) +
  
  # Add label using ggrepel to avoid overlapping
  ggrepel::geom_label_repel(data=subset(don, is_highlight==T), 
                            aes(label=gene_name), 
                            size=2.9,
                            min.segment.length = 0, 
                            label.size = NA,
                            fill = alpha(c("white"),0),
                            max.time=20, max.iter=400000, max.overlaps=12, seed=10,
                            nudge_x = nudge_x, nudge_y = nudge_y) +
  
  # Custom the theme:
  theme_bw() +
  theme( 
    text = element_text(size = 14),
    legend.position="none",
    panel.border = element_blank(),
    panel.grid.major.x = element_blank(),
    panel.grid.minor.x = element_blank()
  ) +
  xlab("Chromosome") + 
  ylab("cTWAS PIP")

dev.off()
png 
  2 
#number of SNPs at PIP>0.8 threshold
sum(out_table$susie_pip>0.8)
[1] 35
#number of SNPs at PIP>0.5 threshold
sum(out_table$susie_pip>0.5)
[1] 60
#genes with PIP>0.8
head(out_table[order(-out_table$susie_pip),report_cols], sum(out_table$susie_pip>0.8))
      genename region_tag susie_pip          z num_eqtl silver
4433     PSRC1       1_67 1.0000000 -41.687336        1  FALSE
11327      HPR      16_38 1.0000000 -17.240252        2  FALSE
5561     ABCG8       2_27 0.9999422 -20.293982        1   TRUE
3720    INSIG2       2_69 0.9997803  -9.364196        3  FALSE
5542     CNIH4      1_114 0.9996422   6.721857        2  FALSE
5988     FADS1      11_34 0.9994871  12.825883        2   TRUE
10612   TRIM39       6_24 0.9986727   8.848422        3  FALSE
1999     PRKD2      19_33 0.9963912   5.289849        2  FALSE
7405     ABCA1       9_53 0.9954963   7.982017        1   TRUE
1597      PLTP      20_28 0.9882944  -5.732491        1   TRUE
9365      GAS6      13_62 0.9882298  -8.923688        1  FALSE
8523      TNKS       8_12 0.9844747  11.026034        2   TRUE
7036     INHBB       2_70 0.9823634  -8.518936        1  FALSE
4702     DDX56       7_32 0.9758705   9.446271        2  FALSE
2092       SP4       7_19 0.9755655  10.693191        1  FALSE
6090   CSNK1G3       5_75 0.9742306   9.116291        1  FALSE
6992      ACP6       1_73 0.9725331   4.648193        2  FALSE
6217      PELO       5_31 0.9674928   8.426917        2  FALSE
11257   CYP2A6      19_28 0.9650171   5.407028        1  FALSE
8853      FUT2      19_33 0.9632310 -11.927107        1  FALSE
233     NPC1L1       7_32 0.9616984 -10.761931        1   TRUE
3247      KDSR      18_35 0.9603219  -4.526287        1  FALSE
3562    ACVR1C       2_94 0.9455956  -4.737778        2  FALSE
6774      PKN3       9_66 0.9378574  -6.620563        1  FALSE
6387    TTC39B       9_13 0.9354672  -4.287139        3  FALSE
1114      SRRT       7_62 0.9333933   5.547715        2  FALSE
6953      USP1       1_39 0.8940409  16.258211        1  FALSE
3300  C10orf88      10_77 0.8876146  -6.634448        2  FALSE
9046   KLHDC7A       1_13 0.8395101   4.124187        1  FALSE
8918   CRACR2B       11_1 0.8307262  -3.989585        1  FALSE
9054   SPTY2D1      11_13 0.8249847  -5.557123        1  FALSE
5413     SYTL1       1_19 0.8166110  -3.962854        1  FALSE
8411      POP7       7_62 0.8146972  -5.845258        1  FALSE
6097      ALLC        2_2 0.8129463   4.919066        1  FALSE
3212     CCND2       12_4 0.8045730  -4.065830        1  FALSE
      GO_overlap_silver bystander
4433                  0      TRUE
11327                 4     FALSE
5561                 16     FALSE
3720                 12     FALSE
5542                  1     FALSE
5988                 11     FALSE
10612                 0     FALSE
1999                  4     FALSE
7405                 38     FALSE
1597                 20     FALSE
9365                 14     FALSE
8523                  0     FALSE
7036                  8     FALSE
4702                  0      TRUE
2092                  0     FALSE
6090                  1     FALSE
6992                  5     FALSE
6217                  0     FALSE
11257                 3     FALSE
8853                  0     FALSE
233                  11     FALSE
3247                  2     FALSE
3562                  2     FALSE
6774                  0     FALSE
6387                 10     FALSE
1114                  0     FALSE
6953                  0      TRUE
3300                  0     FALSE
9046                  0     FALSE
8918                  0     FALSE
9054                  1     FALSE
5413                  0     FALSE
8411                  0     FALSE
6097                  0     FALSE
3212                  0     FALSE
head(out_table[order(-out_table$susie_pip),report_cols[-(7:8)]], sum(out_table$susie_pip>0.8))
      genename region_tag susie_pip          z num_eqtl silver
4433     PSRC1       1_67 1.0000000 -41.687336        1  FALSE
11327      HPR      16_38 1.0000000 -17.240252        2  FALSE
5561     ABCG8       2_27 0.9999422 -20.293982        1   TRUE
3720    INSIG2       2_69 0.9997803  -9.364196        3  FALSE
5542     CNIH4      1_114 0.9996422   6.721857        2  FALSE
5988     FADS1      11_34 0.9994871  12.825883        2   TRUE
10612   TRIM39       6_24 0.9986727   8.848422        3  FALSE
1999     PRKD2      19_33 0.9963912   5.289849        2  FALSE
7405     ABCA1       9_53 0.9954963   7.982017        1   TRUE
1597      PLTP      20_28 0.9882944  -5.732491        1   TRUE
9365      GAS6      13_62 0.9882298  -8.923688        1  FALSE
8523      TNKS       8_12 0.9844747  11.026034        2   TRUE
7036     INHBB       2_70 0.9823634  -8.518936        1  FALSE
4702     DDX56       7_32 0.9758705   9.446271        2  FALSE
2092       SP4       7_19 0.9755655  10.693191        1  FALSE
6090   CSNK1G3       5_75 0.9742306   9.116291        1  FALSE
6992      ACP6       1_73 0.9725331   4.648193        2  FALSE
6217      PELO       5_31 0.9674928   8.426917        2  FALSE
11257   CYP2A6      19_28 0.9650171   5.407028        1  FALSE
8853      FUT2      19_33 0.9632310 -11.927107        1  FALSE
233     NPC1L1       7_32 0.9616984 -10.761931        1   TRUE
3247      KDSR      18_35 0.9603219  -4.526287        1  FALSE
3562    ACVR1C       2_94 0.9455956  -4.737778        2  FALSE
6774      PKN3       9_66 0.9378574  -6.620563        1  FALSE
6387    TTC39B       9_13 0.9354672  -4.287139        3  FALSE
1114      SRRT       7_62 0.9333933   5.547715        2  FALSE
6953      USP1       1_39 0.8940409  16.258211        1  FALSE
3300  C10orf88      10_77 0.8876146  -6.634448        2  FALSE
9046   KLHDC7A       1_13 0.8395101   4.124187        1  FALSE
8918   CRACR2B       11_1 0.8307262  -3.989585        1  FALSE
9054   SPTY2D1      11_13 0.8249847  -5.557123        1  FALSE
5413     SYTL1       1_19 0.8166110  -3.962854        1  FALSE
8411      POP7       7_62 0.8146972  -5.845258        1  FALSE
6097      ALLC        2_2 0.8129463   4.919066        1  FALSE
3212     CCND2       12_4 0.8045730  -4.065830        1  FALSE
head(out_table[order(-out_table$susie_pip),report_cols[c(1,7:8)]], sum(out_table$susie_pip>0.8))
      genename GO_overlap_silver bystander
4433     PSRC1                 0      TRUE
11327      HPR                 4     FALSE
5561     ABCG8                16     FALSE
3720    INSIG2                12     FALSE
5542     CNIH4                 1     FALSE
5988     FADS1                11     FALSE
10612   TRIM39                 0     FALSE
1999     PRKD2                 4     FALSE
7405     ABCA1                38     FALSE
1597      PLTP                20     FALSE
9365      GAS6                14     FALSE
8523      TNKS                 0     FALSE
7036     INHBB                 8     FALSE
4702     DDX56                 0      TRUE
2092       SP4                 0     FALSE
6090   CSNK1G3                 1     FALSE
6992      ACP6                 5     FALSE
6217      PELO                 0     FALSE
11257   CYP2A6                 3     FALSE
8853      FUT2                 0     FALSE
233     NPC1L1                11     FALSE
3247      KDSR                 2     FALSE
3562    ACVR1C                 2     FALSE
6774      PKN3                 0     FALSE
6387    TTC39B                10     FALSE
1114      SRRT                 0     FALSE
6953      USP1                 0      TRUE
3300  C10orf88                 0     FALSE
9046   KLHDC7A                 0     FALSE
8918   CRACR2B                 0     FALSE
9054   SPTY2D1                 1     FALSE
5413     SYTL1                 0     FALSE
8411      POP7                 0     FALSE
6097      ALLC                 0     FALSE
3212     CCND2                 0     FALSE

cTWAS avoids false positives when multiple genes are in a region

TNKS is a silver standard (assumed true positive gene) that is correctly detected. The bystander gene RP11-115J16.2 is significant using TWAS but has low PIP using cTWAS.

#TNKS gene
locus_plot4("8_12", label="cTWAS")

Version Author Date
299fa01 wesleycrouse 2022-06-03
37b2a2c wesleycrouse 2022-05-29
out_table[out_table$region_tag=="8_12",report_cols[-(7:8)]]
     genename region_tag susie_pip        z num_eqtl silver
8523     TNKS       8_12 0.9844747 11.02603        2   TRUE
out_table[out_table$region_tag=="8_12",report_cols[c(1,7:8)]]
     genename GO_overlap_silver bystander
8523     TNKS                 0     FALSE

FADS1 is a silver standard gene (assumed true positive gene) that is correctly detected. There are 5 significant TWAS genes at this locus, including FADS2, another silver standard gene. FADS2 is not detected due to its high LD with FADS1. The remaining 3 bystander genes at this locus have low PIP using cTWAS.

#FADS1 gene
locus_plot3("11_34", focus="FADS1")

Version Author Date
299fa01 wesleycrouse 2022-06-03
37b2a2c wesleycrouse 2022-05-29
out_table[out_table$region_tag=="11_34",report_cols[-(7:8)]]
           genename region_tag   susie_pip            z num_eqtl silver
9952        FAM111B      11_34 0.005221610 -0.130372989        1  FALSE
7657        FAM111A      11_34 0.007702534  0.788300174        2  FALSE
2444           DTX4      11_34 0.005257276  0.272926929        2  FALSE
10233         MPEG1      11_34 0.005294591  0.288859011        1  FALSE
7679          PATL1      11_34 0.071519692  3.303999343        2  FALSE
7682           STX3      11_34 0.005161056  0.001285218        2  FALSE
7683         MRPL16      11_34 0.007921287  0.989371951        2  FALSE
5994          MS4A2      11_34 0.009774821 -1.135206653        1  FALSE
2453         MS4A6A      11_34 0.005834704  0.544252801        1  FALSE
10858        MS4A4E      11_34 0.006702028  0.848247159        1  FALSE
7692          MS4A7      11_34 0.005133601 -0.132073393        2  FALSE
7693         MS4A14      11_34 0.029852883 -1.857701655        3  FALSE
2455         CCDC86      11_34 0.006739782 -0.651729299        3  FALSE
2456         PRPF19      11_34 0.010426047  1.430603519        2  FALSE
2457        TMEM109      11_34 0.011902564  1.421831985        1  FALSE
2480        SLC15A3      11_34 0.005506251  0.821410772        1  FALSE
2481            CD5      11_34 0.005288143  0.346138465        1  FALSE
7869         VPS37C      11_34 0.006143699  0.024014132        1  FALSE
7870           VWCE      11_34 0.005532627 -0.638825054        2  FALSE
6898       CYB561A3      11_34 0.006999419 -1.782804562        1  FALSE
5987        TMEM138      11_34 0.006999419 -1.782804562        1  FALSE
9761        TMEM216      11_34 0.005138310 -0.251085346        2  FALSE
5993          CPSF7      11_34 0.006047511 -2.061044578        1  FALSE
11272 RP11-286N22.8      11_34 0.005759527 -0.427047808        1  FALSE
6899        PPP1R32      11_34 0.006257040 -0.382653253        1  FALSE
4506        TMEM258      11_34 0.040683627 -6.946921109        2  FALSE
7950           FEN1      11_34 0.007575672 12.072635202        1  FALSE
4505          FADS2      11_34 0.007575672 12.072635202        1   TRUE
5988          FADS1      11_34 0.999487146 12.825882927        2   TRUE
10926         FADS3      11_34 0.011519846  3.289416818        1   TRUE
7871          BEST1      11_34 0.005504270 -3.744804132        1  FALSE
5991         INCENP      11_34 0.005145157 -0.969291005        2  FALSE
6900         ASRGL1      11_34 0.005292136 -0.250084386        1  FALSE
1196          GANAB      11_34 0.008923829 -8.204723304        1  FALSE
out_table[out_table$region_tag=="11_34",report_cols[c(1,7:8)]]
           genename GO_overlap_silver bystander
9952        FAM111B                NA     FALSE
7657        FAM111A                NA     FALSE
2444           DTX4                NA     FALSE
10233         MPEG1                NA     FALSE
7679          PATL1                NA     FALSE
7682           STX3                NA     FALSE
7683         MRPL16                NA     FALSE
5994          MS4A2                NA     FALSE
2453         MS4A6A                NA     FALSE
10858        MS4A4E                NA     FALSE
7692          MS4A7                NA     FALSE
7693         MS4A14                NA     FALSE
2455         CCDC86                NA      TRUE
2456         PRPF19                NA      TRUE
2457        TMEM109                NA      TRUE
2480        SLC15A3                NA      TRUE
2481            CD5                NA      TRUE
7869         VPS37C                NA      TRUE
7870           VWCE                NA      TRUE
6898       CYB561A3                NA      TRUE
5987        TMEM138                NA      TRUE
9761        TMEM216                NA      TRUE
5993          CPSF7                NA      TRUE
11272 RP11-286N22.8                NA     FALSE
6899        PPP1R32                NA      TRUE
4506        TMEM258                NA      TRUE
7950           FEN1                NA      TRUE
4505          FADS2                NA     FALSE
5988          FADS1                11     FALSE
10926         FADS3                NA     FALSE
7871          BEST1                NA      TRUE
5991         INCENP                NA      TRUE
6900         ASRGL1                NA      TRUE
1196          GANAB                NA      TRUE
#number of significant TWAS genes at this locus
sum(abs(out_table$z[out_table$region_tag=="11_34"])>sig_thresh)
[1] 5

cTWAS avoids false positives when SNPs in a region are (considerably) more significant

POLK is a gene that is significant using TWAS but not detected using TWAS. cTWAS places a high posterior probability on SNPs are this locus. OpenTargets suggets that the causal gene at this locus is HMGCR (note: different GWAS, similar population), which is not imputed in our dataset. cTWAS selected the variants at this locus because the causal gene is not imputed. Note that MR-JTI claims POLK is causal using their method, and their paper includes a discussion of its potential relevance to LDL.

locus_plot("5_45", label="TWAS")

Version Author Date
299fa01 wesleycrouse 2022-06-03
37b2a2c wesleycrouse 2022-05-29
#locus_plot("5_45", label="TWAS", rerun_ctwas = T)

out_table[out_table$region_tag=="5_45",report_cols[-(7:8)]]
        genename region_tag   susie_pip          z num_eqtl silver
8333        ENC1       5_45 0.001256179 -0.4000089        1  FALSE
7302        GFM2       5_45 0.001601844 -0.4062418        2  FALSE
7301        NSA2       5_45 0.003121693 -2.0511430        3  FALSE
10422    FAM169A       5_45 0.001334034 -0.9826944        2  FALSE
3441        POLK       5_45 0.004675801 17.5157647        1  FALSE
9948     ANKDD1B       5_45 0.004782518 15.0669830        2  FALSE
6183        POC5       5_45 0.004736102 -7.0119331        1  FALSE
11241 AC113404.1       5_45 0.002166590  2.3250769        1  FALSE
5715      IQGAP2       5_45 0.006613243  2.5652287        2  FALSE
7276       F2RL2       5_45 0.001486619  0.5923159        1  FALSE
9198         F2R       5_45 0.002455171 -1.2065901        2  FALSE
7282       F2RL1       5_45 0.013233304  2.2468261        3  FALSE
5716       CRHBP       5_45 0.001496722 -0.6287222        2  FALSE
7283       AGGF1       5_45 0.001412410 -0.5067707        2  FALSE
4312       ZBED3       5_45 0.006837974 -1.8752115        1  FALSE
2729       PDE8B       5_45 0.001368834  0.4406481        3  FALSE
7284       WDR41       5_45 0.001350448 -0.4097230        1  FALSE
4311       AP3B1       5_45 0.005041907  1.7055957        1  FALSE
out_table[out_table$region_tag=="5_45",report_cols[c(1,7:8)]]
        genename GO_overlap_silver bystander
8333        ENC1                NA      TRUE
7302        GFM2                NA      TRUE
7301        NSA2                NA      TRUE
10422    FAM169A                NA      TRUE
3441        POLK                NA      TRUE
9948     ANKDD1B                NA      TRUE
6183        POC5                NA      TRUE
11241 AC113404.1                NA     FALSE
5715      IQGAP2                NA     FALSE
7276       F2RL2                NA     FALSE
9198         F2R                NA     FALSE
7282       F2RL1                NA     FALSE
5716       CRHBP                NA     FALSE
7283       AGGF1                NA     FALSE
4312       ZBED3                NA     FALSE
2729       PDE8B                NA     FALSE
7284       WDR41                NA     FALSE
4311       AP3B1                NA     FALSE

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))

#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
    ctwas      TWAS 
0.1304348 0.4130435 
#specificity / (1 - False Positive Rate)
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9962894 0.9239332 
#precision / PPV / (1 - False Discovery Rate)
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
    ctwas      TWAS 
0.7500000 0.3166667 
#store sensitivity and specificity calculations for plots
sensitivity_plot <- sensitivity
specificity_plot <- specificity

#precision / PPV by PIP threshold
pip_range <- c(0.5, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
number_detected <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes using PIP threshold
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower]
  
  number_detected[i] <- length(ctwas_genes)
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste0(">= ", c(0, pip_range[-length(pip_range)]))

precision_range <- precision_range*100

precision_range <- c(precision_range, precision["TWAS"]*100)
names(precision_range)[4] <- "TWAS Bonferroni"
number_detected <- c(number_detected, length(twas_genes))

barplot(precision_range, ylim=c(0,100), main="Precision for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
299fa01 wesleycrouse 2022-06-03
37b2a2c wesleycrouse 2022-05-29
#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

#false discovery rate by PIP threshold

barplot(100-precision_range, ylim=c(0,100), main="False Discovery Rate for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% Bystanders in Detected Genes")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(100-precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
299fa01 wesleycrouse 2022-06-03
37b2a2c wesleycrouse 2022-05-29
#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

####################

number_detected <- number_detected[names(precision_range)!=">= 0.5"]
precision_range <- precision_range[names(precision_range)!=">= 0.5"]


names(precision_range)[names(precision_range)==">= 0"] <- "All Genes"
names(precision_range)[names(precision_range)==">= 0.8"] <- "cTWAS (PIP > 0.8)"
names(precision_range)[names(precision_range)=="TWAS Bonferroni"] <- "TWAS (Bonf.)"

barplot(precision_range, ylim=c(0,100), main="", xlab="", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)

xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
299fa01 wesleycrouse 2022-06-03
37b2a2c wesleycrouse 2022-05-29

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

For all 69 silver standard genes, sequentially bin each gene using the following criteria: 1) gene not imputed; 2) gene detected by cTWAS at PIP>0.8; 3) gene insignificant by TWAS; 4) gene nearby a detected silver standard gene; 5) gene nearby a detected bystander gene; 6) gene nearby a detected SNP; 7) inconclusive.

