Last updated: 2023-04-11

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 712ed61. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    analysis/figure/

Untracked files:
    Untracked:  HPR_locus_image.RData
    Untracked:  HPR_locus_image_2.RData
    Untracked:  POLK_locus_image.RData
    Untracked:  POLK_locus_image_2.RData
    Untracked:  gwas.RData
    Untracked:  ld_R_info.RData
    Untracked:  temp.regionlist.RDS
    Untracked:  temp.regions.txt
    Untracked:  temp.susieIrss.txt
    Untracked:  temp.temp.susieIrssres.Rd
    Untracked:  temp_LDR/
    Untracked:  temp_ld_R_chr1.txt
    Untracked:  temp_ld_R_chr10.txt
    Untracked:  temp_ld_R_chr11.txt
    Untracked:  temp_ld_R_chr12.txt
    Untracked:  temp_ld_R_chr13.txt
    Untracked:  temp_ld_R_chr14.txt
    Untracked:  temp_ld_R_chr15.txt
    Untracked:  temp_ld_R_chr16.txt
    Untracked:  temp_ld_R_chr17.txt
    Untracked:  temp_ld_R_chr18.txt
    Untracked:  temp_ld_R_chr19.txt
    Untracked:  temp_ld_R_chr2.txt
    Untracked:  temp_ld_R_chr20.txt
    Untracked:  temp_ld_R_chr21.txt
    Untracked:  temp_ld_R_chr22.txt
    Untracked:  temp_ld_R_chr3.txt
    Untracked:  temp_ld_R_chr4.txt
    Untracked:  temp_ld_R_chr5.txt
    Untracked:  temp_ld_R_chr6.txt
    Untracked:  temp_ld_R_chr7.txt
    Untracked:  temp_ld_R_chr8.txt
    Untracked:  temp_ld_R_chr9.txt
    Untracked:  temp_reg.txt
    Untracked:  z_snp_pos_ebi-a-GCST004131.RData
    Untracked:  z_snp_pos_ebi-a-GCST004132.RData
    Untracked:  z_snp_pos_ebi-a-GCST004133.RData
    Untracked:  z_snp_pos_scz-2018.RData
    Untracked:  z_snp_pos_ukb-a-360.RData
    Untracked:  z_snp_pos_ukb-d-30780_irnt.RData

Unstaged changes:
    Modified:   analysis/ukb-d-30780_irnt_Liver_nolnc_corrected_known.Rmd
    Modified:   output/LDL_ACVR1C_plot.pdf
    Modified:   output/LDL_ACVR1C_plot_genetrack.pdf
    Modified:   output/LDL_GO_nonredundant.pdf
    Modified:   output/LDL_HPR_plot.pdf
    Modified:   output/LDL_HPR_plot_genetrack.pdf
    Modified:   output/LDL_PRKD2_plot.pdf
    Modified:   output/LDL_PRKD2_plot_genetrack.pdf
    Modified:   output/LDL_TWAS_false_positive.pdf
    Modified:   output/LDL_false_negative.pdf
    Modified:   output/LDL_manhattan_plot.pdf
    Modified:   output/LDL_manhattan_plot_annotated.pdf
    Modified:   output/LDL_parameters.pdf
    Modified:   output/LDL_silver_standard_precision.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30780_irnt_Liver_nolnc_corrected_known.Rmd) and HTML (docs/ukb-d-30780_irnt_Liver_nolnc_corrected_known.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 712ed61 wesleycrouse 2023-04-06 comparison with other methods at selected loci
html 712ed61 wesleycrouse 2023-04-06 comparison with other methods at selected loci
Rmd 551627f wesleycrouse 2023-04-04 genotype code and coloc analysis
Rmd eb3c5bf wesleycrouse 2022-09-27 regenerating tables
Rmd 3349d12 wesleycrouse 2022-09-16 maybe final tables
html 3349d12 wesleycrouse 2022-09-16 maybe final tables
Rmd 6a57156 wesleycrouse 2022-09-14 regenerating tables
html 6a57156 wesleycrouse 2022-09-14 regenerating tables
Rmd 6d10cf7 wesleycrouse 2022-09-09 additional results tables
html 6d10cf7 wesleycrouse 2022-09-09 additional results tables
Rmd 220ba1d wesleycrouse 2022-09-09 figure revisions
html 220ba1d wesleycrouse 2022-09-09 figure revisions
Rmd 2af4567 wesleycrouse 2022-09-02 working on supplemental figures
Rmd c5e5360 wesleycrouse 2022-08-31 supplemental figure of parameters
html c5e5360 wesleycrouse 2022-08-31 supplemental figure of parameters
Rmd 049be5b wesleycrouse 2022-08-30 adding annotations to manhattan plot
html 049be5b wesleycrouse 2022-08-30 adding annotations to manhattan plot
Rmd 7593421 wesleycrouse 2022-08-29 regenerating table
Rmd 437d453 wesleycrouse 2022-08-29 updating compact results summmary
html 437d453 wesleycrouse 2022-08-29 updating compact results summmary
Rmd 691375a wesleycrouse 2022-08-24 Updates for multi-panel figures
html 691375a wesleycrouse 2022-08-24 Updates for multi-panel figures
Rmd f0129f0 wesleycrouse 2022-08-12 testing new gene track
html f0129f0 wesleycrouse 2022-08-12 testing new gene track
Rmd 81ec4fd wesleycrouse 2022-08-10 plots
html 81ec4fd wesleycrouse 2022-08-10 plots
Rmd f9f87d9 wesleycrouse 2022-08-10 updating silver standard plots round 2
html f9f87d9 wesleycrouse 2022-08-10 updating silver standard plots round 2
Rmd 314ab69 wesleycrouse 2022-08-10 adjust silver standard figure
html 314ab69 wesleycrouse 2022-08-10 adjust silver standard figure
Rmd f26dabe wesleycrouse 2022-07-29 LDL compact results table
html f26dabe wesleycrouse 2022-07-29 LDL compact results table
Rmd 755127a wesleycrouse 2022-07-28 venn and updated false negatives
html 755127a wesleycrouse 2022-07-28 venn and updated false negatives
Rmd 96e4b26 wesleycrouse 2022-07-28 GO visualization for IBD
Rmd 0b519f1 wesleycrouse 2022-07-28 relaxing GO silver threshold for SBP and SCZ
Rmd b915293 wesleycrouse 2022-07-28 starting new false negative analysis
html b915293 wesleycrouse 2022-07-28 starting new false negative analysis
Rmd 2b06ddd wesleycrouse 2022-07-28 non-redundant GO
html 2b06ddd wesleycrouse 2022-07-28 non-redundant GO
Rmd b8de6bf wesleycrouse 2022-07-26 LDL MAGMA output
html b8de6bf wesleycrouse 2022-07-26 LDL MAGMA output
Rmd 6d451ae wesleycrouse 2022-07-11 tagging novel genes
html 6d451ae wesleycrouse 2022-07-11 tagging novel genes
Rmd 0d6eac4 wesleycrouse 2022-07-06 fixed mistakes while tinkering
html 0d6eac4 wesleycrouse 2022-07-06 fixed mistakes while tinkering
Rmd 81aa4a9 wesleycrouse 2022-07-06 tinkering with ldl plots
html 81aa4a9 wesleycrouse 2022-07-06 tinkering with ldl plots
Rmd d5102c3 wesleycrouse 2022-07-01 updating LDL FP analysis
html d5102c3 wesleycrouse 2022-07-01 updating LDL FP analysis
Rmd b48afdd wesleycrouse 2022-06-30 false positive analysis
html b48afdd wesleycrouse 2022-06-30 false positive analysis
Rmd 1436530 wesleycrouse 2022-06-30 plot labels
html 1436530 wesleycrouse 2022-06-30 plot labels
Rmd e31acf9 wesleycrouse 2022-06-29 LDL plots
html e31acf9 wesleycrouse 2022-06-29 LDL plots
Rmd 063e6e6 wesleycrouse 2022-06-28 adjustments to LDL results
html 063e6e6 wesleycrouse 2022-06-28 adjustments to LDL results
Rmd 25b795b wesleycrouse 2022-06-24 Results after correction to predictiondb weights
html 25b795b wesleycrouse 2022-06-24 Results after correction to predictiondb weights

Overview

These are the results of a ctwas analysis of the UK Biobank trait LDL direct using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30780_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#load information for all genes
sqlite <- RSQLite::dbDriver("SQLite")
#db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
db = RSQLite::dbConnect(sqlite, "/project2/mstephens/wcrouse/predictdb/mashr_Liver_nolnc.db")
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

#number of weights in database
nrow(gene_info)
[1] 11502
#number of imputed weights
nrow(qclist_all)
[1] 9881
#number of imputed weights by chromosome
table(qclist_all$chr)

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18 
988 679 612 373 438 554 501 359 370 397 595 561 163 329 313 480 601 133 
 19  20  21  22 
816 270  92 257 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8344297

Load ctwas results

Check convergence of parameters

library(ggplot2)
library(cowplot)

load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))

group_size <- c(nrow(ctwas_gene_res), n_snps)

#estimated group prior (all iterations)
estimated_group_prior_all <- group_prior_rec
rownames(estimated_group_prior_all) <- c("gene", "snp")
estimated_group_prior_all["snp",] <- estimated_group_prior_all["snp",]*thin #adjust parameter to account for thin argument

#estimated group prior variance (all iterations)
estimated_group_prior_var_all <- group_prior_var_rec
rownames(estimated_group_prior_var_all) <- c("gene", "snp")

#estimated group PVE (all iterations)
estimated_group_pve_all <- estimated_group_prior_var_all*estimated_group_prior_all*group_size/sample_size #check PVE calculation
rownames(estimated_group_pve_all) <- c("gene", "snp")

#estimated enrichment of genes (all iterations)
estimated_enrichment_all <- estimated_group_prior_all["gene",]/estimated_group_prior_all["snp",]
  
title_size <- 12

df <- data.frame(niter = rep(1:ncol(estimated_group_prior_all), 2),
                 value = c(estimated_group_prior_all["gene",], estimated_group_prior_all["snp",]),
                 group = rep(c("Gene", "SNP"), each = ncol(estimated_group_prior_all)))
df$group <- as.factor(df$group)

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Proportion Causal") +
  theme_cowplot()

p_pi <- p_pi + theme(plot.title=element_text(size=title_size)) + 
  expand_limits(y=0) + 
  guides(color = guide_legend(title = "Group")) + theme (legend.title = element_text(size=12, face="bold"))

df <- data.frame(niter = rep(1:ncol(estimated_group_prior_var_all ), 2),
                 value = c(estimated_group_prior_var_all["gene",], estimated_group_prior_var_all["snp",]),
                 group = rep(c("Gene", "SNP"), each = ncol(estimated_group_prior_var_all)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Effect Size") +
  theme_cowplot()

p_sigma2 <- p_sigma2 + theme(plot.title=element_text(size=title_size)) + 
  expand_limits(y=0) + 
  guides(color = guide_legend(title = "Group")) + theme (legend.title = element_text(size=12, face="bold"))

df <- data.frame(niter = rep(1:ncol(estimated_group_pve_all ), 2),
                 value = c(estimated_group_pve_all["gene",], estimated_group_pve_all["snp",]),
                 group = rep(c("Gene", "SNP"), each = ncol(estimated_group_pve_all)))
df$group <- as.factor(df$group)
p_pve <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(h^2[G])) +
  ggtitle("PVE") +
  theme_cowplot()

p_pve <- p_pve + theme(plot.title=element_text(size=title_size)) + 
  expand_limits(y=0) + 
  guides(color = guide_legend(title = "Group")) + theme (legend.title = element_text(size=12, face="bold"))

df <- data.frame(niter = 1:length(estimated_enrichment_all),
                 value = estimated_enrichment_all,
                 group = rep("Gene", length(estimated_enrichment_all)))
df$group <- as.factor(df$group)
p_enrich <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi[G]/pi[S])) +
  ggtitle("Enrichment") +
  theme_cowplot()

p_enrich <- p_enrich + theme(plot.title=element_text(size=title_size)) + 
  expand_limits(y=0) + 
  guides(color = guide_legend(title = "Group")) + theme (legend.title = element_text(size=12, face="bold"))

plot_grid(p_pi, p_sigma2, p_enrich, p_pve)

Version Author Date
c5e5360 wesleycrouse 2022-08-31
25b795b wesleycrouse 2022-06-24
####################

pdf(file = "output/LDL_parameters.pdf", width = 6, height = 4)

plot_grid(p_pi, p_sigma2, p_enrich, p_pve)

dev.off()
png 
  2 
####################

#estimated group prior
estimated_group_prior <- estimated_group_prior_all[,ncol(group_prior_rec)]
print(estimated_group_prior)
        gene          snp 
0.0107220302 0.0001715896 
#estimated group prior variance
estimated_group_prior_var <- estimated_group_prior_var_all[,ncol(group_prior_var_rec)]
print(estimated_group_prior_var)
     gene       snp 
41.327666  9.977841 
#estimated enrichment
estimated_enrichment <- estimated_enrichment_all[ncol(group_prior_var_rec)]
print(estimated_enrichment)
[1] 62.48649
#report sample size
print(sample_size)
[1] 343621
#report group size
print(group_size)
[1]    9881 8696600
#estimated group PVE
estimated_group_pve <- estimated_group_pve_all[,ncol(group_prior_rec)] #check PVE calculation
print(estimated_group_pve)
      gene        snp 
0.01274204 0.04333086 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
#c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))

#total PVE
sum(estimated_group_pve)
[1] 0.0560729
#PVE attributable to gene expression
estimated_group_pve["gene"]/sum(estimated_group_pve)
     gene 
0.2272407 

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
25b795b wesleycrouse 2022-06-24
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
      genename region_tag susie_pip        mu2          PVE          z
4433     PSRC1       1_67 1.0000000 1667.48423 4.852684e-03 -41.687336
11327      HPR      16_38 0.9999997  162.98924 4.743284e-04 -17.962770
3720    INSIG2       2_69 0.9999957   68.37263 1.989760e-04  -8.982702
5561     ABCG8       2_27 0.9999453  312.10767 9.082407e-04 -20.293982
5988     FADS1      11_34 0.9998404  163.46291 4.756311e-04  12.926351
10612   TRIM39       6_24 0.9985885   71.89752 2.089396e-04   8.840164
7405     ABCA1       9_53 0.9955314   70.13575 2.031958e-04   7.982017
8523      TNKS       8_12 0.9910883   76.13390 2.195891e-04  11.038564
9365      GAS6      13_62 0.9883382   71.11508 2.045444e-04  -8.923688
1597      PLTP      20_28 0.9883283   61.28528 1.762697e-04  -5.732491
1999     PRKD2      19_33 0.9871587   29.99928 8.618229e-05   5.072217
7036     INHBB       2_70 0.9825109   73.79864 2.110115e-04  -8.518936
5542     CNIH4      1_114 0.9789702   40.69262 1.159326e-04   6.145535
2092       SP4       7_19 0.9759456  101.98305 2.896502e-04  10.693191
6090   CSNK1G3       5_75 0.9745191   83.85862 2.378255e-04   9.116291
11257   CYP2A6      19_28 0.9650551   31.87939 8.953286e-05   5.407028
8853      FUT2      19_33 0.9641649  104.43211 2.930257e-04 -11.927107
3247      KDSR      18_35 0.9602264   24.59603 6.873200e-05  -4.526287
233     NPC1L1       7_32 0.9515004   86.82732 2.404283e-04 -10.761931
4702     DDX56       7_32 0.9495892   59.83144 1.653429e-04   9.641861
6387    TTC39B       9_13 0.9450026   23.14602 6.365459e-05  -4.334495
1114      SRRT       7_62 0.9405116   32.60063 8.922992e-05   5.424996
6774      PKN3       9_66 0.9380390   47.46054 1.295609e-04  -6.620563
3300  C10orf88      10_77 0.9371487   37.07672 1.011184e-04  -6.787850
6217      PELO       5_31 0.9363014   70.56030 1.922633e-04   8.288398
8571    STAT5B      17_25 0.9336311   30.56463 8.304523e-05   5.426252
3562    ACVR1C       2_94 0.9320372   25.78698 6.994458e-05  -4.687370
6953      USP1       1_39 0.8941255  252.81074 6.578309e-04  16.258211
9046   KLHDC7A       1_13 0.8393363   22.17420 5.416319e-05   4.124187
8918   CRACR2B       11_1 0.8274447   21.52123 5.182346e-05  -3.989585
9054   SPTY2D1      11_13 0.8251281   33.41511 8.023883e-05  -5.557123
8411      POP7       7_62 0.8234854   40.37437 9.675691e-05  -5.845258
5413     SYTL1       1_19 0.8163154   22.15199 5.262488e-05  -3.962854
6097      ALLC        2_2 0.8133753   28.04053 6.637393e-05   4.919066
3212     CCND2       12_4 0.8041948   22.63603 5.297633e-05  -4.065830
      num_eqtl
4433         1
11327        2
3720         3
5561         1
5988         2
10612        3
7405         1
8523         2
9365         1
1597         1
1999         2
7036         1
5542         2
2092         1
6090         1
11257        1
8853         1
3247         1
233          1
4702         2
6387         3
1114         2
6774         1
3300         2
6217         2
8571         2
3562         2
6953         1
9046         1
8918         1
9054         1
8411         1
5413         1
6097         1
3212         1

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
25b795b wesleycrouse 2022-06-24
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag    susie_pip       mu2          PVE          z
4433     PSRC1       1_67 1.000000e+00 1667.4842 4.852684e-03 -41.687336
5434     PSMA5       1_67 9.264375e-03 1162.0701 3.133060e-05 -34.708299
4560     SRPK2       7_65 0.000000e+00  543.0079 0.000000e+00  -1.462246
6966   ATXN7L2       1_67 1.119268e-02  324.7808 1.057900e-05 -18.080287
5561     ABCG8       2_27 9.999453e-01  312.1077 9.082407e-04 -20.293982
5375    GEMIN7      19_32 0.000000e+00  281.9838 0.000000e+00  14.093217
6953      USP1       1_39 8.941255e-01  252.8107 6.578309e-04  16.258211
4315   ANGPTL3       1_39 1.167594e-01  248.5948 8.447035e-05  16.132229
3441      POLK       5_45 4.653312e-03  218.9507 2.965028e-06  17.515765
781        PVR      19_32 0.000000e+00  165.8301 0.000000e+00  -6.112699
5988     FADS1      11_34 9.998404e-01  163.4629 4.756311e-04  12.926351
11327      HPR      16_38 9.999997e-01  162.9892 4.743284e-04 -17.962770
5238     NLRC5      16_31 9.529543e-02  158.4125 4.393207e-05  11.860211
538     ZNF112      19_32 0.000000e+00  146.1105 0.000000e+00  10.386054
7950      FEN1      11_34 6.053442e-03  144.3035 2.542140e-06  12.072635
4505     FADS2      11_34 6.053442e-03  144.3035 2.542140e-06  12.072635
9948   ANKDD1B       5_45 3.581713e-03  144.2852 1.503948e-06  15.121324
2465     APOA5      11_70 3.587081e-02  144.1726 1.505027e-05 -11.359910
1930   PPP1R37      19_32 0.000000e+00  141.9752 0.000000e+00 -13.375359
4112     ATG4D       19_9 1.354472e-13  133.9495 5.279971e-17  -9.701891
      num_eqtl
4433         1
5434         2
4560         1
6966         2
5561         1
5375         2
6953         1
4315         1
3441         1
781          2
5988         2
11327        2
5238         1
538          1
7950         1
4505         1
9948         2
2465         1
1930         2
4112         1

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
      genename region_tag susie_pip        mu2          PVE          z
4433     PSRC1       1_67 1.0000000 1667.48423 0.0048526843 -41.687336
5561     ABCG8       2_27 0.9999453  312.10767 0.0009082407 -20.293982
6953      USP1       1_39 0.8941255  252.81074 0.0006578309  16.258211
5988     FADS1      11_34 0.9998404  163.46291 0.0004756311  12.926351
11327      HPR      16_38 0.9999997  162.98924 0.0004743284 -17.962770
8853      FUT2      19_33 0.9641649  104.43211 0.0002930257 -11.927107
2092       SP4       7_19 0.9759456  101.98305 0.0002896502  10.693191
233     NPC1L1       7_32 0.9515004   86.82732 0.0002404283 -10.761931
6090   CSNK1G3       5_75 0.9745191   83.85862 0.0002378255   9.116291
8523      TNKS       8_12 0.9910883   76.13390 0.0002195891  11.038564
7036     INHBB       2_70 0.9825109   73.79864 0.0002110115  -8.518936
10612   TRIM39       6_24 0.9985885   71.89752 0.0002089396   8.840164
9365      GAS6      13_62 0.9883382   71.11508 0.0002045444  -8.923688
7405     ABCA1       9_53 0.9955314   70.13575 0.0002031958   7.982017
3720    INSIG2       2_69 0.9999957   68.37263 0.0001989760  -8.982702
6217      PELO       5_31 0.9363014   70.56030 0.0001922633   8.288398
1597      PLTP      20_28 0.9883283   61.28528 0.0001762697  -5.732491
4702     DDX56       7_32 0.9495892   59.83144 0.0001653429   9.641861
6774      PKN3       9_66 0.9380390   47.46054 0.0001295609  -6.620563
5542     CNIH4      1_114 0.9789702   40.69262 0.0001159326   6.145535
      num_eqtl
4433         1
5561         1
6953         1
5988         2
11327        2
8853         1
2092         1
233          1
6090         1
8523         2
7036         1
10612        3
9365         1
7405         1
3720         3
6217         2
1597         1
4702         2
6774         1
5542         2

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag    susie_pip        mu2          PVE         z
4433     PSRC1       1_67 1.000000e+00 1667.48423 4.852684e-03 -41.68734
5434     PSMA5       1_67 9.264375e-03 1162.07005 3.133060e-05 -34.70830
5561     ABCG8       2_27 9.999453e-01  312.10767 9.082407e-04 -20.29398
6966   ATXN7L2       1_67 1.119268e-02  324.78078 1.057900e-05 -18.08029
11327      HPR      16_38 9.999997e-01  162.98924 4.743284e-04 -17.96277
3441      POLK       5_45 4.653312e-03  218.95073 2.965028e-06  17.51576
6953      USP1       1_39 8.941255e-01  252.81074 6.578309e-04  16.25821
4315   ANGPTL3       1_39 1.167594e-01  248.59480 8.447035e-05  16.13223
9948   ANKDD1B       5_45 3.581713e-03  144.28516 1.503948e-06  15.12132
5375    GEMIN7      19_32 0.000000e+00  281.98379 0.000000e+00  14.09322
1930   PPP1R37      19_32 0.000000e+00  141.97523 0.000000e+00 -13.37536
5988     FADS1      11_34 9.998404e-01  163.46291 4.756311e-04  12.92635
11479   ZNF229      19_32 0.000000e+00  120.88406 0.000000e+00  12.62710
4505     FADS2      11_34 6.053442e-03  144.30348 2.542140e-06  12.07264
7950      FEN1      11_34 6.053442e-03  144.30348 2.542140e-06  12.07264
4111     YIPF2       19_9 2.864533e-09  127.22135 1.060557e-12  11.94206
8853      FUT2      19_33 9.641649e-01  104.43211 2.930257e-04 -11.92711
5381     CARM1       19_9 2.526279e-10  110.54593 8.127265e-14 -11.86474
5238     NLRC5      16_31 9.529543e-02  158.41245 4.393207e-05  11.86021
1053      APOB       2_13 1.750222e-11   62.37857 3.177232e-15 -11.72589
      num_eqtl
4433         1
5434         2
5561         1
6966         2
11327        2
3441         1
6953         1
4315         1
9948         2
5375         2
1930         2
5988         2
11479        2
4505         1
7950         1
4111         1
8853         1
5381         2
5238         1
1053         1

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
25b795b wesleycrouse 2022-06-24
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
25b795b wesleycrouse 2022-06-24
#number of significant z scores
sum(abs(ctwas_gene_res$z) > sig_thresh)
[1] 215
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.02175893
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag    susie_pip        mu2          PVE         z
4433     PSRC1       1_67 1.000000e+00 1667.48423 4.852684e-03 -41.68734
5434     PSMA5       1_67 9.264375e-03 1162.07005 3.133060e-05 -34.70830
5561     ABCG8       2_27 9.999453e-01  312.10767 9.082407e-04 -20.29398
6966   ATXN7L2       1_67 1.119268e-02  324.78078 1.057900e-05 -18.08029
11327      HPR      16_38 9.999997e-01  162.98924 4.743284e-04 -17.96277
3441      POLK       5_45 4.653312e-03  218.95073 2.965028e-06  17.51576
6953      USP1       1_39 8.941255e-01  252.81074 6.578309e-04  16.25821
4315   ANGPTL3       1_39 1.167594e-01  248.59480 8.447035e-05  16.13223
9948   ANKDD1B       5_45 3.581713e-03  144.28516 1.503948e-06  15.12132
5375    GEMIN7      19_32 0.000000e+00  281.98379 0.000000e+00  14.09322
1930   PPP1R37      19_32 0.000000e+00  141.97523 0.000000e+00 -13.37536
5988     FADS1      11_34 9.998404e-01  163.46291 4.756311e-04  12.92635
11479   ZNF229      19_32 0.000000e+00  120.88406 0.000000e+00  12.62710
4505     FADS2      11_34 6.053442e-03  144.30348 2.542140e-06  12.07264
7950      FEN1      11_34 6.053442e-03  144.30348 2.542140e-06  12.07264
4111     YIPF2       19_9 2.864533e-09  127.22135 1.060557e-12  11.94206
8853      FUT2      19_33 9.641649e-01  104.43211 2.930257e-04 -11.92711
5381     CARM1       19_9 2.526279e-10  110.54593 8.127265e-14 -11.86474
5238     NLRC5      16_31 9.529543e-02  158.41245 4.393207e-05  11.86021
1053      APOB       2_13 1.750222e-11   62.37857 3.177232e-15 -11.72589
      num_eqtl
4433         1
5434         2
5561         1
6966         2
11327        2
3441         1
6953         1
4315         1
9948         2
5375         2
1930         2
5988         2
11479        2
4505         1
7950         1
4111         1
8853         1
5381         2
5238         1
1053         1