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

#categorize silver standard genes by case
silver_standard_case <- c()
uncertain_regions <- matrix(NA, 0, 2)

for (i in 1:length(known_annotations)){
  current_gene <- known_annotations[i]
  
  if (current_gene %in% ctwas_gene_res$genename) {
    if (ctwas_gene_res$susie_pip[ctwas_gene_res$genename == current_gene] > 0.8){
      silver_standard_case <- c(silver_standard_case, "Detected (PIP > 0.8)")
    } else {
      if (abs(ctwas_gene_res$z[ctwas_gene_res$genename == current_gene]) < sig_thresh){
        silver_standard_case <- c(silver_standard_case, "Insignificant z-score")
      } else {
        current_region <- ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]
        current_gene_res <- ctwas_gene_res[ctwas_gene_res$region_tag==current_region,]
        current_snp_res <- ctwas_snp_res[ctwas_snp_res$region_tag==current_region,]
        
        if (any(current_gene_res$susie_pip>0.8)){
          if (any(current_gene_res$genename[current_gene_res$susie_pip>0.8] %in% known_annotations)){
            silver_standard_case <- c(silver_standard_case, "Nearby Silver Standard Gene")
          } else {
            silver_standard_case <- c(silver_standard_case, "Nearby Bystander Gene")
          }
        } else {
          #if (any(current_snp_res$susie_pip>0.8)){
          if (sum(current_snp_res$susie_pip)>0.8){
            silver_standard_case <- c(silver_standard_case, "Nearby SNP(s)")
          } else {
            silver_standard_case <- c(silver_standard_case, "Inconclusive")
            
            uncertain_regions <- rbind(uncertain_regions, c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
            
            print(c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
          }
        }
      }
    }
  } else {
    silver_standard_case <- c(silver_standard_case, "Not Imputed")
  }
}
names(silver_standard_case) <- known_annotations

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
      Insignificant z-score                 Not Imputed 
                         27                          23 
              Nearby SNP(s)        Detected (PIP > 0.8) 
                         11                           6 
      Nearby Bystander Gene Nearby Silver Standard Gene 
                          1                           1 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)
# for (i in 1:nrow(uncertain_regions)){
#   locus_plot3(uncertain_regions[i,2], focus=uncertain_regions[i,1])
# }

#pie chart of outcomes for silver standard genes
df <- data.frame(-sort(-table(silver_standard_case)))
names(df) <- c("Outcome", "Frequency")
#df <- df[df$Outcome!="Not Imputed",] #exclude genes not imputed
df$Outcome <- droplevels(df$Outcome) #exclude genes not imputed

bp<- ggplot(df, aes(x=Outcome, y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity", position=position_dodge()) + 
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) + theme(legend.position = "none")
bp

Version Author Date
299fa01 wesleycrouse 2022-06-03
pie <- ggplot(df, aes(x="", y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity")
pie <- pie + coord_polar("y", start=0) + theme_minimal() + theme(axis.title.y=element_blank())
pie

Version Author Date
299fa01 wesleycrouse 2022-06-03
locus_plot3(focus="KPNB1", region_tag="17_27")

Version Author Date
299fa01 wesleycrouse 2022-06-03
locus_plot3(focus="LPIN3", region_tag="20_25")

Version Author Date
299fa01 wesleycrouse 2022-06-03
locus_plot3(focus="LIPC", region_tag="15_26")

Version Author Date
299fa01 wesleycrouse 2022-06-03

Some cTWAS genes share biological characteristics with silver standard genes

Perform GO enrichment analysis using silver standard genes. Identify detected cTWAS genes not already in silver standard that are also members of these GO terms.

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

#GO enrichment analysis for silver standard genes
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- known_annotations
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
for (db in dbs){
  print(db)
  df <- GO_enrichment[[db]]
  df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
  print(df)
  plotEnrich(GO_enrichment[[db]])
}
[1] "GO_Biological_Process_2021"
                                                                                       Term
1                                                        cholesterol transport (GO:0030301)
2                                                      cholesterol homeostasis (GO:0042632)
3                                                           sterol homeostasis (GO:0055092)
4                                                           cholesterol efflux (GO:0033344)
5                                                             sterol transport (GO:0015918)
6                                                cholesterol metabolic process (GO:0008203)
7                                                     sterol metabolic process (GO:0016125)
8                            triglyceride-rich lipoprotein particle remodeling (GO:0034370)
9                                 high-density lipoprotein particle remodeling (GO:0034375)
10                                               reverse cholesterol transport (GO:0043691)
11                                         secondary alcohol metabolic process (GO:1902652)
12                                   regulation of lipoprotein lipase activity (GO:0051004)
13                                                      phospholipid transport (GO:0015914)
14                                                             lipid transport (GO:0006869)
15                                                    acylglycerol homeostasis (GO:0055090)
16                            very-low-density lipoprotein particle remodeling (GO:0034372)
17                                                    triglyceride homeostasis (GO:0070328)
18                                              triglyceride metabolic process (GO:0006641)
19                                                         phospholipid efflux (GO:0033700)
20                                                      chylomicron remodeling (GO:0034371)
21                                         regulation of cholesterol transport (GO:0032374)
22                                                        chylomicron assembly (GO:0034378)
23                                               chylomicron remnant clearance (GO:0034382)
24                                               lipoprotein metabolic process (GO:0042157)
25                                               diterpenoid metabolic process (GO:0016101)
26                            positive regulation of steroid metabolic process (GO:0045940)
27                                                  retinoid metabolic process (GO:0001523)
28                                                           lipid homeostasis (GO:0055088)
29                                      negative regulation of lipase activity (GO:0060192)
30                           positive regulation of cholesterol esterification (GO:0010873)
31                                           intestinal cholesterol absorption (GO:0030299)
32                                negative regulation of cholesterol transport (GO:0032375)
33                                                 intestinal lipid absorption (GO:0098856)
34                                              acylglycerol metabolic process (GO:0006639)
35                                    regulation of cholesterol esterification (GO:0010872)
36                                                    phospholipid homeostasis (GO:0055091)
37                              very-low-density lipoprotein particle assembly (GO:0034379)
38                              positive regulation of lipid metabolic process (GO:0045834)
39                                  high-density lipoprotein particle assembly (GO:0034380)
40                          negative regulation of lipoprotein lipase activity (GO:0051005)
41                       negative regulation of lipoprotein particle clearance (GO:0010985)
42              regulation of very-low-density lipoprotein particle remodeling (GO:0010901)
43                                         intracellular cholesterol transport (GO:0032367)
44                                positive regulation of cholesterol transport (GO:0032376)
45                             regulation of intestinal cholesterol absorption (GO:0030300)
46                          positive regulation of lipoprotein lipase activity (GO:0051006)
47                                              acylglycerol catabolic process (GO:0046464)
48                           positive regulation of lipid biosynthetic process (GO:0046889)
49                       positive regulation of triglyceride metabolic process (GO:0090208)
50                         positive regulation of triglyceride lipase activity (GO:0061365)
51                                       regulation of lipid catabolic process (GO:0050994)
52                                                   steroid metabolic process (GO:0008202)
53                              positive regulation of lipid catabolic process (GO:0050996)
54                                              triglyceride catabolic process (GO:0019433)
55                                             organophosphate ester transport (GO:0015748)
56                                       phosphatidylcholine metabolic process (GO:0046470)
57                                regulation of triglyceride catabolic process (GO:0010896)
58                                                fatty acid metabolic process (GO:0006631)
59                               regulation of fatty acid biosynthetic process (GO:0042304)
60                                              regulation of sterol transport (GO:0032371)
61              cellular response to low-density lipoprotein particle stimulus (GO:0071404)
62                                 low-density lipoprotein particle remodeling (GO:0034374)
63                  regulation of macrophage derived foam cell differentiation (GO:0010743)
64                                                 organic substance transport (GO:0071702)
65                                            regulation of cholesterol efflux (GO:0010874)
66                                               receptor-mediated endocytosis (GO:0006898)
67                                      secondary alcohol biosynthetic process (GO:1902653)
68                                           regulation of cholesterol storage (GO:0010885)
69                                                          cholesterol import (GO:0070508)
70                                                               sterol import (GO:0035376)
71                                    monocarboxylic acid biosynthetic process (GO:0072330)
72                                            cholesterol biosynthetic process (GO:0006695)
73                           positive regulation of cellular metabolic process (GO:0031325)
74                                                 sterol biosynthetic process (GO:0016126)
75                         positive regulation of fatty acid metabolic process (GO:0045923)
76                                 regulation of receptor-mediated endocytosis (GO:0048259)
77                                             fatty acid biosynthetic process (GO:0006633)
78                             regulation of Cdc42 protein signal transduction (GO:0032489)
79                       positive regulation of triglyceride catabolic process (GO:0010898)
80                                                  lipid biosynthetic process (GO:0008610)
81                                   positive regulation of cholesterol efflux (GO:0010875)
82                        negative regulation of receptor-mediated endocytosis (GO:0048261)
83                                                       lipoprotein transport (GO:0042953)
84                                       regulation of lipid metabolic process (GO:0019216)
85                                       monocarboxylic acid metabolic process (GO:0032787)
86                                                    lipoprotein localization (GO:0044872)
87                                                     lipid catabolic process (GO:0016042)
88                      positive regulation of fatty acid biosynthetic process (GO:0045723)
89                                              intracellular sterol transport (GO:0032366)
90                                                steroid biosynthetic process (GO:0006694)
91                                    regulation of lipid biosynthetic process (GO:0046890)
92                                               regulation of lipase activity (GO:0060191)
93                        positive regulation of cellular biosynthetic process (GO:0031328)
94                                        regulation of amyloid-beta clearance (GO:1900221)
95                                              phospholipid metabolic process (GO:0006644)
96                                   regulation of intestinal lipid absorption (GO:1904729)
97             positive regulation of protein catabolic process in the vacuole (GO:1904352)
98                                 positive regulation of biosynthetic process (GO:0009891)
99                                 regulation of cholesterol metabolic process (GO:0090181)
100                                                  foam cell differentiation (GO:0090077)
101                                 positive regulation of cholesterol storage (GO:0010886)
102                               macrophage derived foam cell differentiation (GO:0010742)
103                              organic hydroxy compound biosynthetic process (GO:1901617)
104                                    regulation of steroid metabolic process (GO:0019218)
105                               organonitrogen compound biosynthetic process (GO:1901566)
106                             negative regulation of lipid metabolic process (GO:0045833)
107                          regulation of lysosomal protein catabolic process (GO:1905165)
108                              positive regulation of amyloid-beta clearance (GO:1900223)
109                                           cellular lipid catabolic process (GO:0044242)
110                                                       chemical homeostasis (GO:0048878)
111                                              cholesterol catabolic process (GO:0006707)
112                                                   sterol catabolic process (GO:0016127)
113                                       steroid hormone biosynthetic process (GO:0120178)
114                   regulation of low-density lipoprotein particle clearance (GO:0010988)
115                                                bile acid metabolic process (GO:0008206)
116                                   phosphatidylcholine biosynthetic process (GO:0006656)
117                                                  alcohol catabolic process (GO:0046164)
118                                          organophosphate catabolic process (GO:0046434)
119                                       regulation of phospholipase activity (GO:0010517)
120                                  positive regulation of lipid localization (GO:1905954)
121                              positive regulation of phospholipid transport (GO:2001140)
122                                      glycerophospholipid metabolic process (GO:0006650)
123                                         organic hydroxy compound transport (GO:0015850)
124        negative regulation of macrophage derived foam cell differentiation (GO:0010745)
125                                     positive regulation of lipid transport (GO:0032370)
126                                   C21-steroid hormone biosynthetic process (GO:0006700)
127                                                      membrane organization (GO:0061024)
128                                         positive regulation of endocytosis (GO:0045807)
129                    positive regulation of multicellular organismal process (GO:0051240)
130                                   negative regulation of catabolic process (GO:0009895)
131                             negative regulation of lipid catabolic process (GO:0050995)
132                                          carbohydrate derivative transport (GO:1901264)
133        positive regulation of macrophage derived foam cell differentiation (GO:0010744)
134                                                          protein transport (GO:0015031)
135                                                       fatty acid transport (GO:0015908)
136                                       positive regulation of lipid storage (GO:0010884)
137                                      C21-steroid hormone metabolic process (GO:0008207)
138                                             phospholipid catabolic process (GO:0009395)
139                                         negative regulation of endocytosis (GO:0045806)
140                                    regulation of primary metabolic process (GO:0080090)
141                    negative regulation of multicellular organismal process (GO:0051241)
142                                             bile acid biosynthetic process (GO:0006699)
143  regulation of low-density lipoprotein particle receptor catabolic process (GO:0032803)
144                              regulation of Rho protein signal transduction (GO:0035023)
145                             regulation of small molecule metabolic process (GO:0062012)
146                          positive regulation of cellular catabolic process (GO:0031331)
147                                                       artery morphogenesis (GO:0048844)
148                     negative regulation of cellular component organization (GO:0051129)
149                                                       glycolipid transport (GO:0046836)
150                      positive regulation of lipoprotein particle clearance (GO:0010986)
151                                    positive regulation of sterol transport (GO:0032373)
152                                            long-chain fatty acid transport (GO:0015909)
153                                                        response to insulin (GO:0032868)
154                                  regulation of bile acid metabolic process (GO:1904251)
155                          positive regulation of receptor catabolic process (GO:2000646)
156                                           positive regulation of transport (GO:0051050)
157                      negative regulation of endothelial cell proliferation (GO:0001937)
158                          negative regulation of endothelial cell migration (GO:0010596)
159                          regulation of nitrogen compound metabolic process (GO:0051171)
160                              negative regulation of amyloid-beta clearance (GO:1900222)
161                          negative regulation of cellular metabolic process (GO:0031324)
162                                   glycerophospholipid biosynthetic process (GO:0046474)
163 negative regulation of production of molecular mediator of immune response (GO:0002701)
164                                unsaturated fatty acid biosynthetic process (GO:0006636)
165                                                            anion transport (GO:0006820)
166                       positive regulation of receptor-mediated endocytosis (GO:0048260)
167                                 negative regulation of cholesterol storage (GO:0010887)
168                               regulation of bile acid biosynthetic process (GO:0070857)
169                                           peptidyl-amino acid modification (GO:0018193)
170                low-density lipoprotein particle receptor catabolic process (GO:0032802)
171                low-density lipoprotein receptor particle metabolic process (GO:0032799)
172                                                          protein oxidation (GO:0018158)
173                               positive regulation by host of viral process (GO:0044794)
174                   positive regulation of triglyceride biosynthetic process (GO:0010867)
175                                                   receptor internalization (GO:0031623)
176                                                        response to glucose (GO:0009749)
177                     positive regulation of cellular component organization (GO:0051130)
178                     negative regulation of fatty acid biosynthetic process (GO:0045717)
179                                          negative regulation of hemostasis (GO:1900047)
180                                           peptidyl-methionine modification (GO:0018206)
181                                                          ethanol oxidation (GO:0006069)
182                            negative regulation of amyloid fibril formation (GO:1905907)
183                           negative regulation of protein metabolic process (GO:0051248)
184                                   unsaturated fatty acid metabolic process (GO:0033559)
185                                     alpha-linolenic acid metabolic process (GO:0036109)
186                                                     platelet degranulation (GO:0002576)
187                                   negative regulation of metabolic process (GO:0009892)
188                                     negative regulation of cell activation (GO:0050866)
189                                         negative regulation of coagulation (GO:0050819)
190                                                    cGMP-mediated signaling (GO:0019934)
191                                                      intestinal absorption (GO:0050892)
192                                                 receptor metabolic process (GO:0043112)
193                                                 regulation of phagocytosis (GO:0050764)
194                                     regulation of amyloid fibril formation (GO:1905906)
195                                 regulation of sequestering of triglyceride (GO:0010889)
196                            regulation of triglyceride biosynthetic process (GO:0010866)
197                                    post-translational protein modification (GO:0043687)
198                                                  regulation of endocytosis (GO:0030100)
199                                                   amyloid fibril formation (GO:1990000)
200                    positive regulation of small molecule metabolic process (GO:0062013)
201                                       cellular response to nutrient levels (GO:0031669)
202     negative regulation of cytokine production involved in immune response (GO:0002719)
203                        negative regulation of fatty acid metabolic process (GO:0045922)
204                             regulation of cholesterol biosynthetic process (GO:0045540)
205                                 regulation of steroid biosynthetic process (GO:0050810)
206                                   positive regulation of catabolic process (GO:0009896)
207                                amyloid precursor protein metabolic process (GO:0042982)
208                                  nitric oxide mediated signal transduction (GO:0007263)
209                      positive regulation of nitric-oxide synthase activity (GO:0051000)
210                                                  ethanol metabolic process (GO:0006067)
211                  positive regulation of cellular protein catabolic process (GO:1903364)
212                                                     response to fatty acid (GO:0070542)
213                                                           long-term memory (GO:0007616)
214                                       negative regulation of lipid storage (GO:0010888)
215                                            linoleic acid metabolic process (GO:0043651)
216                          negative regulation of lipid biosynthetic process (GO:0051055)
217                                                regulation of lipid storage (GO:0010883)
218                                regulation of interleukin-1 beta production (GO:0032651)
219                                    long-chain fatty acid metabolic process (GO:0001676)
220              regulation of cytokine production involved in immune response (GO:0002718)
221                                         cellular protein metabolic process (GO:0044267)
222                                    negative regulation of defense response (GO:0031348)
223                                       transport across blood-brain barrier (GO:0150104)
224                                                 receptor catabolic process (GO:0032801)
225                                                         response to hexose (GO:0009746)
226                                                       regulated exocytosis (GO:0045055)
227                                   regulation of endothelial cell migration (GO:0010594)
228                                   negative regulation of protein transport (GO:0051224)
229                                             positive regulation of binding (GO:0051099)
230                                            regulation of blood coagulation (GO:0030193)
231                              positive regulation of monooxygenase activity (GO:0032770)
232                                       negative regulation of wound healing (GO:0061045)
233                     negative regulation of macromolecule metabolic process (GO:0010605)
234                                 long-chain fatty acid biosynthetic process (GO:0042759)
235                                         regulation of developmental growth (GO:0048638)
236                                                   regulation of cell death (GO:0010941)
237                                                 regulation of angiogenesis (GO:0045765)
238                                        regulation of inflammatory response (GO:0050727)
239                                                   apoptotic cell clearance (GO:0043277)
240                              cellular response to peptide hormone stimulus (GO:0071375)
241             negative regulation of blood vessel endothelial cell migration (GO:0043537)
242                            phosphate-containing compound metabolic process (GO:0006796)
243                           negative regulation of epithelial cell migration (GO:0010633)
244                                          cellular response to amyloid-beta (GO:1904646)
245                                       cyclic-nucleotide-mediated signaling (GO:0019935)
246                                     regulation of receptor internalization (GO:0002090)
247                                                          response to lipid (GO:0033993)
248         regulation of vascular associated smooth muscle cell proliferation (GO:1904705)
249                          regulation of protein-containing complex assembly (GO:0043254)
250                                                              ion transport (GO:0006811)
251                       negative regulation of response to external stimulus (GO:0032102)
252                                              regulation of protein binding (GO:0043393)
253                                regulation of cellular component biogenesis (GO:0044087)
254                                   negative regulation of protein secretion (GO:0050709)
255                                   negative regulation of secretion by cell (GO:1903531)
256                               regulation of nitric-oxide synthase activity (GO:0050999)
257                                   negative regulation of blood coagulation (GO:0030195)
258                                     cellular response to organic substance (GO:0071310)
259                                      cellular response to insulin stimulus (GO:0032869)
260                                                   response to amyloid-beta (GO:1904645)
261              establishment of protein localization to extracellular region (GO:0035592)
262                                   regulation of cellular metabolic process (GO:0031323)
263                                    regulation of protein metabolic process (GO:0051246)
264                                positive regulation of cell differentiation (GO:0045597)
265                        negative regulation of cell projection organization (GO:0031345)
266                            positive regulation of fat cell differentiation (GO:0045600)
267                               negative regulation of BMP signaling pathway (GO:0030514)
268                       negative regulation of cellular biosynthetic process (GO:0031327)
269                                        positive regulation of phagocytosis (GO:0050766)
    Overlap Adjusted.P.value
1     28/51     3.291336e-55
2     29/71     1.134840e-52
3     29/72     1.264418e-52
4     16/24     1.003687e-32
5     15/21     2.203564e-31
6     20/77     5.273224e-31
7     19/70     7.882518e-30
8     12/13     1.520527e-27
9     13/18     2.514128e-27
10    12/17     5.731565e-25
11    15/49     2.711706e-24
12    12/21     2.245426e-23
13    15/59     5.665269e-23
14   17/109     2.748742e-22
15    12/25     3.145271e-22
16      9/9     2.283165e-21
17    12/31     7.414146e-21
18    13/55     1.935295e-19
19     9/12     4.196729e-19
20      8/9     5.374944e-18
21    10/25     1.639871e-17
22     8/10     2.436689e-17
23      7/7     1.679428e-16
24      7/9     5.763376e-15
25    11/64     8.362646e-15
26     7/13     2.508790e-13
27    11/92     5.133855e-13
28    10/64     5.133855e-13
29      6/9     3.296018e-12
30      6/9     3.296018e-12
31      6/9     3.296018e-12
32     6/11     1.693836e-11
33     6/11     1.693836e-11
34     8/41     3.013332e-11
35     6/12     3.013332e-11
36     6/12     3.013332e-11
37     6/12     3.013332e-11
38     7/25     4.654994e-11
39     6/13     5.294950e-11
40      5/6     5.459029e-11
41      5/6     5.459029e-11
42      5/6     5.459029e-11
43     6/15     1.393181e-10
44     7/33     3.496187e-10
45      5/8     4.627510e-10
46      5/8     4.627510e-10
47     7/35     5.017364e-10
48     7/35     5.017364e-10
49     6/19     6.556580e-10
50      5/9     9.553575e-10
51     6/21     1.253116e-09
52    9/104     1.493946e-09
53     6/22     1.653549e-09
54     6/23     2.189811e-09
55     6/25     3.733511e-09
56     8/77     3.733511e-09
57     5/12     5.225810e-09
58    9/124     6.552660e-09
59     6/29     9.279729e-09
60      4/5     9.798195e-09
61     5/14     1.207993e-08
62     5/14     1.207993e-08
63     6/31     1.339781e-08
64    9/136     1.355933e-08
65     6/33     1.942867e-08
66    9/143     2.054367e-08
67     6/34     2.282600e-08
68     5/16     2.390304e-08
69      4/6     2.513038e-08
70      4/6     2.513038e-08
71     7/63     2.556641e-08
72     6/35     2.556641e-08
73    8/105     3.517095e-08
74     6/38     4.196695e-08
75     5/18     4.228478e-08
76     6/39     4.816188e-08
77     7/71     5.609765e-08
78      4/8     1.033779e-07
79      4/8     1.033779e-07
80     7/80     1.258618e-07
81     5/23     1.517283e-07
82     5/26     2.906610e-07
83     4/10     2.936601e-07
84     7/92     3.199662e-07
85    8/143     3.471498e-07
86     4/11     4.442138e-07
87     5/29     4.906437e-07
88     4/13     9.252034e-07
89     4/13     9.252034e-07
90     6/65     9.598111e-07
91     5/35     1.249797e-06
92     4/14     1.249797e-06
93    8/180     1.884951e-06
94     4/16     2.212485e-06
95     6/76     2.336232e-06
96      3/5     3.664395e-06
97      3/5     3.664395e-06
98     5/44     3.827136e-06
99     4/21     6.819051e-06
100     3/6     6.952354e-06
101     3/6     6.952354e-06
102     3/6     6.952354e-06
103    5/50     6.991423e-06
104    4/23     9.554179e-06
105   7/158     1.040987e-05
106    4/24     1.121951e-05
107     3/7     1.146235e-05
108     3/7     1.146235e-05
109    4/27     1.788032e-05
110    5/65     2.452122e-05
111     3/9     2.639634e-05
112     3/9     2.639634e-05
113    4/31     3.060279e-05
114    3/10     3.695601e-05
115    4/33     3.856854e-05
116    4/33     3.856854e-05
117    3/11     4.775659e-05
118    3/11     4.775659e-05
119    3/11     4.775659e-05
120    3/11     4.775659e-05
121    3/11     4.775659e-05
122    5/80     6.182763e-05
123    4/40     7.973389e-05
124    3/13     7.973389e-05
125    3/13     7.973389e-05
126    3/15     1.252218e-04
127   7/242     1.420233e-04
128    4/48     1.598563e-04
129   8/345     1.704405e-04
130    4/49     1.709436e-04
131    3/18     2.111817e-04
132    3/18     2.111817e-04
133    3/18     2.111817e-04
134   8/369     2.646441e-04
135    3/20     2.892290e-04
136    3/21     3.341258e-04
137    3/24     4.974036e-04
138    3/24     4.974036e-04
139    3/25     5.597802e-04
140   5/130     5.616142e-04
141   6/214     6.166972e-04
142    3/27     6.934199e-04
143     2/5     7.406583e-04
144    4/73     7.449454e-04
145    3/28     7.586859e-04
146   5/141     7.898802e-04
147    3/30     9.228897e-04
148    4/80     1.034287e-03
149     2/6     1.049782e-03
150     2/6     1.049782e-03
151     2/6     1.049782e-03
152    3/32     1.085012e-03
153    4/84     1.208000e-03
154     2/7     1.428577e-03
155     2/7     1.428577e-03
156    4/91     1.611630e-03
157    3/37     1.625395e-03
158    3/38     1.749224e-03
159     2/8     1.841132e-03
160     2/8     1.841132e-03
161    3/39     1.855101e-03
162   5/177     2.046657e-03
163     2/9     2.304288e-03
164     2/9     2.304288e-03
165    3/43     2.420344e-03
166    3/44     2.575438e-03
167    2/10     2.756295e-03
168    2/10     2.756295e-03
169    2/10     2.756295e-03
170    2/10     2.756295e-03
171    2/10     2.756295e-03
172    2/11     3.303347e-03
173    2/11     3.303347e-03
174    2/11     3.303347e-03
175    3/49     3.337798e-03
176    3/49     3.337798e-03
177   4/114     3.341630e-03
178    2/12     3.781332e-03
179    2/12     3.781332e-03
180    2/12     3.781332e-03
181    2/12     3.781332e-03
182    2/12     3.781332e-03
183    3/52     3.822266e-03
184    3/54     4.245657e-03
185    2/13     4.386588e-03
186   4/125     4.489058e-03
187    3/56     4.645735e-03
188    2/14     4.945884e-03
189    2/14     4.945884e-03
190    2/14     4.945884e-03
191    2/14     4.945884e-03
192    3/58     4.985945e-03
193    3/58     4.985945e-03
194    2/15     5.548828e-03
195    2/15     5.548828e-03
196    2/15     5.548828e-03
197   6/345     5.596173e-03
198    3/61     5.626994e-03
199    3/63     6.147256e-03
200    2/16     6.200855e-03
201    3/66     6.840974e-03
202    2/17     6.840974e-03
203    2/17     6.840974e-03
204    2/17     6.840974e-03
205    2/17     6.840974e-03
206    3/67     7.093595e-03
207    2/18     7.532008e-03
208    2/18     7.532008e-03
209    2/18     7.532008e-03
210    2/19     8.241667e-03
211    2/19     8.241667e-03
212    2/19     8.241667e-03
213    2/19     8.241667e-03
214    2/20     9.094348e-03
215    2/21     9.982653e-03
216    2/22     1.085553e-02
217    2/22     1.085553e-02
218    3/83     1.230478e-02
219    3/83     1.230478e-02
220    2/24     1.273659e-02
221   6/417     1.291939e-02
222    3/85     1.298477e-02
223    3/86     1.336097e-02
224    2/25     1.350640e-02
225    2/25     1.350640e-02
226   4/180     1.399465e-02
227    3/89     1.440735e-02
228    2/26     1.440735e-02
229    3/90     1.479001e-02
230    2/27     1.539039e-02
231    2/28     1.646589e-02
232    2/29     1.757027e-02
233   4/194     1.771224e-02
234    2/30     1.862299e-02
235    2/31     1.977865e-02
236   3/102     2.036757e-02
237   4/203     2.042828e-02
238   4/206     2.141587e-02
239    2/33     2.198466e-02
240   3/106     2.228428e-02
241    2/34     2.311351e-02
242   4/212     2.328380e-02
243    2/35     2.415927e-02
244    2/35     2.415927e-02
245    2/36     2.531623e-02
246    2/36     2.531623e-02
247   3/114     2.646649e-02
248    2/37     2.648825e-02
249   3/116     2.742785e-02
250   3/116     2.742785e-02
251   3/118     2.842391e-02
252   3/118     2.842391e-02
253    2/39     2.842391e-02
254    2/39     2.842391e-02
255    2/39     2.842391e-02
256    2/39     2.842391e-02
257    2/40     2.973753e-02
258   3/123     3.119488e-02
259   3/129     3.533580e-02
260    2/44     3.533580e-02
261    2/46     3.834204e-02
262    2/47     3.980515e-02
263    2/48     4.128649e-02
264   4/258     4.183273e-02
265    2/49     4.262417e-02
266    2/51     4.583569e-02
267    2/52     4.720898e-02
268    2/52     4.720898e-02
269    2/53     4.877011e-02
                                                                                                                                                                       Genes
1         SCARB1;CETP;LCAT;LIPC;NPC1L1;LIPG;CD36;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;STARD3;ABCG5;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;APOC2;APOC1
2   SCARB1;CETP;MTTP;PCSK9;LPL;LCAT;ABCB11;CYP7A1;LIPC;LIPG;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;ABCG5;EPHX2;APOA2;APOA1;APOC3;APOA4;APOA5;SOAT1;NPC1;NPC2;SOAT2;APOC2;ANGPTL3
3   SCARB1;CETP;MTTP;PCSK9;LPL;LCAT;ABCB11;CYP7A1;LIPC;LIPG;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;ABCG5;EPHX2;APOA2;APOA1;APOC3;APOA4;APOA5;SOAT1;NPC1;NPC2;SOAT2;APOC2;ANGPTL3
4                                                                              ABCA1;ABCG8;SCARB1;ABCG5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;NPC2;SOAT2;APOC2;APOC1;APOE
5                                                                                    ABCG8;CETP;STARD3;ABCG5;OSBPL5;APOA2;APOA1;LCAT;NPC1;NPC1L1;NPC2;CD36;APOB;LDLRAP1;LDLR
6                                              ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;HMGCR;APOA5;CYP7A1;CYP27A1;SOAT1;SOAT2;NPC1L1;ANGPTL3;APOE;DHCR7;LDLRAP1;APOB
7                                                      ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;HMGCR;LIPA;CYP7A1;CYP27A1;SOAT1;SOAT2;ANGPTL3;APOE;DHCR7;LDLRAP1;APOB
8                                                                                                           CETP;LIPC;APOC2;APOA2;APOA1;APOC3;LCAT;LPL;APOA4;APOE;APOB;APOA5
9                                                                                                   CETP;SCARB1;APOA2;APOA1;APOC3;LCAT;APOA4;LIPC;APOC2;APOC1;LIPG;APOE;PLTP
10                                                                                                       ABCA1;CETP;SCARB1;LIPC;APOC2;LIPG;APOA2;APOA1;APOC3;LCAT;APOA4;APOE
11                                                                             ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;CYP27A1;SOAT1;SOAT2;ANGPTL3;APOE;LDLRAP1;APOB
12                                                                                                   LIPC;SORT1;APOC2;APOH;APOC1;ANGPTL3;APOA1;APOC3;LPL;APOA4;ANGPTL4;APOA5
13                                                                                    ABCA1;SCARB1;OSBPL5;MTTP;APOA2;APOA1;APOC3;APOA4;APOA5;NPC2;APOC2;APOC1;APOE;LDLR;PLTP
14                                                                        ABCA1;SCARB1;ABCG8;CETP;ABCG5;OSBPL5;MTTP;APOA1;APOA4;ABCB11;APOA5;NPC2;NPC1L1;CD36;APOE;LDLR;PLTP
15                                                                                                   CETP;SCARB1;LIPC;APOC2;ANGPTL3;LPL;APOA1;APOC3;APOA4;APOE;ANGPTL4;APOA5
16                                                                                                                           CETP;LIPC;APOC2;APOA1;LCAT;LPL;APOA4;APOE;APOA5
17                                                                                                   CETP;SCARB1;LIPC;APOC2;ANGPTL3;LPL;APOA1;APOC3;APOA4;APOE;ANGPTL4;APOA5
18                                                                                                      CETP;APOA2;LPL;APOC3;APOA5;LIPC;LIPI;APOH;LIPG;APOC1;APOE;APOB;LPIN3
19                                                                                                                      ABCA1;APOC2;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOA5
20                                                                                                                               APOC2;APOA2;APOA1;APOC3;LPL;APOA4;APOE;APOB
21                                                                                                                   CETP;LRP1;APOC2;LIPG;APOC1;APOA2;TSPO;APOA1;APOA4;APOA5
22                                                                                                                              APOC2;MTTP;APOA2;APOA1;APOC3;APOA4;APOE;APOB
23                                                                                                                                     LIPC;APOC2;APOC1;APOC3;APOE;APOB;LDLR
24                                                                                                                                  NPC1L1;MTTP;APOA2;APOA1;APOA4;APOE;APOA5
25                                                                                                               LRP1;ADH1B;APOC2;APOA2;APOA1;LPL;APOC3;APOA4;LRP2;APOE;APOB
26                                                                                                                                APOC1;APOA2;APOA1;APOA4;APOE;LDLRAP1;APOA5
27                                                                                                               LRP1;ADH1B;APOC2;APOA2;APOA1;LPL;APOC3;APOA4;LRP2;APOE;APOB
28                                                                                                               ABCA1;CETP;LIPG;ANGPTL3;APOA1;APOA4;PPARG;APOE;ABCB11;APOA5
29                                                                                                                                   SORT1;APOC1;ANGPTL3;APOA2;APOC3;ANGPTL4
30                                                                                                                                        APOC1;APOA2;APOA1;APOA4;APOE;APOA5
31                                                                                                                                        ABCG8;ABCG5;NPC1L1;SOAT2;CD36;LDLR
32                                                                                                                                       ABCG8;ABCG5;APOC2;APOC1;APOA2;APOC3
33                                                                                                                                        ABCG8;ABCG5;NPC1L1;SOAT2;CD36;LDLR
34                                                                                                                                CETP;APOH;APOC1;APOA2;LPL;APOC3;APOE;APOA5
35                                                                                                                                        APOC1;APOA2;APOA1;APOA4;APOE;APOA5
36                                                                                                                                      ABCA1;CETP;LIPG;ANGPTL3;APOA1;ABCB11
37                                                                                                                                         SOAT1;SOAT2;APOC1;MTTP;APOC3;APOB
38                                                                                                                                APOA2;ANGPTL3;APOA1;APOA4;PPARG;APOE;APOA5
39                                                                                                                                        ABCA1;APOA2;APOA1;APOA4;APOE;APOA5
40                                                                                                                                         SORT1;APOC1;ANGPTL3;APOC3;ANGPTL4
41                                                                                                                                            LRPAP1;APOC2;APOC1;APOC3;PCSK9
42                                                                                                                                             APOC2;APOA2;APOA1;APOC3;APOA5
43                                                                                                                                         ABCA1;NPC1;STAR;NPC2;LDLRAP1;LDLR
44                                                                                                                                      CETP;LRP1;LIPG;APOA1;PPARG;APOE;PLTP
45                                                                                                                                             ABCG8;ABCG5;APOA1;APOA4;APOA5
46                                                                                                                                              APOC2;APOH;APOA1;APOA4;APOA5
47                                                                                                                                      LIPC;LIPI;LIPG;APOA2;LPL;APOC3;APOA5
48                                                                                                                                  SCARB1;APOC2;APOA1;APOA4;APOE;LDLR;APOA5
49                                                                                                                                       SCARB1;APOC2;APOA1;APOA4;APOA5;LDLR
50                                                                                                                                              APOC2;APOH;APOA1;APOA4;APOA5
51                                                                                                                                    APOC1;APOA2;ANGPTL3;APOC3;ABCB11;APOA5
52                                                                                                                     CYP27A1;STARD3;NPC1;STAR;TSPO;LRP2;ABCB11;LIPA;CYP7A1
53                                                                                                                                     APOC2;APOA2;ANGPTL3;APOA1;APOA4;APOA5
54                                                                                                                                            LIPC;LIPI;LIPG;APOC3;LPL;APOA5
55                                                                                                                                         SCARB1;OSBPL5;NPC2;MTTP;LDLR;PLTP
56                                                                                                                              CETP;LIPC;APOA2;APOA1;LCAT;APOA4;APOA5;LPIN3
57                                                                                                                                             APOC2;APOA1;APOC3;APOA4;APOA5
58                                                                                                                        LIPC;LIPI;LIPG;ANGPTL3;LPL;PPARG;CD36;ABCB11;LPIN3
59                                                                                                                                       APOC2;APOC1;APOA1;APOC3;APOA4;APOA5
60                                                                                                                                                     LRP1;APOC1;TSPO;APOA4
61                                                                                                                                                 ABCA1;LPL;PPARG;CD36;LDLR
62                                                                                                                                                  CETP;LIPC;APOA2;APOB;LPA
63                                                                                                                                            ABCA1;CETP;LPL;PPARG;CD36;APOB
64                                                                                                                        ABCA1;ABCG8;CETP;ABCG5;APOA1;APOA4;LRP2;APOA5;PLTP
65                                                                                                                                           CETP;LRP1;APOA1;PPARG;APOE;PLTP
66                                                                                                                        SCARB1;LRP1;APOA1;CD36;LRP2;APOE;LDLRAP1;APOB;LDLR
67                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
68                                                                                                                                               ABCA1;SCARB1;LPL;PPARG;APOB
69                                                                                                                                                    SCARB1;APOA1;CD36;LDLR
70                                                                                                                                                    SCARB1;APOA1;CD36;LDLR
71                                                                                                                                  CYP27A1;LIPC;LIPI;LIPG;LPL;ABCB11;CYP7A1
72                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
73                                                                                                                            APOC1;APOA2;PCSK9;APOA1;APOA4;PPARG;APOE;APOA5
74                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
75                                                                                                                                             APOC2;APOA1;APOA4;PPARG;APOA5
76                                                                                                                                    LRPAP1;APOC2;APOC1;APOC3;LDLRAP1;APOA5
77                                                                                                                                      FADS3;LIPC;LIPI;EPHX2;LIPG;LPL;FADS1
78                                                                                                                                                    ABCA1;APOA1;APOC3;APOE
79                                                                                                                                                   APOC2;APOA1;APOA4;APOA5
80                                                                                                                                       LIPC;STAR;LIPI;LIPG;LPL;HMGCR;FADS1
81                                                                                                                                                LRP1;APOA1;PPARG;APOE;PLTP
82                                                                                                                                            LRPAP1;APOC2;APOC1;PCSK9;APOC3
83                                                                                                                                                      LRP1;PPARG;CD36;APOB
84                                                                                                                                  NPC2;APOC2;APOC1;APOC3;PPARG;HMGCR;DHCR7
85                                                                                                                            NPC1;ADH1B;ANGPTL3;LPL;PPARG;VDAC1;CD36;ABCB11
86                                                                                                                                                      LRP1;PPARG;CD36;APOB
87                                                                                                                                                  LIPC;LIPI;LIPG;LPL;APOA4
88                                                                                                                                                   APOC2;APOA1;APOA4;APOA5
89                                                                                                                                                      ABCA1;NPC1;STAR;NPC2
90                                                                                                                                    CYP27A1;STAR;HMGCR;DHCR7;ABCB11;CYP7A1
91                                                                                                                                               STAR;APOA1;APOA4;APOE;APOA5
92                                                                                                                                                    LIPC;APOA2;ANGPTL3;LPL
93                                                                                                                             SCARB1;STAR;APOC2;APOA1;APOA4;CD36;APOA5;LDLR
94                                                                                                                                                    LRPAP1;LRP1;HMGCR;APOE
95                                                                                                                                         LIPG;APOA2;ANGPTL3;LPL;LCAT;FADS1
96                                                                                                                                                         APOA1;APOA4;APOA5