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip        mu2          PVE
14015     rs2495502       1_34 1.0000000  286.99710 8.352141e-04
56552     rs6663780      1_121 1.0000000  106.62747 3.103055e-04
68385     rs1042034       2_13 1.0000000  234.09703 6.812652e-04
68391      rs934197       2_13 1.0000000  415.32914 1.208684e-03
70121      rs780093       2_16 1.0000000  161.13186 4.689232e-04
365222   rs12208357      6_103 1.0000000  236.08423 6.870483e-04
401871  rs763798411       7_65 1.0000000 3592.88978 1.045597e-02
753025  rs113408695      17_39 1.0000000  143.73673 4.183002e-04
786441   rs73013176       19_9 1.0000000  237.87779 6.922679e-04
796582   rs62117204      19_32 1.0000000  825.54026 2.402473e-03
796600  rs111794050      19_32 1.0000000  765.11398 2.226622e-03
796633     rs814573      19_32 1.0000000 2209.85878 6.431093e-03
796635  rs113345881      19_32 1.0000000  773.94901 2.252333e-03
796638   rs12721109      19_32 1.0000000 1344.10751 3.911599e-03
1028829    rs964184      11_70 1.0000000  239.77236 6.977815e-04
56551      rs678615      1_121 1.0000000  121.55865 3.537579e-04
753051    rs8070232      17_39 1.0000000  145.52150 4.234942e-04
789251    rs2285626      19_15 1.0000000  247.61153 7.205949e-04
806910   rs34507316      20_13 1.0000000   78.76491 2.292203e-04
68336    rs11679386       2_12 1.0000000  128.41716 3.737174e-04
68394      rs548145       2_13 1.0000000  658.17542 1.915411e-03
68471     rs1848922       2_13 1.0000000  230.23537 6.700271e-04
499867  rs115478735       9_70 1.0000000  303.29938 8.826567e-04
1103239   rs1800961      20_28 1.0000000   71.00801 2.066463e-04
752109    rs1801689      17_38 1.0000000   79.97216 2.327336e-04
796296   rs73036721      19_30 1.0000000   57.51060 1.673664e-04
75799    rs72800939       2_28 1.0000000   55.32701 1.610117e-04
439673    rs4738679       8_45 1.0000000  106.99651 3.113794e-04
786479  rs137992968       19_9 1.0000000  112.96914 3.287609e-04
365406   rs56393506      6_104 1.0000000   94.56244 2.751940e-04
582496    rs4937122      11_77 0.9999999   77.21081 2.246976e-04
14026    rs10888896       1_34 0.9999999  132.04631 3.842789e-04
7471     rs79598313       1_18 0.9999997   46.42506 1.351054e-04
459334   rs13252684       8_83 0.9999992  218.85277 6.369011e-04
438278  rs140753685       8_42 0.9999981   54.49302 1.585844e-04
796341   rs62115478      19_30 0.9999961  180.28377 5.246567e-04
52932     rs2807848      1_112 0.9999942   54.96792 1.599658e-04
789276    rs3794991      19_15 0.9999926  212.43646 6.182244e-04
1057532   rs9302635      16_38 0.9999899  162.69359 4.734634e-04
13985    rs11580527       1_34 0.9999830   87.90228 2.558074e-04
14033      rs471705       1_34 0.9999654  208.19757 6.058721e-04
346659    rs9496567       6_67 0.9999511   38.39605 1.117341e-04
786505    rs4804149      19_10 0.9998575   45.49753 1.323873e-04
56507     rs6586405      1_121 0.9998317   48.86394 1.421791e-04
365370  rs117733303      6_104 0.9998041  106.90183 3.110429e-04
806909    rs6075251      20_13 0.9997802   51.85898 1.508860e-04
786465    rs3745677       19_9 0.9997657   89.08265 2.591861e-04
538221   rs17875416      10_71 0.9992144   37.24525 1.083053e-04
786470    rs1569372       19_9 0.9991585  270.60543 7.868486e-04
786558     rs322144      19_10 0.9989880   54.91782 1.596592e-04
602922    rs7397189      12_36 0.9988920   33.53838 9.749467e-05
789235   rs12981966      19_15 0.9988181   91.60222 2.662642e-04
786462  rs147985405       19_9 0.9985032 2253.19544 6.547396e-03
428005    rs1495743       8_20 0.9975597   40.17839 1.166411e-04
788916    rs2302209      19_14 0.9966931   42.21071 1.224347e-04
278851    rs7701166       5_45 0.9961665   32.40795 9.395152e-05
321530     rs454182       6_22 0.9959102   31.82743 9.224484e-05
439641   rs56386732       8_45 0.9953445   34.23091 9.915442e-05
400801    rs3197597       7_61 0.9952848   32.12065 9.303621e-05
811863   rs76981217      20_24 0.9949357   35.11529 1.016744e-04
619506     rs653178      12_67 0.9920576   91.86316 2.652153e-04
607288  rs148481241      12_44 0.9920544   27.01741 7.800088e-05
321967    rs3130253       6_23 0.9892656   28.55657 8.221277e-05
278792   rs10062361       5_45 0.9846267  200.70068 5.750965e-04
401882    rs4997569       7_65 0.9845677 3617.25546 1.036442e-02
136943     rs709149        3_9 0.9845547   35.30220 1.011491e-04
728412    rs4396539      16_37 0.9817354   26.90321 7.686328e-05
143953    rs9834932       3_24 0.9789886   64.98127 1.851340e-04
623595   rs11057830      12_76 0.9786700   25.42090 7.240149e-05
811814    rs6029132      20_24 0.9783552   38.74606 1.103175e-04
811867   rs73124945      20_24 0.9778981   32.09379 9.133450e-05
243404  rs114756490      4_100 0.9653813   25.82273 7.254730e-05
317444   rs11376017       6_13 0.9635037   64.62667 1.812114e-04
459323   rs79658059       8_83 0.9624804  261.09857 7.313356e-04
563573    rs6591179      11_36 0.9598170   25.89157 7.232146e-05
385033  rs141379002       7_33 0.9586884   25.11538 7.007087e-05
819868   rs62219001       21_2 0.9586550   25.72685 7.177434e-05
220675    rs1458038       4_54 0.9581071   51.32652 1.431120e-04
474581    rs1556516       9_16 0.9546092   71.80985 1.994940e-04
756184    rs4969183      17_44 0.9522531   47.99929 1.330171e-04
588405   rs11048034       12_9 0.9502404   34.89295 9.649203e-05
467386    rs7024888        9_3 0.9475179   25.76971 7.105870e-05
320991   rs75080831       6_19 0.9420361   55.74128 1.528146e-04
321938   rs28986304       6_23 0.9408850   42.13054 1.153596e-04
622460    rs1169300      12_74 0.9406214   66.79549 1.828447e-04
617599    rs1196760      12_63 0.9383611   25.44878 6.949559e-05
423682  rs117037226       8_11 0.9310119   23.96082 6.491981e-05
68388    rs78610189       2_13 0.9204703   58.47342 1.566349e-04
349395   rs12199109       6_73 0.9195965   24.42341 6.536178e-05
1065749   rs2908806       17_7 0.9171216   36.50956 9.744372e-05
192300    rs5855544      3_120 0.9167011   23.61656 6.300350e-05
14016     rs1887552       1_34 0.9064703  330.20033 8.710666e-04
365216    rs9456502      6_103 0.9052395   32.60922 8.590615e-05
194087   rs36205397        4_4 0.8932880   37.55173 9.762067e-05
504817   rs10905277       10_8 0.8903269   27.59299 7.149383e-05
724520     rs821840      16_31 0.8878914  154.93188 4.003326e-04
537932   rs12244851      10_70 0.8855890   35.72294 9.206609e-05
802555   rs74273659       20_5 0.8851222   24.40137 6.285470e-05
786546     rs322125      19_10 0.8846739   99.09527 2.551270e-04
800365   rs34003091      19_39 0.8815594  102.06758 2.618543e-04
576213  rs201912654      11_59 0.8681341   39.43808 9.963751e-05
789325   rs12984303      19_15 0.8653859   24.54116 6.180523e-05
815366   rs10641149      20_32 0.8639875   26.86655 6.755224e-05
196312    rs2002574       4_10 0.8615201   24.62530 6.174008e-05
68188     rs6531234       2_12 0.8549745   41.81466 1.040404e-04
827109    rs2835302      21_17 0.8525972   25.63571 6.360768e-05
786515   rs58495388      19_10 0.8496784   33.39207 8.256924e-05
119040    rs7569317      2_120 0.8469984   43.27348 1.066657e-04
839197  rs145678077      22_17 0.8465253   24.88744 6.131130e-05
482567   rs11144506       9_35 0.8444144   26.76552 6.577360e-05
811832    rs6102034      20_24 0.8439562   95.52525 2.346164e-04
355598    rs9321207       6_86 0.8410254   30.21557 7.395375e-05
582499   rs74612335      11_77 0.8387055   75.30505 1.838035e-04
278815    rs3843482       5_45 0.8346728  392.83699 9.542209e-04
810608   rs11167269      20_21 0.8279717   55.67410 1.341495e-04
935231  rs535137438       5_31 0.8239548   31.28269 7.501148e-05
532111   rs10882161      10_59 0.8111179   29.51520 6.967067e-05
753036    rs9303012      17_39 0.8105476  136.90297 3.229325e-04
806890   rs78348000      20_13 0.8038932   29.88634 6.991839e-05
                 z
14015    -6.292225
56552    -7.904745
68385   -16.573036
68391   -33.060888
70121    14.142603
365222  -12.282337
401871   -3.272149
753025  -12.768796
786441   16.232742
796582   44.672230
796600   33.599649
796633  -55.537887
796635   34.318568
796638   46.325818
1028829  16.661098
56551    -9.275730
753051    8.091491
789251   18.215134
806910    6.814661
68336   -11.909428
68394   -33.086010
68471   -25.412292
499867  -19.011790
1103239   8.896957
752109   -9.396430
796296    7.787947
75799     7.845728
439673   11.699924
786479   10.752566
365406  -14.088321
582496  -12.147947
14026   -11.893801
7471     -7.024638
459334  -11.964411
438278   -7.799241
796341   14.326186
52932     7.882775
789276   21.492060
1057532  13.839259
13985    11.167216
14033   -16.262997
346659    6.340216
786505   -6.519414
56507    -8.960936
365370  -10.097959
806909    2.329832
786465   -9.335807
538221    6.266313
786470  -10.005506
786558   -3.946578
602922    5.770964
789235   -1.822895
786462   48.935175
428005    6.515969
788916   -6.636049
278851    2.484790
321530   -4.779053
439641    7.012272
400801    5.045242
811863   -7.692477
619506  -11.050062
607288   -5.095452
321967   -5.641451
278792  -20.320600
401882    2.984117
136943    6.781974
728412    5.232860
143953    8.481579
623595   -4.929635
811814    6.762459
811867    7.775426
243404   -4.988910
317444    8.507919
459323   16.022043
563573   -4.893333
385033   -4.896981
819868    4.948445
220675    7.417851
474581    8.992146
756184   -7.169275
588405   -6.133690
467386    5.055827
320991    7.906709
321938   -7.382502
622460   -8.685477
617599    4.866700
423682   -4.192202
68388     8.385467
349395   -4.857045
1065749   6.026359
192300    4.593724
14016     9.868570
365216   -5.963991
194087   -6.159378
504817   -5.125802
724520   13.475251
537932    4.883085
802555   -4.646762
786546    7.470403
800365   10.423688
576213    6.305597
789325   -4.516645
815366   -5.075761
196312    4.558284
68188     7.170830
827109    4.653743
786515   -5.531347
119040   -7.900653
839197    4.868601
482567   -5.042667
811832   11.189979
355598   -5.401634
582499  -11.904831
278815  -25.034352
810608    7.795037
935231    5.067634
532111    5.475649
753036   -2.259115
806890   -5.220624

SNPs with largest effect sizes

#plot PIP vs effect size
#plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag    susie_pip      mu2          PVE
401882   rs4997569       7_65 9.845677e-01 3617.255 1.036442e-02
401874  rs10274607       7_65 6.321929e-02 3607.263 6.636632e-04
401877  rs13230660       7_65 1.687828e-01 3604.329 1.770406e-03
401889   rs6952534       7_65 6.430248e-03 3602.421 6.741282e-05
401888   rs4730069       7_65 1.566455e-03 3598.920 1.640629e-05
401871 rs763798411       7_65 1.000000e+00 3592.890 1.045597e-02
401881  rs10242713       7_65 4.290117e-05 3585.468 4.476467e-07
401884  rs10249965       7_65 4.666066e-07 3556.816 4.829838e-09
401896   rs1013016       7_65 0.000000e+00 3402.193 0.000000e+00
401921   rs8180737       7_65 0.000000e+00 3241.845 0.000000e+00
401914  rs17778396       7_65 0.000000e+00 3240.143 0.000000e+00
401915   rs2237621       7_65 0.000000e+00 3238.841 0.000000e+00
401948  rs10224564       7_65 0.000000e+00 3232.718 0.000000e+00
401886  rs71562637       7_65 0.000000e+00 3232.167 0.000000e+00
401933  rs10255779       7_65 0.000000e+00 3231.639 0.000000e+00
401950  rs78132606       7_65 0.000000e+00 3215.365 0.000000e+00
401953   rs4610671       7_65 0.000000e+00 3210.139 0.000000e+00
401955  rs12669532       7_65 0.000000e+00 3079.625 0.000000e+00
401912   rs2237618       7_65 0.000000e+00 3022.622 0.000000e+00
401957 rs118089279       7_65 0.000000e+00 2997.766 0.000000e+00
401944  rs73188303       7_65 0.000000e+00 2989.720 0.000000e+00
401954 rs560364150       7_65 0.000000e+00 2366.905 0.000000e+00
786462 rs147985405       19_9 9.985032e-01 2253.195 6.547396e-03
786457  rs73015020       19_9 8.773660e-04 2241.235 5.722534e-06
786455 rs138175288       19_9 4.129240e-04 2239.437 2.691097e-06
786458  rs77140532       19_9 6.161484e-05 2236.039 4.009453e-07
786456 rs138294113       19_9 1.015353e-04 2235.454 6.605457e-07
786460  rs10412048       19_9 1.267687e-05 2232.756 8.237085e-08
786459 rs112552009       19_9 3.077278e-05 2231.793 1.998669e-07
786454  rs55997232       19_9 1.025707e-08 2212.279 6.603640e-11
796633    rs814573      19_32 1.000000e+00 2209.859 6.431093e-03
401940  rs10261738       7_65 0.000000e+00 1953.576 0.000000e+00
786463  rs17248769       19_9 9.170745e-07 1697.123 4.529375e-09
786464   rs2228671       19_9 6.338472e-07 1686.055 3.110117e-09
796628  rs34878901      19_32 0.000000e+00 1535.525 0.000000e+00
401895 rs368909701       7_65 0.000000e+00 1476.665 0.000000e+00
874194  rs12740374       1_67 5.592516e-04 1454.310 2.366926e-06
874190   rs7528419       1_67 5.615324e-04 1450.286 2.370002e-06
874201    rs646776       1_67 4.786622e-04 1449.026 2.018486e-06
796625   rs8106922      19_32 0.000000e+00 1446.212 0.000000e+00
874200    rs629301       1_67 4.430902e-04 1445.314 1.863694e-06
874212    rs583104       1_67 4.823891e-04 1404.982 1.972370e-06
874215   rs4970836       1_67 4.737347e-04 1402.101 1.933013e-06
874217   rs1277930       1_67 4.837541e-04 1397.429 1.967318e-06
874218    rs599839       1_67 4.984288e-04 1396.500 2.025650e-06
874198   rs3832016       1_67 3.390022e-04 1357.669 1.339420e-06
874195    rs660240       1_67 3.380049e-04 1350.508 1.328435e-06
796638  rs12721109      19_32 1.000000e+00 1344.108 3.911599e-03
874213    rs602633       1_67 3.806763e-04 1329.437 1.472801e-06
796553  rs62120566      19_32 0.000000e+00 1324.043 0.000000e+00
                 z
401882   2.9841166
401874   2.8669582
401877   2.9479628
401889   2.8884240
401888   2.8658735
401871  -3.2721491
401881   2.8123983
401884   2.8497381
401896  -2.3988524
401921   2.8328454
401914   2.7980012
401915   2.8029605
401948   2.7911904
401886   2.6635936
401933   2.8135791
401950   2.7728082
401953   2.7249742
401955   2.7702573
401912   2.4663255
401957   2.6667208
401944   2.4217031
401954   1.8694582
786462  48.9351750
786457  48.7956295
786455  48.7806894
786458  48.7379874
786456  48.7519286
786460  48.7012269
786459  48.7051628
786454  48.5243103
796633 -55.5378874
401940   2.6665109
786463  40.8424908
786464  40.7026250
796628 -16.3492722
401895   0.7778883
874194  41.7934744
874190  41.7369129
874201 -41.7333995
796625 -15.6770531
874200 -41.6873361
874212 -41.0870961
874215 -41.0454951
874217 -40.9759931
874218 -40.9589874
874198 -40.3959842
874195 -40.2895814
796638  46.3258178
874213 -39.9564086
796553  33.7353904

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag  susie_pip        mu2          PVE
401871  rs763798411       7_65 1.00000000 3592.88978 0.0104559668
401882    rs4997569       7_65 0.98456768 3617.25546 0.0103644213
786462  rs147985405       19_9 0.99850322 2253.19544 0.0065473964
796633     rs814573      19_32 1.00000000 2209.85878 0.0064310935
796638   rs12721109      19_32 1.00000000 1344.10751 0.0039115989
796582   rs62117204      19_32 1.00000000  825.54026 0.0024024733
796635  rs113345881      19_32 1.00000000  773.94901 0.0022523333
796600  rs111794050      19_32 1.00000000  765.11398 0.0022266217
68394      rs548145       2_13 1.00000000  658.17542 0.0019154109
401877   rs13230660       7_65 0.16878277 3604.32908 0.0017704059
68391      rs934197       2_13 1.00000000  415.32914 0.0012086838
278815    rs3843482       5_45 0.83467282  392.83699 0.0009542209
499867  rs115478735       9_70 1.00000000  303.29938 0.0008826567
14016     rs1887552       1_34 0.90647029  330.20033 0.0008710666
14015     rs2495502       1_34 1.00000000  286.99710 0.0008352141
786470    rs1569372       19_9 0.99915849  270.60543 0.0007868486
459323   rs79658059       8_83 0.96248038  261.09857 0.0007313356
789251    rs2285626      19_15 1.00000000  247.61153 0.0007205949
1028829    rs964184      11_70 1.00000000  239.77236 0.0006977815
786441   rs73013176       19_9 1.00000000  237.87779 0.0006922679
365222   rs12208357      6_103 1.00000000  236.08423 0.0006870483
68385     rs1042034       2_13 1.00000000  234.09703 0.0006812652
68471     rs1848922       2_13 1.00000000  230.23537 0.0006700271
401874   rs10274607       7_65 0.06321929 3607.26329 0.0006636632
459334   rs13252684       8_83 0.99999917  218.85277 0.0006369011
789276    rs3794991      19_15 0.99999261  212.43646 0.0006182244
14033      rs471705       1_34 0.99996541  208.19757 0.0006058721
278792   rs10062361       5_45 0.98462668  200.70068 0.0005750965
796341   rs62115478      19_30 0.99999607  180.28377 0.0005246567
903299    rs6544713       2_27 0.76395969  223.71659 0.0004973807
1057532   rs9302635      16_38 0.99998991  162.69359 0.0004734634
70121      rs780093       2_16 1.00000000  161.13186 0.0004689232
753051    rs8070232      17_39 1.00000000  145.52150 0.0004234942
365236    rs3818678      6_103 0.75531839  191.77135 0.0004215354
753025  rs113408695      17_39 1.00000000  143.73673 0.0004183002
724520     rs821840      16_31 0.88789136  154.93188 0.0004003326
14026    rs10888896       1_34 0.99999991  132.04631 0.0003842789
68336    rs11679386       2_12 1.00000000  128.41716 0.0003737174
56551      rs678615      1_121 1.00000000  121.55865 0.0003537579
303694   rs12657266       5_92 0.74975933  153.87616 0.0003357481
786479  rs137992968       19_9 0.99999998  112.96914 0.0003287609
753036    rs9303012      17_39 0.81054757  136.90297 0.0003229325
439673    rs4738679       8_45 0.99999998  106.99651 0.0003113794
365370  rs117733303      6_104 0.99980408  106.90183 0.0003110429
56552     rs6663780      1_121 1.00000000  106.62747 0.0003103055
1057344  rs77303550      16_38 0.67027457  158.96533 0.0003100812
459322    rs2980875       8_83 0.56905716  184.76312 0.0003059789
365406   rs56393506      6_104 0.99999997   94.56244 0.0002751940
789235   rs12981966      19_15 0.99881814   91.60222 0.0002662642
619506     rs653178      12_67 0.99205762   91.86316 0.0002652153
                 z
401871   -3.272149
401882    2.984117
786462   48.935175
796633  -55.537887
796638   46.325818
796582   44.672230
796635   34.318568
796600   33.599649
68394   -33.086010
401877    2.947963
68391   -33.060888
278815  -25.034352
499867  -19.011790
14016     9.868570
14015    -6.292225
786470  -10.005506
459323   16.022043
789251   18.215134
1028829  16.661098
786441   16.232742
365222  -12.282337
68385   -16.573036
68471   -25.412292
401874    2.866958
459334  -11.964411
789276   21.492060
14033   -16.262997
278792  -20.320600
796341   14.326186
903299   20.377651
1057532  13.839259
70121    14.142603
753051    8.091491
365236    9.947776
753025  -12.768796
724520   13.475251
14026   -11.893801
68336   -11.909428
56551    -9.275730
303694  -13.894754
786479   10.752566
753036   -2.259115
439673   11.699924
365370  -10.097959
56552    -7.904745
1057344  13.732910
459322   22.102229
365406  -14.088321
789235   -1.822895
619506  -11.050062

SNPs with largest z scores

#histogram of (abs) SNP z scores
hist(abs(ctwas_snp_res$z))

Version Author Date
25b795b wesleycrouse 2022-06-24
#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag    susie_pip       mu2          PVE
796633    rs814573      19_32 1.000000e+00 2209.8588 6.431093e-03
786462 rs147985405       19_9 9.985032e-01 2253.1954 6.547396e-03
786457  rs73015020       19_9 8.773660e-04 2241.2346 5.722534e-06
786455 rs138175288       19_9 4.129240e-04 2239.4371 2.691097e-06
786456 rs138294113       19_9 1.015353e-04 2235.4535 6.605457e-07
786458  rs77140532       19_9 6.161484e-05 2236.0394 4.009453e-07
786459 rs112552009       19_9 3.077278e-05 2231.7931 1.998669e-07
786460  rs10412048       19_9 1.267687e-05 2232.7563 8.237085e-08
786454  rs55997232       19_9 1.025707e-08 2212.2792 6.603640e-11
796638  rs12721109      19_32 1.000000e+00 1344.1075 3.911599e-03
796582  rs62117204      19_32 1.000000e+00  825.5403 2.402473e-03
796569   rs1551891      19_32 0.000000e+00  504.0832 0.000000e+00
874194  rs12740374       1_67 5.592516e-04 1454.3104 2.366926e-06
874190   rs7528419       1_67 5.615324e-04 1450.2861 2.370002e-06
874201    rs646776       1_67 4.786622e-04 1449.0264 2.018486e-06
874200    rs629301       1_67 4.430902e-04 1445.3142 1.863694e-06
874212    rs583104       1_67 4.823891e-04 1404.9815 1.972370e-06
874215   rs4970836       1_67 4.737347e-04 1402.1006 1.933013e-06
874217   rs1277930       1_67 4.837541e-04 1397.4289 1.967318e-06
874218    rs599839       1_67 4.984288e-04 1396.5000 2.025650e-06
786463  rs17248769       19_9 9.170745e-07 1697.1230 4.529375e-09
786464   rs2228671       19_9 6.338472e-07 1686.0554 3.110117e-09
874198   rs3832016       1_67 3.390022e-04 1357.6693 1.339420e-06
874195    rs660240       1_67 3.380049e-04 1350.5076 1.328435e-06
874213    rs602633       1_67 3.806763e-04 1329.4371 1.472801e-06
786453   rs9305020       19_9 4.107825e-14 1283.2915 1.534114e-16
796629    rs405509      19_32 0.000000e+00  976.7005 0.000000e+00
874181   rs4970834       1_67 7.762553e-04 1004.9324 2.270187e-06
796635 rs113345881      19_32 1.000000e+00  773.9490 2.252333e-03
796553  rs62120566      19_32 0.000000e+00 1324.0427 0.000000e+00
796600 rs111794050      19_32 1.000000e+00  765.1140 2.226622e-03
68394     rs548145       2_13 1.000000e+00  658.1754 1.915411e-03
796606   rs4802238      19_32 0.000000e+00  978.0832 0.000000e+00
68391     rs934197       2_13 1.000000e+00  415.3291 1.208684e-03
796547 rs188099946      19_32 0.000000e+00 1269.1830 0.000000e+00
796617   rs2972559      19_32 0.000000e+00 1300.7260 0.000000e+00
796541 rs201314191      19_32 0.000000e+00 1177.0634 0.000000e+00
874202   rs3902354       1_67 3.881564e-04  857.6057 9.687567e-07
874191  rs11102967       1_67 3.892898e-04  853.9876 9.674864e-07
874216   rs4970837       1_67 4.494605e-04  850.5825 1.112572e-06
796608  rs56394238      19_32 0.000000e+00  969.5597 0.000000e+00
796585   rs2965169      19_32 0.000000e+00  366.0389 0.000000e+00
796609   rs3021439      19_32 0.000000e+00  864.6707 0.000000e+00
874186    rs611917       1_67 3.676531e-04  804.7655 8.610491e-07
68421   rs12997242       2_13 4.906053e-11  383.7884 5.479543e-14
796616  rs12162222      19_32 0.000000e+00 1114.4935 0.000000e+00
68395     rs478588       2_13 1.288755e-10  606.1425 2.273345e-13
796546  rs62119327      19_32 0.000000e+00 1036.8740 0.000000e+00
68396   rs56350433       2_13 5.329404e-12  351.1632 5.446380e-15
68401   rs56079819       2_13 5.340062e-12  350.3637 5.444847e-15
               z
796633 -55.53789
786462  48.93517
786457  48.79563
786455  48.78069
786456  48.75193
786458  48.73799
786459  48.70516
786460  48.70123
786454  48.52431
796638  46.32582
796582  44.67223
796569  42.26680
874194  41.79347
874190  41.73691
874201 -41.73340
874200 -41.68734
874212 -41.08710
874215 -41.04550
874217 -40.97599
874218 -40.95899
786463  40.84249
786464  40.70262
874198 -40.39598
874195 -40.28958
874213 -39.95641
786453  34.84073
796629  34.63979
874181  34.62492
796635  34.31857
796553  33.73539
796600  33.59965
68394  -33.08601
796606 -33.07569
68391  -33.06089
796547  33.04407
796617 -32.28660
796541  32.06858
874202 -32.00383
874191 -31.93893
874216 -31.85593
796608 -31.55187
796585  31.38057
796609 -31.04506
874186  30.97527
68421  -30.81528
796616 -30.49671
68395  -30.48811
796546  30.41868
68396  -30.23229
68401  -30.19307

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 35
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    print(plotEnrich(GO_enrichment[[db]]))
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
25b795b wesleycrouse 2022-06-24
                                                                                            Term
1                                                   peptidyl-serine phosphorylation (GO:0018105)
2                                                      peptidyl-serine modification (GO:0018209)
3                                                                   lipid transport (GO:0006869)
4                                                             cholesterol transport (GO:0030301)
5                                                 intestinal cholesterol absorption (GO:0030299)
6                                             cellular response to sterol depletion (GO:0071501)
7                                        negative regulation of cholesterol storage (GO:0010887)
8                                                       intestinal lipid absorption (GO:0098856)
9                                                           protein phosphorylation (GO:0006468)
10                                                          cholesterol homeostasis (GO:0042632)
11                                                               sterol homeostasis (GO:0055092)
12                                                    cholesterol metabolic process (GO:0008203)
13                                                regulation of cholesterol storage (GO:0010885)
14 positive regulation of cyclin-dependent protein serine/threonine kinase activity (GO:0045737)
15                                               activin receptor signaling pathway (GO:0032924)
16                  positive regulation of cyclin-dependent protein kinase activity (GO:1904031)
17                                             negative regulation of lipid storage (GO:0010888)
18                                                                 sterol transport (GO:0015918)
19                                                               cholesterol efflux (GO:0033344)
20                                           regulation of DNA biosynthetic process (GO:2000278)
21                                                 regulation of cholesterol efflux (GO:0010874)
22                                           secondary alcohol biosynthetic process (GO:1902653)
23                                                 cholesterol biosynthetic process (GO:0006695)
24                                                      organic substance transport (GO:0071702)
25                                            cellular protein modification process (GO:0006464)
26                                                      sterol biosynthetic process (GO:0016126)
27                                                        response to growth factor (GO:0070848)
28                                      cellular response to growth factor stimulus (GO:0071363)
   Overlap Adjusted.P.value                                    Genes
1    5/156      0.002554803             CSNK1G3;TNKS;PKN3;PRKD2;GAS6
2    5/169      0.002554803             CSNK1G3;TNKS;PKN3;PRKD2;GAS6
3    4/109      0.006087707                  ABCA1;ABCG8;NPC1L1;PLTP
4     3/51      0.008431487                       ABCA1;ABCG8;NPC1L1
5      2/9      0.008431487                             ABCG8;NPC1L1
6      2/9      0.008431487                            INSIG2;NPC1L1
7     2/10      0.009023822                             ABCA1;TTC39B
8     2/11      0.009639885                             ABCG8;NPC1L1
9    6/496      0.010514070      CSNK1G3;ACVR1C;TNKS;PKN3;PRKD2;GAS6
10    3/71      0.011663716                       ABCA1;ABCG8;TTC39B
11    3/72      0.011663716                       ABCA1;ABCG8;TTC39B
12    3/77      0.012872181                      ABCA1;INSIG2;NPC1L1
13    2/16      0.012872181                             ABCA1;TTC39B
14    2/17      0.013531569                              CCND2;PSRC1
15    2/19      0.015517122                             ACVR1C;INHBB
16    2/20      0.015517122                              CCND2;PSRC1
17    2/20      0.015517122                             ABCA1;TTC39B
18    2/21      0.016179922                             ABCG8;NPC1L1
19    2/24      0.020079583                              ABCA1;ABCG8
20    2/29      0.027906921                               TNKS;PRKD2
21    2/33      0.032979730                              PLTP;TTC39B
22    2/34      0.032979730                            INSIG2;NPC1L1
23    2/35      0.032979730                            INSIG2;NPC1L1
24   3/136      0.032979730                         ABCA1;ABCG8;PLTP
25  7/1025      0.032979730 CSNK1G3;ACVR1C;TNKS;PKN3;PRKD2;FUT2;GAS6
26    2/38      0.036805305                            INSIG2;NPC1L1
27    2/41      0.041205024                            STAT5B;ACVR1C
28   3/158      0.044712446                      STAT5B;ACVR1C;PRKD2
[1] "GO_Cellular_Component_2021"