97                                                                                                                                                            LRP1;LRP2;LDLR
98                                                                                                                                               APOA1;APOA4;APOE;CD36;APOA5
99                                                                                                                                                  EPHX2;APOE;LDLRAP1;KPNB1
100                                                                                                                                                        SOAT1;SOAT2;PPARG
101                                                                                                                                                          SCARB1;LPL;APOB
102                                                                                                                                                        SOAT1;SOAT2;PPARG
103                                                                                                                                        CYP27A1;HMGCR;DHCR7;ABCB11;CYP7A1
104                                                                                                                                                   STAR;EPHX2;APOE;ABCB11
105                                                                                                                                    VAPA;VAPB;APOA2;APOA1;LCAT;APOE;LPIN3
106                                                                                                                                                  APOC2;APOC1;APOA2;APOC3
107                                                                                                                                                           LRP1;LRP2;LDLR
108                                                                                                                                                         LRPAP1;LRP1;APOE
109                                                                                                                                                 LIPG;APOA2;ANGPTL3;LPIN3
110                                                                                                                                          CETP;ANGPTL3;APOA4;PPARG;ABCB11
111                                                                                                                                                      CYP27A1;APOE;CYP7A1
112                                                                                                                                                      CYP27A1;APOE;CYP7A1
113                                                                                                                                                   STARD3;STAR;TSPO;DHCR7
114                                                                                                                                                      APOC3;PCSK9;LDLRAP1
115                                                                                                                                               CYP27A1;NPC1;ABCB11;CYP7A1
116                                                                                                                                                   APOA2;LCAT;APOA1;LPIN3
117                                                                                                                                                      CYP27A1;APOE;CYP7A1
118                                                                                                                                                       LIPG;ANGPTL3;APOA2
119                                                                                                                                                       LRP1;APOC2;ANGPTL3
120                                                                                                                                                            LRP1;LPL;APOB
121                                                                                                                                                          CETP;APOA1;APOE
122                                                                                                                                              CETP;APOA1;LCAT;APOA4;APOA5
123                                                                                                                                                  ABCG8;ABCG5;NPC2;ABCB11
124                                                                                                                                                         ABCA1;CETP;PPARG
125                                                                                                                                                           CETP;LRP1;APOE
126                                                                                                                                                         STARD3;STAR;TSPO
127                                                                                                                                    NPC1;VAPA;VAPB;LRP2;LDLRAP1;APOB;LDLR
128                                                                                                                                                  LRP1;APOE;LDLRAP1;APOA5
129                                                                                                                              GHR;ABCA1;LRPAP1;LRP1;APOC2;CD36;APOE;APOA5
130                                                                                                                                                  APOC1;APOA2;APOC3;HMGCR
131                                                                                                                                                        APOC1;APOA2;APOC3
132                                                                                                                                                         SCARB1;NPC2;PLTP
133                                                                                                                                                            LPL;CD36;APOB
134                                                                                                                                ABCA1;LRP1;MTTP;PPARG;CD36;LRP2;APOE;APOB
135                                                                                                                                                          PPARG;APOE;CD36
136                                                                                                                                                          SCARB1;LPL;APOB
137                                                                                                                                                         STARD3;STAR;TSPO
138                                                                                                                                                       LIPG;APOA2;ANGPTL3
139                                                                                                                                                        APOC2;APOC1;APOC3
140                                                                                                                                              PPARG;HMGCR;APOE;DHCR7;LDLR
141                                                                                                                                     LRPAP1;APOA2;APOA1;APOC3;APOA4;HMGCR
142                                                                                                                                                    CYP27A1;ABCB11;CYP7A1
143                                                                                                                                                               PCSK9;APOE
144                                                                                                                                                   ABCA1;APOA1;APOC3;APOE
145                                                                                                                                                        EPHX2;APOE;ABCB11
146                                                                                                                                             APOC2;APOA1;APOA4;APOE;APOA5
147                                                                                                                                                        LRP1;ANGPTL3;LRP2
148                                                                                                                                                  APOA2;APOA1;APOC3;APOA4
149                                                                                                                                                                NPC2;PLTP
150                                                                                                                                                             LIPG;LDLRAP1
151                                                                                                                                                                CETP;LIPG
152                                                                                                                                                          PPARG;APOE;CD36
153                                                                                                                                                  SORT1;PCSK9;PPARG;LPIN3
154                                                                                                                                                            ABCB11;CYP7A1
155                                                                                                                                                               PCSK9;APOE
156                                                                                                                                                    LRP1;APOA2;APOA1;APOE
157                                                                                                                                                          APOH;PPARG;APOE
158                                                                                                                                                          APOH;PPARG;APOE
159                                                                                                                                                                APOE;LDLR
160                                                                                                                                                             LRPAP1;HMGCR
161                                                                                                                                                        LRPAP1;PCSK9;APOE
162                                                                                                                                              LIPI;APOA2;APOA1;LCAT;LPIN3
163                                                                                                                                                              APOA2;APOA1
164                                                                                                                                                              FADS3;FADS1
165                                                                                                                                                         TSPO;VDAC2;VDAC1
166                                                                                                                                                      PCSK9;LDLRAP1;APOA5
167                                                                                                                                                              ABCA1;PPARG
168                                                                                                                                                              STAR;CYP7A1
169                                                                                                                                                              APOA2;APOA1
170                                                                                                                                                              MYLIP;PCSK9
171                                                                                                                                                              MYLIP;PCSK9
172                                                                                                                                                              APOA2;APOA1
173                                                                                                                                                                VAPA;APOE
174                                                                                                                                                              SCARB1;LDLR
175                                                                                                                                                        LRP1;CD36;LDLRAP1
176                                                                                                                                                         APOA2;LPL;CYP7A1
177                                                                                                                                                    LRP1;APOC2;APOE;APOA5
178                                                                                                                                                              APOC1;APOC3
179                                                                                                                                                                APOH;APOE
180                                                                                                                                                              APOA2;APOA1
181                                                                                                                                                              ALDH2;ADH1B
182                                                                                                                                                                APOE;LDLR
183                                                                                                                                                          HMGCR;APOE;LDLR
184                                                                                                                                                        FADS3;FADS2;FADS1
185                                                                                                                                                              FADS2;FADS1
186                                                                                                                                                    ITIH4;APOH;APOA1;CD36
187                                                                                                                                                        APOC2;APOC1;APOC3
188                                                                                                                                                                APOE;LDLR
189                                                                                                                                                                APOH;APOE
190                                                                                                                                                                APOE;CD36
191                                                                                                                                                              NPC1L1;CD36
192                                                                                                                                                        LRP1;CD36;LDLRAP1
193                                                                                                                                                       SCARB1;APOA2;APOA1
194                                                                                                                                                                APOE;LDLR
195                                                                                                                                                                LPL;PPARG
196                                                                                                                                                              SCARB1;LDLR
197                                                                                                                                        APOA2;PCSK9;APOA1;APOE;APOB;APOA5
198                                                                                                                                                         LRPAP1;LRP1;APOE
199                                                                                                                                                         APOA1;APOA4;CD36
200                                                                                                                                                            PPARG;LDLRAP1
201                                                                                                                                                          PCSK9;LPL;FADS1
202                                                                                                                                                              APOA2;APOA1
203                                                                                                                                                              APOC1;APOC3
204                                                                                                                                                               APOE;KPNB1
205                                                                                                                                                              STAR;CYP7A1
206                                                                                                                                                      APOA2;ANGPTL3;APOA5
207                                                                                                                                                             APOE;LDLRAP1
208                                                                                                                                                                APOE;CD36
209                                                                                                                                                              SCARB1;APOE
210                                                                                                                                                              ALDH2;ADH1B
211                                                                                                                                                               PCSK9;APOE
212                                                                                                                                                                 LPL;CD36
213                                                                                                                                                                APOE;LDLR
214                                                                                                                                                              ABCA1;PPARG
215                                                                                                                                                              FADS2;FADS1
216                                                                                                                                                              APOC1;APOC3
217                                                                                                                                                                 LPL;APOB
218                                                                                                                                                           APOA1;LPL;CD36
219                                                                                                                                                        FADS2;EPHX2;FADS1
220                                                                                                                                                              APOA2;APOA1
221                                                                                                                                        APOA2;PCSK9;APOA1;APOE;APOB;APOA5
222                                                                                                                                                         APOA1;PPARG;APOE
223                                                                                                                                                           LRP1;CD36;LRP2
224                                                                                                                                                              MYLIP;PCSK9
225                                                                                                                                                                APOA2;LPL
226                                                                                                                                                    ITIH4;APOH;APOA1;CD36
227                                                                                                                                                         SCARB1;APOH;APOE
228                                                                                                                                                               HMGCR;APOE
229                                                                                                                                                          LRP1;PPARG;APOE
230                                                                                                                                                                APOH;APOE
231                                                                                                                                                              SCARB1;APOE
232                                                                                                                                                                APOH;APOE
233                                                                                                                                                   LRPAP1;PCSK9;APOE;LDLR
234                                                                                                                                                              EPHX2;FADS1
235                                                                                                                                                                 GHR;APOE
236                                                                                                                                                         LRPAP1;LRP1;CD36
237                                                                                                                                               APOH;ANGPTL3;PPARG;ANGPTL4
238                                                                                                                                                     APOA1;LPL;PPARG;APOE
239                                                                                                                                                              SCARB1;LRP1
240                                                                                                                                                        PCSK9;PPARG;LPIN3
241                                                                                                                                                               PPARG;APOE
242                                                                                                                                                   EPHX2;ANGPTL3;LPL;LCAT
243                                                                                                                                                                APOH;APOE
244                                                                                                                                                                LRP1;CD36
245                                                                                                                                                                APOE;CD36
246                                                                                                                                                             LRPAP1;PCSK9
247                                                                                                                                                         APOA4;PPARG;CD36
248                                                                                                                                                            PPARG;LDLRAP1
249                                                                                                                                                          ABCA1;CD36;APOE
250                                                                                                                                                         TSPO;VDAC2;VDAC1
251                                                                                                                                                         APOA1;PPARG;APOE
252                                                                                                                                                      LRPAP1;LRP1;LDLRAP1
253                                                                                                                                                                APOE;CD36
254                                                                                                                                                               HMGCR;APOE
255                                                                                                                                                               HMGCR;APOE
256                                                                                                                                                              SCARB1;APOE
257                                                                                                                                                                APOH;APOE
258                                                                                                                                                         GHR;LRP2;LDLRAP1
259                                                                                                                                                        PCSK9;PPARG;LPIN3
260                                                                                                                                                                LRP1;CD36
261                                                                                                                                                               ABCA1;MTTP
262                                                                                                                                                              NPC2;ABCB11
263                                                                                                                                                                APOE;LDLR
264                                                                                                                                                      LPL;PPARG;CD36;APOB
265                                                                                                                                                               MYLIP;APOE
266                                                                                                                                                                LPL;PPARG
267                                                                                                                                                               PPARG;LRP2
268                                                                                                                                                              APOC1;APOC3
269                                                                                                                                                              APOA2;APOA1
[1] "GO_Cellular_Component_2021"
                                                          Term Overlap
1               high-density lipoprotein particle (GO:0034364)   12/19
2                                     chylomicron (GO:0042627)   10/10
3   triglyceride-rich plasma lipoprotein particle (GO:0034385)   10/15
4           very-low-density lipoprotein particle (GO:0034361)   10/15
5                                  early endosome (GO:0005769)  13/266
6                low-density lipoprotein particle (GO:0034362)     4/7
7     spherical high-density lipoprotein particle (GO:0034366)     4/8
8                     endoplasmic reticulum lumen (GO:0005788)  10/285
9                      endocytic vesicle membrane (GO:0030666)   8/158
10                 endoplasmic reticulum membrane (GO:0005789)  14/712
11                                       lysosome (GO:0005764)  11/477
12                                  lytic vacuole (GO:0000323)   8/219
13                              endocytic vesicle (GO:0030139)   7/189
14     clathrin-coated endocytic vesicle membrane (GO:0030669)    5/69
15              clathrin-coated endocytic vesicle (GO:0045334)    5/85
16               clathrin-coated vesicle membrane (GO:0030665)    5/90
17                             lysosomal membrane (GO:0005765)   8/330
18                  intracellular organelle lumen (GO:0070013)  12/848
19       collagen-containing extracellular matrix (GO:0062023)   8/380
20                        endocytic vesicle lumen (GO:0071682)    3/21
21                       organelle outer membrane (GO:0031968)   5/142
22 ATP-binding cassette (ABC) transporter complex (GO:0043190)     2/6
23                         lytic vacuole membrane (GO:0098852)   6/267
24                              endosome membrane (GO:0010008)   6/325
25                   mitochondrial outer membrane (GO:0005741)   4/126
26                   platelet dense granule lumen (GO:0031089)    2/14
27                                        vesicle (GO:0031982)   5/226
28                          endolysosome membrane (GO:0036020)    2/17
29                    basolateral plasma membrane (GO:0016323)   4/151
30                   cytoplasmic vesicle membrane (GO:0030659)   6/380
31                         platelet dense granule (GO:0042827)    2/21
32                                lysosomal lumen (GO:0043202)    3/86
33                                   endolysosome (GO:0036019)    2/25
34                        secretory granule lumen (GO:0034774)   5/316
35                          brush border membrane (GO:0031526)    2/37
36                         mitochondrial envelope (GO:0005740)   3/127
37       extracellular membrane-bounded organelle (GO:0065010)    2/56
38                          extracellular vesicle (GO:1903561)    2/59
39                                 vacuolar lumen (GO:0005775)   3/161
40                                        caveola (GO:0005901)    2/60
   Adjusted.P.value
1      5.261200e-24
2      6.209923e-24
3      9.203512e-21
4      9.203512e-21
5      1.246888e-10
6      7.731648e-08
7      1.321996e-07
8      6.153361e-07
9      8.075627e-07
10     1.200431e-06
11     6.211359e-06
12     7.353950e-06
13     2.938912e-05
14     2.938912e-05
15     7.671871e-05
16     9.509306e-05
17     1.065748e-04
18     1.698308e-04
19     2.574496e-04
20     2.574496e-04
21     6.432532e-04
22     8.164449e-04
23     1.420908e-03
24     3.827987e-03
25     3.898444e-03
26     4.116966e-03
27     4.199032e-03
28     5.675277e-03
29     6.551600e-03
30     6.795770e-03
31     7.845057e-03
32     1.043474e-02
33     1.043474e-02
34     1.423039e-02
35     2.126720e-02
36     2.763580e-02
37     4.460396e-02
38     4.700422e-02
39     4.700422e-02
40     4.700422e-02
                                                                                Genes
1                  CETP;APOC2;APOH;APOC1;APOA2;APOA1;APOC3;LCAT;APOA4;APOE;APOA5;PLTP
2                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
3                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
4                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
5          LRP1;SORT1;APOA2;PCSK9;APOA1;APOC3;APOA4;APOC2;LIPG;APOE;LDLRAP1;APOB;LDLR
6                                                               APOC2;APOE;APOB;APOA5
7                                                             APOC2;APOA2;APOA1;APOC3
8                            LRPAP1;LIPC;MTTP;APOA2;PCSK9;APOA1;APOA4;APOE;APOB;APOA5
9                                        SCARB1;LRP1;CD36;LRP2;APOE;LDLRAP1;APOB;LDLR
10 ABCA1;STARD3;HMGCR;CYP7A1;FADS2;NCEH1;SOAT1;VAPA;SOAT2;VAPB;DHCR7;APOB;FADS1;LPIN3
11                       SCARB1;STARD3;NPC1;LRP1;NPC2;SORT1;PCSK9;LRP2;APOB;LIPA;LDLR
12                                        SCARB1;NPC1;NPC2;SORT1;PCSK9;LRP2;LIPA;LDLR
13                                             ABCA1;SCARB1;LRP1;APOA1;CD36;APOE;APOB
14                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
15                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
16                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
17                                       SCARB1;STARD3;NPC1;LRP1;VAPA;PCSK9;LRP2;LDLR
18              CYP27A1;LIPC;ALDH2;MTTP;APOA2;PCSK9;APOA1;APOA4;APOE;APOB;APOA5;KPNB1
19                                  ITIH4;APOH;ANGPTL3;APOA1;APOC3;APOA4;ANGPTL4;APOE
20                                                                    APOA1;APOE;APOB
21                                                       VDAC3;TSPO;VDAC2;VDAC1;DHCR7
22                                                                        ABCG8;ABCG5
23                                                 SCARB1;STARD3;NPC1;LRP1;PCSK9;LRP2
24                                                STARD3;SORT1;PCSK9;ABCB11;APOB;LDLR
25                                                             VDAC3;TSPO;VDAC2;VDAC1
26                                                                         ITIH4;APOH
27                                                         ABCA1;CETP;VAPA;APOA1;APOE
28                                                                         PCSK9;LDLR
29                                                              LRP1;MTTP;ABCB11;LDLR
30                                                   SCARB1;LRP1;SORT1;CD36;APOB;LDLR
31                                                                         ITIH4;APOH
32                                                                     NPC2;APOB;LIPA
33                                                                         PCSK9;LDLR
34                                                        ITIH4;NPC2;APOH;APOA1;KPNB1
35                                                                          LRP2;CD36
36                                                                   STAR;VDAC2;VDAC1
37                                                                         APOA1;APOE
38                                                                         APOA1;APOE
39                                                                     NPC2;APOB;LIPA
40                                                                        SCARB1;CD36
[1] "GO_Molecular_Function_2021"
                                                                                                                                                                                Term
1                                                                                                                                                   cholesterol binding (GO:0015485)
2                                                                                                                                                        sterol binding (GO:0032934)
3                                                                                                                                         cholesterol transfer activity (GO:0120020)
4                                                                                                                                              sterol transfer activity (GO:0120015)
5                                                                                                                                 lipoprotein particle receptor binding (GO:0070325)
6                                                                                                       phosphatidylcholine-sterol O-acyltransferase activator activity (GO:0060228)
7                                                                                                                                          lipoprotein particle binding (GO:0071813)
8                                                                                                                              low-density lipoprotein particle binding (GO:0030169)
9                                                                                                                                             lipase inhibitor activity (GO:0055102)
10                                                                                                                    low-density lipoprotein particle receptor binding (GO:0050750)
11                                                                                                                                          lipoprotein lipase activity (GO:0004465)
12                                                                                                                                                 amyloid-beta binding (GO:0001540)
13                                                                                                                                         triglyceride lipase activity (GO:0004806)
14                                                                                                                                                      lipase activity (GO:0016298)
15                                                                                                                                                       lipase binding (GO:0035473)
16                                                                                                                                           apolipoprotein A-I binding (GO:0034186)
17                                                                                                                                      apolipoprotein receptor binding (GO:0034190)
18                                                                                                                                            phospholipase A1 activity (GO:0008970)
19                                                                                                                                            lipase activator activity (GO:0060229)
20                                                                                                                                  carboxylic ester hydrolase activity (GO:0052689)
21                                                                                                                                 voltage-gated anion channel activity (GO:0008308)
22                                                                                                                                   voltage-gated ion channel activity (GO:0005244)
23                                                                                                                             phosphatidylcholine transporter activity (GO:0008525)
24                                                                                                                                  protein heterodimerization activity (GO:0046982)
25                                                                                                                                phosphatidylcholine transfer activity (GO:0120019)
26                                                                                                                                               phospholipase activity (GO:0004620)
27                                                                                                                                           O-acyltransferase activity (GO:0008374)
28                                                                                                                            high-density lipoprotein particle binding (GO:0008035)
29                                                                                                                                           ceramide transfer activity (GO:0120017)
30                                                                                                                                         clathrin heavy chain binding (GO:0032050)
31                                                                                                                                     phospholipase inhibitor activity (GO:0004859)
32                                                                                                                                    protein homodimerization activity (GO:0042803)
33                                                                                                                                               anion channel activity (GO:0005253)
34                                                                                                                                       phospholipid transfer activity (GO:0120014)
35 oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen (GO:0016709)
36                                                                                                                                         steroid hydroxylase activity (GO:0008395)
37                                                                                                                                                         NADP binding (GO:0050661)
38                                                                                                                                         peptidase inhibitor activity (GO:0030414)
39                                                                                                                                     endopeptidase regulator activity (GO:0061135)
   Overlap Adjusted.P.value
1    17/50     2.288174e-28
2    17/60     4.390322e-27
3    11/18     5.744987e-22
4    11/19     1.020647e-21
5    10/28     4.677379e-17
6      6/6     3.484605e-14
7     8/24     2.055320e-13
8     6/17     3.140441e-10
9     5/10     1.805253e-09
10    6/23     2.016360e-09
11     4/5     9.113232e-09
12    7/80     1.430772e-07
13    5/23     1.612041e-07
14    6/49     1.859889e-07
15     3/5     3.788104e-06
16     3/5     3.788104e-06
17     3/6     7.112969e-06
18    3/10     3.991032e-05
19    3/12     6.897596e-05
20    5/96     1.501407e-04
21    3/16     1.501407e-04
22    3/16     1.501407e-04
23    3/18     2.082322e-04
24   6/188     3.016202e-04
25     2/5     7.035280e-04
26    4/73     7.035280e-04
27    3/30     8.567836e-04
28     2/6     9.653527e-04
29     2/8     1.732107e-03
30     2/9     2.147965e-03
31    2/10     2.592555e-03
32   8/636     7.345938e-03
33    3/68     7.879809e-03
34    2/22     1.181407e-02
35    2/36     2.870121e-02
36    2/36     2.870121e-02
37    2/36     2.870121e-02
38    2/40     3.429432e-02
39    2/46     4.375411e-02
                                                                                                Genes
1  ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;TSPO;VDAC2;VDAC1
2  ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;TSPO;VDAC2;VDAC1
3                                        ABCA1;ABCG8;CETP;ABCG5;NPC2;MTTP;APOA2;APOA1;APOA4;APOB;PLTP
4                                        ABCA1;ABCG8;CETP;ABCG5;NPC2;MTTP;APOA2;APOA1;APOA4;APOB;PLTP
5                                         LRPAP1;LRP1;APOA2;PCSK9;APOA1;APOC3;APOE;APOB;LDLRAP1;APOA5
6                                                                  APOC1;APOA2;APOA1;APOA4;APOE;APOA5
7                                                          SCARB1;LIPC;APOA2;LPL;PCSK9;CD36;LDLR;PLTP
8                                                                    SCARB1;LIPC;PCSK9;CD36;LDLR;PLTP
9                                                                     APOC2;APOC1;ANGPTL3;APOA2;APOC3
10                                                               LRPAP1;PCSK9;APOE;APOB;LDLRAP1;APOA5
11                                                                                 LIPC;LIPI;LIPG;LPL
12                                                           LRPAP1;LRP1;APOA1;CD36;APOE;LDLRAP1;LDLR
13                                                                            LIPC;LIPI;LIPG;LCAT;LPL
14                                                                       LIPC;LIPI;LIPG;LCAT;LPL;LIPA
15                                                                                  LRPAP1;APOB;APOA5
16                                                                                  ABCA1;SCARB1;LCAT
17                                                                                  APOA2;APOA1;PCSK9
18                                                                                      LIPC;LIPG;LPL
19                                                                                   APOC2;APOH;APOA5
20                                                                            LIPC;LIPG;LPL;LCAT;LIPA
21                                                                                  VDAC3;VDAC2;VDAC1
22                                                                                  VDAC3;VDAC2;VDAC1
23                                                                                    ABCA1;MTTP;PLTP
24                                                                   ABCG8;ABCG5;VAPA;VAPB;MTTP;APOA2
25                                                                                          MTTP;PLTP
26                                                                                 LIPC;LIPI;LIPG;LPL
27                                                                                   SOAT1;SOAT2;LCAT
28                                                                                         APOA2;PLTP
29                                                                                          MTTP;PLTP
30                                                                                          LRP1;LDLR
31                                                                                      APOC1;ANGPTL3
32                                                         GHR;STARD3;VAPB;EPHX2;APOA2;LPL;APOA4;APOE
33                                                                                  VDAC3;VDAC2;VDAC1
34                                                                                          MTTP;PLTP
35                                                                                     CYP27A1;CYP7A1
36                                                                                     CYP27A1;CYP7A1
37                                                                                        HMGCR;DHCR7
38                                                                                          ITIH4;LPA
39                                                                                          ITIH4;LPA
GO_known_annotations <- do.call(rbind, GO_enrichment)
GO_known_annotations <- GO_known_annotations[GO_known_annotations$Adjusted.P.value<0.05,]

#GO enrichment analysis for cTWAS genes

genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
GO_ctwas_genes <- do.call(rbind, GO_enrichment)

#identify cTWAS genes in silver standard enriched GO terms
GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Term %in% GO_known_annotations$Term,]

GO_ctwas_genes_byterms <- as.data.frame(matrix(NA, 0, 2))

for (i in 1:nrow(GO_ctwas_genes)){
  for (j in unlist(strsplit(GO_ctwas_genes$Genes[i], split=";"))){
    GO_ctwas_genes_byterms<- rbind(GO_ctwas_genes_byterms, c(j, GO_ctwas_genes$Term[i]))
  }
  colnames(GO_ctwas_genes_byterms) <- c("Gene", "GO_term")
}
Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated
GO_ctwas_genes_byterms <- GO_ctwas_genes_byterms[order(GO_ctwas_genes_byterms$Gene),]
GO_ctwas_genes_byterms <- GO_ctwas_genes_byterms[!(GO_ctwas_genes_byterms$Gene %in% known_annotations),]

#detected cTWAS genes (not on silver standard) that overlap with GO terms enriched for silver standard genes

GO_ctwas_genes_byterms
    Gene                      GO_term
2   <NA> lipid transport (GO:0006869)
3   <NA> lipid transport (GO:0006869)
4   <NA> lipid transport (GO:0006869)
6   <NA>                         <NA>
7   <NA>                         <NA>
8   <NA>                         <NA>
9   <NA>                         <NA>
11  <NA>                         <NA>
12  <NA>                         <NA>
13  <NA>                         <NA>
15  <NA>                         <NA>
16  <NA>                         <NA>
18  <NA>                         <NA>
19  <NA>                         <NA>
21  <NA>                         <NA>
22  <NA>                         <NA>
24  <NA>                         <NA>
26  <NA>                         <NA>
27  <NA>                         <NA>
28  <NA>                         <NA>
30  <NA>                         <NA>
31  <NA>                         <NA>
32  <NA>                         <NA>
33  <NA>                         <NA>
34  <NA>                         <NA>
35  <NA>                         <NA>
36  <NA>                         <NA>
38  <NA>                         <NA>
39  <NA>                         <NA>
40  <NA>                         <NA>
41  <NA>                         <NA>
43  <NA>                         <NA>
44  <NA>                         <NA>
45  <NA>                         <NA>
47  <NA>                         <NA>
48  <NA>                         <NA>
49  <NA>                         <NA>
50  <NA>                         <NA>
51  <NA>                         <NA>
52  <NA>                         <NA>
54  <NA>                         <NA>
55  <NA>                         <NA>
56  <NA>                         <NA>
57  <NA>                         <NA>
58  <NA>                         <NA>
59  <NA>                         <NA>
62  <NA>                         <NA>
63  <NA>                         <NA>
65  <NA>                         <NA>
66  <NA>                         <NA>
67  <NA>                         <NA>
71  <NA>                         <NA>
75  <NA>                         <NA>
76  <NA>                         <NA>
77  <NA>                         <NA>
78  <NA>                         <NA>
79  <NA>                         <NA>
80  <NA>                         <NA>
81  <NA>                         <NA>
82  <NA>                         <NA>
83  <NA>                         <NA>
84  <NA>                         <NA>
85  <NA>                         <NA>
86  <NA>                         <NA>
88  <NA>                         <NA>
89  <NA>                         <NA>
90  <NA>                         <NA>
91  <NA>                         <NA>
92  <NA>                         <NA>
93  <NA>                         <NA>
94  <NA>                         <NA>
96  <NA>                         <NA>
98  <NA>                         <NA>
99  <NA>                         <NA>
100 <NA>                         <NA>
101 <NA>                         <NA>
102 <NA>                         <NA>
104 <NA>                         <NA>
105 <NA>                         <NA>
107 <NA>                         <NA>
108 <NA>                         <NA>
109 <NA>                         <NA>
110 <NA>                         <NA>
111 <NA>                         <NA>
112 <NA>                         <NA>
113 <NA>                         <NA>
114 <NA>                         <NA>
115 <NA>                         <NA>
117 <NA>                         <NA>
118 <NA>                         <NA>
119 <NA>                         <NA>
120 <NA>                         <NA>
121 <NA>                         <NA>
122 <NA>                         <NA>
123 <NA>                         <NA>
124 <NA>                         <NA>
125 <NA>                         <NA>
127 <NA>                         <NA>
128 <NA>                         <NA>
130 <NA>                         <NA>
131 <NA>                         <NA>
132 <NA>                         <NA>
133 <NA>                         <NA>
134 <NA>                         <NA>
135 <NA>                         <NA>
136 <NA>                         <NA>
139 <NA>                         <NA>
140 <NA>                         <NA>
141 <NA>                         <NA>
142 <NA>                         <NA>
144 <NA>                         <NA>
145 <NA>                         <NA>
147 <NA>                         <NA>
148 <NA>                         <NA>
150 <NA>                         <NA>
152 <NA>                         <NA>
153 <NA>                         <NA>
155 <NA>                         <NA>
156 <NA>                         <NA>
157 <NA>                         <NA>
158 <NA>                         <NA>
159 <NA>                         <NA>
160 <NA>                         <NA>
162 <NA>                         <NA>
163 <NA>                         <NA>

cTWAS detects some genes that are not significant using a stringent TWAS threshold