Version Author Date
25b795b wesleycrouse 2022-06-24
                                                  Term Overlap
1       high-density lipoprotein particle (GO:0034364)    2/19
2          endoplasmic reticulum membrane (GO:0005789)   6/712
3 serine/threonine protein kinase complex (GO:1902554)    2/37
  Adjusted.P.value                                Genes
1       0.02196976                             HPR;PLTP
2       0.02796426 ABCA1;CYP2A6;INSIG2;KDSR;FADS1;CNIH4
3       0.02796426                         ACVR1C;CCND2
[1] "GO_Molecular_Function_2021"
                                                   Term Overlap
1            cholesterol transfer activity (GO:0120020)    3/18
2                 sterol transfer activity (GO:0120015)    3/19
3 phosphatidylcholine transporter activity (GO:0008525)    2/18
  Adjusted.P.value            Genes
1     0.0002099901 ABCA1;ABCG8;PLTP
2     0.0002099901 ABCA1;ABCG8;PLTP
3     0.0134173287       ABCA1;PLTP
TTC39B gene(s) from the input list not found in DisGeNET CURATEDUSP1 gene(s) from the input list not found in DisGeNET CURATEDSPTY2D1 gene(s) from the input list not found in DisGeNET CURATEDCNIH4 gene(s) from the input list not found in DisGeNET CURATEDPSRC1 gene(s) from the input list not found in DisGeNET CURATEDCRACR2B gene(s) from the input list not found in DisGeNET CURATEDALLC gene(s) from the input list not found in DisGeNET CURATEDSYTL1 gene(s) from the input list not found in DisGeNET CURATEDDDX56 gene(s) from the input list not found in DisGeNET CURATEDCSNK1G3 gene(s) from the input list not found in DisGeNET CURATEDTRIM39 gene(s) from the input list not found in DisGeNET CURATEDPELO gene(s) from the input list not found in DisGeNET CURATEDPOP7 gene(s) from the input list not found in DisGeNET CURATEDHPR gene(s) from the input list not found in DisGeNET CURATEDNPC1L1 gene(s) from the input list not found in DisGeNET CURATEDTNKS gene(s) from the input list not found in DisGeNET CURATEDC10orf88 gene(s) from the input list not found in DisGeNET CURATEDPKN3 gene(s) from the input list not found in DisGeNET CURATED
                        Description        FDR Ratio  BgRatio
5          Blood Platelet Disorders 0.01314162  2/17  16/9703
13             Colorectal Neoplasms 0.01314162  4/17 277/9703
31   Hypercholesterolemia, Familial 0.01314162  2/17  18/9703
39        Leukemia, T-Cell, Chronic 0.01314162  1/17   1/9703
49                  Opisthorchiasis 0.01314162  1/17   1/9703
57                  Tangier Disease 0.01314162  1/17   1/9703
75         Caliciviridae Infections 0.01314162  1/17   1/9703
81          Infections, Calicivirus 0.01314162  1/17   1/9703
98  Opisthorchis felineus Infection 0.01314162  1/17   1/9703
99 Opisthorchis viverrini Infection 0.01314162  1/17   1/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************

Version Author Date
25b795b wesleycrouse 2022-06-24
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
                    description size overlap          FDR       database
1       Coronary Artery Disease  153      10 6.466968e-07 disease_GLAD4U
2                 Dyslipidaemia   84       8 1.252110e-06 disease_GLAD4U
3              Coronary Disease  171       9 1.317265e-05 disease_GLAD4U
4              Arteriosclerosis  173       8 1.891798e-04 disease_GLAD4U
5           Myocardial Ischemia  180       8 2.051526e-04 disease_GLAD4U
6          Hypercholesterolemia   60       5 1.449899e-03 disease_GLAD4U
7   Arterial Occlusive Diseases  174       7 1.651194e-03 disease_GLAD4U
8                Heart Diseases  227       7 8.215079e-03 disease_GLAD4U
9  Fat digestion and absorption   23       3 2.508047e-02   pathway_KEGG
10      Cardiovascular Diseases  281       7 2.508047e-02 disease_GLAD4U
11              Hyperlipidemias   64       4 2.508047e-02 disease_GLAD4U
12       Cholesterol metabolism   31       3 4.773144e-02   pathway_KEGG
                                                           userId
1  PSRC1;ABCG8;INSIG2;NPC1L1;TTC39B;ABCA1;SPTY2D1;FADS1;FUT2;PLTP
2               PSRC1;ABCG8;INSIG2;NPC1L1;TTC39B;ABCA1;FADS1;PLTP
3          PSRC1;ABCG8;INSIG2;NPC1L1;TTC39B;ABCA1;FADS1;FUT2;PLTP
4                  PSRC1;ABCG8;NPC1L1;TTC39B;ABCA1;FADS1;HPR;PLTP
5               PSRC1;ABCG8;INSIG2;NPC1L1;TTC39B;ABCA1;FADS1;PLTP
6                                  ABCG8;INSIG2;NPC1L1;ABCA1;PLTP
7                      PSRC1;ABCG8;NPC1L1;TTC39B;ABCA1;FADS1;PLTP
8                      PSRC1;ABCG8;NPC1L1;TTC39B;ABCA1;FADS1;PLTP
9                                              ABCG8;NPC1L1;ABCA1
10                       PSRC1;ABCG8;TTC39B;ABCA1;FADS1;GAS6;PLTP
11                                        ABCG8;NPC1L1;ABCA1;PLTP
12                                               ABCG8;ABCA1;PLTP

Sensitivity, specificity and precision for silver standard genes

library("readxl")

known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

unrelated_genes <- ctwas_gene_res$genename[!(ctwas_gene_res$genename %in% known_annotations)]

#number of genes in known annotations
print(length(known_annotations))
[1] 69
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 46
#assign ctwas, TWAS, and bystander genes
ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh]
novel_genes <- ctwas_genes[!(ctwas_genes %in% twas_genes)]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.562276
#number of ctwas genes
length(ctwas_genes)
[1] 35
#number of TWAS genes
length(twas_genes)
[1] 215
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip      mu2          PVE         z
9046  KLHDC7A       1_13 0.8393363 22.17420 5.416319e-05  4.124187
5413    SYTL1       1_19 0.8163154 22.15199 5.262488e-05 -3.962854
6387   TTC39B       9_13 0.9450026 23.14602 6.365459e-05 -4.334495
8918  CRACR2B       11_1 0.8274447 21.52123 5.182346e-05 -3.989585
3212    CCND2       12_4 0.8041948 22.63603 5.297633e-05 -4.065830
3247     KDSR      18_35 0.9602264 24.59603 6.873200e-05 -4.526287
     num_eqtl
9046        1
5413        1
6387        3
8918        1
3212        1
3247        1
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
     ctwas       TWAS 
0.08695652 0.27536232 
#specificity
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9970513 0.9800712 
#precision / PPV
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
     ctwas       TWAS 
0.17142857 0.08837209 
#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1))

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=2)

Version Author Date
25b795b wesleycrouse 2022-06-24

Sensitivity, specificity and precision for silver standard genes - bystanders only

This section first uses imputed silver standard genes to identify bystander genes within 1Mb. The bystander gene list is then subset to only genes with imputed expression in this analysis. Then, the ctwas and TWAS gene lists from this analysis are subset to only genes that are in the (subset) silver standard and bystander genes. These gene lists are then used to compute sensitivity, specificity and precision for ctwas and TWAS.

library(biomaRt)
library(GenomicRanges)
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect,
    is.unsorted, lapply, mapply, match, mget, order, paste, pmax,
    pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min
Loading required package: S4Vectors

Attaching package: 'S4Vectors'
The following object is masked from 'package:base':

    expand.grid
Loading required package: IRanges
Loading required package: GenomeInfoDb
# ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
# G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
# G_list <- G_list[G_list$hgnc_symbol!="",]
# G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
# G_list$start <- G_list$start_position
# G_list$end <- G_list$end_position
# G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)
# 
# #remove genes without imputed expression from gene lists
# known_annotations <- known_annotations[known_annotations %in% ctwas_gene_res$genename]
# 
# known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
# half_window <- 1000000
# known_annotations_positions$start <- known_annotations_positions$start_position - half_window
# known_annotations_positions$end <- known_annotations_positions$end_position + half_window
# known_annotations_positions$start[known_annotations_positions$start<1] <- 1
# known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)
# 
# bystanders <- findOverlaps(known_annotations_granges,G_list_granges)
# bystanders <- unique(subjectHits(bystanders))
# bystanders <- G_list$hgnc_symbol[bystanders]
# bystanders <- unique(bystanders[!(bystanders %in% known_annotations)])
# unrelated_genes <- bystanders
# 
# #save gene lists
# save(known_annotations, file=paste0(results_dir, "/known_annotations.Rd"))
# save(unrelated_genes, file=paste0(results_dir, "/bystanders.Rd"))

load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))

#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 46
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 539
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.562276
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 8
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 61
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
    ctwas      TWAS 
0.1304348 0.4130435 
#specificity / (1 - False Positive Rate)
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9962894 0.9220779 
#precision / PPV / (1 - False Discovery Rate)
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
    ctwas      TWAS 
0.7500000 0.3114754 
#store sensitivity and specificity calculations for plots
sensitivity_plot <- sensitivity
specificity_plot <- specificity

#precision / PPV by PIP bin
pip_range <- c(0.2, 0.4, 0.6, 0.8, 1)
precision_range <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes in PIP bin
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower & ctwas_gene_res_subset$susie_pip<pip_upper]
  
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste(c(0, pip_range[-length(pip_range)]), pip_range,sep=" - ")

barplot(precision_range, ylim=c(0,1), main="Precision by PIP Range", xlab="PIP Range", ylab="Precision")
abline(h=0.2, lty=2)
abline(h=0.4, lty=2)
abline(h=0.6, lty=2)
abline(h=0.8, lty=2)
barplot(precision_range, add=T, col="darkgrey")

Version Author Date
25b795b wesleycrouse 2022-06-24
#precision / PPV by PIP threshold
pip_range <- c(0.5, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
number_detected <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes using PIP threshold
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower]
  
  number_detected[i] <- length(ctwas_genes)
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste0(">= ", c(0, pip_range[-length(pip_range)]))

precision_range <- precision_range*100

precision_range <- c(precision_range, precision["TWAS"]*100)
names(precision_range)[4] <- "TWAS Bonferroni"
number_detected <- c(number_detected, length(twas_genes))

barplot(precision_range, ylim=c(0,100), main="Precision for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
25b795b wesleycrouse 2022-06-24
#false discovery rate by PIP threshold

barplot(100-precision_range, ylim=c(0,100), main="False Discovery Rate for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% Bystanders in Detected Genes")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(100-precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
25b795b wesleycrouse 2022-06-24
#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Version Author Date
25b795b wesleycrouse 2022-06-24

PIP Manhattan Plot

library(tibble)
library(tidyverse)
-- Attaching packages ---------------------------------- tidyverse 1.3.0 --
v tidyr   1.1.0     v dplyr   1.0.9
v readr   1.4.0     v stringr 1.4.0
v purrr   0.3.4     v forcats 0.4.0
-- Conflicts ------------------------------------- tidyverse_conflicts() --
x BiocGenerics::Position() masks ggplot2::Position(), base::Position()
x dplyr::collapse()        masks IRanges::collapse()
x dplyr::combine()         masks BiocGenerics::combine()
x dplyr::desc()            masks IRanges::desc()
x tidyr::expand()          masks S4Vectors::expand()
x tidyr::extract()         masks disgenet2r::extract()
x dplyr::filter()          masks stats::filter()
x dplyr::first()           masks S4Vectors::first()
x dplyr::lag()             masks stats::lag()
x purrr::reduce()          masks GenomicRanges::reduce(), IRanges::reduce()
x dplyr::rename()          masks S4Vectors::rename()
x dplyr::select()          masks biomaRt::select()
x dplyr::slice()           masks IRanges::slice()
full_gene_pip_summary <- data.frame(gene_name = ctwas_gene_res$genename, 
                                    gene_pip = ctwas_gene_res$susie_pip, 
                                    gene_id = ctwas_gene_res$id, 
                                    chr = as.integer(ctwas_gene_res$chrom),
                                    start = ctwas_gene_res$pos / 1e3,
                                    is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full_gene_pip_summary$is_highlight <- full_gene_pip_summary$gene_pip > 0.80

don <- full_gene_pip_summary %>% 
  
  # Compute chromosome size
  group_by(chr) %>% 
  summarise(chr_len=max(start)) %>% 
  
  # Calculate cumulative position of each chromosome
  mutate(tot=cumsum(chr_len)-chr_len) %>%
  dplyr::select(-chr_len) %>%
  
  # Add this info to the initial dataset
  left_join(full_gene_pip_summary, ., by=c("chr"="chr")) %>%
  
  # Add a cumulative position of each SNP
  arrange(chr, start) %>%
  mutate( BPcum=start+tot)

axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )

x_axis_labels <- axisdf$chr
x_axis_labels[seq(1,21,2)] <- ""

ggplot(don, aes(x=BPcum, y=gene_pip)) +
  
  # Show all points
  ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=2) +
  scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
  
  scale_x_continuous(label = x_axis_labels,
                     breaks = axisdf$center) +
  
  scale_y_continuous(expand = c(0, 0), limits = c(0,1.25), breaks=(1:5)*0.2, minor_breaks=(1:10)*0.1) + # remove space between plot area and x axis
  
  # Add highlighted points
  ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="orange", size=2) +
  
  # Add label using ggrepel to avoid overlapping
  ggrepel::geom_label_repel(data=subset(don, is_highlight==T), 
                            aes(label=gene_name), 
                            size=4,
                            min.segment.length = 0, 
                            label.size = NA,
                            fill = alpha(c("white"),0)) +
  
  # Custom the theme:
  theme_bw() +
  theme( 
    text = element_text(size = 14),
    legend.position="none",
    panel.border = element_blank(),
    panel.grid.major.x = element_blank(),
    panel.grid.minor.x = element_blank(),
  ) +
  xlab("Chromosome") + 
  ylab("cTWAS PIP")
Warning: ggrepel: 13 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
25b795b wesleycrouse 2022-06-24

Load gene positions

#####load positions for all genes on autosomes in ENSEMBL, subset to only protein coding and lncRNA with non-missing HGNC symbol
library(biomaRt)

ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype", "ensembl_gene_id", "strand"), values=1:22, mart=ensembl)
save(G_list, file=paste0(results_dir, "/G_list_", trait_id, ".RData"))
load(paste0(results_dir, "/G_list_", trait_id, ".RData"))

G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]

G_list$tss <- G_list[,c("end_position", "start_position")][cbind(1:nrow(G_list),G_list$strand/2+1.5)]

Locus Plots - 1_67

library(ctwas)

Attaching package: 'ctwas'
The following object is masked _by_ '.GlobalEnv':

    z_snp
locus_plot <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS"){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  a$pos <- a$pos/1000000
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
  a$ifcausal <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  #legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  #legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  
  legend(min(a$pos), y= 1 ,c("Gene", "SNP","Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = c(22,21,19,19,19), col = c("black", "black", "salmon", "purple", colorsall[1]), cex=0.7, title.adj = 0)

  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"), frame.plot=FALSE, bg = colorsall[1], ylab = "-log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}

#locus_plot("1_67", label="TWAS")

Locus Plots - 5_45 - Thin

locus_plot4 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", xlim=NULL){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$pos <- a$pos/1000000
  
  if (!is.null(xlim)){
    
    if (is.na(xlim[1])){
      xlim[1] <- min(a$pos)
    }
    
    if (is.na(xlim[2])){
      xlim[2] <- max(a$pos)
    }
    
    a <- a[a$pos>=xlim[1] & a$pos<=xlim[2],,drop=F]
  }
  
  a$ifcausal <- 0
  focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
  a$ifcausal <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  #legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="", bty ='n', cex=0.6, title.adj = 0)
  #legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="", bty ='n', cex=0.6, title.adj = 0)
  
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1 ,c("Gene", "SNP","Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = c(22,21,19,19,19), col = c("black", "black", "salmon", "purple", colorsall[1]), cex=0.7, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"), frame.plot=FALSE, bg = colorsall[1], ylab = "-log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}
locus_plot6 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", xlim=NULL, return_table=F){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$pos[a$type=="gene"] <- G_list$start_position[match(sapply(a$id[a$type=="gene"], function(x){unlist(strsplit(x, "[.]"))[1]}) ,G_list$ensembl_gene_id)]
  a$pos <- a$pos/1000000
  
  if (!is.null(xlim)){
    
    if (is.na(xlim[1])){
      xlim[1] <- min(a$pos)
    }
    
    if (is.na(xlim[2])){
      xlim[2] <- max(a$pos)
    }
    
    a <- a[a$pos>=xlim[1] & a$pos<=xlim[2],,drop=F]
  }
  
  a$ifcausal <- 0
  focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
  a$ifcausal <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"), frame.plot=FALSE, bg = colorsall[1], ylab = "-log10(p value)", panel.first = grid(), ylim =c(-(1/6)*max(a$PVALUE), max(a$PVALUE)*1.2), xaxt = 'n')
  
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -(1/6)*max(a$PVALUE), nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))

  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"),frame.plot=FALSE, col = "white", ylim= c(0,1.1), ylab = "cTWAS PIP")
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1 ,c("Gene", "SNP","Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = c(22,21,19,19,19), col = c("black", "black", "salmon", "purple", colorsall[1]), cex=0.7, title.adj = 0)

  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  if (return_table){
    return(a)
  }
}
#locus_plot("5_45", label="TWAS")
#locus_plot4("5_45", label="TWAS",xlim=c(74.5,76.5))
locus_plot6("5_45", label="TWAS",xlim=c(75,76))

Locus Plots - 5_45 - Re-run

#locus_plot4("5_45", label="TWAS",rerun_ctwas = T,xlim=c(74.5,76.5))
locus_plot6("5_45", label="TWAS",rerun_ctwas = T,xlim=c(75,76))

Locus Plots - 8_12

#locus_plot4("8_12", label="cTWAS",xlim=c(NA, 9.6))
a <- locus_plot6("8_12", label="TWAS", xlim=c(NA, 9.7), return_table=T)
a[a$type=="gene",c("genename", "r2max", "susie_pip")]

Locus Plots - 19_33

locus_plot6("19_33", label="TWAS", xlim=c(NA,46.85))

Locus Plots - Exploring known annotations

This section produces locus plots for all silver standard genes with known annotations. The highlighted gene at each region is the silver standard gene. Note that if no genes in a region have PIP>0.8, then only the result using thinned SNPs is displayed.

locus_plot3 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", focus){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[which(a$genename==focus)]
  a$ifcausal <- as.numeric(a$id==focus)

  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}
load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))

for (i in 1:length(known_annotations)){
  focus <- known_annotations[i]
  region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]

  #locus_plot3(region_tag, focus=focus)
  #mtext(text=region_tag)

  print(focus)
  print(region_tag)
  print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
}
[1] "ITIH4"
[1] "3_36"
      genename region_tag   susie_pip       mu2          PVE          z
2847      RRP9       3_36 0.010186798  8.006632 2.373602e-07 -0.9533837
374      PARP3       3_36 0.010074535  7.900303 2.316269e-07  0.9395160
11145     ACY1       3_36 0.008088342  5.880826 1.384261e-07 -0.5115172
7239     POC1A       3_36 0.007598508  5.437276 1.202348e-07  0.6100943
11175     TWF2       3_36 0.007439023  5.286494 1.144469e-07 -0.3662282
7240     PPM1M       3_36 0.010542548  8.145836 2.499203e-07 -1.3227733
7910    GLYCTK       3_36 0.022883467 14.068146 9.368693e-07 -1.6364989
7242     WDR82       3_36 0.007902199  5.638130 1.296592e-07 -0.3708077
2853     DNAH1       3_36 0.030651367 19.041322 1.698507e-06  2.9650691
158       PHF7       3_36 0.012220852  9.456943 3.363354e-07  1.0713405
159     SEMA3G       3_36 0.012353883  9.165988 3.295361e-07 -0.4278002
2856     TNNC1       3_36 0.071765302 20.103883 4.198699e-06 -3.3770524
160      NISCH       3_36 0.007351669  5.011865 1.072274e-07  0.1275014
161      STAB1       3_36 0.099112516 21.753558 6.274500e-06  3.5822738
7913    NT5DC2       3_36 0.010573296  8.181607 2.517499e-07 -1.7973355
7198      GNL3       3_36 0.102274879 24.480146 7.286237e-06 -3.6862761
7199     PBRM1       3_36 0.009709905  6.847563 1.934957e-07 -0.8048656
239     GLT8D1       3_36 0.041555945 20.512643 2.480705e-06  2.9521495
2861      NEK4       3_36 0.032742182 18.227919 1.736861e-06 -2.8779547
482      ITIH1       3_36 0.086070452 27.289798 6.835570e-06  3.3942500
6908     ITIH3       3_36 0.123501866 30.778864 1.106233e-05  3.5156979
481      ITIH4       3_36 0.007986410  6.355426 1.477123e-07  0.7020101
11408   MUSTN1       3_36 0.010346836  8.604039 2.590778e-07  2.0468324
10774  TMEM110       3_36 0.008567371  6.831224 1.703203e-07  1.5404511
7197    SFMBT1       3_36 0.011407340  9.759871 3.240028e-07  2.0068207
7196     PRKCD       3_36 0.008245311  6.177403 1.482290e-07 -0.6434864
7195       TKT       3_36 0.019333716 13.463803 7.575362e-07  2.5841158
11411    DCP1A       3_36 0.007332406  4.915912 1.048989e-07 -0.2530460
236       CHDH       3_36 0.007425518  5.055297 1.092430e-07  0.1444517
486     IL17RB       3_36 0.007684456  5.346702 1.195692e-07  0.2238222
2783     ACTR8       3_36 0.009037541  6.795980 1.787404e-07  0.7154999
      num_eqtl
2847         1
374          1
11145        1
7239         1
11175        2
7240         3
7910         1
7242         1
2853         2
158          1
159          1
2856         2
160          2
161          1
7913         2
7198         2
7199         1
239          2
2861         1
482          1
6908         1
481          3
11408        2
10774        2
7197         1
7196         1
7195         1
11411        2
236          1
486          2
2783         3
[1] "EPHX2"
[1] "8_27"
      genename region_tag   susie_pip       mu2          PVE           z
11070    PNMA2       8_27 0.007168073  4.937312 1.029943e-07 -0.21331428
1295    DPYSL2       8_27 0.007130358  4.885656 1.013805e-07  0.04738342
3371    ADRA1A       8_27 0.010272565  8.462908 2.529990e-07 -0.93007117
1869    TRIM35       8_27 0.015413131 12.444767 5.582104e-07  1.28849641
3374     EPHX2       8_27 0.007523723  5.411512 1.184873e-07 -0.26134454
3368       CLU       8_27 0.008683031  6.815307 1.722174e-07  0.59866869
7888    SCARA3       8_27 0.025854912 17.536832 1.319516e-06 -1.59197306
8297     ESCO2       8_27 0.012551197 10.427949 3.808942e-07  1.12967697
5835    CCDC25       8_27 0.014262944 11.682990 4.849350e-07  1.25261686
7889       PBK       8_27 0.007882223  5.867411 1.345908e-07  0.48335074
7890    SCARA5       8_27 0.007127846  4.882206 1.012732e-07 -0.01387977
9968     NUGGC       8_27 0.045992434 23.241496 3.110791e-06  2.12228282
      num_eqtl
11070        1
1295         1
3371         2
1869         2
3374         2
3368         1
7888         2
8297         2
5835         1
7889         1
7890         1
9968         2
[1] "ABCA1"
[1] "9_53"
     genename region_tag   susie_pip       mu2          PVE          z
7405    ABCA1       9_53 0.995531405 70.135749 2.031958e-04  7.9820172
2193     FKTN       9_53 0.001393116  7.316812 2.966397e-08 -0.7642857
1314  TMEM38B       9_53 0.002218186  7.826102 5.052006e-08  0.7019380
     num_eqtl
7405        1
2193        1
1314        1
[1] "LPL"
[1] "8_21"
       genename region_tag   susie_pip       mu2          PVE          z
5833 CSGALNACT1       8_21 0.008553136  5.815696 1.447596e-07 -0.8624862
1906     INTS10       8_21 0.011451291  7.754520 2.584221e-07 -0.5466864
8730        LPL       8_21 0.026682797 16.816972 1.305869e-06 -1.8179375
     num_eqtl
5833        1
1906        1
8730        1
[1] "APOA5"
[1] "11_70"
     genename region_tag   susie_pip        mu2          PVE           z
4866    BUD13      11_70 0.006652541  36.783048 7.121239e-07   4.1152798
3154    APOA1      11_70 0.004977961   6.666250 9.657248e-08   1.1245588
7893 PAFAH1B2      11_70 0.005808001  12.283372 2.076178e-07   1.5109282
6002    SIDT2      11_70 0.004820577   5.460637 7.660597e-08   0.5010452
6003    TAGLN      11_70 0.005362219  18.452406 2.879505e-07  -1.5544477
6781    PCSK7      11_70 0.014838164  16.385549 7.075571e-07   0.9793569
7740   RNF214      11_70 0.005570582   6.561488 1.063710e-07  -0.5246893
2466   CEP164      11_70 0.005433415   5.756802 9.102789e-08  -0.3009496
9693    BACE1      11_70 0.005211448  21.012388 3.186795e-07  -4.1370626
4879    FXYD2      11_70 0.005442460   6.097671 9.657831e-08  -0.3686949
2465    APOA5      11_70 0.035870809 144.172605 1.505027e-05 -11.3599104
     num_eqtl
4866        1
3154        2
7893        2
6002        1
6003        1
6781        1
7740        1
2466        2
9693        1
4879        2
2465        1
[1] "MTTP"
[1] "4_66"
      genename region_tag   susie_pip       mu2          PVE          z
7975    TSPAN5       4_66 0.017262300 11.439332 5.746715e-07 -1.2572843
6088     EIF4E       4_66 0.010870816  6.940185 2.195601e-07  0.9082871
7217    METAP1       4_66 0.008970777  5.108314 1.333607e-07 -0.1831346
8489      ADH6       4_66 0.011815663  7.841077 2.696212e-07  0.7476788
10084    ADH1B       4_66 0.016863224 11.283544 5.537407e-07 -1.1153042
11178    ADH1C       4_66 0.116830162 28.900685 9.826151e-06 -2.8777923
10026     ADH7       4_66 0.010555759 10.321300 3.170620e-07  1.9474674
5053      MTTP       4_66 0.012613520  8.051769 2.955615e-07 -0.7972018
5684   TRMT10A       4_66 0.013089394  9.084595 3.460552e-07 -1.1240076
      num_eqtl
7975         2
6088         1
7217         1
8489         2
10084        1
11178        3
10026        2
5053         1
5684         1
[1] "DHCR7"
[1] "11_40"
          genename region_tag  susie_pip       mu2          PVE
8480         DHCR7      11_40 0.02022874  6.096690 3.589081e-07
8479       NADSYN1      11_40 0.02105173  6.489321 3.975642e-07
11157     KRTAP5-7      11_40 0.06512236 17.693447 3.353226e-06
11244     KRTAP5-9      11_40 0.01944707  5.708815 3.230877e-07
10606    KRTAP5-10      11_40 0.02395260  7.761301 5.410127e-07
6609       FAM86C1      11_40 0.02068040  6.314085 3.800053e-07
11233 RP11-849H4.2      11_40 0.01826876  5.093870 2.708178e-07
4857        RNF121      11_40 0.09302340 21.291649 5.763971e-06
4849        IL18BP      11_40 0.01795026  4.920889 2.570601e-07
4850         NUMA1      11_40 0.01918246  5.574004 3.111658e-07
9465        LRTOMT      11_40 0.01986300  5.917093 3.420374e-07
2462         FOLR3      11_40 0.01973983  5.855871 3.363994e-07
7448        INPPL1      11_40 0.01790849  4.897972 2.552675e-07
6896          CLPB      11_40 0.02574235  8.472011 6.346804e-07
                z num_eqtl
8480   0.65130261        1
8479   0.72652201        1
11157  2.05073754        1
11244  0.41678412        1
10606 -0.94271886        2
6609   0.45043836        1
11233 -0.32070634        1
4857   2.07849642        2
4849  -0.18248564        2
4850   0.44145029        1
9465  -0.65197454        1
2462  -0.63775295        1
7448   0.05040952        1
6896   1.03637029        1
[1] "LIPA"
[1] "10_57"
      genename region_tag  susie_pip       mu2          PVE          z
3295     IFIT2      10_57 0.01236292  6.774634 2.437402e-07 -0.6053359
3294     IFIT3      10_57 0.01065530  5.316582 1.648612e-07 -0.3100521
9629     IFIT1      10_57 0.02477857 13.612401 9.815928e-07  1.3883694
2253      LIPA      10_57 0.01648850  9.602515 4.607723e-07  1.0134814
6224     IFIT5      10_57 0.01072634  5.381761 1.679950e-07  0.3249410
6225     PANK1      10_57 0.01725235 10.047715 5.044705e-07 -1.6480922
4958    KIF20B      10_57 0.01507546  8.722178 3.826624e-07 -1.5022578
10517   IFIT1B      10_57 0.01217041  6.620665 2.344916e-07 -0.6164140
      num_eqtl
3295         1
3294         1
9629         2
2253         1
6224         3
6225         1
4958         1
10517        1
[1] "LDLRAP1"
[1] "1_18"
      genename region_tag   susie_pip        mu2          PVE           z
3127      SYF2       1_18 0.008637955   6.649375 1.671522e-07   0.7426202
9755       RHD       1_18 0.007976502  43.780114 1.016271e-06  -6.4603360
9428   TMEM50A       1_18 0.068459267  97.124652 1.935005e-05  10.0815103
9910      RHCE       1_18 0.091547928  97.576057 2.599633e-05  10.1196008
10536   TMEM57       1_18 0.345221501 100.428144 1.008959e-04 -10.2641908
6567   LDLRAP1       1_18 0.008648797   8.886536 2.236704e-07   1.9517540
3130    MAN1C1       1_18 0.007989615   6.045268 1.405600e-07  -1.0646970
6929   SELENON       1_18 0.034975819  19.791518 2.014500e-06  -2.1819486
3129    MTFR1L       1_18 0.014360676  12.223945 5.108655e-07   2.2135785
8691    PDIK1L       1_18 0.041468581  23.317167 2.813943e-06   3.2275633
10174  FAM110D       1_18 0.008556766   6.262915 1.559576e-07   0.6465781
5404    CNKSR1       1_18 0.014282369  12.232919 5.084528e-07   2.3380617
4098     CEP85       1_18 0.015659902  14.796760 6.743354e-07   2.3661103
5403  SH3BGRL3       1_18 0.025583869  18.346863 1.365993e-06  -2.8355236
8060      CD52       1_18 0.018086425  13.623018 7.170449e-07  -1.2648216
6577    UBXN11       1_18 0.018086425  13.623018 7.170449e-07  -1.2648216
8786     AIM1L       1_18 0.007862772   5.507215 1.260167e-07   0.4474766
8784    ZNF683       1_18 0.007583654   5.396158 1.190922e-07   0.5504045
3133     DHDDS       1_18 0.012275710  13.460556 4.808725e-07   2.6801828
10437    HMGN2       1_18 0.007752669   5.586538 1.260417e-07   0.5156134
3132   RPS6KA1       1_18 0.007496595   5.208539 1.136319e-07   0.3917090
525       PIGV       1_18 0.008352114  11.023592 2.679414e-07  -2.2769832
10532  ZDHHC18       1_18 0.007890270   8.649352 1.986075e-07   1.8553085
5412      GPN2       1_18 0.009760018  13.702765 3.892056e-07   2.5894296
11214    TRNP1       1_18 0.038950916  19.145244 2.170196e-06   1.1357927
      num_eqtl
3127         1
9755         1
9428         1
9910         2
10536        1
6567         2
3130         1
6929         1
3129         2
8691         1
10174        1
5404         2
4098         1
5403         1
8060         1
6577         1
8786         1
8784         1
3133         2
10437        1
3132         1
525          2
10532        1
5412         1
11214        1
[1] "ANGPTL3"
[1] "1_39"
     genename region_tag  susie_pip       mu2          PVE          z
6952    TM2D1       1_39 0.06403075  22.83888 4.255823e-06  2.1432487
4314    KANK4       1_39 0.01028985   5.06552 1.516888e-07  0.5123038
6953     USP1       1_39 0.89412546 252.81074 6.578309e-04 16.2582110
4315  ANGPTL3       1_39 0.11675943 248.59480 8.447035e-05 16.1322287
3024    DOCK7       1_39 0.01151301  24.25695 8.127287e-07  4.4594815
3732    ATG4C       1_39 0.02898268  81.03714 6.835069e-06 -8.6477262
     num_eqtl
6952        1
4314        1
6953        1
4315        1
3024        1
3732        1
[1] "APOB"
[1] "2_13"
     genename region_tag    susie_pip      mu2          PVE         z
1053     APOB       2_13 1.750222e-11 62.37857 3.177232e-15 -11.72589
     num_eqtl
1053        1
[1] "APOE"
[1] "19_32"
      genename region_tag susie_pip        mu2 PVE           z num_eqtl
6717    ZNF233      19_32         0 108.057904   0  -9.0705597        2
6718    ZNF235      19_32         0 105.786114   0  -9.2122953        1
538     ZNF112      19_32         0 146.110506   0  10.3860543        1
11373   ZNF285      19_32         0  14.598472   0   1.1285247        2
11479   ZNF229      19_32         0 120.884061   0  12.6270983        2
7755    ZNF180      19_32         0  37.584152   0  -4.4858272        3
781        PVR      19_32         0 165.830106   0  -6.1126994        2
9718  CEACAM19      19_32         0  61.973969   0   9.2937379        2
9782      BCAM      19_32         0 109.517128   0   4.6421318        1
4047   NECTIN2      19_32         0 109.144346   0   6.2726094        2
4049    TOMM40      19_32         0  25.428279   0  -1.4020544        1
4048      APOE      19_32         0  47.795350   0  -2.0092826        1
11016    APOC2      19_32         0  54.319893   0  -8.9816928        2
8225    ZNF296      19_32         0 111.433235   0   5.4593536        1
5375    GEMIN7      19_32         0 281.983786   0  14.0932174        2
104      MARK4      19_32         0  24.078173   0  -2.2463768        1
1930   PPP1R37      19_32         0 141.975229   0 -13.3753590        2
109   TRAPPC6A      19_32         0  30.349636   0   1.8816459        1
9959   BLOC1S3      19_32         0  11.079917   0   2.3014119        1
11497  EXOC3L2      19_32         0  25.565627   0  -1.3436507        1
1933       CKM      19_32         0  15.824857   0  -1.5738464        1
1937     ERCC2      19_32         0  11.397898   0   2.3273575        2
3143    CD3EAP      19_32         0  27.068183   0  -3.0806361        1
3737      FOSB      19_32         0  18.857038   0  -2.3658041        1
196      ERCC1      19_32         0  14.626679   0  -0.2091619        1
10800    PPM1N      19_32         0  31.275926   0   5.4808308        1
3740      RTN2      19_32         0  31.728332   0   5.5300783        1
3741      VASP      19_32         0  12.810715   0   1.8957985        1
3738      OPA3      19_32         0  13.510481   0  -0.4444358        2
1942      KLC3      19_32         0  10.288522   0   1.7718715        1
10801 CEACAM16      19_32         0   7.471532   0   1.8740580        1
11372    APOC4      19_32         0  50.783266   0   5.6977751        2
10892   IGSF23      19_32         0  12.688777   0   1.9670520        1
8895      GPR4      19_32         0  65.981391   0  -3.5802828        1
3739    SNRPD2      19_32         0  10.004620   0   1.0366923        1
189      QPCTL      19_32         0  24.433561   0  -2.0253056        2
1949      DMPK      19_32         0  20.480704   0  -1.8090245        1
9633      DMWD      19_32         0  19.559497   0  -1.7547946        1
3742     SYMPK      19_32         0   4.895048   0  -0.0525717        1
8798     MYPOP      19_32         0  21.177723   0   1.8490001        1
1963    CCDC61      19_32         0  27.221371   0   2.1648865        2
3628     HIF3A      19_32         0  20.496317   0  -1.8099296        2
190      PPP5C      19_32         0  13.408317   0   1.3374649        1
8068     CCDC8      19_32         0   7.452196   0   0.7343316        2
9259    PNMAL1      19_32         0  18.541969   0  -1.6928766        4
10636   PNMAL2      19_32         0   5.236359   0  -0.2727077        1
10987   PPP5D1      19_32         0   6.378447   0  -0.5603345        1
6722     CALM3      19_32         0  68.689319   0   3.6587617        2
[1] "NPC1L1"
[1] "7_32"
     genename region_tag   susie_pip       mu2          PVE            z
7325   STK17A       7_32 0.007512379  5.314318 1.161837e-07   0.54399967
2177     COA1       7_32 0.014388923 10.030650 4.200274e-07  -0.67121801
2178    BLVRA       7_32 0.007466620  5.133235 1.115412e-07   0.46600524
541    MRPS24       7_32 0.008410245  6.118586 1.497546e-07   0.38278180
2179    URGCP       7_32 0.008718215  6.484835 1.645306e-07  -0.66911858
927    UBE2D4       7_32 0.011453089  9.418195 3.139140e-07   1.19069954
4704     DBNL       7_32 0.009937964  6.897375 1.994810e-07   0.04523843
3488     POLM       7_32 0.007421918  4.990716 1.077952e-07   0.26627871
2183    AEBP1       7_32 0.027581259 20.555368 1.649908e-06  -2.62806186
2184    POLD2       7_32 0.016430712 12.958827 6.196442e-07  -1.42335267
2185     MYL7       7_32 0.009091720  6.663872 1.763165e-07   0.43964828
2186      GCK       7_32 0.007403649  5.086610 1.095960e-07  -0.25157092
500    CAMK2B       7_32 0.014799683  9.414382 4.054754e-07  -1.51472489
233    NPC1L1       7_32 0.951500358 86.827322 2.404283e-04 -10.76193109
4702    DDX56       7_32 0.949589246 59.831435 1.653429e-04   9.64186136
6615    TMED4       7_32 0.015394066 43.161175 1.933601e-06   7.55635222
2101     OGDH       7_32 0.007397224 20.084229 4.323587e-07  -1.43307182
     num_eqtl
7325        1
2177        2
2178        1
541         1
2179        2
927         1
4704        2
3488        3
2183        1
2184        2
2185        1
2186        1
500         2
233         1
4702        2
6615        2
2101        2
[1] "SOAT1"
[1] "1_89"
      genename region_tag  susie_pip       mu2          PVE           z
5475   FAM163A       1_89 0.01076075  4.886335 1.530193e-07 -0.07283498
3000    FAM20B       1_89 0.01162793  5.646490 1.910739e-07  0.42566925
9689     TOR3A       1_89 0.01290010  6.665230 2.502238e-07 -0.64642141
5471      ABL2       1_89 0.01076231  4.887752 1.530858e-07 -0.04638378
488      SOAT1       1_89 0.01077835  4.902361 1.537723e-07 -0.14955596
8115  TOR1AIP2       1_89 0.01385837  7.368623 2.971794e-07  0.78824459
5474  TOR1AIP1       1_89 0.01079531  4.917774 1.544983e-07 -0.06998621
4638    CEP350       1_89 0.07003229 23.413546 4.771839e-06  2.60666770
3008     QSOX1       1_89 0.01776894  9.810972 5.073338e-07 -0.88131950
3408      LHX4       1_89 0.01270871  6.518524 2.410855e-07 -0.58114341
10985    ACBD6       1_89 0.01312880  6.837704 2.612496e-07 -0.67591937
5472      XPR1       1_89 0.03035228 15.088806 1.332805e-06  1.57690324
6242       MR1       1_89 0.01166887  5.680964 1.929173e-07  0.40422440
      num_eqtl
5475         1
3000         2
9689         1
5471         1
488          1
8115         1
5474         1
4638         2
3008         2
3408         1
10985        2
5472         2
6242         1
[1] "MYLIP"
[1] "6_13"
     genename region_tag  susie_pip      mu2          PVE         z
400    DTNBP1       6_13 0.02860113 18.95287 1.577533e-06 1.8923854
124     MYLIP       6_13 0.04435810 60.40923 7.798240e-06 7.6255853
4815     GMPR       6_13 0.01199418 10.08070 3.518694e-07 0.2287813
     num_eqtl
400         1
124         2
4815        2
[1] "OSBPL5"
[1] "11_2"
      genename region_tag   susie_pip       mu2          PVE          z
926     TOLLIP       11_2 0.006160904 10.214374 1.831372e-07 -1.0061479
9283      MOB2       11_2 0.022373224 22.461556 1.462476e-06  2.2322104
9505     DUSP8       11_2 0.005845863  9.686359 1.647895e-07  1.2015225
10705 KRTAP5-1       11_2 0.011842910 16.720565 5.762749e-07 -1.7341826
11154  IFITM10       11_2 0.004380811  7.157201 9.124689e-08 -0.8538633
3146      CTSD       11_2 0.007265680 11.818079 2.498869e-07  1.2145887
4092     TNNI2       11_2 0.004015087  6.109796 7.139075e-08  0.4977574
11498    PRR33       11_2 0.004002117 10.140565 1.181061e-07  2.3364566
4091     TNNT3       11_2 0.003621137  5.106873 5.381711e-08 -0.1660737
7739      IGF2       11_2 0.003697792  5.248015 5.647521e-08  0.1447958
9430     ASCL2       11_2 0.005486983  8.823787 1.408993e-07 -0.8044614
2490  C11orf21       11_2 0.005108486  8.271166 1.229644e-07 -0.7504724
9483     TSSC4       11_2 0.004979682  8.267078 1.198047e-07 -0.9083240
9230    PHLDA2       11_2 0.042282811 28.319389 3.484721e-06 -2.5765310
10684   NAP1L4       11_2 0.023872801 23.185995 1.610829e-06 -2.2381727
264     OSBPL5       11_2 0.010227791 15.060578 4.482743e-07 -1.6475511
67      ZNF195       11_2 0.006533222 10.790621 2.051607e-07  1.1476065
9121        TH       11_2 0.019978909 22.182752 1.289756e-06  2.0988645
10704 KRTAP5-6       11_2 0.003565239  4.943416 5.129041e-08  0.1958622
      num_eqtl
926          2
9283         2
9505         1
10705        1
11154        1
3146         2
4092         1
11498        2
4091         2
7739         1
9430         1
2490         2
9483         1
9230         1
10684        1
264          1
67           2
9121         1
10704        1
[1] "SCARB1"
[1] "12_76"
     genename region_tag  susie_pip      mu2          PVE          z
783    SCARB1      12_76 0.01085499 6.677057 2.109282e-07 -1.3579091
6067      UBC      12_76 0.01625268 8.980081 4.247423e-07  0.9059691
989      AACS      12_76 0.01054104 4.949806 1.518419e-07 -0.1677513
     num_eqtl
783         1
6067        1
989         1
[1] "VDAC3"
[1] "8_37"
     genename region_tag  susie_pip       mu2          PVE           z
726     AP3M2       8_37 0.01099514  4.890908 1.564986e-07  0.05910212
1883     PLAT       8_37 0.01118234  5.056476 1.645511e-07  0.21579258
916     VDAC3       8_37 0.02413724 12.620228 8.864927e-07 -1.36061259
7956  SLC20A2       8_37 0.01109030  4.975420 1.605807e-07 -0.16025834
8800   SMIM19       8_37 0.01541142  8.205119 3.679999e-07 -0.94189615
4214    THAP1       8_37 0.01141163  5.255561 1.745368e-07  0.37945049
7904    HOOK3       8_37 0.04227812 18.165690 2.235053e-06  1.92228894
3375   RNF170       8_37 0.04227812 18.165690 2.235053e-06  1.92228894
     num_eqtl
726         2
1883        1
916         1
7956        1
8800        1
4214        2
7904        1
3375        1
[1] "LRP2"
[1] "2_103"
      genename region_tag  susie_pip       mu2          PVE           z
985       LRP2      2_103 0.02559175  7.604825 5.663821e-07  0.79845416
7037      BBS5      2_103 0.02709222  8.167116 6.439225e-07  0.88589081
11043   KLHL41      2_103 0.02017266  5.260063 3.087980e-07 -0.32742036
4983   FASTKD1      2_103 0.02950679  9.010327 7.737182e-07  0.94743244
4982      PPIG      2_103 0.03453530 10.566877 1.062014e-06 -1.42103959
6339   CCDC173      2_103 0.03411324 10.445052 1.036941e-06 -1.48870855
10748   KLHL23      2_103 0.05164323 14.564571 2.188928e-06  1.87611424
5600  PHOSPHO2      2_103 0.02029781  5.320945 3.143100e-07  0.29104367
4980       SSB      2_103 0.03566095 10.884620 1.129605e-06  1.22773041
4979    METTL5      2_103 0.01946597  4.909079 2.780971e-07  0.11571328
5599      UBR3      2_103 0.01946824  4.910225 2.781944e-07  0.07450539
      num_eqtl
985          1
7037         1
11043        1
4983         1
4982         2
6339         2
10748        2
5600         1
4980         1
4979         1
5599         1
[1] "CETP"
[1] "16_31"
      genename region_tag   susie_pip        mu2          PVE          z
1124     GNAO1      16_31 0.003680345   6.124133 6.559239e-08 -0.5287206
6691      AMFR      16_31 0.004455057   7.447171 9.655281e-08 -0.1575098
7705    NUDT21      16_31 0.003829329   6.775611 7.550773e-08 -0.7871671
3680      BBS2      16_31 0.025655051  23.674546 1.767563e-06 -1.9394865
1122       MT3      16_31 0.003370911   5.268538 5.168418e-08  0.2341288
8089      MT1E      16_31 0.003486220   5.678848 5.761497e-08  0.5732896
10677     MT1M      16_31 0.004949659  11.987867 1.726782e-07  2.0216456
10675     MT1A      16_31 0.004504360   9.827193 1.288199e-07  1.4769985
10351     MT1F      16_31 0.133151024  38.128561 1.477458e-05 -2.7354541
9777      MT1X      16_31 0.003219809   5.046597 4.728779e-08 -0.4099722
1740     NUP93      16_31 0.025824258  24.687813 1.855371e-06  2.2052448
438    HERPUD1      16_31 0.007473568  25.191845 5.479088e-07  3.8902988
1120      CETP      16_31 0.061035840 119.998320 2.131476e-05 10.0796427
5238     NLRC5      16_31 0.095295432 158.412454 4.393207e-05 11.8602110
5237     CPNE2      16_31 0.003422601   5.468307 5.446649e-08  0.2383750
8465   FAM192A      16_31 0.003574084   6.203467 6.452375e-08 -0.7860456
6694    RSPRY1      16_31 0.004967032  11.139485 1.610209e-07 -1.8323801
1745      PLLP      16_31 0.020108368  25.147676 1.471618e-06 -2.6643131
81      CX3CL1      16_31 0.003492670   6.156490 6.257646e-08 -0.8286220
1747     CCL17      16_31 0.005159967   8.978459 1.348246e-07  0.7431888
52     CIAPIN1      16_31 0.010907464  17.620765 5.593309e-07 -1.8832189
1154      COQ9      16_31 0.004741912   8.556702 1.180810e-07 -0.8460399
3684      DOK4      16_31 0.004203656   7.862653 9.618703e-08 -0.9949426
4626  CCDC102A      16_31 0.003370930   5.408918 5.306161e-08  0.4189398
10672   ADGRG1      16_31 0.010880124  16.757261 5.305877e-07 -1.6283995
6684     CES5A      16_31 0.003276383   5.494043 5.238501e-08 -0.6992828
9341    ADGRG3      16_31 0.005630543  10.347419 1.695519e-07 -1.0805254
5239    KATNB1      16_31 0.024172334  24.568869 1.728320e-06 -2.0992094
5240     KIFC3      16_31 0.030404275  26.810501 2.372247e-06 -2.2243116
7566    ZNF319      16_31 0.003246301   4.967501 4.692962e-08  0.1401284
1754      USB1      16_31 0.003374732   5.346878 5.251216e-08  0.3145636
1753     MMP15      16_31 0.009983046  15.939584 4.630846e-07 -1.5466217
729     CFAP20      16_31 0.003282951   5.076654 4.850230e-08  0.2120079
730    CSNK2A2      16_31 0.003293683   5.112437 4.900383e-08 -0.1989588
9256     GINS3      16_31 0.004209944   7.512376 9.203943e-08 -0.7366718
1757     NDRG4      16_31 0.003261510   5.013618 4.758722e-08  0.1679672
3679     CNOT1      16_31 0.036250819  28.163934 2.971197e-06 -2.5789307
1759   SLC38A7      16_31 0.005992823  10.896632 1.900396e-07  1.2166483
3683      GOT2      16_31 0.024271457  24.401175 1.723562e-06  2.2579371
      num_eqtl
1124         1
6691         1
7705         2
3680         2
1122         1
8089         1
10677        1
10675        2
10351        1
9777         1
1740         2
438          2
1120         1
5238         1
5237         1
8465         1
6694         1
1745         2
81           1
1747         1
52           2
1154         2
3684         2
4626         2
10672        3
6684         2
9341         1
5239         2
5240         1
7566         1
1754         1
1753         1
729          2
730          2
9256         2
1757         1
3679         2
1759         1
3683         2
[1] "PLTP"
[1] "20_28"
      genename region_tag   susie_pip       mu2          PVE           z
6004      JPH2      20_28 0.002107909  4.965733 3.046180e-08  0.34475118
4307     OSER1      20_28 0.002499552  6.627864 4.821210e-08 -0.75955007
10183    FITM2      20_28 0.002173406  7.622494 4.821234e-08  1.70850449
4308   SERINC3      20_28 0.004135425 10.810424 1.301017e-07  1.05515959
7969      PKIG      20_28 0.013194569 20.381402 7.826175e-07 -1.92973723
10117      ADA      20_28 0.002159902  6.275170 3.944390e-08 -1.11873945
3615    KCNK15      20_28 0.002607530  6.793455 5.155139e-08 -0.46584654
7686     YWHAB      20_28 0.002932901  7.880371 6.726116e-08  0.92140948
292     TOMM34      20_28 0.002143561  5.178177 3.230227e-08 -0.21559970
1617      STK4      20_28 0.002301388  5.788528 3.876843e-08 -0.65248556
3588      SLPI      20_28 0.002485549  6.364733 4.603868e-08 -0.56680056
3613     RBPJL      20_28 0.005308415 13.931448 2.152194e-07  1.21973824
3594     MATN4      20_28 0.002270332  5.509852 3.640405e-08 -0.72142554
3591      SDC4      20_28 0.625955627 23.902800 4.354243e-05 -3.92072709
10520     SYS1      20_28 0.002114007  4.927588 3.031525e-08 -0.53036749
11155   DBNDD2      20_28 0.002585244  7.573187 5.697713e-08  0.76276385
3616   TP53TG5      20_28 0.002326945  7.074786 4.790930e-08 -1.22434355
3589     WFDC3      20_28 0.002834388 12.643380 1.042900e-07  0.89942952
1683   DNTTIP1      20_28 0.010960848 17.310755 5.521797e-07  1.67362043
8688     UBE2C      20_28 0.003185034 10.090203 9.352641e-08 -1.29063071
3587     SNX21      20_28 0.032689020 29.670586 2.822593e-06 -2.25095415
1685     ACOT8      20_28 0.002774416  8.295233 6.697621e-08  0.46314131
7959    ZSWIM1      20_28 0.298972256 30.799682 2.679769e-05 -0.64131988
1597      PLTP      20_28 0.988328266 61.285277 1.762697e-04 -5.73249075
1598     PCIF1      20_28 0.002142542 21.226255 1.323497e-07  2.96018585
10296   ZNF335      20_28 0.002202296  5.272123 3.378949e-08  0.03190689
1600      MMP9      20_28 0.008157296 18.066459 4.288837e-07  1.76632544
3595     NCOA5      20_28 0.003843563 10.749396 1.202371e-07  1.06921473
1608      CD40      20_28 0.006407653 14.133128 2.635467e-07 -1.05986939
      num_eqtl
6004         1
4307         2
10183        1
4308         2
7969         1
10117        1
3615         2
7686         1
292          1
1617         1
3588         2
3613         1
3594         1
3591         1
10520        1
11155        1
3616         2
3589         1
1683         2
8688         1
3587         1
1685         2
7959         1
1597         1
1598         1
10296        1
1600         1
3595         1
1608         1
[1] "VAPA"
[1] "18_7"
      genename region_tag   susie_pip       mu2          PVE           z
10717    RAB12       18_7 0.006636761  4.954209 9.568652e-08  0.12307404
8965    NDUFV2       18_7 0.018357223 14.933989 7.978167e-07  1.42705574
1703   ANKRD12       18_7 0.008766145  7.679572 1.959142e-07 -0.88970104
240     RALBP1       18_7 0.010329569  9.288103 2.792091e-07  1.17137395
7942     RAB31       18_7 0.006596708  4.894949 9.397141e-08 -0.03549012
1691      VAPA       18_7 0.007815922  6.555594 1.491120e-07  0.65728943
4444      NAPG       18_7 0.008587255  7.477549 1.868676e-07  0.86713591
      num_eqtl
10717        1
8965         2
1703         2
240          1
7942         2
1691         1
4444         2
[1] "KPNB1"
[1] "17_27"
      genename region_tag   susie_pip       mu2          PVE           z
8491     DCAKD      17_27 0.008537839  5.147164 1.278899e-07 -0.15093721
6674  ARHGAP27      17_27 0.011000430  7.665166 2.453870e-07  1.03438725
10949  PLEKHM1      17_27 0.008407479  4.920681 1.203958e-07  0.03569373
3310    KANSL1      17_27 0.008594611  5.326695 1.332307e-07 -0.08580432
9745      MAPT      17_27 0.009293840  5.874721 1.588922e-07 -0.72635506
8835   LRRC37A      17_27 0.009538089  5.928930 1.645728e-07 -0.35529825
11035 LRRC37A2      17_27 0.015878364 10.674543 4.932594e-07  2.39235673
9637    ARL17A      17_27 0.010681031  7.314914 2.273750e-07  1.91468530
802        NSF      17_27 0.012659609 10.456506 3.852363e-07 -2.06053407
2301      WNT3      17_27 0.017312295 13.098574 6.599317e-07 -1.55730420
2310     GOSR2      17_27 0.022779510 13.629088 9.035069e-07  1.29704343
41       CDC27      17_27 0.009249028  8.406503 2.262725e-07 -1.62384444
11302    ITGB3      17_27 0.010390411  8.877383 2.684343e-07 -1.54695220
9025   EFCAB13      17_27 0.019832422 75.205023 4.340531e-06  8.44569556
5279    NPEPPS      17_27 0.012656296 16.202775 5.967828e-07 -3.02425642
2309     KPNB1      17_27 0.134099378 94.442341 3.685648e-05 -9.79048644
10475   TBKBP1      17_27 0.018313364 89.453656 4.767454e-06 -9.31875195
      num_eqtl
8491         1
6674         2
10949        1
3310         1
9745         1
8835         1
11035        1
9637         2
802          1
2301         1
2310         2
41           1
11302        2
9025         4
5279         1
2309         2
10475        2
[1] "ALDH2"
[1] "12_67"
      genename region_tag  susie_pip       mu2          PVE          z
5110      TCHP      12_67 0.02861095 13.930251 1.159876e-06 -1.4894537
5109      GIT2      12_67 0.02583750 13.672579 1.028067e-06 -1.7413096
8630  C12orf76      12_67 0.01171724  6.863512 2.340411e-07 -1.0008849
3515     IFT81      12_67 0.01010617  5.540653 1.629551e-07 -1.0591835
10062   ANAPC7      12_67 0.01119440  6.499880 2.117515e-07 -1.0505294
2531     ARPC3      12_67 0.01379577  8.148617 3.271525e-07  1.1143107
10638  FAM216A      12_67 0.01056511  5.605584 1.723516e-07 -0.6987263
2532      GPN3      12_67 0.01321618  8.492523 3.266351e-07 -1.4783205
2533     VPS29      12_67 0.01330878  8.569038 3.318874e-07  1.4871406
10637    TCTN1      12_67 0.03129890 16.854133 1.535168e-06  2.1771229
3517     HVCN1      12_67 0.01040318  5.647592 1.709817e-07 -0.8757995
9690    PPP1CC      12_67 0.01015044  5.258568 1.553362e-07  0.7231339
10340  FAM109A      12_67 0.01020038  5.852796 1.737401e-07  0.8704329
2536     SH2B3      12_67 0.08037262 57.471917 1.344263e-05 -7.8354247
10634    ATXN2      12_67 0.04987002 18.564121 2.694227e-06 -0.7777805