TTC39B is a member of the Dyslipidaemia term in the disease_GLAD4U. This gene was not included in our silver standard. This gene is not significant using TWAS but is detected by cTWAS.

locus_plot3(focus="TTC39B", region_tag="9_13")

Version Author Date
299fa01 wesleycrouse 2022-06-03
37b2a2c wesleycrouse 2022-05-29

False positives by TWAS are frequently due to nearby causal variants, not genes

pip_threshold <- 0.5

false_positives <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh & ctwas_gene_res$susie_pip<pip_threshold]

df_plot <- data.frame(Outcome=c("SNPs", "Genes", "Both", "Neither"), Frequency=rep(0,4))

for (i in 1:length(false_positives)){
  gene <- false_positives[i]
  region <- ctwas_gene_res$region_tag[ctwas_gene_res$genename==gene]

  gene_pip <- sum(ctwas_gene_res$susie_pip[ctwas_gene_res$region_tag==region]) - ctwas_gene_res$susie_pip[ctwas_gene_res$genename==gene]
  snp_pip <- sum(ctwas_snp_res$susie_pip[ctwas_snp_res$region_tag==region])

  if (gene_pip < 0.5 & snp_pip < 0.5){
    df_plot$Frequency[df_plot$Outcome=="Neither"] <- df_plot$Frequency[df_plot$Outcome=="Neither"] + 1
  } else if (gene_pip >= 0.5 & snp_pip >= 0.5){
    df_plot$Frequency[df_plot$Outcome=="Both"] <- df_plot$Frequency[df_plot$Outcome=="Both"] + 1
  } else if (gene_pip < 0.5 & snp_pip >= 0.5){
    df_plot$Frequency[df_plot$Outcome=="SNPs"] <- df_plot$Frequency[df_plot$Outcome=="SNPs"] + 1
  } else if (gene_pip >= 0.5 & snp_pip < 0.5){
    df_plot$Frequency[df_plot$Outcome=="Genes"] <- df_plot$Frequency[df_plot$Outcome=="Both"] + 1
  }
}

pie <- ggplot(df_plot, aes(x="", y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity")
pie <- pie + coord_polar("y", start=0) + theme_minimal() + theme(axis.title.y=element_blank())
pie

Version Author Date
299fa01 wesleycrouse 2022-06-03
save.image(file="workspace.RData")
#load("workspace.RData")

Updated locus plots

locus_plot_final <- function(region_tag, xlim=NULL, return_table=F, focus=NULL, label_panel="TWAS", label_genes=NULL, label_pos=NULL, plot_eqtl=NULL, draw_gene_track=T, rerun_ctwas=F, rerun_load_only=F){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
    
    if (!rerun_load_only){
      ctwas::ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
                       ld_R_dir = dirname(region$regRDS)[1],
                       ld_regions_custom = "temp_reg.txt", thin = 1, 
                       outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
                       group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
                       estimate_group_prior = F, estimate_group_prior_var = F)
    }
    
    a_bkup <- a         
    a <- as.data.frame(data.table::fread("temp.susieIrss.txt", header = T))
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$genename <- NA
    a$gene_type <- NA

    a[a$type=="gene",c("genename", "gene_type")] <- a_bkup[match(a$id[a$type=="gene"], a_bkup$id),c("genename","gene_type")]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a_pos_bkup <- a$pos
  a$pos[a$type=="gene"] <- G_list$tss[match(sapply(a$id[a$type=="gene"], function(x){unlist(strsplit(x, "[.]"))[1]}) ,G_list$ensembl_gene_id)]
  a$pos[is.na(a$pos)] <- a_pos_bkup[is.na(a$pos)]
  a$pos <- a$pos/1000000
  
  if (!is.null(xlim)){
    
    if (is.na(xlim[1])){
      xlim[1] <- min(a$pos)
    }
    
    if (is.na(xlim[2])){
      xlim[2] <- max(a$pos)
    }
    
    a <- a[a$pos>=xlim[1] & a$pos<=xlim[2],,drop=F]
  }
  
  if (is.null(focus)){
    focus <- a$genename[a$z==max(abs(a$z)[a$type=="gene"])]
  }
  
  if (is.null(label_genes)){
    label_genes <- focus
  }
  
  if (is.null(label_pos)){
    label_pos <- rep(3, length(label_genes))
  }
  
  if (is.null(plot_eqtl)){
    plot_eqtl <- focus
  }
  
  focus <- a$id[which(a$genename==focus)]
  a$focus <- 0
  a$focus <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  start <- min(a$pos)
  end <- max(a$pos)
  
  if (draw_gene_track){
    layout(matrix(1:4, ncol = 1), widths = 1, heights = c(1.5,0.25,1.5,0.75), respect = FALSE)
  } else {
    layout(matrix(1:3, ncol = 1), widths = 1, heights = c(1.5,0.25,1.5), respect = FALSE)
  }
  
  par(mar = c(0, 4.1, 0, 2.1))
  
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"), frame.plot=FALSE, bg = colorsall[1], ylab = "-log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.1), xaxt = 'n', xlim=c(start, end))
  
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$focus == 1], a$PVALUE[a$type == "SNP" & a$focus == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$focus == 1], a$PVALUE[a$type == "gene" & a$focus == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label_panel=="TWAS"){
    for (i in 1:length(label_genes)){
      text(a$pos[a$genename==label_genes[i]], a$PVALUE[a$genename==label_genes[i]], labels=label_genes[i], pos=label_pos[i], cex=0.7)
    }
  }
  
  par(mar = c(0.25, 4.1, 0.25, 2.1))
  
  plot(NA, xlim = c(start, end), ylim = c(0, length(plot_eqtl)), frame.plot = F, axes = F, xlab = NA, ylab = NA)
  
  for (i in 1:length(plot_eqtl)){
    cgene <- a$id[which(a$genename==plot_eqtl[i])]
    load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
    eqtls <- rownames(wgtlist[[cgene]])
    eqtl_pos <- a$pos[a$id %in% eqtls]
    
    
    # if (cgene==focus){
    #   col="salmon"
    # } else {
    #   col="grey"
    # }
    
    col="grey"
    
    rect(start, length(plot_eqtl)+1-i-0.8, end, length(plot_eqtl)+1-i-0.2, col = col, border = T, lwd = 1)
  
    if (length(eqtl_pos)>0){
      for (j in 1:length(eqtl_pos)){
        segments(x0=eqtl_pos[j], x1=eqtl_pos[j], y0=length(plot_eqtl)+1-i-0.2, length(plot_eqtl)+1-i-0.8, lwd=1.5)  
      }
    }
  }
  
  text(start, length(plot_eqtl)-(1:length(plot_eqtl))+0.5,  
       labels = plot_eqtl, srt = 0, pos = 2, xpd = TRUE, cex=0.7)
  
  par(mar = c(4.1, 4.1, 0, 2.1))
  
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"),frame.plot=FALSE, col = "white", ylim= c(0,1.1), ylab = "cTWAS PIP", xlim = c(start, end))
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$focus == 1], a$susie_pip[a$type == "SNP" & a$focus == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$focus == 1], a$susie_pip[a$type == "gene" & a$focus == 1], pch = 22, bg = "salmon", cex = 2)
  
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1 ,c("Gene", "SNP","Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = c(22,21,19,19,19), col = c("black", "black", "salmon", "purple", colorsall[1]), cex=0.7, title.adj = 0)
  
  if (label_panel=="cTWAS"){
    for (i in 1:length(label_genes)){
      text(a$pos[a$genename==label_genes[i]], a$susie_pip[a$genename==label_genes[i]], labels=label_genes[i], pos=label_pos[i], cex=0.7)
    }
  }
  
  if (draw_gene_track){
    source("code/trackplot.R")
  
    query_ucsc = TRUE
    build = "hg38"
    col = "gray70"
    txname = NULL
    genename = NULL
    collapse_txs = TRUE
    gene_model = "data/hg38.ensGene.gtf.gz"
    isGTF = T
    
    ##########
    start <- min(a$pos)*1000000
    end <- max(a$pos)*1000000
    chr <- paste0("chr",as.character(unique(a$chrom)))
  
    #collect gene models
    if(is.null(gene_model)){
      if(query_ucsc){
        message("Missing gene model. Trying to query UCSC genome browser..")
        etbl = .extract_geneModel_ucsc(chr, start = start, end = end, refBuild = build, txname = txname, genename = genename)
      } else{
        etbl = NULL
      }
    } else{
      if(isGTF){
        etbl = .parse_gtf(gtf = gene_model, chr = chr, start = start, end = end, txname = txname, genename = genename)  
      } else{
        etbl = .extract_geneModel(ucsc_tbl = gene_model, chr = chr, start = start, end = end, txname = txname, genename = genename)  
      }
    }
    
    #draw gene models
    if(!is.null(etbl)){
      if(collapse_txs){
        etbl = .collapse_tx(etbl)
      }
      
      #subset to protein coding genes in ensembl and lincRNAs included in the analysis
      #etbl <- etbl[names(etbl) %in% G_list$ensembl_gene_id]
      etbl <- etbl[names(etbl) %in% c(G_list$ensembl_gene_id[G_list$gene_biotype=="protein_coding"], sapply(a$id[a$type=="gene"], function(x){unlist(strsplit(x, split="[.]"))[1]}))]
      
      for (i in 1:length(etbl)){
        ensembl_name <- attr(etbl[[i]], "gene")
        gene_name <- G_list$hgnc_symbol[match(ensembl_name, G_list$ensembl_gene_id)]
        if (gene_name==""){
          gene_name <- a$genename[sapply(a$id, function(x){unlist(strsplit(x,split="[.]"))[1]})==ensembl_name]
        }
        if (length(gene_name)>0){
          attr(etbl[[i]], "gene") <- gene_name
        }
        
        attr(etbl[[i]], "imputed") <- ensembl_name %in% sapply(ctwas_gene_res$id, function(x){unlist(strsplit(x, split="[.]"))[1]})
        
      }
      
      par(mar = c(0, 4.1, 0, 2.1))
      
      plot(NA, xlim = c(start, end), ylim = c(0, length(etbl)), frame.plot = FALSE, axes = FALSE, xlab = NA, ylab = NA)
      
      etbl <- etbl[order(-sapply(etbl, function(x){attr(x, "start")}))]
      
      for(tx_id in 1:length(etbl)){
        txtbl = etbl[[tx_id]]
        
        if (attr(txtbl, "imputed")){
          exon_col = "#192a56"
        } else {
          exon_col = "darkred"
        }

        segments(x0 = attr(txtbl, "start"), y0 = tx_id-0.45, x1 = attr(txtbl, "end"), y1 = tx_id-0.45, col = exon_col, lwd = 1)
    
        if(is.na(attr(txtbl, "tx"))){
          text(x = start, y = tx_id-0.45, labels = paste0(attr(txtbl, "gene")), cex = 0.7, adj = 0, srt = 0, pos = 2, xpd = TRUE)
        } else {
          text(x = start, y = tx_id-0.45, labels = paste0(attr(txtbl, "tx"), " [", attr(txtbl, "gene"), "]"), cex = 0.7, adj = 0, srt = 0, pos = 2, xpd = TRUE)
        }
        
        rect(xleft = txtbl[[1]], ybottom = tx_id-0.75, xright = txtbl[[2]], ytop = tx_id-0.25, col = exon_col, border = NA)
        if(attr(txtbl, "strand") == "+"){
          dirat = pretty(x = c(min(txtbl[[1]]), max(txtbl[[2]])))
          dirat[1] = min(txtbl[[1]]) #Avoid drawing arrows outside gene length
          dirat[length(dirat)] = max(txtbl[[2]])
          points(x = dirat, y = rep(tx_id-0.45, length(dirat)), pch = ">", col = exon_col)
        }else{
          dirat = pretty(x = c(min(txtbl[[1]]), max(txtbl[[2]])))
          dirat[1] = min(txtbl[[1]]) #Avoid drawing arrows outside gene length
          dirat[length(dirat)] = max(txtbl[[2]])
          points(x = dirat, y = rep(tx_id-0.45, length(dirat)), pch = "<", col = exon_col)
        }
      }
    }
  }
  
  if (return_table){
    return(a)
  }
}

TNKS

a <- locus_plot_final(region_tag = "8_12", focus="TNKS", label_genes=c("TNKS"), label_pos=c(3,4), plot_eqtl=c("TNKS"), return_table=T)
Parsing gtf file..
Registered S3 method overwritten by 'R.oo':
  method        from       
  throw.default R.methodsS3
Collapsing transcripts..
Warning in `[.data.table`(tx_tbl[, `:=`(id, paste0(start, ":", end))], !
duplicated(id), : Ignoring by= because j= is not supplied

Version Author Date
00235c6 wesleycrouse 2022-06-17
299fa01 wesleycrouse 2022-06-03
37b2a2c wesleycrouse 2022-05-29
a[a$type=="gene",]
     chrom                 id      pos type region_tag1 region_tag2
8523     8 ENSG00000173273.15 9.555912 gene           8          12
     cs_index susie_pip      mu2 region_tag          PVE genename
8523        1 0.9844747 73.24908       8_12 0.0002098587     TNKS
          gene_type        z focus   PVALUE r2max
8523 protein_coding 11.02603     1 27.54331     1

POLK

a <- locus_plot_final(region_tag = "5_45", xlim=c(75,76), return_table=T,
                      focus="POLK",
                      label_genes=c("POLK"),
                      label_pos=c(3),
                      plot_eqtl=c("POLK"), rerun_ctwas=T, rerun_load_only=F)
2022-06-18 08:32:56 INFO::ctwas started ...
2022-06-18 08:33:18 INFO::LD region file: temp_reg.txt
2022-06-18 08:33:18 INFO::No. LD regions: 1
2022-06-18 08:33:19 INFO::No. regions with at least one SNP/gene for chr1: 0
2022-06-18 08:33:19 INFO::No. regions with at least one SNP/gene for chr1 after merging: 0
2022-06-18 08:33:20 INFO::No. regions with at least one SNP/gene for chr2: 0
2022-06-18 08:33:20 INFO::No. regions with at least one SNP/gene for chr2 after merging: 0
2022-06-18 08:33:21 INFO::No. regions with at least one SNP/gene for chr3: 0
2022-06-18 08:33:21 INFO::No. regions with at least one SNP/gene for chr3 after merging: 0
2022-06-18 08:33:22 INFO::No. regions with at least one SNP/gene for chr4: 0
2022-06-18 08:33:22 INFO::No. regions with at least one SNP/gene for chr4 after merging: 0
2022-06-18 08:33:23 INFO::No. regions with at least one SNP/gene for chr5: 1
2022-06-18 08:33:23 INFO::No. regions with at least one SNP/gene for chr5 after merging: 1
2022-06-18 08:33:24 INFO::No. regions with at least one SNP/gene for chr6: 0
2022-06-18 08:33:24 INFO::No. regions with at least one SNP/gene for chr6 after merging: 0
2022-06-18 08:33:24 INFO::No. regions with at least one SNP/gene for chr7: 0
2022-06-18 08:33:24 INFO::No. regions with at least one SNP/gene for chr7 after merging: 0
2022-06-18 08:33:25 INFO::No. regions with at least one SNP/gene for chr8: 0
2022-06-18 08:33:25 INFO::No. regions with at least one SNP/gene for chr8 after merging: 0
2022-06-18 08:33:26 INFO::No. regions with at least one SNP/gene for chr9: 0
2022-06-18 08:33:26 INFO::No. regions with at least one SNP/gene for chr9 after merging: 0
2022-06-18 08:33:26 INFO::No. regions with at least one SNP/gene for chr10: 0
2022-06-18 08:33:26 INFO::No. regions with at least one SNP/gene for chr10 after merging: 0
2022-06-18 08:33:27 INFO::No. regions with at least one SNP/gene for chr11: 0
2022-06-18 08:33:27 INFO::No. regions with at least one SNP/gene for chr11 after merging: 0
2022-06-18 08:33:27 INFO::No. regions with at least one SNP/gene for chr12: 0
2022-06-18 08:33:27 INFO::No. regions with at least one SNP/gene for chr12 after merging: 0
2022-06-18 08:33:28 INFO::No. regions with at least one SNP/gene for chr13: 0
2022-06-18 08:33:28 INFO::No. regions with at least one SNP/gene for chr13 after merging: 0
2022-06-18 08:33:28 INFO::No. regions with at least one SNP/gene for chr14: 0
2022-06-18 08:33:28 INFO::No. regions with at least one SNP/gene for chr14 after merging: 0
2022-06-18 08:33:29 INFO::No. regions with at least one SNP/gene for chr15: 0
2022-06-18 08:33:29 INFO::No. regions with at least one SNP/gene for chr15 after merging: 0
2022-06-18 08:33:29 INFO::No. regions with at least one SNP/gene for chr16: 0
2022-06-18 08:33:29 INFO::No. regions with at least one SNP/gene for chr16 after merging: 0
2022-06-18 08:33:29 INFO::No. regions with at least one SNP/gene for chr17: 0
2022-06-18 08:33:29 INFO::No. regions with at least one SNP/gene for chr17 after merging: 0
2022-06-18 08:33:30 INFO::No. regions with at least one SNP/gene for chr18: 0
2022-06-18 08:33:30 INFO::No. regions with at least one SNP/gene for chr18 after merging: 0
2022-06-18 08:33:30 INFO::No. regions with at least one SNP/gene for chr19: 0
2022-06-18 08:33:30 INFO::No. regions with at least one SNP/gene for chr19 after merging: 0
2022-06-18 08:33:30 INFO::No. regions with at least one SNP/gene for chr20: 0
2022-06-18 08:33:30 INFO::No. regions with at least one SNP/gene for chr20 after merging: 0
2022-06-18 08:33:31 INFO::No. regions with at least one SNP/gene for chr21: 0
2022-06-18 08:33:31 INFO::No. regions with at least one SNP/gene for chr21 after merging: 0
2022-06-18 08:33:31 INFO::No. regions with at least one SNP/gene for chr22: 0
2022-06-18 08:33:31 INFO::No. regions with at least one SNP/gene for chr22 after merging: 0
2022-06-18 08:33:31 INFO::Trim regions with SNPs more than Inf
2022-06-18 08:33:31 INFO::Adding R matrix info, as genotype is not given
2022-06-18 08:33:31 INFO::Adding R matrix info for chrom 1
2022-06-18 08:33:31 INFO::Adding R matrix info for chrom 2
2022-06-18 08:33:31 INFO::Adding R matrix info for chrom 3
2022-06-18 08:33:31 INFO::Adding R matrix info for chrom 4
2022-06-18 08:33:31 INFO::Adding R matrix info for chrom 5
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 6
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 7
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 8
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 9
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 10
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 11
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 12
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 13
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 14
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 15
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 16
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 17
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 18
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 19
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 20
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 21
2022-06-18 08:34:10 INFO::Adding R matrix info for chrom 22
2022-06-18 08:34:10 INFO::Run susie for all regions.
2022-06-18 08:34:10 INFO::run iteration 1
2022-06-18 08:37:10 INFO::After iteration 1, gene prior 0.0107025504876252:, SNP prior:0.000171872269389155
Parsing gtf file..
Collapsing transcripts..
Warning in `[.data.table`(tx_tbl[, `:=`(id, paste0(start, ":", end))], !
duplicated(id), : Ignoring by= because j= is not supplied