2541     ALDH2      12_67 0.02384309 32.739341 2.271710e-06 -6.4436064
10335  TMEM116      12_67 0.04333216 32.143343 4.053420e-06  5.8049447
1191     ERP29      12_67 0.04333216 32.143343 4.053420e-06 -5.8049447
2544     NAA25      12_67 0.04722809 33.220814 4.565948e-06  5.8544343
8497    HECTD4      12_67 0.04859386 34.103125 4.822763e-06 -5.8468005
9066    PTPN11      12_67 0.01341448 10.394694 4.057942e-07  2.2253869
      num_eqtl
5110         2
5109         2
8630         1
3515         2
10062        1
2531         1
10638        1
2532         1
2533         1
10637        1
3517         1
9690         1
10340        1
2536         1
10634        1
2541         1
10335        1
1191         1
2544         1
8497         2
9066         1
[1] "APOA1"
[1] "11_70"
     genename region_tag   susie_pip        mu2          PVE           z
4866    BUD13      11_70 0.006652541  36.783048 7.121239e-07   4.1152798
3154    APOA1      11_70 0.004977961   6.666250 9.657248e-08   1.1245588
7893 PAFAH1B2      11_70 0.005808001  12.283372 2.076178e-07   1.5109282
6002    SIDT2      11_70 0.004820577   5.460637 7.660597e-08   0.5010452
6003    TAGLN      11_70 0.005362219  18.452406 2.879505e-07  -1.5544477
6781    PCSK7      11_70 0.014838164  16.385549 7.075571e-07   0.9793569
7740   RNF214      11_70 0.005570582   6.561488 1.063710e-07  -0.5246893
2466   CEP164      11_70 0.005433415   5.756802 9.102789e-08  -0.3009496
9693    BACE1      11_70 0.005211448  21.012388 3.186795e-07  -4.1370626
4879    FXYD2      11_70 0.005442460   6.097671 9.657831e-08  -0.3686949
2465    APOA5      11_70 0.035870809 144.172605 1.505027e-05 -11.3599104
     num_eqtl
4866        1
3154        2
7893        2
6002        1
6003        1
6781        1
7740        1
2466        2
9693        1
4879        2
2465        1
[1] "STARD3"
[1] "17_23"
       genename region_tag  susie_pip       mu2          PVE           z
11416      EPOP      17_23 0.01018521  4.903822 1.453533e-07  0.10212845
11473     PSMB3      17_23 0.03817701 17.916116 1.990518e-06  1.86851784
11459   PIP4K2B      17_23 0.01563066  9.107067 4.142629e-07 -1.00157125
11415     CWC25      17_23 0.01833844 10.677720 5.698508e-07  1.12510751
16        LASP1      17_23 0.04794980 20.180461 2.816036e-06  2.06384703
11341 LINC00672      17_23 0.27951704 38.437288 3.126665e-05  3.44802187
6844     PLXDC1      17_23 0.01198571  6.500264 2.267332e-07 -0.56588683
2297     FBXL20      17_23 0.02215547 12.539130 8.084787e-07  1.93901635
3730       MED1      17_23 0.01680737  9.820512 4.803461e-07 -1.61159879
4201     STARD3      17_23 0.01028412  4.998572 1.496006e-07 -0.23742268
8592       TCAP      17_23 0.01400054  8.025340 3.269855e-07  1.04770013
5341       PNMT      17_23 0.01489305  8.632261 3.741350e-07 -1.18214485
5339      ERBB2      17_23 0.02213027 12.527902 8.068361e-07 -2.05698477
6845      PGAP3      17_23 0.02343016 13.090312 8.925766e-07 -2.32009373
5340       GRB7      17_23 0.01345768  7.637105 2.991020e-07  1.40133264
6846      IKZF3      17_23 0.15668196 32.204437 1.468436e-05  3.46618563
8383     ORMDL3      17_23 0.03165120 16.059570 1.479260e-06  2.65535738
7855      GSDMA      17_23 0.03283868 16.423911 1.569577e-06  2.76336370
2299       CSF3      17_23 0.09690912 27.253871 7.686226e-06 -3.20456334
3799      NR1D1      17_23 0.01377690  7.867158 3.154202e-07  0.81175389
9934       MSL1      17_23 0.01289194  7.215508 2.707108e-07  0.98720359
2300   RAPGEFL1      17_23 0.01520668  8.836884 3.910696e-07  0.89662465
8311      WIPF2      17_23 0.01016244  4.881877 1.443793e-07 -0.18486875
1306       CDC6      17_23 0.01187807  6.411711 2.216359e-07  0.39474659
5342     IGFBP4      17_23 0.01226133  6.723295 2.399055e-07 -0.57588470
4200       TNS4      17_23 0.01016579  4.885106 1.445224e-07  0.02859681
3798       CCR7      17_23 0.01107772  5.727480 1.846437e-07 -0.44220762
793     SMARCE1      17_23 0.01030264  5.016211 1.503989e-07 -0.19593698
10766    KRT222      17_23 0.01019958  4.917649 1.459689e-07  0.11407193
      num_eqtl
11416        2
11473        2
11459        1
11415        3
16           1
11341        2
6844         1
2297         1
3730         2
4201         2
8592         1
5341         2
5339         2
6845         2
5340         3
6846         1
8383         2
7855         2
2299         1
3799         1
9934         1
2300         1
8311         2
1306         2
5342         1
4200         1
3798         1
793          2
10766        1
[1] "PPARG"
[1] "3_9"
      genename region_tag   susie_pip       mu2          PVE          z
10217     ATG7        3_9 0.006541037 10.944865 2.083422e-07  1.3918010
5613    TAMM41        3_9 0.004960988  9.627578 1.389970e-07  1.3248879
6513     TIMP4        3_9 0.005839052  8.105019 1.377262e-07  0.2250754
4230     PPARG        3_9 0.003416012 10.864993 1.080113e-07 -2.5953663
6358     TSEN2        3_9 0.039134019 29.600460 3.371112e-06  4.4713068
856      MKRN2        3_9 0.007489997 16.012033 3.490185e-07 -3.6699820
10950  MKRN2OS        3_9 0.035819464 27.327393 2.848640e-06 -4.6283852
4229      RAF1        3_9 0.003267551  5.476745 5.207930e-08  0.8372135
5630     CAND2        3_9 0.025259009 27.528115 2.023546e-06 -3.2762482
5631     RPL32        3_9 0.003949139  6.790413 7.804031e-08 -0.6189583
      num_eqtl
10217        2
5613         3
6513         1
4230         1
6358         1
856          2
10950        2
4229         1
5630         1
5631         2
[1] "LPIN3"
[1] "20_25"
      genename region_tag   susie_pip      mu2          PVE          z
10463     TOP1      20_25 0.014224219 20.16234 8.346218e-07 -3.5381597
3599     PLCG1      20_25 0.025435828 13.39397 9.914604e-07  0.3851962
8619      ZHX3      20_25 0.008823486 12.74128 3.271700e-07 -2.7679026
4305     LPIN3      20_25 0.013590714 48.47867 1.917402e-06  6.7056744
9438   EMILIN3      20_25 0.022265516 95.31972 6.176405e-06  9.5886863
3598      CHD6      20_25 0.011599040 11.60400 3.916967e-07 -2.2478722
      num_eqtl
10463        2
3599         2
8619         1
4305         2
9438         2
3598         1
[1] "FADS2"
[1] "11_34"
           genename region_tag   susie_pip        mu2          PVE
9952        FAM111B      11_34 0.005230053   4.999695 7.609741e-08
7657        FAM111A      11_34 0.008453083   9.507167 2.338765e-07
2444           DTX4      11_34 0.005252939   5.057754 7.731796e-08
10233         MPEG1      11_34 0.005322465   5.240237 8.116785e-08
7679          PATL1      11_34 0.073452043  30.302161 6.477356e-06
7682           STX3      11_34 0.005241213   5.031822 7.674983e-08
7683         MRPL16      11_34 0.008509679   9.459980 2.342738e-07
5994          MS4A2      11_34 0.009775964  10.827149 3.080307e-07
2453         MS4A6A      11_34 0.005825609   5.969181 1.011990e-07
10858        MS4A4E      11_34 0.006663000   7.495673 1.453452e-07
7692          MS4A7      11_34 0.005289681   5.213120 8.025045e-08
7693         MS4A14      11_34 0.027433830  20.813367 1.661686e-06
2455         CCDC86      11_34 0.005830781   6.003373 1.018691e-07
2456         PRPF19      11_34 0.010429551  12.016570 3.647257e-07
2457        TMEM109      11_34 0.011780592  12.997879 4.456151e-07
2480        SLC15A3      11_34 0.005538267   6.053225 9.756208e-08
2481            CD5      11_34 0.005319157   5.293454 8.194119e-08
7869         VPS37C      11_34 0.006080449   6.175346 1.092741e-07
7870           VWCE      11_34 0.005401244   5.523350 8.681937e-08
6898       CYB561A3      11_34 0.006860145  10.058732 2.008153e-07
5987        TMEM138      11_34 0.006860145  10.058732 2.008153e-07
9761        TMEM216      11_34 0.005162902   4.937297 7.418283e-08
5993          CPSF7      11_34 0.005909651   9.746807 1.676272e-07
11272 RP11-286N22.8      11_34 0.005698965   5.836942 9.680587e-08
6899        PPP1R32      11_34 0.006247655   6.494796 1.180872e-07
4506        TMEM258      11_34 0.014008032 118.454371 4.828904e-06
7950           FEN1      11_34 0.006053442 144.303483 2.542140e-06
4505          FADS2      11_34 0.006053442 144.303483 2.542140e-06
5988          FADS1      11_34 0.999840450 163.462911 4.756311e-04
10926         FADS3      11_34 0.011442055  21.240847 7.072878e-07
7871          BEST1      11_34 0.005602649  18.935563 3.087393e-07
5991         INCENP      11_34 0.005219317   5.857239 8.896658e-08
6900         ASRGL1      11_34 0.005308929   5.188641 8.016427e-08
1196          GANAB      11_34 0.006009233  69.921655 1.222788e-06
                 z num_eqtl
9952   -0.13037299        1
7657    0.90603922        2
2444    0.25803323        2
10233   0.28885901        1
7679    3.33481738        2
7682   -0.11158533        2
7683    1.12142967        2
5994   -1.13520665        1
2453    0.54425280        1
10858   0.84824716        1
7692   -0.33913351        2
7693   -1.82545467        3
2455   -0.45273095        3
2456    1.43277325        2
2457    1.42183198        1
2480    0.82141077        1
2481    0.34613847        1
7869    0.02401413        1
7870   -0.54063901        2
6898   -1.78280456        1
5987   -1.78280456        1
9761   -0.22016462        2
5993   -2.06104458        1
11272  -0.42704781        1
6899   -0.38265325        1
4506  -10.56344602        2
7950   12.07263520        1
4505   12.07263520        1
5988   12.92635131        2
10926   3.28941682        1
7871   -3.74480413        1
5991   -0.91700127        2
6900   -0.25008439        1
1196   -8.20472330        1
[1] "CD36"
[1] "7_51"
     genename region_tag  susie_pip      mu2          PVE          z
4555     CD36       7_51 0.01196963 5.094144 1.774485e-07 -0.2565559
830    SEMA3C       7_51 0.01675306 8.395701 4.093281e-07 -0.9287340
     num_eqtl
4555        1
830         2
[1] "CYP27A1"
[1] "2_129"
      genename region_tag   susie_pip       mu2          PVE           z
3880      VIL1      2_129 0.728801050 27.029713 5.732852e-05  4.72553123
9866     RUFY4      2_129 0.012879444  8.808556 3.301582e-07  0.99185402
9168     CXCR2      2_129 0.020992113 12.178006 7.439652e-07 -1.47518963
7085     CXCR1      2_129 0.010225421  6.010540 1.788607e-07  0.56376400
7086     ARPC2      2_129 0.035671069 16.996639 1.764410e-06 -1.94043222
3881      AAMP      2_129 0.042913328 18.224155 2.275935e-06 -1.90836173
3882      PNKD      2_129 0.060507483 21.638124 3.810211e-06 -2.20803733
4653    TMBIM1      2_129 0.047236891 19.107269 2.626638e-06 -1.95759457
243    SLC11A1      2_129 0.009440865  5.223569 1.435157e-07  0.05100451
4647     USP37      2_129 0.093241880 22.409778 6.080914e-06 -4.24456021
5616     CNOT9      2_129 0.019370515 17.648846 9.948962e-07  3.65097314
2934     PLCD4      2_129 0.022267068 18.195333 1.179080e-06 -3.71953627
813      BCS1L      2_129 0.009574317  6.002949 1.672603e-07 -0.95838574
2936    ZNF142      2_129 0.009497431  5.899208 1.630497e-07  0.93284395
7090     STK36      2_129 0.025230832 18.552605 1.362250e-06  3.84018758
4654   CYP27A1      2_129 0.009725369 10.748809 3.042193e-07  2.42017817
9812     NHEJ1      2_129 0.019281911 12.828405 7.198517e-07  1.61496057
10802  SLC23A3      2_129 0.011206026  6.606940 2.154628e-07  0.30848047
5615   FAM134A      2_129 0.026624877 14.690281 1.138251e-06 -1.33896546
2941    CNPPD1      2_129 0.012233891  7.729087 2.751776e-07 -0.77342844
2943     ABCB6      2_129 0.030364761 17.077567 1.509094e-06  1.84732093
10472    ATG9A      2_129 0.014520996  9.689626 4.094715e-07 -1.13410218
7096    ANKZF1      2_129 0.015258154 10.196318 4.527575e-07 -1.19578441
7099     GLB1L      2_129 0.009692858  5.433198 1.532596e-07 -0.12917630
3879    TUBA4A      2_129 0.011254857  6.857535 2.246096e-07 -0.56762321
4652    DNAJB2      2_129 0.010038875  5.829811 1.703177e-07 -0.48915334
3580     DNPEP      2_129 0.029447334 16.617292 1.424054e-06  1.83761320
8690       DES      2_129 0.039487998 19.519226 2.243097e-06  2.01667108
758       SPEG      2_129 0.009260584  5.084387 1.370242e-07  0.08326323
5618     GMPPA      2_129 0.011615626  7.309730 2.470952e-07 -0.73851578
3579      CHPF      2_129 0.009707377  5.610909 1.585095e-07  0.41418410
3582     OBSL1      2_129 0.016058970 10.841088 5.066533e-07 -1.30597047
      num_eqtl
3880         1
9866         2
9168         1
7085         1
7086         1
3881         1
3882         1
4653         2
243          1
4647         3
5616         1
2934         1
813          1
2936         1
7090         2
4654         2
9812         2
10802        1
5615         1
2941         2
2943         1
10472        1
7096         2
7099         1
3879         1
4652         1
3580         2
8690         1
758          1
5618         1
3579         1
3582         1
[1] "NPC1"
[1] "18_12"
     genename region_tag  susie_pip       mu2          PVE           z
4475  CABLES1      18_12 0.01203878  5.045878 1.767826e-07 -0.14555775
4474  TMEM241      18_12 0.04948340 18.995965 2.735528e-06 -2.20305576
1708    RIOK3      18_12 0.02437324 11.981659 8.498661e-07 -1.34902775
5302  C18orf8      18_12 0.03470221 15.472324 1.562546e-06  1.82260744
5304     NPC1      18_12 0.07023047 22.499461 4.598519e-06 -2.39576123
454     LAMA3      18_12 0.01234690  5.293825 1.902163e-07  0.29544812
7909   TTC39C      18_12 0.04568030 18.200584 2.419550e-06  1.78807801
6307    CABYR      18_12 0.01184021  4.882709 1.682444e-07 -0.02760888
     num_eqtl
4475        1
4474        2
1708        1
5302        2
5304        1
454         2
7909        3
6307        1
[1] "ABCG8"
[1] "2_27"
        genename region_tag    susie_pip        mu2          PVE
5561       ABCG8       2_27 9.999453e-01 312.107672 9.082407e-04
2977       THADA       2_27 4.359515e-06  10.359815 1.314348e-10
6205     PLEKHH2       2_27 9.275146e-06  16.508012 4.455904e-10
10938 C1GALT1C1L       2_27 4.474559e-06  23.567595 3.068922e-10
4928    DYNC2LI1       2_27 9.683211e-07   8.220022 2.316395e-11
4941      LRPPRC       2_27 2.859681e-06  12.543645 1.043907e-10
                 z num_eqtl
5561  -20.29398177        1
2977   -3.41430719        2
6205   -3.06205348        2
10938   3.29570848        2
4928   -0.02538894        1
4941   -0.91853212        1
[1] "NCEH1"
[1] "3_106"
     genename region_tag  susie_pip      mu2          PVE          z
5659    NCEH1      3_106 0.01344703 6.991451 2.735986e-07 -0.6532732
     num_eqtl
5659        1
[1] "STAR"
[1] "8_34"
     genename region_tag   susie_pip       mu2          PVE           z
5840    PROSC       8_34 0.018642599 12.394580 6.724478e-07 -1.18549708
4028    ASH2L       8_34 0.065427022 24.841934 4.730019e-06 -2.41270520
5839     STAR       8_34 0.077291410 26.518198 5.964795e-06 -2.50033778
8718     LSM1       8_34 0.008673304  4.884046 1.232777e-07  0.14152273
5847     NSD3       8_34 0.008685005  4.897256 1.237779e-07 -0.11421813
7406    LETM2       8_34 0.008806895  5.033817 1.290151e-07 -0.20655525
900     FGFR1       8_34 0.013741227  9.396794 3.757729e-07 -0.93406568
5843    TACC1       8_34 0.008688154  4.900804 1.239125e-07  0.04672639
8063  PLEKHA2       8_34 0.023527592 14.686389 1.005571e-06  1.82472982
8062    TM2D2       8_34 0.013381689  9.136392 3.558000e-07  0.88816290
7960    ADAM9       8_34 0.215530632 37.144005 2.329797e-05  3.07367713
     num_eqtl
5840        1
4028        1
5839        1
8718        1
5847        2
7406        2
900         1
5843        2
8063        1
8062        2
7960        2
[1] "FADS1"
[1] "11_34"
           genename region_tag   susie_pip        mu2          PVE
9952        FAM111B      11_34 0.005230053   4.999695 7.609741e-08
7657        FAM111A      11_34 0.008453083   9.507167 2.338765e-07
2444           DTX4      11_34 0.005252939   5.057754 7.731796e-08
10233         MPEG1      11_34 0.005322465   5.240237 8.116785e-08
7679          PATL1      11_34 0.073452043  30.302161 6.477356e-06
7682           STX3      11_34 0.005241213   5.031822 7.674983e-08
7683         MRPL16      11_34 0.008509679   9.459980 2.342738e-07
5994          MS4A2      11_34 0.009775964  10.827149 3.080307e-07
2453         MS4A6A      11_34 0.005825609   5.969181 1.011990e-07
10858        MS4A4E      11_34 0.006663000   7.495673 1.453452e-07
7692          MS4A7      11_34 0.005289681   5.213120 8.025045e-08
7693         MS4A14      11_34 0.027433830  20.813367 1.661686e-06
2455         CCDC86      11_34 0.005830781   6.003373 1.018691e-07
2456         PRPF19      11_34 0.010429551  12.016570 3.647257e-07
2457        TMEM109      11_34 0.011780592  12.997879 4.456151e-07
2480        SLC15A3      11_34 0.005538267   6.053225 9.756208e-08
2481            CD5      11_34 0.005319157   5.293454 8.194119e-08
7869         VPS37C      11_34 0.006080449   6.175346 1.092741e-07
7870           VWCE      11_34 0.005401244   5.523350 8.681937e-08
6898       CYB561A3      11_34 0.006860145  10.058732 2.008153e-07
5987        TMEM138      11_34 0.006860145  10.058732 2.008153e-07
9761        TMEM216      11_34 0.005162902   4.937297 7.418283e-08
5993          CPSF7      11_34 0.005909651   9.746807 1.676272e-07
11272 RP11-286N22.8      11_34 0.005698965   5.836942 9.680587e-08
6899        PPP1R32      11_34 0.006247655   6.494796 1.180872e-07
4506        TMEM258      11_34 0.014008032 118.454371 4.828904e-06
7950           FEN1      11_34 0.006053442 144.303483 2.542140e-06
4505          FADS2      11_34 0.006053442 144.303483 2.542140e-06
5988          FADS1      11_34 0.999840450 163.462911 4.756311e-04
10926         FADS3      11_34 0.011442055  21.240847 7.072878e-07
7871          BEST1      11_34 0.005602649  18.935563 3.087393e-07
5991         INCENP      11_34 0.005219317   5.857239 8.896658e-08
6900         ASRGL1      11_34 0.005308929   5.188641 8.016427e-08
1196          GANAB      11_34 0.006009233  69.921655 1.222788e-06
                 z num_eqtl
9952   -0.13037299        1
7657    0.90603922        2
2444    0.25803323        2
10233   0.28885901        1
7679    3.33481738        2
7682   -0.11158533        2
7683    1.12142967        2
5994   -1.13520665        1
2453    0.54425280        1
10858   0.84824716        1
7692   -0.33913351        2
7693   -1.82545467        3
2455   -0.45273095        3
2456    1.43277325        2
2457    1.42183198        1
2480    0.82141077        1
2481    0.34613847        1
7869    0.02401413        1
7870   -0.54063901        2
6898   -1.78280456        1
5987   -1.78280456        1
9761   -0.22016462        2
5993   -2.06104458        1
11272  -0.42704781        1
6899   -0.38265325        1
4506  -10.56344602        2
7950   12.07263520        1
4505   12.07263520        1
5988   12.92635131        2
10926   3.28941682        1
7871   -3.74480413        1
5991   -0.91700127        2
6900   -0.25008439        1
1196   -8.20472330        1
[1] "VDAC2"
[1] "10_49"
     genename region_tag  susie_pip       mu2          PVE          z
8451    AGAP5      10_49 0.02165522 12.214362 7.697571e-07 -1.3182844
3503     PLAU      10_49 0.03058326 15.620508 1.390270e-06 -1.6531888
9550    AP3M1      10_49 0.01031385  4.927143 1.478892e-07 -0.1414585
6442      ADK      10_49 0.01037661  4.986627 1.505854e-07  0.1803473
7471    VDAC2      10_49 0.09024570 26.429839 6.941308e-06  2.9474923
7472   COMTD1      10_49 0.08962445 26.359782 6.875252e-06  2.9437974
5933 C10orf11      10_49 0.18425564 33.812388 1.813080e-05  3.0743689
     num_eqtl
8451        1
3503        1
9550        1
6442        2
7471        1
7472        1
5933        2
[1] "LIPC"
[1] "15_26"
     genename region_tag   susie_pip       mu2          PVE          z
7542     LIPC      15_26 0.013962558 49.065101 1.993692e-06 -6.5522867
4903   ADAM10      15_26 0.005471476  5.670372 9.028932e-08  0.4794027
4887     SLTM      15_26 0.005349729  5.478484 8.529282e-08 -0.7158866
6532   RNF111      15_26 0.005101935  4.967219 7.375110e-08 -0.2997052
8379  LDHAL6B      15_26 0.005157052  5.066558 7.603872e-08 -0.4439394
     num_eqtl
7542        2
4903        2
4887        1
6532        1
8379        1
[1] "SOAT2"
[1] "12_33"
      genename region_tag  susie_pip       mu2          PVE          z
7829      KRT1      12_33 0.01567852  6.889690 3.143584e-07 -0.5707147
8183     KRT78      12_33 0.01297155  5.153721 1.945508e-07 -0.3499992
2519     KRT18      12_33 0.01872158  8.961866 4.882714e-07  1.0385365
8182      KRT8      12_33 0.04404145 17.068339 2.187626e-06  2.1131126
544      EIF4B      12_33 0.01286428  4.984951 1.866237e-07 -0.2219413
2521      TNS2      12_33 0.01872057  8.804345 4.796632e-07 -1.2384237
7833    SPRYD3      12_33 0.02314849 10.328944 6.958231e-07  1.3387675
7834    IGFBP6      12_33 0.01292706  5.031457 1.892840e-07 -0.5122792
7835     SOAT2      12_33 0.02789727 12.343617 1.002131e-06 -1.8512201
5136    ZNF740      12_33 0.08251081 22.538531 5.411987e-06  2.5490438
5131      CSAD      12_33 0.02523289 11.091233 8.144551e-07 -1.1787012
5129     ITGB7      12_33 0.01271637  4.882276 1.806782e-07  0.2090231
9308     MFSD5      12_33 0.03467391 13.190489 1.331018e-06  0.9418992
4593     ESPL1      12_33 0.01720185  8.895719 4.453245e-07  1.7545025
10674    PRR13      12_33 0.17278135 18.683714 9.394645e-06 -3.7752633
5122    TARBP2      12_33 0.02727360 13.254131 1.051996e-06 -3.0239203
4577    ATP5G2      12_33 0.01522674  9.290841 4.117012e-07  2.1099925
203   CALCOCO1      12_33 0.02924963 13.251956 1.128030e-06 -1.4132763
3549     SMUG1      12_33 0.01399419  5.840305 2.378503e-07  0.3968124
1308      CBX5      12_33 0.01458114  6.236418 2.646348e-07  0.6527662
      num_eqtl
7829         1
8183         1
2519         1
8182         1
544          1
2521         2
7833         1
7834         1
7835         1
5136         2
5131         1
5129         2
9308         2
4593         3
10674        1
5122         1
4577         2
203          1
3549         1
1308         1
[1] "CYP7A1"
[1] "8_45"
      genename region_tag   susie_pip      mu2          PVE         z
10870   UBXN2B       8_45 0.011377602 28.23908 9.350214e-07 -3.666411
7854    CYP7A1       8_45 0.006251936 73.18465 1.331542e-06 -7.392476
      num_eqtl
10870        3
7854         1
[1] "TNKS"
[1] "8_12"
     genename region_tag susie_pip     mu2          PVE        z num_eqtl
8523     TNKS       8_12 0.9910883 76.1339 0.0002195891 11.03856        2
[1] "ADH1B"
[1] "4_66"
      genename region_tag   susie_pip       mu2          PVE          z
7975    TSPAN5       4_66 0.017262300 11.439332 5.746715e-07 -1.2572843
6088     EIF4E       4_66 0.010870816  6.940185 2.195601e-07  0.9082871
7217    METAP1       4_66 0.008970777  5.108314 1.333607e-07 -0.1831346
8489      ADH6       4_66 0.011815663  7.841077 2.696212e-07  0.7476788
10084    ADH1B       4_66 0.016863224 11.283544 5.537407e-07 -1.1153042
11178    ADH1C       4_66 0.116830162 28.900685 9.826151e-06 -2.8777923
10026     ADH7       4_66 0.010555759 10.321300 3.170620e-07  1.9474674
5053      MTTP       4_66 0.012613520  8.051769 2.955615e-07 -0.7972018
5684   TRMT10A       4_66 0.013089394  9.084595 3.460552e-07 -1.1240076
      num_eqtl
7975         2
6088         1
7217         1
8489         2
10084        1
11178        3
10026        2
5053         1
5684         1
[1] "LPA"
[1] "6_104"
      genename region_tag    susie_pip       mu2          PVE          z
10399      LPA      6_104 5.024281e-06 33.189030 4.852760e-10  8.1196160
3449       PLG      6_104 8.044715e-06 24.683304 5.778754e-10  2.4097623
5797   SLC22A3      6_104 1.889484e-06 21.595986 1.187508e-10 -6.5929784
1074    MAP3K4      6_104 1.911126e-06  7.032457 3.911261e-11  0.7795492
      num_eqtl
10399        1
3449         1
5797         1
1074         1
[1] "VDAC1"
[1] "5_80"
        genename region_tag  susie_pip       mu2          PVE           z
7306       SEPT8       5_80 0.02604641 12.411970 9.408252e-07  1.30260276
7307     SHROOM1       5_80 0.01936669  9.492149 5.349832e-07  1.11359154
7308        GDF9       5_80 0.01211913  4.886537 1.723427e-07  0.03182872
760         AFF4       5_80 0.01772255  8.619424 4.445543e-07  1.02990725
6396     ZCCHC10       5_80 0.01227575  5.012529 1.790710e-07 -0.15509357
8211       HSPA4       5_80 0.01211357  4.882035 1.721050e-07 -0.07731051
2763     C5orf15       5_80 0.01295416  5.540408 2.088677e-07  0.41873673
10776      VDAC1       5_80 0.04629023 18.108042 2.439389e-06  1.82176093
978         TCF7       5_80 0.03244093 14.581078 1.376586e-06  1.55983246
2759        SKP1       5_80 0.02177126 10.644410 6.744123e-07 -1.31317545
2761      PPP2CA       5_80 0.02260341 11.013955 7.244987e-07  1.31332571
102        CDKL3       5_80 0.01515813  7.083195 3.124606e-07  0.87889673
3214       UBE2B       5_80 0.01515813  7.083195 3.124606e-07  0.87889673
11029 CDKN2AIPNL       5_80 0.02520522 12.088082 8.866826e-07 -1.20322848
7335       CAMLG       5_80 0.01212293  4.889615 1.725054e-07  0.10493598
9253     C5orf24       5_80 0.01223096  4.976660 1.771409e-07 -0.20162988
4281       PCBD2       5_80 0.01618208  7.725474 3.638143e-07  0.78727304
681        PITX1       5_80 0.01370518  6.093630 2.430419e-07  0.52096477
      num_eqtl
7306         1
7307         2
7308         1
760          1
6396         1
8211         2
2763         1
10776        1
978          1
2759         1
2761         2
102          1
3214         1
11029        2
7335         1
9253         1
4281         1
681          1
[1] "FADS3"
[1] "11_34"
           genename region_tag   susie_pip        mu2          PVE
9952        FAM111B      11_34 0.005230053   4.999695 7.609741e-08
7657        FAM111A      11_34 0.008453083   9.507167 2.338765e-07
2444           DTX4      11_34 0.005252939   5.057754 7.731796e-08
10233         MPEG1      11_34 0.005322465   5.240237 8.116785e-08
7679          PATL1      11_34 0.073452043  30.302161 6.477356e-06
7682           STX3      11_34 0.005241213   5.031822 7.674983e-08
7683         MRPL16      11_34 0.008509679   9.459980 2.342738e-07
5994          MS4A2      11_34 0.009775964  10.827149 3.080307e-07
2453         MS4A6A      11_34 0.005825609   5.969181 1.011990e-07
10858        MS4A4E      11_34 0.006663000   7.495673 1.453452e-07
7692          MS4A7      11_34 0.005289681   5.213120 8.025045e-08
7693         MS4A14      11_34 0.027433830  20.813367 1.661686e-06
2455         CCDC86      11_34 0.005830781   6.003373 1.018691e-07
2456         PRPF19      11_34 0.010429551  12.016570 3.647257e-07
2457        TMEM109      11_34 0.011780592  12.997879 4.456151e-07
2480        SLC15A3      11_34 0.005538267   6.053225 9.756208e-08
2481            CD5      11_34 0.005319157   5.293454 8.194119e-08
7869         VPS37C      11_34 0.006080449   6.175346 1.092741e-07
7870           VWCE      11_34 0.005401244   5.523350 8.681937e-08
6898       CYB561A3      11_34 0.006860145  10.058732 2.008153e-07
5987        TMEM138      11_34 0.006860145  10.058732 2.008153e-07
9761        TMEM216      11_34 0.005162902   4.937297 7.418283e-08
5993          CPSF7      11_34 0.005909651   9.746807 1.676272e-07
11272 RP11-286N22.8      11_34 0.005698965   5.836942 9.680587e-08
6899        PPP1R32      11_34 0.006247655   6.494796 1.180872e-07
4506        TMEM258      11_34 0.014008032 118.454371 4.828904e-06
7950           FEN1      11_34 0.006053442 144.303483 2.542140e-06
4505          FADS2      11_34 0.006053442 144.303483 2.542140e-06
5988          FADS1      11_34 0.999840450 163.462911 4.756311e-04
10926         FADS3      11_34 0.011442055  21.240847 7.072878e-07
7871          BEST1      11_34 0.005602649  18.935563 3.087393e-07
5991         INCENP      11_34 0.005219317   5.857239 8.896658e-08
6900         ASRGL1      11_34 0.005308929   5.188641 8.016427e-08
1196          GANAB      11_34 0.006009233  69.921655 1.222788e-06
                 z num_eqtl
9952   -0.13037299        1
7657    0.90603922        2
2444    0.25803323        2
10233   0.28885901        1
7679    3.33481738        2
7682   -0.11158533        2
7683    1.12142967        2
5994   -1.13520665        1
2453    0.54425280        1
10858   0.84824716        1
7692   -0.33913351        2
7693   -1.82545467        3
2455   -0.45273095        3
2456    1.43277325        2
2457    1.42183198        1
2480    0.82141077        1
2481    0.34613847        1
7869    0.02401413        1
7870   -0.54063901        2
6898   -1.78280456        1
5987   -1.78280456        1
9761   -0.22016462        2
5993   -2.06104458        1
11272  -0.42704781        1
6899   -0.38265325        1
4506  -10.56344602        2
7950   12.07263520        1
4505   12.07263520        1
5988   12.92635131        2
10926   3.28941682        1
7871   -3.74480413        1
5991   -0.91700127        2
6900   -0.25008439        1
1196   -8.20472330        1
[1] "APOC2"
[1] "19_32"
      genename region_tag susie_pip        mu2 PVE           z num_eqtl
6717    ZNF233      19_32         0 108.057904   0  -9.0705597        2
6718    ZNF235      19_32         0 105.786114   0  -9.2122953        1
538     ZNF112      19_32         0 146.110506   0  10.3860543        1
11373   ZNF285      19_32         0  14.598472   0   1.1285247        2
11479   ZNF229      19_32         0 120.884061   0  12.6270983        2
7755    ZNF180      19_32         0  37.584152   0  -4.4858272        3
781        PVR      19_32         0 165.830106   0  -6.1126994        2
9718  CEACAM19      19_32         0  61.973969   0   9.2937379        2
9782      BCAM      19_32         0 109.517128   0   4.6421318        1
4047   NECTIN2      19_32         0 109.144346   0   6.2726094        2
4049    TOMM40      19_32         0  25.428279   0  -1.4020544        1
4048      APOE      19_32         0  47.795350   0  -2.0092826        1
11016    APOC2      19_32         0  54.319893   0  -8.9816928        2
8225    ZNF296      19_32         0 111.433235   0   5.4593536        1
5375    GEMIN7      19_32         0 281.983786   0  14.0932174        2
104      MARK4      19_32         0  24.078173   0  -2.2463768        1
1930   PPP1R37      19_32         0 141.975229   0 -13.3753590        2
109   TRAPPC6A      19_32         0  30.349636   0   1.8816459        1
9959   BLOC1S3      19_32         0  11.079917   0   2.3014119        1
11497  EXOC3L2      19_32         0  25.565627   0  -1.3436507        1
1933       CKM      19_32         0  15.824857   0  -1.5738464        1
1937     ERCC2      19_32         0  11.397898   0   2.3273575        2
3143    CD3EAP      19_32         0  27.068183   0  -3.0806361        1
3737      FOSB      19_32         0  18.857038   0  -2.3658041        1
196      ERCC1      19_32         0  14.626679   0  -0.2091619        1
10800    PPM1N      19_32         0  31.275926   0   5.4808308        1
3740      RTN2      19_32         0  31.728332   0   5.5300783        1
3741      VASP      19_32         0  12.810715   0   1.8957985        1
3738      OPA3      19_32         0  13.510481   0  -0.4444358        2
1942      KLC3      19_32         0  10.288522   0   1.7718715        1
10801 CEACAM16      19_32         0   7.471532   0   1.8740580        1
11372    APOC4      19_32         0  50.783266   0   5.6977751        2
10892   IGSF23      19_32         0  12.688777   0   1.9670520        1
8895      GPR4      19_32         0  65.981391   0  -3.5802828        1
3739    SNRPD2      19_32         0  10.004620   0   1.0366923        1
189      QPCTL      19_32         0  24.433561   0  -2.0253056        2
1949      DMPK      19_32         0  20.480704   0  -1.8090245        1
9633      DMWD      19_32         0  19.559497   0  -1.7547946        1
3742     SYMPK      19_32         0   4.895048   0  -0.0525717        1
8798     MYPOP      19_32         0  21.177723   0   1.8490001        1
1963    CCDC61      19_32         0  27.221371   0   2.1648865        2
3628     HIF3A      19_32         0  20.496317   0  -1.8099296        2
190      PPP5C      19_32         0  13.408317   0   1.3374649        1
8068     CCDC8      19_32         0   7.452196   0   0.7343316        2
9259    PNMAL1      19_32         0  18.541969   0  -1.6928766        4
10636   PNMAL2      19_32         0   5.236359   0  -0.2727077        1
10987   PPP5D1      19_32         0   6.378447   0  -0.5603345        1
6722     CALM3      19_32         0  68.689319   0   3.6587617        2
#run APOE locus again using full SNPs
# focus <- "APOE"
# region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]
# 
# locus_plot(region_tag, label="TWAS", rerun_ctwas = T)
# 
# mtext(text=region_tag)
# 
# print(focus)
# print(region_tag)
# print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])

Locus Plots - False positives

This section produces locus plots for all bystander genes with PIP>0.8 (false positives). The highlighted gene at each region is the false positive gene.

false_positives <- ctwas_gene_res$genename[ctwas_gene_res$genename %in% unrelated_genes & ctwas_gene_res$susie_pip>0.8]

for (i in 1:length(false_positives)){
  focus <- false_positives[i]
  region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]

  #locus_plot3(region_tag, focus=focus)
  #mtext(text=region_tag)

  print(focus)
  print(region_tag)
  print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
  
  #genes at this locus that are in known annotations
  ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag][ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag] %in% known_annotations]
}
[1] "USP1"
[1] "1_39"
     genename region_tag  susie_pip       mu2          PVE          z
6952    TM2D1       1_39 0.06403075  22.83888 4.255823e-06  2.1432487
4314    KANK4       1_39 0.01028985   5.06552 1.516888e-07  0.5123038
6953     USP1       1_39 0.89412546 252.81074 6.578309e-04 16.2582110
4315  ANGPTL3       1_39 0.11675943 248.59480 8.447035e-05 16.1322287
3024    DOCK7       1_39 0.01151301  24.25695 8.127287e-07  4.4594815
3732    ATG4C       1_39 0.02898268  81.03714 6.835069e-06 -8.6477262
     num_eqtl
6952        1
4314        1
6953        1
4315        1
3024        1
3732        1
[1] "DDX56"
[1] "7_32"
     genename region_tag   susie_pip       mu2          PVE            z
7325   STK17A       7_32 0.007512379  5.314318 1.161837e-07   0.54399967
2177     COA1       7_32 0.014388923 10.030650 4.200274e-07  -0.67121801
2178    BLVRA       7_32 0.007466620  5.133235 1.115412e-07   0.46600524
541    MRPS24       7_32 0.008410245  6.118586 1.497546e-07   0.38278180
2179    URGCP       7_32 0.008718215  6.484835 1.645306e-07  -0.66911858
927    UBE2D4       7_32 0.011453089  9.418195 3.139140e-07   1.19069954
4704     DBNL       7_32 0.009937964  6.897375 1.994810e-07   0.04523843
3488     POLM       7_32 0.007421918  4.990716 1.077952e-07   0.26627871
2183    AEBP1       7_32 0.027581259 20.555368 1.649908e-06  -2.62806186
2184    POLD2       7_32 0.016430712 12.958827 6.196442e-07  -1.42335267
2185     MYL7       7_32 0.009091720  6.663872 1.763165e-07   0.43964828
2186      GCK       7_32 0.007403649  5.086610 1.095960e-07  -0.25157092
500    CAMK2B       7_32 0.014799683  9.414382 4.054754e-07  -1.51472489
233    NPC1L1       7_32 0.951500358 86.827322 2.404283e-04 -10.76193109
4702    DDX56       7_32 0.949589246 59.831435 1.653429e-04   9.64186136
6615    TMED4       7_32 0.015394066 43.161175 1.933601e-06   7.55635222
2101     OGDH       7_32 0.007397224 20.084229 4.323587e-07  -1.43307182
     num_eqtl
7325        1
2177        2
2178        1
541         1
2179        2
927         1
4704        2
3488        3
2183        1
2184        2
2185        1
2186        1
500         2
233         1
4702        2
6615        2
2101        2

Locus Plots - All detected genes

This section produces locus plots for all detected genes with PIP>0.8. The highlighted gene at each region is the detected gene.

ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

for (i in 1:length(ctwas_genes)){
  focus <- ctwas_genes[i]
  region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]

  #locus_plot3(region_tag, focus=focus)
  #mtext(text=region_tag)

  print(focus)
  print(region_tag)
  print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
  