Version Author Date
00235c6 wesleycrouse 2022-06-17
8e7ebf3 wesleycrouse 2022-06-17
299fa01 wesleycrouse 2022-06-03
a[a$type=="gene",]
  chrom                 id      pos type region_tag1 region_tag2 cs_index
5     5 ENSG00000122008.15 75.51176 gene           5           1        0
6     5 ENSG00000189045.13 75.61118 gene           5           1        0
7     5 ENSG00000152359.14 75.71745 gene           5           1        0
    susie_pip       mu2 genename      gene_type         z focus   PVALUE
5 0.016136381 209.67296     POLK protein_coding 17.515765     1 67.96410
6 0.006714266 136.14423  ANKDD1B protein_coding 15.066983     0 50.57344
7 0.009369588  48.12624     POC5 protein_coding -7.011933     0 11.62884
       r2max
5  1.0000000
6  0.7011580
7 -0.1028646

PRKD2

a <- locus_plot_final(region_tag="19_33", xlim=c(NA,46.85), return_table=T,
                      focus="PRKD2",
                      label_genes=c("STRN4","SLC1A5","PRKD2","FKRP","DACT3"),
                      label_pos=c(3,3,3,3,3),
                      plot_eqtl=c("PRKD2"))
Parsing gtf file..
Collapsing transcripts..
Warning in `[.data.table`(tx_tbl[, `:=`(id, paste0(start, ":", end))], !
duplicated(id), : Ignoring by= because j= is not supplied

Version Author Date
00235c6 wesleycrouse 2022-06-17
a[a$type=="gene",]
      chrom                 id      pos type region_tag1 region_tag2
10198    19 ENSG00000197380.10 46.66118 gene          19          33
1999     19 ENSG00000105287.12 46.71713 gene          19          33
9189     19 ENSG00000181027.10 46.74605 gene          19          33
1219     19 ENSG00000090372.14 46.74699 gene          19          33
1998     19 ENSG00000105281.12 46.78859 gene          19          33
      cs_index   susie_pip       mu2 region_tag          PVE genename
10198        0 0.002404202  5.816796      19_33 4.069820e-08    DACT3
1999         2 0.996391159 32.341479      19_33 9.377996e-05    PRKD2
9189         0 0.005984264 24.517325      19_33 4.269767e-07     FKRP
1219         0 0.002711973  6.291820      19_33 4.965717e-08    STRN4
1998         0 0.002996521  8.515921      19_33 7.426244e-08   SLC1A5
           gene_type           z focus     PVALUE       r2max
10198 protein_coding -0.78861855     0 0.36619334 -0.08270518
1999  protein_coding  5.28984879     1 6.91215642  1.00000000
9189  protein_coding  3.79057604     0 3.82304590  0.45515720
1219  protein_coding  0.09301084     0 0.03343828  0.15745458
1998  protein_coding -1.27062870     0 0.69066634 -0.38387332

Genes nearby and nearest to GWAS peaks

####################

#####load positions for all genes on autosomes in ENSEMBL, subset to only protein coding and lncRNA with non-missing HGNC symbol
# library(biomaRt)
# 
# ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
# G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype", "ensembl_gene_id", "strand"), values=1:22, mart=ensembl)
# 
# save(G_list, file=paste0("G_list_", trait_id, ".RData"))
load(paste0("G_list_", trait_id, ".RData"))

G_list <- G_list[G_list$gene_biotype %in% c("protein_coding"),]

G_list$hgnc_symbol[G_list$hgnc_symbol==""] <- "-"

G_list$tss <- G_list[,c("end_position", "start_position")][cbind(1:nrow(G_list),G_list$strand/2+1.5)]



#####load z scores from the analysis and add positions from the LD reference
load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))

# LDR_dir <- "/project2/mstephens/wcrouse/UKB_LDR_0.1/"
# LDR_files <- list.files(LDR_dir)
# LDR_files <- LDR_files[grep(".Rvar" ,LDR_files)]
# 
# z_snp$chrom <- as.integer(NA)
# z_snp$pos <- as.integer(NA)
# 
# for (i in 1:length(LDR_files)){
#   print(i)
# 
#   LDR_info <- read.table(paste0(LDR_dir, LDR_files[i]), header=T)
#   z_snp_index <- which(z_snp$id %in% LDR_info$id)
#   z_snp[z_snp_index,c("chrom", "pos")] <- t(sapply(z_snp_index, function(x){unlist(LDR_info[match(z_snp$id[x], LDR_info$id),c("chrom", "pos")])}))
# }
# 
# z_snp <- z_snp[,c("id", "z", "chrom","pos")]
# save(z_snp, file=paste0("z_snp_pos_", trait_id, ".RData"))
load(paste0("z_snp_pos_", trait_id, ".RData"))

####################
#identify genes within 500kb of genome-wide significant variant ("nearby")
G_list$nearby <- NA

window_size <- 500000

for (chr in 1:22){
  #index genes on chromosome
  G_list_index <- which(G_list$chromosome_name==chr)
  
  #subset z_snp to chromosome, then subset to significant genome-wide significant variants
  z_snp_chr <- z_snp[z_snp$chrom==chr,,drop=F]
  z_snp_chr <- z_snp_chr[abs(z_snp_chr$z)>qnorm(1-(5E-8/2), lower=T),,drop=F]
  
  #iterate over genes on chromsome and check if a genome-wide significant SNP is within the window
  for (i in G_list_index){
    window_start <- G_list$start_position[i] - window_size
    window_end <- G_list$end_position[i] + window_size
    G_list$nearby[i] <- any(z_snp_chr$pos>=window_start & z_snp_chr$pos<=window_end)
  }
}

####################
#identify genes that are nearest to lead genome-wide significant variant ("nearest")
G_list$nearest <- F
G_list$distance <- Inf
G_list$which_nearest <- NA

window_size <- 500000

n_peaks <- 0

for (chr in 1:22){
  #index genes on chromosome
  G_list_index <- which(G_list$chromosome_name==chr & G_list$gene_biotype=="protein_coding")
  
  #subset z_snp to chromosome, then subset to significant genome-wide significant variants
  z_snp_chr <- z_snp[z_snp$chrom==chr,,drop=F]
  z_snp_chr <- z_snp_chr[abs(z_snp_chr$z)>qnorm(1-(5E-8/2), lower=T),,drop=F]
  
  while (nrow(z_snp_chr)>0){
    n_peaks <- n_peaks + 1
    
    lead_index <- which.max(abs(z_snp_chr$z))
    lead_position <- z_snp_chr$pos[lead_index]
    
    distances <- sapply(G_list_index, function(i){
      if (lead_position >= G_list$start_position[i] & lead_position <= G_list$end_position[i]){
        distance <- 0
      } else {
        distance <- min(abs(G_list$start_position[i] - lead_position), abs(G_list$end_position[i] - lead_position))
      }
      distance
    })
    
    min_distance <- min(distances)
    
    G_list$nearest[G_list_index[distances==min_distance]] <- T
    
    nearest_genes <- paste0(G_list$hgnc_symbol[G_list_index[distances==min_distance]], collapse=", ")
    
    update_index <- which(G_list$distance[G_list_index] > distances)
    G_list$distance[G_list_index][update_index] <- distances[update_index]
    G_list$which_nearest[G_list_index][update_index] <- nearest_genes
    
    window_start <- lead_position - window_size
    window_end <- lead_position + window_size
    z_snp_chr <- z_snp_chr[!(z_snp_chr$pos>=window_start & z_snp_chr$pos<=window_end),,drop=F]
  }
}

G_list$distance[G_list$distance==Inf] <- NA

#report number of GWAS peaks
sum(n_peaks)
[1] 182

Summary table of results

library(readxl)

known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

results_summary <- ctwas_gene_res[ctwas_gene_res$susie_pip>0.8,c("genename", "id", "region_tag", "susie_pip", "z", "num_eqtl")]
names(results_summary)[names(results_summary)=="id"] <- "ensembl_gene_id"
results_summary$ensembl_gene_id <- sapply(results_summary$ensembl_gene_id, function(x){unlist(strsplit(x, split="[.]"))[1]})
results_summary <- cbind(results_summary, G_list[match(results_summary$ensembl_gene_id, G_list$ensembl_gene_id),c("chromosome_name", "start_position", "nearby", "nearest", "distance", "which_nearest")])
names(results_summary)[names(results_summary)=="chromosome_name"] <- "chromosome"

results_summary$known <- results_summary$genename %in% known_annotations

results_summary$twas_fp <- NA
results_summary$gene_nearest_region_peak <- NA

for (i in 1:nrow(results_summary)){
  genename <- results_summary$genename[i]
  region_tag <- results_summary$region_tag[i]

  ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$region_tag==region_tag & ctwas_gene_res$genename!=genename,]
  results_summary$twas_fp[i] <- any(ctwas_gene_res_subset$z > sig_thresh & ctwas_gene_res_subset$susie_pip < 0.8)
  
  ctwas_snp_res_subset <- ctwas_snp_res[ctwas_snp_res$region_tag==region_tag,]
  chromosome <- unique(ctwas_snp_res_subset$chrom)
  lead_position <- ctwas_snp_res_subset$pos[which.max(abs(ctwas_snp_res_subset$z))]

  G_list_index <- which(G_list$chromosome_name==chromosome)

  distances <- sapply(G_list_index, function(i){
    if (lead_position >= G_list$start_position[i] & lead_position <= G_list$end_position[i]){
      distance <- 0
    } else {
      distance <- min(abs(G_list$start_position[i] - lead_position), abs(G_list$end_position[i] - lead_position))
    }
    distance
  })

  results_summary$gene_nearest_region_peak[i] <- paste0(G_list$hgnc_symbol[G_list_index[which(distances==min(distances))]], collapse="; ")
}

####################
#GO enrichment of cTWAS genes
# genes <- results_summary$genename
# 
# dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
# GO_enrichment <- enrichr(genes, dbs)
# 
# save(GO_enrichment, file=paste0(trait_id, "_enrichment_results.RData"))

####################
#enrichment of silver standard genes
# genes <- known_annotations
# 
# dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
# GO_enrichment_silver_standard <- enrichr(genes, dbs)
# 
# save(GO_enrichment_silver_standard, file=paste0(trait_id, "silver_standard_enrichment_results.RData"))

####################
#report GO cTWAS

load(paste0(trait_id, "_enrichment_results.RData"))

GO_enrichment <- do.call(rbind, GO_enrichment)
GO_enrichment$db <- sapply(rownames(GO_enrichment), function(x){unlist(strsplit(x, split="[.]"))[1]})
rownames(GO_enrichment) <- NULL

GO_enrichment <- GO_enrichment[GO_enrichment$Adjusted.P.value < 0.05,]
GO_enrichment <- GO_enrichment[order(-GO_enrichment$Odds.Ratio),]

results_summary$GO <- sapply(results_summary$genename, function(x){terms <- GO_enrichment$Term[grep(x, GO_enrichment$Genes)];
                                             if (length(terms)>0){terms <- terms[1:min(length(terms),5)]};
                                             paste0(terms, collapse="; ")})

####################
#report GO silver standard

load(paste0(trait_id, "silver_standard_enrichment_results.RData"))

GO_enrichment_silver_standard <- do.call(rbind, GO_enrichment_silver_standard)
GO_enrichment_silver_standard$db <- sapply(rownames(GO_enrichment_silver_standard), function(x){unlist(strsplit(x, split="[.]"))[1]})
rownames(GO_enrichment_silver_standard) <- NULL

GO_enrichment_silver_standard <- GO_enrichment_silver_standard[GO_enrichment_silver_standard$Adjusted.P.value < 0.05,]
GO_enrichment_silver_standard <- GO_enrichment_silver_standard[order(-GO_enrichment_silver_standard$Odds.Ratio),]

#reload GO cTWAS for GO crosswalk
load(paste0(trait_id, "_enrichment_results.RData"))

GO_enrichment <- do.call(rbind, GO_enrichment)
GO_enrichment$db <- sapply(rownames(GO_enrichment), function(x){unlist(strsplit(x, split="[.]"))[1]})
rownames(GO_enrichment) <- NULL

#overlap between sets
GO_enrichment <- GO_enrichment[GO_enrichment$Term %in% GO_enrichment_silver_standard$Term,,drop=F]
GO_enrichment_silver_standard <- GO_enrichment_silver_standard[GO_enrichment_silver_standard$Term %in% GO_enrichment$Term,,drop=F]
GO_enrichment <- GO_enrichment[match(GO_enrichment_silver_standard$Term, GO_enrichment$Term),]

results_summary$GO_silver <- sapply(results_summary$genename, function(x){terms <- GO_enrichment$Term[grep(x, GO_enrichment$Genes)];
                                                                          if (length(terms)>0){terms <- terms[1:min(length(terms),5)]};
                                                                          paste0(terms, collapse="; ")})

####################
#report FUMA

FUMA <- data.table::fread(paste0("/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/FUMA_output/", trait_id, "/GS.txt"))
FUMA <- FUMA[FUMA$Category %in% c("GO_bp", "GO_cc", "GO_mf"),,drop=F]
FUMA <- FUMA[order(FUMA$p),]

#reload GO cTWAS for GO crosswalk
load(paste0(trait_id, "_enrichment_results.RData"))
GO_enrichment <- do.call(rbind, GO_enrichment)
GO_enrichment$db <- sapply(rownames(GO_enrichment), function(x){unlist(strsplit(x, split="[.]"))[1]})
rownames(GO_enrichment) <- NULL

GO_enrichment$Term_FUMA <- sapply(GO_enrichment$Term, function(x){rev(rev(unlist(strsplit(x, split=" [(]GO")))[-1])})
GO_enrichment$Term_FUMA <- paste0("GO_", toupper(gsub(" ", "_", GO_enrichment$Term_FUMA)))

#overlap between sets
GO_enrichment <- GO_enrichment[GO_enrichment$Term_FUMA %in% FUMA$GeneSet,,drop=F]
FUMA <- FUMA[FUMA$GeneSet %in% GO_enrichment$Term_FUMA]
GO_enrichment <- GO_enrichment[match(FUMA$GeneSet, GO_enrichment$Term_FUMA),]

results_summary$GO_MAGMA <- sapply(results_summary$genename, function(x){terms <- GO_enrichment$Term[grep(x, GO_enrichment$Genes)];
                                                                         if (length(terms)>0){terms <- terms[1:min(length(terms),5)]};
                                                                         paste0(terms, collapse="; ")})

####################
#report FUMA + susieGO

gsesusie <- as.data.frame(readxl::read_xlsx("gsesusie_enrichment.xlsx", sheet=trait_id))
gsesusie$GeneSet <- paste0("(", gsesusie$GeneSet, ")")

#reload GO cTWAS for GO crosswalk
load(paste0(trait_id, "_enrichment_results.RData"))
GO_enrichment <- do.call(rbind, GO_enrichment)
GO_enrichment$db <- sapply(rownames(GO_enrichment), function(x){unlist(strsplit(x, split="[.]"))[1]})
rownames(GO_enrichment) <- NULL

GO_enrichment$GeneSet <- sapply(GO_enrichment$Term, function(x){rev(unlist(strsplit(x, " ")))[1]})