  #genes at this locus that are in known annotations
  ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag][ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag] %in% known_annotations]
}
[1] "KLHDC7A"
[1] "1_13"
     genename region_tag   susie_pip       mu2          PVE           z
9046  KLHDC7A       1_13 0.839336322 22.174198 5.416319e-05  4.12418690
6686  ALDH4A1       1_13 0.040885890 18.907373 2.249702e-06  1.85860317
3860     UBR4       1_13 0.013651189  8.113313 3.223213e-07  0.87170961
3858     EMC1       1_13 0.024446016 13.822784 9.833857e-07  1.42690360
450     MRTO4       1_13 0.012971531  7.623479 2.877827e-07  0.86168208
6937   AKR7A3       1_13 0.009762559  4.884739 1.387795e-07  0.01712738
449    AKR7A2       1_13 0.011003632  6.016645 1.926685e-07  0.47675224
368     PQLC2       1_13 0.025584100 14.200946 1.057323e-06  1.73710847
897     CAPZB       1_13 0.023230585 13.296011 8.988802e-07 -1.61616419
8536   MINOS1       1_13 0.010784954  5.856759 1.838214e-07 -0.56268675
6626     NBL1       1_13 0.037906661 18.257003 2.014027e-06 -1.73778385
8117    OTUD3       1_13 0.012286767  7.172652 2.564707e-07  0.72553685
9863  PLA2G2A       1_13 0.009786589  4.907159 1.397596e-07 -0.03109898
3859   PLA2G5       1_13 0.009979025  5.119527 1.486751e-07  0.27242326
     num_eqtl
9046        1
6686        1
3860        1
3858        2
450         3
6937        1
449         2
368         1
897         1
8536        1
6626        1
8117        2
9863        3
3859        2
[1] "SYTL1"
[1] "1_19"
      genename region_tag   susie_pip       mu2          PVE          z
1208    SLC9A1       1_19 0.016368573 12.516231 5.962174e-07  0.8242160
5414     WDTC1       1_19 0.006592740  5.004408 9.601497e-08  0.2388824
9711   TMEM222       1_19 0.008085354  6.823422 1.605542e-07  0.7103953
5413     SYTL1       1_19 0.816315358 22.151995 5.262488e-05 -3.9628543
5410    MAP3K6       1_19 0.006664892  5.066533 9.827077e-08  0.1375359
9239      GPR3       1_19 0.046627018 22.916207 3.109572e-06 -2.5632576
3812     AHDC1       1_19 0.009124471  8.251844 2.191185e-07 -0.9518034
2          FGR       1_19 0.007711881  6.462400 1.450355e-07 -0.4280734
3813      IFI6       1_19 0.007336567  5.967127 1.274026e-07  0.4779112
3137      RPA2       1_19 0.021160385 15.740528 9.693110e-07  1.4385437
6584      XKR8       1_19 0.041157120 22.988866 2.753486e-06  2.1931171
6585      EYA3       1_19 0.028823228 20.040053 1.680977e-06  2.2584384
8052     PTAFR       1_19 0.033843263 20.265370 1.995938e-06 -2.3026382
3811    DNAJC8       1_19 0.035901071 20.936411 2.187409e-06  2.4234111
4120    ATPIF1       1_19 0.008532982  7.358292 1.827251e-07  0.9491624
4118     SESN2       1_19 0.030875061 20.329530 1.826651e-06  1.9368213
10528  PHACTR4       1_19 0.006565930  4.958109 9.473984e-08  0.2880057
9117  TRNAU1AP       1_19 0.006643452  5.075867 9.813511e-08 -0.2934564
10364   YTHDF2       1_19 0.010445276  9.339786 2.839077e-07  0.7533155
6648     EPB41       1_19 0.052810955 25.595666 3.933786e-06  2.1673577
11211 TMEM200B       1_19 0.015620703 13.360034 6.073352e-07 -1.3543841
3011      MECR       1_19 0.006553551  4.944819 9.430776e-08 -0.1173905
      num_eqtl
1208         1
5414         1
9711         1
5413         1
5410         1
9239         1
3812         1
2            1
3813         1
3137         2
6584         1
6585         1
8052         2
3811         1
4120         2
4118         1
10528        2
9117         1
10364        1
6648         1
11211        2
3011         1
[1] "USP1"
[1] "1_39"
     genename region_tag  susie_pip       mu2          PVE          z
6952    TM2D1       1_39 0.06403075  22.83888 4.255823e-06  2.1432487
4314    KANK4       1_39 0.01028985   5.06552 1.516888e-07  0.5123038
6953     USP1       1_39 0.89412546 252.81074 6.578309e-04 16.2582110
4315  ANGPTL3       1_39 0.11675943 248.59480 8.447035e-05 16.1322287
3024    DOCK7       1_39 0.01151301  24.25695 8.127287e-07  4.4594815
3732    ATG4C       1_39 0.02898268  81.03714 6.835069e-06 -8.6477262
     num_eqtl
6952        1
4314        1
6953        1
4315        1
3024        1
3732        1
[1] "PSRC1"
[1] "1_67"
      genename region_tag   susie_pip         mu2          PVE           z
4432      VAV3       1_67 0.072331052   23.984022 5.048555e-06  -2.1042470
1073  SLC25A24       1_67 0.010583507    6.711576 2.067162e-07   0.7669340
6962   FAM102B       1_67 0.008947551    6.069366 1.580403e-07  -1.1378586
3009    STXBP3       1_67 0.020367839   18.533872 1.098579e-06   2.9982594
3438     GPSM2       1_67 0.009262678    9.014560 2.429973e-07  -1.9348222
3437     CLCC1       1_67 0.008942304    8.876954 2.310115e-07   2.0741537
10252    TAF13       1_67 0.012617845    9.542366 3.503979e-07  -1.5591453
10884 TMEM167B       1_67 0.015152264   10.914079 4.812657e-07  -1.5270485
315       SARS       1_67 0.017286873   94.841709 4.771293e-06   9.5234950
4433     PSRC1       1_67 1.000000000 1667.484226 4.852684e-03 -41.6873361
5434     PSMA5       1_67 0.009264375 1162.070054 3.133060e-05 -34.7082992
5429     SYPL2       1_67 0.018314294  102.702945 5.473856e-06 -10.0061619
6966   ATXN7L2       1_67 0.011192676  324.780782 1.057900e-05 -18.0802866
8606  CYB561D1       1_67 0.078868608   97.687204 2.242137e-05   9.0965610
9238    AMIGO1       1_67 0.020892030   27.762057 1.687923e-06  -3.9630816
6441     GPR61       1_67 0.009036523   22.894710 6.020836e-07   4.2425343
587      GNAI3       1_67 0.059218947   31.226804 5.381564e-06  -3.8408490
7972     GSTM4       1_67 0.015854487   25.640909 1.183058e-06   4.2073985
10761    GSTM2       1_67 0.012167772   19.493276 6.902655e-07   3.5633272
4428     GSTM1       1_67 0.021439335   29.000157 1.809389e-06   4.2590068
4431     GSTM3       1_67 0.009629517   20.856759 5.844826e-07  -3.9042305
4430     GSTM5       1_67 0.012623446    8.133483 2.987960e-07   0.8040299
      num_eqtl
4432         1
1073         2
6962         1
3009         1
3438         1
3437         2
10252        1
10884        1
315          1
4433         1
5434         2
5429         2
6966         2
8606         3
9238         1
6441         1
587          1
7972         3
10761        2
4428         1
4431         3
4430         5
[1] "CNIH4"
[1] "1_114"
      genename region_tag   susie_pip       mu2          PVE          z
5504     TAF1A      1_114 0.016692949 12.197192 5.925340e-07  1.4014771
6332      MIA3      1_114 0.013526713 10.292670 4.051731e-07 -1.2661500
9664      AIDA      1_114 0.010284196  7.324322 2.192089e-07  0.7815990
6333     DISP1      1_114 0.009788181  6.884718 1.961139e-07  0.7740448
9794      TLR5      1_114 0.008437614  5.300530 1.301545e-07 -0.2374584
5506     SUSD4      1_114 0.008227123  5.132145 1.228760e-07  0.3654254
10492    CAPN8      1_114 0.022207879 14.658509 9.473647e-07  1.7371846
7006     CAPN2      1_114 0.109031716 29.315750 9.301953e-06  2.7742423
5508   TP53BP2      1_114 0.016718105 12.338185 6.002866e-07 -1.4944573
5540    FBXO28      1_114 0.008093583  5.686445 1.339374e-07  0.9428678
5537       NVL      1_114 0.008300113  9.335069 2.254872e-07  2.0538249
5542     CNIH4      1_114 0.978970196 40.692621 1.159326e-04  6.1455352
7009     WDR26      1_114 0.016087170 31.939366 1.495293e-06  5.1224937
      num_eqtl
5504         1
6332         2
9664         1
6333         2
9794         1
5506         2
10492        1
7006         1
5508         1
5540         1
5537         2
5542         2
7009         1
[1] "ALLC"
[1] "2_2"
     genename region_tag   susie_pip       mu2          PVE           z
4080     PXDN        2_2 0.007920786  4.929850 1.136377e-07  0.09623675
317     TSSC1        2_2 0.008408081  5.640880 1.380270e-07  0.49619906
8360 TRAPPC12        2_2 0.010727635  7.901933 2.466935e-07  0.81244052
8363  RNASEH1        2_2 0.017852323 16.690403 8.671253e-07 -2.43420101
3147  COLEC11        2_2 0.008897500 13.248783 3.430554e-07  2.84212718
6097     ALLC        2_2 0.813375260 28.040535 6.637393e-05  4.91906562
     num_eqtl
4080        1
317         1
8360        2
8363        1
3147        3
6097        1
[1] "ABCG8"
[1] "2_27"
        genename region_tag    susie_pip        mu2          PVE
5561       ABCG8       2_27 9.999453e-01 312.107672 9.082407e-04
2977       THADA       2_27 4.359515e-06  10.359815 1.314348e-10
6205     PLEKHH2       2_27 9.275146e-06  16.508012 4.455904e-10
10938 C1GALT1C1L       2_27 4.474559e-06  23.567595 3.068922e-10
4928    DYNC2LI1       2_27 9.683211e-07   8.220022 2.316395e-11
4941      LRPPRC       2_27 2.859681e-06  12.543645 1.043907e-10
                 z num_eqtl
5561  -20.29398177        1
2977   -3.41430719        2
6205   -3.06205348        2
10938   3.29570848        2
4928   -0.02538894        1
4941   -0.91853212        1
[1] "INSIG2"
[1] "2_69"
      genename region_tag   susie_pip       mu2          PVE          z
3722    CCDC93       2_69 0.005039170 16.987650 2.491223e-07 -0.9219207
3720    INSIG2       2_69 0.999995676 68.372629 1.989760e-04 -8.9827018
2874    STEAP3       2_69 0.002397196  8.410097 5.867118e-08  0.7711392
9673   C2orf76       2_69 0.002445358  8.114377 5.774547e-08  0.8903864
6400       DBI       2_69 0.076467184 38.714172 8.615200e-06  2.9337259
8288    TMEM37       2_69 0.034263551 31.699836 3.160892e-06 -2.7137262
957       SCTR       2_69 0.002553274  8.709759 6.471780e-08 -0.7747395
7034   CFAP221       2_69 0.002558028  8.615777 6.413868e-08  0.9062939
5583   TMEM177       2_69 0.002206148  7.491908 4.810025e-08 -0.8894764
1141     PTPN4       2_69 0.001731603  5.113906 2.577040e-08  0.3099958
2875   EPB41L5       2_69 0.006538236 17.811060 3.388993e-07 -1.7313568
10961 TMEM185B       2_69 0.007078671 18.295626 3.768941e-07  1.6870929
5582      RALB       2_69 0.002138079  7.017875 4.366663e-08  0.5995499
      num_eqtl
3722         2
3720         3
2874         1
9673         1
6400         1
8288         3
957          1
7034         2
5583         1
1141         1
2875         1
10961        2
5582         1
[1] "INHBB"
[1] "2_70"
     genename region_tag  susie_pip       mu2          PVE          z
7036    INHBB       2_70 0.98251094 73.798638 2.110115e-04 -8.5189356
803      GLI2       2_70 0.01070244  4.961768 1.545395e-07 -0.2100791
2876  TFCP2L1       2_70 0.02263891 12.072954 7.954068e-07  1.2932606
804    CLASP1       2_70 0.02113599 11.489697 7.067268e-07 -1.5242793
6403     NIFK       2_70 0.01075220  4.974567 1.556586e-07 -0.1061535
     num_eqtl
7036        1
803         2
2876        2
804         1
6403        1
[1] "ACVR1C"
[1] "2_94"
     genename region_tag  susie_pip      mu2          PVE         z
2882    CYTIP       2_94 0.04543381 23.71707 3.135888e-06  2.307489
3562   ACVR1C       2_94 0.93203716 25.78698 6.994458e-05 -4.687370
     num_eqtl
2882        1
3562        2
[1] "PELO"
[1] "5_31"
      genename region_tag   susie_pip       mu2          PVE          z
10811    ITGA1       5_31 0.027833879 26.559284 2.151347e-06 -2.9570873
6217      PELO       5_31 0.936301386 70.560297 1.922633e-04  8.2883976
7265     ITGA2       5_31 0.003427661  5.215867 5.202891e-08 -0.2133965
7266     MOCS2       5_31 0.003639655  5.809416 6.153370e-08 -0.4432482
7285    NDUFS4       5_31 0.005239748  9.103195 1.388112e-07  0.8369535
      num_eqtl
10811        3
6217         2
7265         2
7266         2
7285         2
[1] "CSNK1G3"
[1] "5_75"
     genename region_tag susie_pip      mu2          PVE        z num_eqtl
6090  CSNK1G3       5_75 0.9745191 83.85862 0.0002378255 9.116291        1
[1] "TRIM39"
[1] "6_24"
      genename region_tag   susie_pip       mu2          PVE          z
10618   TRIM31       6_24 0.006280849 12.684343 2.318498e-07  1.8999864
10616   TRIM10       6_24 0.010137926 51.242676 1.511824e-06  6.6910512
10622    HLA-G       6_24 0.004752024 34.297853 4.743139e-07  5.5622548
10718    HLA-A       6_24 0.003904357 10.181996 1.156918e-07 -2.2771603
624      ZNRD1       6_24 0.003935536  7.301523 8.362530e-08  1.1866028
10619    RNF39       6_24 0.003181388  5.557633 5.145490e-08  0.6571415
11008   TRIM26       6_24 0.007471838 19.358813 4.209461e-07  4.1585905
10612   TRIM39       6_24 0.998588470 71.897515 2.089396e-04  8.8401635
10607    ABCF1       6_24 0.004353582 23.497310 2.977044e-07  4.7680737
10605  MRPS18B       6_24 0.003932567  7.057364 8.076793e-08  0.6214977
10604 C6orf136       6_24 0.005608699 12.156889 1.984289e-07 -2.1024238
10603    DHX16       6_24 0.005092827 10.286831 1.524617e-07 -1.3095481
5764   PPP1R18       6_24 0.003272272 15.552962 1.481095e-07  3.9539049
4834       NRM       6_24 0.003272429  7.430290 7.076139e-08  0.2949348
4831     FLOT1       6_24 0.031810195 30.351321 2.809728e-06 -3.8526336
      num_eqtl
10618        2
10616        1
10622        1
10718        3
624          2
10619        1
11008        1
10612        3
10607        1
10605        1
10604        2
10603        3
5764         2
4834         1
4831         2
[1] "SP4"
[1] "7_19"
     genename region_tag   susie_pip       mu2          PVE         z
2092      SP4       7_19 0.975945553 101.98305 2.896502e-04 10.693191
2094   DNAH11       7_19 0.008784712  13.49567 3.450183e-07 -1.424257
4695  RAPGEF5       7_19 0.050187183  29.39310 4.292977e-06 -2.533433
     num_eqtl
2092        1
2094        1
4695        1
[1] "NPC1L1"
[1] "7_32"
     genename region_tag   susie_pip       mu2          PVE            z
7325   STK17A       7_32 0.007512379  5.314318 1.161837e-07   0.54399967
2177     COA1       7_32 0.014388923 10.030650 4.200274e-07  -0.67121801
2178    BLVRA       7_32 0.007466620  5.133235 1.115412e-07   0.46600524
541    MRPS24       7_32 0.008410245  6.118586 1.497546e-07   0.38278180
2179    URGCP       7_32 0.008718215  6.484835 1.645306e-07  -0.66911858
927    UBE2D4       7_32 0.011453089  9.418195 3.139140e-07   1.19069954
4704     DBNL       7_32 0.009937964  6.897375 1.994810e-07   0.04523843
3488     POLM       7_32 0.007421918  4.990716 1.077952e-07   0.26627871
2183    AEBP1       7_32 0.027581259 20.555368 1.649908e-06  -2.62806186
2184    POLD2       7_32 0.016430712 12.958827 6.196442e-07  -1.42335267
2185     MYL7       7_32 0.009091720  6.663872 1.763165e-07   0.43964828
2186      GCK       7_32 0.007403649  5.086610 1.095960e-07  -0.25157092
500    CAMK2B       7_32 0.014799683  9.414382 4.054754e-07  -1.51472489
233    NPC1L1       7_32 0.951500358 86.827322 2.404283e-04 -10.76193109
4702    DDX56       7_32 0.949589246 59.831435 1.653429e-04   9.64186136
6615    TMED4       7_32 0.015394066 43.161175 1.933601e-06   7.55635222
2101     OGDH       7_32 0.007397224 20.084229 4.323587e-07  -1.43307182
     num_eqtl
7325        1
2177        2
2178        1
541         1
2179        2
927         1
4704        2
3488        3
2183        1
2184        2
2185        1
2186        1
500         2
233         1
4702        2
6615        2
2101        2
[1] "DDX56"
[1] "7_32"
     genename region_tag   susie_pip       mu2          PVE            z
7325   STK17A       7_32 0.007512379  5.314318 1.161837e-07   0.54399967
2177     COA1       7_32 0.014388923 10.030650 4.200274e-07  -0.67121801
2178    BLVRA       7_32 0.007466620  5.133235 1.115412e-07   0.46600524
541    MRPS24       7_32 0.008410245  6.118586 1.497546e-07   0.38278180
2179    URGCP       7_32 0.008718215  6.484835 1.645306e-07  -0.66911858
927    UBE2D4       7_32 0.011453089  9.418195 3.139140e-07   1.19069954
4704     DBNL       7_32 0.009937964  6.897375 1.994810e-07   0.04523843
3488     POLM       7_32 0.007421918  4.990716 1.077952e-07   0.26627871
2183    AEBP1       7_32 0.027581259 20.555368 1.649908e-06  -2.62806186
2184    POLD2       7_32 0.016430712 12.958827 6.196442e-07  -1.42335267
2185     MYL7       7_32 0.009091720  6.663872 1.763165e-07   0.43964828
2186      GCK       7_32 0.007403649  5.086610 1.095960e-07  -0.25157092
500    CAMK2B       7_32 0.014799683  9.414382 4.054754e-07  -1.51472489
233    NPC1L1       7_32 0.951500358 86.827322 2.404283e-04 -10.76193109
4702    DDX56       7_32 0.949589246 59.831435 1.653429e-04   9.64186136
6615    TMED4       7_32 0.015394066 43.161175 1.933601e-06   7.55635222
2101     OGDH       7_32 0.007397224 20.084229 4.323587e-07  -1.43307182
     num_eqtl
7325        1
2177        2
2178        1
541         1
2179        2
927         1
4704        2
3488        3
2183        1
2184        2
2185        1
2186        1
500         2
233         1
4702        2
6615        2
2101        2
[1] "POP7"
[1] "7_62"
      genename region_tag   susie_pip       mu2          PVE          z
6818   COL26A1       7_62 0.007510354  9.921117 2.168409e-07 -1.0934877
2148    PCOLCE       7_62 0.004547108  6.131839 8.114211e-08  0.4456737
2147    MOSPD3       7_62 0.007268662 17.456884 3.692679e-07 -3.0345058
2146      TFR2       7_62 0.004710494 14.751775 2.022232e-07 -2.7178930
8418      GNB2       7_62 0.005851974 30.402831 5.177698e-07  2.9857631
5819    GIGYF1       7_62 0.030615087 40.199939 3.581634e-06  5.5613973
8411      POP7       7_62 0.823485405 40.374372 9.675691e-05 -5.8452584
4075       EPO       7_62 0.016529418 29.817903 1.434349e-06  1.9129756
5818   SLC12A9       7_62 0.004743302  8.929457 1.232611e-07  1.4921680
10042    EPHB4       7_62 0.005559474 14.119640 2.284429e-07 -1.1990947
1111     TRIP6       7_62 0.004690497 16.415901 2.240804e-07 -1.2652057
1114      SRRT       7_62 0.940511612 32.600634 8.922992e-05  5.4249961
8793     UFSP1       7_62 0.005098370  9.114377 1.352317e-07 -1.2307073
8111     MUC3A       7_62 0.004749441  7.502393 1.036961e-07  2.6904529
8107    TRIM56       7_62 0.004603988  5.535002 7.416045e-08  0.3959637
2156     PLOD3       7_62 0.005428106  6.704146 1.059039e-07 -0.5465542
2158    CLDN15       7_62 0.010382070 12.293952 3.714461e-07 -1.4208181
10836     FIS1       7_62 0.030124708 22.872038 2.005155e-06  2.2090311
3936     IFT22       7_62 0.004751419  5.848573 8.087114e-08  0.8174671
      num_eqtl
6818         1
2148         1
2147         1
2146         2
8418         2
5819         1
8411         1
4075         1
5818         1
10042        1
1111         2
1114         2
8793         1
8111         1
8107         2
2156         1
2158         2
10836        1
3936         1
[1] "SRRT"
[1] "7_62"
      genename region_tag   susie_pip       mu2          PVE          z
6818   COL26A1       7_62 0.007510354  9.921117 2.168409e-07 -1.0934877
2148    PCOLCE       7_62 0.004547108  6.131839 8.114211e-08  0.4456737
2147    MOSPD3       7_62 0.007268662 17.456884 3.692679e-07 -3.0345058
2146      TFR2       7_62 0.004710494 14.751775 2.022232e-07 -2.7178930
8418      GNB2       7_62 0.005851974 30.402831 5.177698e-07  2.9857631
5819    GIGYF1       7_62 0.030615087 40.199939 3.581634e-06  5.5613973
8411      POP7       7_62 0.823485405 40.374372 9.675691e-05 -5.8452584
4075       EPO       7_62 0.016529418 29.817903 1.434349e-06  1.9129756
5818   SLC12A9       7_62 0.004743302  8.929457 1.232611e-07  1.4921680
10042    EPHB4       7_62 0.005559474 14.119640 2.284429e-07 -1.1990947
1111     TRIP6       7_62 0.004690497 16.415901 2.240804e-07 -1.2652057
1114      SRRT       7_62 0.940511612 32.600634 8.922992e-05  5.4249961
8793     UFSP1       7_62 0.005098370  9.114377 1.352317e-07 -1.2307073
8111     MUC3A       7_62 0.004749441  7.502393 1.036961e-07  2.6904529
8107    TRIM56       7_62 0.004603988  5.535002 7.416045e-08  0.3959637
2156     PLOD3       7_62 0.005428106  6.704146 1.059039e-07 -0.5465542
2158    CLDN15       7_62 0.010382070 12.293952 3.714461e-07 -1.4208181
10836     FIS1       7_62 0.030124708 22.872038 2.005155e-06  2.2090311
3936     IFT22       7_62 0.004751419  5.848573 8.087114e-08  0.8174671
      num_eqtl
6818         1
2148         1
2147         1
2146         2
8418         2
5819         1
8411         1
4075         1
5818         1
10042        1
1111         2
1114         2
8793         1
8111         1
8107         2
2156         1
2158         2
10836        1
3936         1
[1] "TNKS"
[1] "8_12"
     genename region_tag susie_pip     mu2          PVE        z num_eqtl
8523     TNKS       8_12 0.9910883 76.1339 0.0002195891 11.03856        2
[1] "TTC39B"
[1] "9_13"
     genename region_tag   susie_pip       mu2          PVE          z
7392    FREM1       9_13 0.009381600  6.570543 1.793901e-07 -0.7657943
6387   TTC39B       9_13 0.945002632 23.146023 6.365459e-05 -4.3344945
7401    PSIP1       9_13 0.008132809  5.225124 1.236680e-07 -0.1267424
7402  CCDC171       9_13 0.019513055 14.131658 8.024882e-07  1.3999919
     num_eqtl
7392        1
6387        3
7401        1
7402        3
[1] "ABCA1"
[1] "9_53"
     genename region_tag   susie_pip       mu2          PVE          z
7405    ABCA1       9_53 0.995531405 70.135749 2.031958e-04  7.9820172
2193     FKTN       9_53 0.001393116  7.316812 2.966397e-08 -0.7642857
1314  TMEM38B       9_53 0.002218186  7.826102 5.052006e-08  0.7019380
     num_eqtl
7405        1
2193        1
1314        1
[1] "PKN3"
[1] "9_66"
      genename region_tag   susie_pip       mu2          PVE           z
4759    SLC2A8       9_66 0.068811390 23.926846 4.791440e-06  2.24352568
9996     ZNF79       9_66 0.012288406  7.615735 2.723502e-07  0.77712710
10283    RPL12       9_66 0.010376521  6.067732 1.832308e-07 -0.51960784
5911    LRSAM1       9_66 0.010430452  6.114016 1.855880e-07 -0.52945366
7714     TTC16       9_66 0.099811679 27.273313 7.922086e-06 -2.75354394
9757     PTRH1       9_66 0.125844575 29.439859 1.078178e-05  2.77341492
6770     TOR2A       9_66 0.038387606 19.070959 2.130511e-06 -2.02016307
4751      CDK9       9_66 0.017168955 11.731583 5.861662e-07  1.34031830
4769      FPGS       9_66 0.013596292  8.628767 3.414204e-07 -1.25891648
2206       AK1       9_66 0.090546366 27.958936 7.367361e-06 -2.57597920
7715   PIP5KL1       9_66 0.013063990  8.536132 3.245318e-07 -0.91196868
4775      DPM2       9_66 0.009014268  4.883992 1.281226e-07 -0.06389099
7717   FAM102A       9_66 0.009090777  4.976039 1.316452e-07 -0.18720260
8276     NAIF1       9_66 0.009953042  6.040594 1.749669e-07  0.76473103
5907    PTGES2       9_66 0.010825848  6.667832 2.100714e-07 -0.68400156
8273   C9orf16       9_66 0.019281789 12.882705 7.228941e-07 -1.56062112
2205      DNM1       9_66 0.009332534  5.159377 1.401255e-07 -0.03148047
5908      CIZ1       9_66 0.013633442  9.895377 3.926071e-07  1.45216473
8766      SWI5       9_66 0.011195170  7.247384 2.361197e-07  0.90300624
7719    GOLGA2       9_66 0.011211414  7.262034 2.369403e-07  0.90499286
7720     TRUB2       9_66 0.009425518  5.383603 1.476721e-07 -0.42682678
7721      COQ4       9_66 0.010864708  6.773494 2.141663e-07 -0.72747156
7722   SLC27A4       9_66 0.009018571  4.926548 1.293007e-07 -0.22400631
7723      URM1       9_66 0.015399241 10.554529 4.729971e-07 -1.34407272
7724    CERCAM       9_66 0.009857769  6.150006 1.764308e-07  0.82174371
4752      ODF2       9_66 0.011269970  6.633743 2.175714e-07 -0.08915811
3231      GLE1       9_66 0.010037141  5.730839 1.673973e-07 -0.05017191
3229     WDR34       9_66 0.015747377 11.204213 5.134639e-07 -1.51238558
6774      PKN3       9_66 0.938039023 47.460536 1.295609e-04 -6.62056344
6773      ZER1       9_66 0.017014979 12.061198 5.972308e-07 -1.59085655
10469   SPOUT1       9_66 0.044886257 41.558501 5.428672e-06  6.08145910
8713    PHYHD1       9_66 0.016295710 14.825475 7.030759e-07  2.42012620
5909   SH3GLB2       9_66 0.009715398  7.430772 2.100946e-07  1.50152646
5910     MIGA2       9_66 0.019505722 11.665263 6.621813e-07 -0.95630165
7725    DOLPP1       9_66 0.009630430  6.542715 1.833682e-07  1.14465789
3230      PTPA       9_66 0.009310136  5.149594 1.395241e-07 -0.15029681
9883     IER5L       9_66 0.009667786  5.448437 1.532919e-07 -0.17840816
      num_eqtl
4759         2
9996         2
10283        1
5911         1
7714         1
9757         1
6770         2
4751         1
4769         2
2206         2
7715         1
4775         1
7717         1
8276         1
5907         1
8273         1
2205         3
5908         2
8766         1
7719         1
7720         1
7721         2
7722         2
7723         2
7724         1
4752         1
3231         2
3229         1
6774         1
6773         1
10469        1
8713         2
5909         1
5910         1
7725         1
3230         2
9883         2
[1] "C10orf88"
[1] "10_77"
      genename region_tag   susie_pip       mu2          PVE           z
4950    BTBD16      10_77 0.007379023  5.047371 1.083888e-07 -0.04216993
2243   PLEKHA1      10_77 0.009013898  6.626265 1.738208e-07 -0.29700640
11236    ARMS2      10_77 0.007484775  5.171944 1.126556e-07  0.16720845
7541     HTRA1      10_77 0.010286403  8.576781 2.567486e-07  1.06231164
4952     CUZD1      10_77 0.021189310 28.258497 1.742554e-06  6.01571079
3300  C10orf88      10_77 0.937148705 37.076725 1.011184e-04 -6.78784968
9109      PSTK      10_77 0.007527128  8.742938 1.915169e-07  2.16086938
1323     IKZF5      10_77 0.007918711 11.753050 2.708478e-07  2.97786269
9999    ACADSB      10_77 0.010423860  9.646873 2.926412e-07 -0.89038329
6338      BUB3      10_77 0.020877258 14.666469 8.910854e-07 -1.42773974
3433     CPXM2      10_77 0.008660652  6.537352 1.647680e-07 -0.55035547
9260    CHST15      10_77 0.095973810 29.095448 8.126398e-06  2.54909229
      num_eqtl
4950         1
2243         2
11236        1
7541         1
4952         1
3300         2
9109         1
1323         1
9999         1
6338         1
3433         3
9260         2
[1] "CRACR2B"
[1] "11_1"
      genename region_tag  susie_pip       mu2          PVE           z
8942     BET1L       11_1 0.01378096  5.757610 2.309097e-07 -0.40212789
8944     RIC8A       11_1 0.01378096  5.757610 2.309097e-07  0.40212789
5359     SIRT3       11_1 0.02386470 11.162654 7.752535e-07  1.29003053
8668     NLRP6       11_1 0.01282353  5.050079 1.884630e-07  0.19757709
5361     PGGHG       11_1 0.01269314  4.926764 1.819915e-07 -0.15005033
10710   IFITM5       11_1 0.01668980  7.617421 3.699809e-07 -0.81738659
9562    IFITM2       11_1 0.01342131  5.501090 2.148642e-07 -0.39762396
5360    IFITM3       11_1 0.01592390  7.131468 3.304826e-07  0.66102182
9291  B4GALNT4       11_1 0.01878924  8.831492 4.829071e-07  1.00482168
9557      ANO9       11_1 0.02717734 12.152582 9.611603e-07  1.19094318
8671    PTDSS2       11_1 0.01263700  4.882872 1.795724e-07 -0.01332315
273       RNH1       11_1 0.17313192 30.513832 1.537426e-05 -2.84654431
6843    LRRC56       11_1 0.01273509  4.973177 1.843131e-07 -0.06438340
1384    RASSF7       11_1 0.01909852  9.132959 5.076115e-07 -1.19574303
9605    LMNTD2       11_1 0.01267921  5.010694 1.848887e-07  0.42215739
705      PHRF1       11_1 0.01313572  5.197615 1.986910e-07 -0.07527668
9601      IRF7       11_1 0.01971272  8.904479 5.108289e-07  1.04870999
1382     CDHR5       11_1 0.04168348 16.061412 1.948354e-06  1.66042301
693       DRD4       11_1 0.01780696  7.998284 4.144831e-07 -0.83874711
8871    EPS8L2       11_1 0.02861558 13.761684 1.146026e-06 -1.88289274
8863    TMEM80       11_1 0.03890595 17.030117 1.928208e-06 -2.19786114
8861     DEAF1       11_1 0.01758338  8.617047 4.409417e-07  1.32699971
8879     PDDC1       11_1 0.01516537  6.457023 2.849744e-07  0.35584667
9504     CEND1       11_1 0.01313423  5.236582 2.001579e-07 -0.20100861
11434    PANO1       11_1 0.02858209 14.919297 1.240974e-06  2.47594943
8906     PIDD1       11_1 0.04157438 18.632280 2.254302e-06 -2.65297750
8918   CRACR2B       11_1 0.82744474 21.521229 5.182346e-05 -3.98958546
8923    POLR2L       11_1 0.01572082  7.372383 3.372899e-07  1.04277695
10825   TSPAN4       11_1 0.01992788 10.288183 5.966505e-07  1.60665874
9357     AP2A2       11_1 0.01359117  5.651300 2.235247e-07  0.29403916
9539      MUC6       11_1 0.04245621 16.265988 2.009750e-06  1.52515226
      num_eqtl
8942         1
8944         1
5359         1
8668         2
5361         3
10710        1
9562         3
5360         1
9291         1
9557         1
8671         1
273          2
6843         2
1384         1
9605         4
705          3
9601         1
1382         1
693          2
8871         1
8863         2
8861         1
8879         1
9504         1
11434        2
8906         1
8918         1
8923         1
10825        3
9357         2
9539         1
[1] "SPTY2D1"
[1] "11_13"
         genename region_tag  susie_pip       mu2          PVE          z
3984         TPH1      11_13 0.01080622  5.567530 1.750881e-07  0.5316129
5956         SAA4      11_13 0.01028655  5.027362 1.504978e-07  0.3403122
8535         SAA1      11_13 0.02640889 15.826917 1.216373e-06  2.0879173
2496         HPS5      11_13 0.01956194 10.685441 6.083096e-07  1.3233158
2497       GTF2H1      11_13 0.07017263 24.133512 4.928429e-06  2.7026227
4457         LDHA      11_13 0.01068007  5.261772 1.635410e-07 -0.1566216
7656         LDHC      11_13 0.01029319  5.780719 1.731618e-07 -1.0369222
809        TSG101      11_13 0.01094895  5.502053 1.753144e-07  0.2531320
11174 SPTY2D1-AS1      11_13 0.02524149 17.862608 1.312140e-06  2.5288799
9054      SPTY2D1      11_13 0.82512807 33.415113 8.023883e-05 -5.5571227
6078      TMEM86A      11_13 0.01126077  5.674084 1.859449e-07  0.1080051
8864      ZDHHC13      11_13 0.01061722  5.225222 1.614493e-07  0.1576041
      num_eqtl
3984         1
5956         2
8535         1
2496         2
2497         2
4457         1
7656         1
809          1
11174        1
9054         1
6078         1
8864         1
[1] "FADS1"
[1] "11_34"
           genename region_tag   susie_pip        mu2          PVE
9952        FAM111B      11_34 0.005230053   4.999695 7.609741e-08
7657        FAM111A      11_34 0.008453083   9.507167 2.338765e-07
2444           DTX4      11_34 0.005252939   5.057754 7.731796e-08
10233         MPEG1      11_34 0.005322465   5.240237 8.116785e-08
7679          PATL1      11_34 0.073452043  30.302161 6.477356e-06
7682           STX3      11_34 0.005241213   5.031822 7.674983e-08
7683         MRPL16      11_34 0.008509679   9.459980 2.342738e-07
5994          MS4A2      11_34 0.009775964  10.827149 3.080307e-07
2453         MS4A6A      11_34 0.005825609   5.969181 1.011990e-07
10858        MS4A4E      11_34 0.006663000   7.495673 1.453452e-07
7692          MS4A7      11_34 0.005289681   5.213120 8.025045e-08
7693         MS4A14      11_34 0.027433830  20.813367 1.661686e-06
2455         CCDC86      11_34 0.005830781   6.003373 1.018691e-07
2456         PRPF19      11_34 0.010429551  12.016570 3.647257e-07
2457        TMEM109      11_34 0.011780592  12.997879 4.456151e-07
2480        SLC15A3      11_34 0.005538267   6.053225 9.756208e-08
2481            CD5      11_34 0.005319157   5.293454 8.194119e-08
7869         VPS37C      11_34 0.006080449   6.175346 1.092741e-07
7870           VWCE      11_34 0.005401244   5.523350 8.681937e-08
6898       CYB561A3      11_34 0.006860145  10.058732 2.008153e-07
5987        TMEM138      11_34 0.006860145  10.058732 2.008153e-07
9761        TMEM216      11_34 0.005162902   4.937297 7.418283e-08
5993          CPSF7      11_34 0.005909651   9.746807 1.676272e-07
11272 RP11-286N22.8      11_34 0.005698965   5.836942 9.680587e-08
6899        PPP1R32      11_34 0.006247655   6.494796 1.180872e-07
4506        TMEM258      11_34 0.014008032 118.454371 4.828904e-06
7950           FEN1      11_34 0.006053442 144.303483 2.542140e-06
4505          FADS2      11_34 0.006053442 144.303483 2.542140e-06
5988          FADS1      11_34 0.999840450 163.462911 4.756311e-04
10926         FADS3      11_34 0.011442055  21.240847 7.072878e-07
7871          BEST1      11_34 0.005602649  18.935563 3.087393e-07
5991         INCENP      11_34 0.005219317   5.857239 8.896658e-08
6900         ASRGL1      11_34 0.005308929   5.188641 8.016427e-08
1196          GANAB      11_34 0.006009233  69.921655 1.222788e-06
                 z num_eqtl
9952   -0.13037299        1
7657    0.90603922        2
2444    0.25803323        2
10233   0.28885901        1
7679    3.33481738        2
7682   -0.11158533        2
7683    1.12142967        2
5994   -1.13520665        1
2453    0.54425280        1
10858   0.84824716        1
7692   -0.33913351        2
7693   -1.82545467        3
2455   -0.45273095        3
2456    1.43277325        2
2457    1.42183198        1
2480    0.82141077        1
2481    0.34613847        1
7869    0.02401413        1
7870   -0.54063901        2
6898   -1.78280456        1
5987   -1.78280456        1
9761   -0.22016462        2
5993   -2.06104458        1
11272  -0.42704781        1
6899   -0.38265325        1
4506  -10.56344602        2
7950   12.07263520        1
4505   12.07263520        1
5988   12.92635131        2
10926   3.28941682        1
7871   -3.74480413        1
5991   -0.91700127        2
6900   -0.25008439        1
1196   -8.20472330        1
[1] "CCND2"
[1] "12_4"
     genename region_tag  susie_pip      mu2          PVE         z
4040  CRACR2A       12_4 0.01071212  8.45964 2.637228e-07 -1.070753
2530   PARP11       12_4 0.07177801 26.75256 5.588266e-06 -2.597248
3212    CCND2       12_4 0.80419485 22.63603 5.297633e-05 -4.065830
     num_eqtl
4040        1
2530        2
3212        1
[1] "GAS6"
[1] "13_62"
     genename region_tag   susie_pip       mu2          PVE          z
3789      F10      13_62 0.009664788  8.865913 2.493653e-07 -0.7929256
3790     PROZ      13_62 0.012757286 10.952020 4.066051e-07  2.1821725
5149    GRTP1      13_62 0.006292572  5.362663 9.820396e-08  0.6686691
6275  ADPRHL1      13_62 0.009696165  8.194545 2.312305e-07  0.1598692
6034  DCUN1D2      13_62 0.006331133  5.219822 9.617395e-08 -0.1585810
6035    TMCO3      13_62 0.007379705  6.765944 1.453074e-07  0.7340917
9365     GAS6      13_62 0.988338224 71.115085 2.045444e-04 -8.9236884
9657    RASA3      13_62 0.006237736  5.072933 9.208872e-08  0.2059315
4045    CDC16      13_62 0.006500596  5.441468 1.029413e-07  0.4094934
8016    UPF3A      13_62 0.006205353  5.415600 9.779877e-08  0.8879230
     num_eqtl
3789        1
3790        4
5149        1
6275        1
6034        2
6035        2
9365        1
9657        2
4045        2
8016        3
[1] "HPR"
[1] "16_38"
      genename region_tag   susie_pip       mu2          PVE          z
9175     CMTR2      16_38 0.005700691  17.32463 2.874166e-07   3.081554
7752     ZNF23      16_38 0.003011924  13.73998 1.204344e-07  -2.779510
5235     CHST4      16_38 0.002634787  12.81952 9.829635e-08   5.644697
6531     ZNF19      16_38 0.007236767  22.78159 4.797874e-07  -1.759348
10396      TAT      16_38 0.003080130  19.65775 1.762070e-07   5.087094
5234  MARVELD3      16_38 0.003464145  17.74327 1.788752e-07  -1.204386
366     PHLPP2      16_38 0.005631616  47.86672 7.844893e-07  -7.224850
10944   ATXN1L      16_38 0.002643110  55.17205 4.243797e-07  -8.126354
1752    ZNF821      16_38 0.002690359  51.58370 4.038713e-07   7.943029
11471   PKD1L3      16_38 0.005273474  88.31070 1.355284e-06   4.998967
11327      HPR      16_38 0.999999715 162.98924 4.743284e-04 -17.962770
      num_eqtl
9175         3
7752         2
5235         1
6531         2
10396        2
5234         2
366          1
10944        1
1752         2
11471        1
11327        2
[1] "STAT5B"
[1] "17_25"
      genename region_tag   susie_pip       mu2          PVE          z
8574       JUP      17_25 0.125536282 33.626001 1.228471e-05  3.7875733
5337      P3H4      17_25 0.037085620 21.995024 2.373834e-06  3.0992335
5343    FKBP10      17_25 0.037085620 21.995024 2.373834e-06  3.0992335
6854    KLHL10      17_25 0.026455255 17.316926 1.333224e-06  2.6255335
8573       CNP      17_25 0.011674526  7.736461 2.628463e-07 -1.4595716
9796   ZNF385C      17_25 0.057705848 22.562530 3.789029e-06  2.0494700
2347     RAB5C      17_25 0.012756178  7.559838 2.806424e-07 -0.2629002
8571    STAT5B      17_25 0.933631050 30.564627 8.304523e-05  5.4262521
7958     STAT3      17_25 0.041487756 18.265772 2.205354e-06  1.4948067
326   ATP6V0A1      17_25 0.009323056  5.182179 1.406018e-07  0.5376043
2349   HSD17B1      17_25 0.009303568  5.047651 1.366656e-07 -0.4589726
666      COASY      17_25 0.009666004  8.209647 2.309361e-07  1.9882560
4181     TUBG1      17_25 0.020665335 13.777261 8.285632e-07  1.6978485
349      TUBG2      17_25 0.012530171  8.719249 3.179482e-07 -1.3455050
9497     CCR10      17_25 0.015042222 10.430744 4.566123e-07  1.4586862
2351      EZH1      17_25 0.009731636  5.471215 1.549494e-07 -0.5775571
4184     RAMP2      17_25 0.009420803  5.295233 1.451755e-07  0.6657800
3808      WNK4      17_25 0.009346206  5.011119 1.362983e-07 -0.1494056
4185      AOC2      17_25 0.021617976 13.761161 8.657458e-07  1.5605424
11366   AARSD1      17_25 0.026719889 15.582825 1.211717e-06 -2.3073575
664      IFI35      17_25 0.025511188 15.116684 1.122296e-06 -2.2744658
2356      RND2      17_25 0.036491133 17.514778 1.859997e-06 -2.3975732
195      BRCA1      17_25 0.024983769 13.921868 1.012222e-06  2.1576368
9893      NBR1      17_25 0.009566766  5.193507 1.445926e-07  0.3867461
9546  TMEM106A      17_25 0.009486879  5.528011 1.526204e-07 -0.4459524
8774     ARL4D      17_25 0.116226070 28.236181 9.550582e-06 -2.5753298
8765      ETV4      17_25 0.066431207 23.651156 4.572406e-06 -2.4603356
47       MEOX1      17_25 0.012957910  8.154034 3.074877e-07  0.9292299
      num_eqtl
8574         1
5337         1
5343         1
6854         1
8573         1
9796         1
2347         1
8571         2
7958         1
326          2
2349         2
666          1
4181         1
349          2
9497         1
2351         1
4184         1
3808         1
4185         1
11366        1
664          1
2356         1
195          1
9893         1
9546         1
8774         1
8765         1
47           1
[1] "KDSR"
[1] "18_35"
      genename region_tag  susie_pip       mu2          PVE          z
993     PHLPP1      18_35 0.01132796  5.790571 1.908945e-07  0.4592477
3247      KDSR      18_35 0.96022636 24.596031 6.873200e-05 -4.5262867
10914     HMSD      18_35 0.01255814  7.053619 2.577850e-07  0.9625202
7601  SERPINB8      18_35 0.01077670  5.386726 1.689394e-07  0.5629092
      num_eqtl
993          1
3247         1
10914        2
7601         1
[1] "CYP2A6"
[1] "19_28"
      genename region_tag   susie_pip       mu2          PVE            z
1207     LTBP4      19_28 0.010449905  6.623380 2.014245e-07 -0.039246359
1992     NUMBL      19_28 0.008403298  5.146186 1.258507e-07  0.488173835
3570     COQ8B      19_28 0.008591509  5.187456 1.297013e-07 -0.120021804
1102     ITPKC      19_28 0.008591509  5.187456 1.297013e-07 -0.120021804
888      SNRPA      19_28 0.012137444  8.025811 2.834892e-07  0.660129887
9885  C19orf54      19_28 0.009980290  6.260324 1.818278e-07  0.023279566
7784     RAB4B      19_28 0.024002669 20.492324 1.431433e-06 -3.059737137
11387    EGLN2      19_28 0.010057730  6.310574 1.847095e-07 -0.008314999
11257   CYP2A6      19_28 0.965055136 31.879393 8.953286e-05  5.407028003
10307   CYP2A7      19_28 0.049474812 26.231181 3.776785e-06  2.982812926
2003  HNRNPUL1      19_28 0.009457922  5.874187 1.616828e-07 -0.291836029
5356    CCDC97      19_28 0.086201922 27.667766 6.940829e-06 -2.647885128
5357    TMEM91      19_28 0.008386404  4.894116 1.194456e-07 -0.315901671
2004     TGFB1      19_28 0.101962557 29.281062 8.688561e-06 -2.744946113
889     EXOSC5      19_28 0.022555980 14.076394 9.240031e-07  1.192265779
11176   BCKDHA      19_28 0.009319379  6.073054 1.647079e-07  1.021880544
106   CEACAM21      19_28 0.028894722 16.822218 1.414562e-06 -1.596265707
10261  CYP2A13      19_28 0.015197704 10.853956 4.800498e-07  1.041335754
10200   CYP2B6      19_28 0.078542991 32.764855 7.489210e-06  3.635035884
      num_eqtl
1207         2
1992         1
3570         1
1102         1
888          1
9885         1
7784         2
11387        3
11257        1
10307        1
2003         2
5356         2
5357         1
2004         1
889          1
11176        1
106          1
10261        1
10200        1
[1] "PRKD2"
[1] "19_33"
      genename region_tag   susie_pip        mu2          PVE            z
10198    DACT3      19_33 0.002536241   6.357149 4.692165e-08  -0.78861855
1999     PRKD2      19_33 0.987158666  29.999276 8.618229e-05   5.07221669
9189      FKRP      19_33 0.008740393  26.126612 6.645603e-07   3.89590554
1219     STRN4      19_33 0.003577677   8.593951 8.947761e-08   0.09301084
1998    SLC1A5      19_33 0.003841078   9.720446 1.086575e-07  -0.75306936
6721  ARHGAP35      19_33 0.005301143  13.675391 2.109743e-07   1.55600157
4114     NPAS1      19_33 0.002283819   5.854962 3.891402e-08   0.95990662
5373      SAE1      19_33 0.002278809   4.968304 3.294855e-08  -0.10729380
4113     ZC3H4      19_33 0.002278809   4.968304 3.294855e-08  -0.10729380
2002     CCDC9      19_33 0.002255655   4.903704 3.218972e-08   0.15834095
11285   INAFM1      19_33 0.002508412   6.076895 4.436096e-08  -0.60753416
10199    C5AR1      19_33 0.003922053  10.467804 1.194784e-07   1.15728685
4508     C5AR2      19_33 0.002685740   6.744032 5.271133e-08   0.68695693
4503     DHX34      19_33 0.003523481   9.282758 9.518516e-08  -0.97725261
3155    ZNF541      19_33 0.004726238  11.580563 1.592816e-07  -1.12397115
546    GLTSCR1      19_33 0.004612233  11.885441 1.595316e-07  -1.32652509
285       EHD2      19_33 0.002285516   5.110146 3.398896e-08  -0.36411082
2035   PLA2G4C      19_33 0.007494801  18.089201 3.945479e-07  -1.98820434
2033      LIG1      19_33 0.002560419   6.302385 4.696089e-08  -0.80351518
9597  C19orf68      19_33 0.002354603   5.265665 3.608204e-08   0.28745819
2032     CARD8      19_33 0.003811049  10.198079 1.131054e-07   1.50358629
2031   CCDC114      19_33 0.003716981   9.015487 9.752137e-08  -0.80677149
5372      EMP3      19_33 0.003771578  13.429498 1.474019e-07   2.48952012
2028     GRWD1      19_33 0.005953914  13.239887 2.294073e-07  -1.46082532
9293    KCNJ14      19_33 0.005508306  11.316782 1.814100e-07  -0.64003852
2027     CYTH2      19_33 0.096857221  37.835779 1.066486e-05  -3.00541299
5374     LMTK3      19_33 0.003221178  10.817976 1.014101e-07   2.08075978
1139   SULT2B1      19_33 0.070303638  36.032537 7.372129e-06  -3.37500000
2041    FAM83E      19_33 0.005660205  76.037017 1.252499e-06  10.13838966
547      SPHK2      19_33 0.068397171  32.874995 6.543711e-06  -7.48992914
2037       DBP      19_33 0.002331785   5.476114 3.716047e-08  -0.25215464
548       CA11      19_33 0.002555087   6.638900 4.936534e-08  -1.21664084
8853      FUT2      19_33 0.964164911 104.432110 2.930257e-04 -11.92710687
8850    MAMSTR      19_33 0.002732824  42.777277 3.402085e-07   7.35991125
9290    IZUMO1      19_33 0.004057109  16.859816 1.990627e-07   2.82737931
2021   SULT2A1      19_33 0.002451598   5.885121 4.198798e-08   0.65475292
      num_eqtl
10198        1
1999         2
9189         2
1219         1
1998         2
6721         1
4114         2
5373         1
4113         1
2002         2
11285        1
10199        1
4508         1
4503         1
3155         1
546          1
285          1
2035         2
2033         2
9597         2
2032         2
2031         2
5372         2
2028         1
9293         2
2027         2
5374         1
1139         1
2041         2
547          3
2037         1
548          1
8853         1
8850         2
9290         2
2021         1
[1] "FUT2"
[1] "19_33"
      genename region_tag   susie_pip        mu2          PVE            z
10198    DACT3      19_33 0.002536241   6.357149 4.692165e-08  -0.78861855
1999     PRKD2      19_33 0.987158666  29.999276 8.618229e-05   5.07221669
9189      FKRP      19_33 0.008740393  26.126612 6.645603e-07   3.89590554
1219     STRN4      19_33 0.003577677   8.593951 8.947761e-08   0.09301084
1998    SLC1A5      19_33 0.003841078   9.720446 1.086575e-07  -0.75306936
6721  ARHGAP35      19_33 0.005301143  13.675391 2.109743e-07   1.55600157
4114     NPAS1      19_33 0.002283819   5.854962 3.891402e-08   0.95990662
5373      SAE1      19_33 0.002278809   4.968304 3.294855e-08  -0.10729380
4113     ZC3H4      19_33 0.002278809   4.968304 3.294855e-08  -0.10729380
2002     CCDC9      19_33 0.002255655   4.903704 3.218972e-08   0.15834095
11285   INAFM1      19_33 0.002508412   6.076895 4.436096e-08  -0.60753416
10199    C5AR1      19_33 0.003922053  10.467804 1.194784e-07   1.15728685
4508     C5AR2      19_33 0.002685740   6.744032 5.271133e-08   0.68695693
4503     DHX34      19_33 0.003523481   9.282758 9.518516e-08  -0.97725261
3155    ZNF541      19_33 0.004726238  11.580563 1.592816e-07  -1.12397115
546    GLTSCR1      19_33 0.004612233  11.885441 1.595316e-07  -1.32652509
285       EHD2      19_33 0.002285516   5.110146 3.398896e-08  -0.36411082
2035   PLA2G4C      19_33 0.007494801  18.089201 3.945479e-07  -1.98820434
2033      LIG1      19_33 0.002560419   6.302385 4.696089e-08  -0.80351518
9597  C19orf68      19_33 0.002354603   5.265665 3.608204e-08   0.28745819
2032     CARD8      19_33 0.003811049  10.198079 1.131054e-07   1.50358629
2031   CCDC114      19_33 0.003716981   9.015487 9.752137e-08  -0.80677149
5372      EMP3      19_33 0.003771578  13.429498 1.474019e-07   2.48952012
2028     GRWD1      19_33 0.005953914  13.239887 2.294073e-07  -1.46082532
9293    KCNJ14      19_33 0.005508306  11.316782 1.814100e-07  -0.64003852
2027     CYTH2      19_33 0.096857221  37.835779 1.066486e-05  -3.00541299
5374     LMTK3      19_33 0.003221178  10.817976 1.014101e-07   2.08075978
1139   SULT2B1      19_33 0.070303638  36.032537 7.372129e-06  -3.37500000
2041    FAM83E      19_33 0.005660205  76.037017 1.252499e-06  10.13838966
547      SPHK2      19_33 0.068397171  32.874995 6.543711e-06  -7.48992914
2037       DBP      19_33 0.002331785   5.476114 3.716047e-08  -0.25215464
548       CA11      19_33 0.002555087   6.638900 4.936534e-08  -1.21664084
8853      FUT2      19_33 0.964164911 104.432110 2.930257e-04 -11.92710687
8850    MAMSTR      19_33 0.002732824  42.777277 3.402085e-07   7.35991125
9290    IZUMO1      19_33 0.004057109  16.859816 1.990627e-07   2.82737931
2021   SULT2A1      19_33 0.002451598   5.885121 4.198798e-08   0.65475292
      num_eqtl
10198        1
1999         2
9189         2
1219         1
1998         2
6721         1
4114         2
5373         1
4113         1
2002         2
11285        1
10199        1
4508         1
4503         1
3155         1
546          1
285          1
2035         2
2033         2
9597         2
2032         2
2031         2
5372         2
2028         1
9293         2
2027         2
5374         1
1139         1
2041         2
547          3
2037         1
548          1
8853         1
8850         2
9290         2
2021         1
[1] "PLTP"
[1] "20_28"
      genename region_tag   susie_pip       mu2          PVE           z
6004      JPH2      20_28 0.002107909  4.965733 3.046180e-08  0.34475118
4307     OSER1      20_28 0.002499552  6.627864 4.821210e-08 -0.75955007
10183    FITM2      20_28 0.002173406  7.622494 4.821234e-08  1.70850449
4308   SERINC3      20_28 0.004135425 10.810424 1.301017e-07  1.05515959
7969      PKIG      20_28 0.013194569 20.381402 7.826175e-07 -1.92973723
10117      ADA      20_28 0.002159902  6.275170 3.944390e-08 -1.11873945
3615    KCNK15      20_28 0.002607530  6.793455 5.155139e-08 -0.46584654
7686     YWHAB      20_28 0.002932901  7.880371 6.726116e-08  0.92140948
292     TOMM34      20_28 0.002143561  5.178177 3.230227e-08 -0.21559970
1617      STK4      20_28 0.002301388  5.788528 3.876843e-08 -0.65248556
3588      SLPI      20_28 0.002485549  6.364733 4.603868e-08 -0.56680056
3613     RBPJL      20_28 0.005308415 13.931448 2.152194e-07  1.21973824
3594     MATN4      20_28 0.002270332  5.509852 3.640405e-08 -0.72142554
3591      SDC4      20_28 0.625955627 23.902800 4.354243e-05 -3.92072709
10520     SYS1      20_28 0.002114007  4.927588 3.031525e-08 -0.53036749
11155   DBNDD2      20_28 0.002585244  7.573187 5.697713e-08  0.76276385
3616   TP53TG5      20_28 0.002326945  7.074786 4.790930e-08 -1.22434355
3589     WFDC3      20_28 0.002834388 12.643380 1.042900e-07  0.89942952
1683   DNTTIP1      20_28 0.010960848 17.310755 5.521797e-07  1.67362043
8688     UBE2C      20_28 0.003185034 10.090203 9.352641e-08 -1.29063071
3587     SNX21      20_28 0.032689020 29.670586 2.822593e-06 -2.25095415
1685     ACOT8      20_28 0.002774416  8.295233 6.697621e-08  0.46314131
7959    ZSWIM1      20_28 0.298972256 30.799682 2.679769e-05 -0.64131988
1597      PLTP      20_28 0.988328266 61.285277 1.762697e-04 -5.73249075
1598     PCIF1      20_28 0.002142542 21.226255 1.323497e-07  2.96018585
10296   ZNF335      20_28 0.002202296  5.272123 3.378949e-08  0.03190689
1600      MMP9      20_28 0.008157296 18.066459 4.288837e-07  1.76632544
3595     NCOA5      20_28 0.003843563 10.749396 1.202371e-07  1.06921473
1608      CD40      20_28 0.006407653 14.133128 2.635467e-07 -1.05986939
      num_eqtl
6004         1
4307         2
10183        1
4308         2
7969         1
10117        1
3615         2
7686         1
292          1
1617         1
3588         2
3613         1
3594         1
3591         1
10520        1
11155        1
3616         2
3589         1
1683         2
8688         1
3587         1
1685         2
7959         1
1597         1
1598         1
10296        1
1600         1
3595         1
1608         1