#overlap between sets
GO_enrichment <- GO_enrichment[GO_enrichment$GeneSet %in% gsesusie$GeneSet,,drop=F]
gsesusie <- gsesusie[gsesusie$GeneSet %in% GO_enrichment$GeneSet,,drop=F]
GO_enrichment <- GO_enrichment[match(gsesusie$GeneSet, GO_enrichment$GeneSet),]

results_summary$GO_MAGMA_SuSiE <- sapply(results_summary$genename, function(x){terms <- GO_enrichment$Term[grep(x, GO_enrichment$Genes)];
                                                                         if (length(terms)>0){terms <- terms[1:min(length(terms),5)]};
                                                                         paste0(terms, collapse="; ")})

write.csv(results_summary, file=paste0("results_summary_LDL_cholesterol.csv"))

slimGO

library(dplyr, ev)

slimGO_modified <-
function (GO = GO, tool = c("enrichR", "rGREAT", "GOfuncR"), 
    annoDb = annoDb, plots = FALSE, threshold = 0.7, pval=0.05) 
{
    if (tool == "enrichR") {
        GO <- GO %>% data.table::rbindlist(idcol = "Gene Ontology") %>% 
            dplyr::as_tibble() %>% dplyr::filter(`Gene Ontology` %in% 
            c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", 
                "GO_Molecular_Function_2021")) %>% dplyr::mutate(Term = stringr::str_extract(.$Term, 
            "\\(GO.*")) %>% dplyr::mutate(Term = stringr::str_replace_all(.$Term, 
            "[//(//)]", ""), "") %>% dplyr::mutate(`Gene Ontology` = dplyr::case_when(`Gene Ontology` == 
            "GO_Biological_Process_2021" ~ "BP", `Gene Ontology` == 
            "GO_Cellular_Component_2021" ~ "CC", `Gene Ontology` == 
            "GO_Molecular_Function_2021" ~ "MF")) %>% dplyr::select(p = P.value, 
            go = Term, "Gene Ontology") %>% dplyr::filter(p <= 
            pval)
    }
    else if (tool == "rGREAT") {
        GO <- GO %>% data.table::rbindlist(idcol = "Gene Ontology") %>% 
            dplyr::as_tibble() %>% dplyr::mutate(`Gene Ontology` = dplyr::case_when(`Gene Ontology` == 
            "GO Biological Process" ~ "BP", `Gene Ontology` == 
            "GO Cellular Component" ~ "CC", `Gene Ontology` == 
            "GO Molecular Function" ~ "MF")) %>% dplyr::select(p = Hyper_Raw_PValue, 
            go = ID, "Gene Ontology") %>% dplyr::filter(p <= pval)
    }
    else if (tool == "GOfuncR") {
        GO <- GO$results %>% dplyr::as_tibble() %>% dplyr::mutate(`Gene Ontology` = dplyr::case_when(ontology == 
            "biological_process" ~ "BP", ontology == "cellular_component" ~ 
            "CC", ontology == "molecular_function" ~ "MF")) %>% 
            dplyr::select(p = raw_p_overrep, go = node_id, "Gene Ontology") %>% 
            dplyr::filter(p <= pval)
    }
    else {
        stop(glue("{tool} is not supported, please choose either enrichR, rGREAT, or GOfuncR [Case Sensitive]"))
    }
    print(glue::glue("Submiting results from {tool} to rrvgo..."))
    .slim <- function(GO = GO, ont = ont, annoDb = annoDb, plots = plots, 
        tool = tool, threshold = threshold) {
        GO <- GO %>% dplyr::filter(`Gene Ontology` == ont)
        print(glue::glue("rrvgo is now slimming {ont} GO terms from {tool}"))
        simMatrix <- rrvgo::calculateSimMatrix(GO$go, orgdb = annoDb, 
            ont = ont, method = "Rel")
        reducedTerms <- rrvgo::reduceSimMatrix(simMatrix, setNames(-log10(GO$p), 
            GO$go), threshold = threshold, orgdb = annoDb)
        if (plots == TRUE) {
            p <- rrvgo::scatterPlot(simMatrix, reducedTerms)
            plot(p)
            rrvgo::treemapPlot(reducedTerms)
        }
        print(glue::glue("There are {max(reducedTerms$cluster)} clusters in your GO {ont} terms from {tool}"))
        reducedTerms %>% dplyr::as_tibble() %>% return()
    }
    # slimmed <- GO %>% dplyr::select(`Gene Ontology`) %>% table() %>% 
    #     names() %>% purrr::set_names() %>% purrr::map_dfr(~.slim(GO = GO, 
    #     ont = ., annoDb = annoDb, tool = tool, plots = plots, 
    #     threshold = threshold), .id = "Gene Ontology") %>% dplyr::inner_join(GO) %>% 
    #     dplyr::filter(term == as.character(parentTerm)) %>% dplyr::mutate(`-log10.p-value` = -log10(p)) %>% 
    #     dplyr::mutate(`Gene Ontology` = dplyr::recode_factor(`Gene Ontology`, 
    #         BP = "Biological Process", CC = "Cellular Component", 
    #         MF = "Molecular Function")) %>% dplyr::arrange(dplyr::desc(`-log10.p-value`)) %>% 
    #     dplyr::select("Gene Ontology", Term = term, "-log10.p-value") %>% 
    #     return()
    slimmed <- GO %>% dplyr::select(`Gene Ontology`) %>% table() %>% 
        names() %>% purrr::set_names() %>% purrr::map_dfr(~.slim(GO = GO, 
        ont = ., annoDb = annoDb, tool = tool, plots = plots, 
        threshold = threshold), .id = "Gene Ontology") %>% dplyr::inner_join(GO) %>% 
        dplyr::filter(term == as.character(parentTerm)) %>% dplyr::mutate(`-log10.p-value` = -log10(p)) %>% 
        dplyr::mutate(`Gene Ontology` = dplyr::recode_factor(`Gene Ontology`, 
        BP = "Biological Process", CC = "Cellular Component", 
        MF = "Molecular Function")) %>% dplyr::arrange(dplyr::desc(`-log10.p-value`)) %>% 
    return()
}

load(paste0(trait_id, "_enrichment_results.RData"))

GO_enrichment_slim <- slimGO_modified(GO=GO_enrichment, tool="enrichR",annoDb = "org.Hs.eg.db", plots=T)

GO_enrichment <- do.call(rbind, GO_enrichment)
GO_enrichment$db <- sapply(rownames(GO_enrichment), function(x){unlist(strsplit(x, split="[.]"))[1]})
rownames(GO_enrichment) <- NULL
#save.image(file="workspace8.RData")

#load("workspace8.RData")

sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, "/project2/mstephens/wcrouse/predictdb/mashr_Liver_nolnc.db")
query <- function(...) RSQLite::dbGetQuery(db, ...)
weights_table <- query("select * from weights")
extra_table <- query("select * from extra")
RSQLite::dbDisconnect(db)

HPR

a <- locus_plot_final(region_tag="16_38", xlim=c(71.6,72.4), return_table=T,
                      focus="HPR",
                      label_genes=c("MARVELD3", "PHLPP2", "ATXN1L", "ZNF821", "PKD1L3", "HPR"),
                      label_pos=c(3,3,3,3,3,3),
                      plot_eqtl=c("HPR"),
                      label_panel="cTWAS")
Parsing gtf file..
Collapsing transcripts..
Warning in `[.data.table`(tx_tbl[, `:=`(id, paste0(start, ":", end))], !
duplicated(id), : Ignoring by= because j= is not supplied

Version Author Date
00235c6 wesleycrouse 2022-06-17
8e7ebf3 wesleycrouse 2022-06-17
061cee5 wesleycrouse 2022-06-14
a[a$type=="gene",]
      chrom                 id      pos type region_tag1 region_tag2
5234     16  ENSG00000140832.9 71.62616 gene          16          38
366      16 ENSG00000040199.18 71.72470 gene          16          38
10944    16  ENSG00000224470.7 71.80844 gene          16          38
1752     16 ENSG00000102984.14 71.89534 gene          16          38
11471    16  ENSG00000277481.1 72.00040 gene          16          38
11327    16  ENSG00000261701.6 72.06315 gene          16          38
      cs_index   susie_pip       mu2 region_tag          PVE genename
5234         0 0.003606116  21.34212      16_38 2.239739e-07 MARVELD3
366          0 0.005990474  51.79995      16_38 9.030481e-07   PHLPP2
10944        0 0.002687601  56.83691      16_38 4.445449e-07   ATXN1L
1752         0 0.002687005  46.09553      16_38 3.604521e-07   ZNF821
11471        0 0.003774771  98.95883      16_38 1.087090e-06   PKD1L3
11327        1 1.000000000 208.67866      16_38 6.072931e-04      HPR
           gene_type          z focus    PVALUE      r2max
5234  protein_coding  -2.077911     0  1.423456  0.1498616
366   protein_coding  -7.224850     0 12.299594  0.1923113
10944 protein_coding  -8.126354     0 15.354187  0.1401373
1752  protein_coding   7.585503     0 13.479911 -0.1170924
11471 protein_coding   4.998967     0  6.239288 -0.4999607
11327 protein_coding -17.240252     1 65.877923  1.0000000
weights_table[weights_table$gene=="ENSG00000261701.6",]
                  gene        rsid                  varID ref_allele
4681 ENSG00000261701.6 rs150367531 chr16_72063820_G_A_b38          G
4682 ENSG00000261701.6   rs3794695 chr16_72063928_C_T_b38          C
     eff_allele     weight
4681          A  0.1985749
4682          T -0.2215523
a[a$id %in% c("rs150367531", "rs3794695"),]
        chrom          id      pos type region_tag1 region_tag2 cs_index
1067534    16 rs150367531 72.06382  SNP          16          38        0
1067536    16   rs3794695 72.06393  SNP          16          38        0
           susie_pip       mu2 region_tag          PVE genename gene_type
1067534 8.310450e-05  82.84867      16_38 2.003689e-08     <NA>      <NA>
1067536 9.362261e-05 130.15248      16_38 3.546121e-08     <NA>      <NA>
                 z focus   PVALUE      r2max
1067534   8.241055     0 15.76777 -0.6969484
1067536 -16.590426     0 61.08757  0.7660778

CNIH4

a <- locus_plot_final(region_tag="1_114", xlim=c(224,225), return_table=T,
                      focus="CNIH4",
                      label_genes=c("CNIH4"),
                      label_pos=c(3),
                      plot_eqtl=c("CNIH4"))
Parsing gtf file..
Collapsing transcripts..
Warning in `[.data.table`(tx_tbl[, `:=`(id, paste0(start, ":", end))], !
duplicated(id), : Ignoring by= because j= is not supplied

Version Author Date
00235c6 wesleycrouse 2022-06-17
8e7ebf3 wesleycrouse 2022-06-17
061cee5 wesleycrouse 2022-06-14
a[a$type=="gene",]
     chrom                 id      pos type region_tag1 region_tag2
5540     1 ENSG00000143756.11 224.1141 gene           1         114
5537     1 ENSG00000143748.17 224.3302 gene           1         114
5542     1 ENSG00000143771.11 224.3569 gene           1         114
7009     1 ENSG00000162923.14 224.4370 gene           1         114
     cs_index   susie_pip       mu2 region_tag          PVE genename
5540        0 0.009319258  6.167836      1_114 1.672763e-07   FBXO28
5537        0 0.009162860  7.076180      1_114 1.886906e-07      NVL
5542        1 0.999642168 48.185144      1_114 1.401774e-04    CNIH4
7009        0 0.009710816 31.078528      1_114 8.782870e-07    WDR26
          gene_type         z focus     PVALUE     r2max
5540 protein_coding 0.9428678     0  0.4612397 0.1955294
5537 protein_coding 1.4471149     0  0.8301354 0.2588390
5542 protein_coding 6.7218574     1 10.7461231 1.0000000
7009 protein_coding 5.1224937     0  6.5206821 0.8486802
weights_table[weights_table$gene=="ENSG00000143771.11",]
                    gene       rsid                  varID ref_allele
10583 ENSG00000143771.11  rs7517754 chr1_224356827_A_G_b38          A
10584 ENSG00000143771.11 rs56105022 chr1_224357044_G_A_b38          G
      eff_allele     weight
10583          G  0.5299067
10584          A -0.2994661
a[a$id %in% c("rs7517754", "rs56105022"),]
       chrom         id      pos type region_tag1 region_tag2 cs_index
890781     1  rs7517754 224.3568  SNP           1         114        0
890782     1 rs56105022 224.3570  SNP           1         114        0
          susie_pip      mu2 region_tag          PVE genename gene_type
890781 0.0002945536 28.24808      1_114 2.421439e-08     <NA>      <NA>
890782 0.0004019460 18.11944      1_114 2.119497e-08     <NA>      <NA>
               z focus   PVALUE      r2max
890781 -5.262792     0 6.848066 -0.8579177
890782  3.691305     0 3.651489  0.4164712

ACVR1C

a <- locus_plot_final(region_tag="2_94", xlim=c(157.4, NA), return_table=T,
                      focus="ACVR1C",
                      label_genes=c("ACVR1C, CYTIP"),
                      label_pos=c(3,3),
                      plot_eqtl=c("ACVR1C"))
Parsing gtf file..
Collapsing transcripts..
Warning in `[.data.table`(tx_tbl[, `:=`(id, paste0(start, ":", end))], !
duplicated(id), : Ignoring by= because j= is not supplied

Version Author Date
00235c6 wesleycrouse 2022-06-17
8e7ebf3 wesleycrouse 2022-06-17
a[a$type=="gene",]
     chrom                 id      pos type region_tag1 region_tag2
2882     2  ENSG00000115165.9 157.4890 gene           2          94
3562     2 ENSG00000123612.15 157.6289 gene           2          94
     cs_index  susie_pip      mu2 region_tag          PVE genename
2882        0 0.04567228 23.67603       2_94 3.146892e-06    CYTIP
3562        1 0.94559564 26.22522       2_94 7.216804e-05   ACVR1C
          gene_type         z focus   PVALUE       r2max
2882 protein_coding  2.307489     0 1.677211 -0.02666691
3562 protein_coding -4.737778     1 5.665397  1.00000000
weights_table[weights_table$gene=="ENSG00000123612.15",]
                    gene        rsid                  varID ref_allele
11395 ENSG00000123612.15  rs10164853 chr2_157625480_A_G_b38          A
11396 ENSG00000123612.15 rs114245489 chr2_157628563_G_T_b38          G
      eff_allele      weight
11395          G  0.16808705
11396          T -0.01849397
a[a$id %in% c("rs10164853", "rs114245489"),]
       chrom          id      pos type region_tag1 region_tag2 cs_index
920769     2  rs10164853 157.6255  SNP           2          94        0
920774     2 rs114245489 157.6286  SNP           2          94        0
        susie_pip      mu2 region_tag          PVE genename gene_type
920769 0.00337613 20.16518       2_94 1.981260e-07     <NA>      <NA>
920774 0.02009576 50.23066       2_94 2.937606e-06     <NA>      <NA>
               z focus   PVALUE      r2max
920769  4.350108     0 4.866237 -0.9941554
920774 -4.185879     0 4.546583  0.1929425

INHBB

a <- locus_plot_final(region_tag="2_70", xlim=c(119, 121), return_table=T,
                      focus="INHBB",
                      label_genes=c("INHBB"),
                      label_pos=c(3),
                      plot_eqtl=c("INHBB"))
Parsing gtf file..
Collapsing transcripts..
Warning in `[.data.table`(tx_tbl[, `:=`(id, paste0(start, ":", end))], !
duplicated(id), : Ignoring by= because j= is not supplied

Version Author Date
00235c6 wesleycrouse 2022-06-17
a[a$type=="gene",]
     chrom                 id      pos type region_tag1 region_tag2
7036     2  ENSG00000163083.5 120.3461 gene           2          70
803      2 ENSG00000074047.21 120.7356 gene           2          70
     cs_index  susie_pip       mu2 region_tag          PVE genename
7036        1 0.98236339 73.742606       2_70 2.108196e-04    INHBB
803         0 0.01074428  4.946247       2_70 1.546584e-07     GLI2
          gene_type         z focus      PVALUE      r2max
7036 protein_coding -8.518936     1 16.79310307 1.00000000
803  protein_coding -0.209499     0  0.07880339 0.03383016

INSIG2

a <- locus_plot_final(region_tag="2_69", return_table=T,
                      focus="INSIG2",
                      label_genes=c("INSIG2"),
                      label_pos=c(3),
                      plot_eqtl=c("INSIG2"))
Parsing gtf file..
Collapsing transcripts..
Warning in `[.data.table`(tx_tbl[, `:=`(id, paste0(start, ":", end))], !
duplicated(id), : Ignoring by= because j= is not supplied


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ctwas_0.1.31      forcats_0.4.0     stringr_1.4.0    
 [4] dplyr_1.0.9       purrr_0.3.4       readr_1.4.0      
 [7] tidyr_1.1.0       tidyverse_1.3.0   tibble_3.1.7     
[10] readxl_1.3.1      WebGestaltR_0.4.4 disgenet2r_0.99.2
[13] enrichR_3.0       cowplot_1.1.1     ggplot2_3.3.5    

loaded via a namespace (and not attached):
 [1] fs_1.5.2          lubridate_1.7.4   bit64_4.0.5      
 [4] doParallel_1.0.16 httr_1.4.1        rprojroot_2.0.2  
 [7] tools_3.6.1       backports_1.1.4   doRNG_1.8.2      
[10] utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_1.4-1  withr_2.4.1      
[16] ggrastr_0.2.3     tidyselect_1.1.2  bit_4.0.4        
[19] curl_3.3          compiler_3.6.1    git2r_0.26.1     
[22] cli_3.3.0         rvest_0.3.5       logging_0.10-108 
[25] Cairo_1.5-12.2    xml2_1.3.2        labeling_0.3     
[28] scales_1.2.0      apcluster_1.4.8   digest_0.6.20    
[31] R.utils_2.9.0     rmarkdown_1.13    svglite_1.2.2    
[34] pkgconfig_2.0.3   htmltools_0.5.2   dbplyr_1.4.2     
[37] fastmap_1.1.0     rlang_1.0.2       rstudioapi_0.10  
[40] RSQLite_2.2.7     farver_2.1.0      generics_0.0.2   
[43] jsonlite_1.6      R.oo_1.22.0       magrittr_2.0.3   
[46] Matrix_1.2-18     ggbeeswarm_0.6.0  Rcpp_1.0.6       
[49] munsell_0.5.0     fansi_0.5.0       gdtools_0.1.9    
[52] R.methodsS3_1.7.1 lifecycle_1.0.1   stringi_1.4.3    
[55] whisker_0.3-2     yaml_2.2.0        plyr_1.8.4       
[58] grid_3.6.1        blob_1.2.1        ggrepel_0.9.1    
[61] parallel_3.6.1    promises_1.0.1    crayon_1.4.1     
[64] lattice_0.20-38   haven_2.3.1       hms_1.1.0        
[67] knitr_1.23        pillar_1.7.0      igraph_1.2.4.1   
[70] rjson_0.2.20      rngtools_1.5      reshape2_1.4.3   
[73] codetools_0.2-16  reprex_0.3.0      glue_1.6.2       
[76] evaluate_0.14     data.table_1.14.0 modelr_0.1.8     
[79] vctrs_0.4.1       httpuv_1.5.1      foreach_1.5.1    
[82] cellranger_1.1.0  pgenlibr_0.3.1    gtable_0.3.0     
[85] assertthat_0.2.1  cachem_1.0.5      xfun_0.8         
[88] broom_0.7.9       later_0.8.0       iterators_1.0.13 
[91] beeswarm_0.2.3    memoise_2.0.0     workflowr_1.6.2  
[94] ellipsis_0.3.2