Genes with many eQTL

#distribution of number of eQTL for all imputed genes (after dropping ambiguous variants)
table(ctwas_gene_res$num_eqtl)

   1    2    3    4    5 
6546 2969  343   18    5 
#all genes with 4+ eQTL
ctwas_gene_res[ctwas_gene_res$num_eqtl>3,]
      chrom                 id       pos type region_tag1 region_tag2
9844      3 ENSG00000188086.13  46740510 gene           3          33
9134      3 ENSG00000180376.16  56557027 gene           3          39
5029      4 ENSG00000138744.14  75919602 gene           4          51
7247      4 ENSG00000164111.14 121685788 gene           4          78
10990     6  ENSG00000231852.6  32037872 gene           6          26
9071      6 ENSG00000179344.16  32668036 gene           6          26
3487      7 ENSG00000122674.11   5882180 gene           7           9
10012     7 ENSG00000196247.11  64665954 gene           7          44
2211      9 ENSG00000107099.15    211762 gene           9           1
4762      9 ENSG00000136866.13 113056669 gene           9          58
4471     10 ENSG00000134463.14  11740178 gene          10          10
3819     14 ENSG00000126790.11  59473099 gene          14          27
9407     16 ENSG00000183549.10  20409006 gene          16          19
5257     16 ENSG00000140995.16  89919436 gene          16          54
7821     17 ENSG00000167723.14   3557863 gene          17           3
9025     17 ENSG00000178852.15  47322830 gene          17          27
9306     17 ENSG00000182534.13  76686803 gene          17          43
8576     17 ENSG00000173818.16  80415678 gene          17          45
9259     19 ENSG00000182013.17  46471505 gene          19          32
1478     22 ENSG00000100299.17  50625049 gene          22          24
4430      1 ENSG00000134201.10 109704237 gene           1          67
9605     11  ENSG00000185522.8    559466 gene          11           1
3790     13 ENSG00000126231.13 113146308 gene          13          62
      cs_index   susie_pip       mu2 region_tag          PVE genename
9844         0 0.011050518  5.474426       3_33 1.760522e-07   PRSS45
9134         0 0.022811582  9.865698       3_39 6.549430e-07   CCDC66
5029         0 0.009986465  5.170735       4_51 1.502742e-07     NAAA
7247         0 0.046854546 20.525957       4_78 2.798823e-06    ANXA5
10990        0 0.008935385 23.666271       6_26 6.154084e-07  CYP21A2
9071         0 0.003605555 25.265059       6_26 2.651019e-07 HLA-DQB1
3487         0 0.019685095 19.017262        7_9 1.089446e-06     CCZ1
10012        0 0.005877624  5.665862       7_44 9.691436e-08   ZNF107
2211         0 0.016231330  7.093024        9_1 3.350471e-07    DOCK8
4762         0 0.028947657 11.065995       9_58 9.322323e-07    ZFP37
4471         0 0.132833508 31.776633      10_10 1.228389e-05   ECHDC3
3819         0 0.016859273  4.949234      14_27 2.428271e-07  L3HYPDH
9407         0 0.012328262  5.463894      16_19 1.960309e-07    ACSM5
5257         0 0.082319740 21.249394      16_54 5.090622e-06     DEF8
7821         0 0.019068424 11.142237       17_3 6.183118e-07    TRPV3
9025         0 0.019832422 75.205023      17_27 4.340531e-06  EFCAB13
9306         0 0.010115188  5.092336      17_43 1.499033e-07    MXRA7
8576         0 0.013922637  4.997920      17_45 2.025028e-07    ENDOV
9259         0 0.000000000 18.541969      19_32 0.000000e+00   PNMAL1
1478         0 0.012766481  5.498480      22_24 2.042839e-07     ARSA
4430         0 0.012623446  8.133483       1_67 2.987960e-07    GSTM5
9605         0 0.012679208  5.010694       11_1 1.848887e-07   LMNTD2
3790         0 0.012757286 10.952020      13_62 4.066051e-07     PROZ
           gene_type             z num_eqtl
9844  protein_coding  0.3663261014        4
9134  protein_coding -1.6064732513        4
5029  protein_coding -0.2119625465        4
7247  protein_coding -1.9055596504        5
10990 protein_coding  3.1136273968        4
9071  protein_coding  5.1840158056        4
3487  protein_coding  1.6846267741        5
10012 protein_coding -0.3556785835        4
2211  protein_coding -0.7504937771        5
4762  protein_coding -1.2880534295        4
4471  protein_coding  3.1489044750        5
3819  protein_coding -0.2488473697        4
9407  protein_coding -0.1521416879        4
5257  protein_coding  2.0816616174        4
7821  protein_coding  1.2490718738        4
9025  protein_coding  8.4456955567        4
9306  protein_coding -0.2000807881        4
8576  protein_coding  0.1694349763        4
9259  protein_coding -1.6928766232        4
1478  protein_coding  0.0008206936        4
4430  protein_coding  0.8040299448        5
9605  protein_coding  0.4221573902        4
3790  protein_coding  2.1821725016        4
#distribution of number of eQTL for genes with PIP>0.8
table(ctwas_gene_res$num_eqtl[ctwas_gene_res$susie_pip>0.8])/sum(ctwas_gene_res$susie_pip>0.8)

         1          2          3 
0.60000000 0.31428571 0.08571429 
#genes with 2+ eQTL and PIP>0.8
ctwas_gene_res[ctwas_gene_res$num_eqtl>1 & ctwas_gene_res$susie_pip>0.8,]
      chrom                 id       pos type region_tag1 region_tag2
5542      1 ENSG00000143771.11 224356827 gene           1         114
3720      2 ENSG00000125629.14 118088372 gene           2          69
3562      2 ENSG00000123612.15 157625480 gene           2          94
6217      5 ENSG00000152684.10  52787392 gene           5          31
10612     6 ENSG00000204599.14  30324306 gene           6          24
4702      7 ENSG00000136271.10  44575121 gene           7          32
1114      7 ENSG00000087087.18 100875204 gene           7          62
8523      8 ENSG00000173273.15   9315699 gene           8          12
6387      9 ENSG00000155158.20  15280189 gene           9          13
3300     10 ENSG00000119965.12 122945179 gene          10          77
5988     11 ENSG00000149485.18  61829161 gene          11          34
11327    16  ENSG00000261701.6  72063820 gene          16          38
8571     17  ENSG00000173757.9  42276835 gene          17          25
1999     19 ENSG00000105287.12  46713856 gene          19          33
      cs_index susie_pip       mu2 region_tag          PVE genename
5542         1 0.9789702  40.69262      1_114 1.159326e-04    CNIH4
3720         1 0.9999957  68.37263       2_69 1.989760e-04   INSIG2
3562         0 0.9320372  25.78698       2_94 6.994458e-05   ACVR1C
6217         1 0.9363014  70.56030       5_31 1.922633e-04     PELO
10612        1 0.9985885  71.89752       6_24 2.089396e-04   TRIM39
4702         2 0.9495892  59.83144       7_32 1.653429e-04    DDX56
1114         2 0.9405116  32.60063       7_62 8.922992e-05     SRRT
8523         1 0.9910883  76.13390       8_12 2.195891e-04     TNKS
6387         0 0.9450026  23.14602       9_13 6.365459e-05   TTC39B
3300         1 0.9371487  37.07672      10_77 1.011184e-04 C10orf88
5988         1 0.9998404 163.46291      11_34 4.756311e-04    FADS1
11327        1 0.9999997 162.98924      16_38 4.743284e-04      HPR
8571         1 0.9336311  30.56463      17_25 8.304523e-05   STAT5B
1999         2 0.9871587  29.99928      19_33 8.618229e-05    PRKD2
           gene_type          z num_eqtl
5542  protein_coding   6.145535        2
3720  protein_coding  -8.982702        3
3562  protein_coding  -4.687370        2
6217  protein_coding   8.288398        2
10612 protein_coding   8.840164        3
4702  protein_coding   9.641861        2
1114  protein_coding   5.424996        2
8523  protein_coding  11.038564        2
6387  protein_coding  -4.334495        3
3300  protein_coding  -6.787850        2
5988  protein_coding  12.926351        2
11327 protein_coding -17.962770        2
8571  protein_coding   5.426252        2
1999  protein_coding   5.072217        2

cTWAS genes in GO terms enriched for silver standard genes

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

#GO enrichment analysis for silver standard genes
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- known_annotations
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
for (db in dbs){
  print(db)
  df <- GO_enrichment[[db]]
  df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
  plotEnrich(GO_enrichment[[db]])
  print(df)
}
[1] "GO_Biological_Process_2021"
                                                                                       Term
1                                                        cholesterol transport (GO:0030301)
2                                                      cholesterol homeostasis (GO:0042632)
3                                                           sterol homeostasis (GO:0055092)
4                                                           cholesterol efflux (GO:0033344)
5                                                             sterol transport (GO:0015918)
6                                                cholesterol metabolic process (GO:0008203)
7                                                     sterol metabolic process (GO:0016125)
8                            triglyceride-rich lipoprotein particle remodeling (GO:0034370)
9                                 high-density lipoprotein particle remodeling (GO:0034375)
10                                               reverse cholesterol transport (GO:0043691)
11                                         secondary alcohol metabolic process (GO:1902652)
12                                   regulation of lipoprotein lipase activity (GO:0051004)
13                                                      phospholipid transport (GO:0015914)
14                                                             lipid transport (GO:0006869)
15                                                    acylglycerol homeostasis (GO:0055090)
16                            very-low-density lipoprotein particle remodeling (GO:0034372)
17                                                    triglyceride homeostasis (GO:0070328)
18                                              triglyceride metabolic process (GO:0006641)
19                                                         phospholipid efflux (GO:0033700)
20                                                      chylomicron remodeling (GO:0034371)
21                                         regulation of cholesterol transport (GO:0032374)
22                                                        chylomicron assembly (GO:0034378)
23                                               chylomicron remnant clearance (GO:0034382)
24                                               lipoprotein metabolic process (GO:0042157)
25                                               diterpenoid metabolic process (GO:0016101)
26                            positive regulation of steroid metabolic process (GO:0045940)
27                                                  retinoid metabolic process (GO:0001523)
28                                                           lipid homeostasis (GO:0055088)
29                                      negative regulation of lipase activity (GO:0060192)
30                           positive regulation of cholesterol esterification (GO:0010873)
31                                           intestinal cholesterol absorption (GO:0030299)
32                                negative regulation of cholesterol transport (GO:0032375)
33                                                 intestinal lipid absorption (GO:0098856)
34                                              acylglycerol metabolic process (GO:0006639)
35                                    regulation of cholesterol esterification (GO:0010872)
36                                                    phospholipid homeostasis (GO:0055091)
37                              very-low-density lipoprotein particle assembly (GO:0034379)
38                              positive regulation of lipid metabolic process (GO:0045834)
39                                  high-density lipoprotein particle assembly (GO:0034380)
40                          negative regulation of lipoprotein lipase activity (GO:0051005)
41                       negative regulation of lipoprotein particle clearance (GO:0010985)
42              regulation of very-low-density lipoprotein particle remodeling (GO:0010901)
43                                         intracellular cholesterol transport (GO:0032367)
44                                positive regulation of cholesterol transport (GO:0032376)
45                             regulation of intestinal cholesterol absorption (GO:0030300)
46                          positive regulation of lipoprotein lipase activity (GO:0051006)
47                                              acylglycerol catabolic process (GO:0046464)
48                           positive regulation of lipid biosynthetic process (GO:0046889)
49                       positive regulation of triglyceride metabolic process (GO:0090208)
50                         positive regulation of triglyceride lipase activity (GO:0061365)
51                                       regulation of lipid catabolic process (GO:0050994)
52                                                   steroid metabolic process (GO:0008202)
53                              positive regulation of lipid catabolic process (GO:0050996)
54                                              triglyceride catabolic process (GO:0019433)
55                                             organophosphate ester transport (GO:0015748)
56                                       phosphatidylcholine metabolic process (GO:0046470)
57                                regulation of triglyceride catabolic process (GO:0010896)
58                                                fatty acid metabolic process (GO:0006631)
59                               regulation of fatty acid biosynthetic process (GO:0042304)
60                                              regulation of sterol transport (GO:0032371)
61              cellular response to low-density lipoprotein particle stimulus (GO:0071404)
62                                 low-density lipoprotein particle remodeling (GO:0034374)
63                  regulation of macrophage derived foam cell differentiation (GO:0010743)
64                                                 organic substance transport (GO:0071702)
65                                            regulation of cholesterol efflux (GO:0010874)
66                                               receptor-mediated endocytosis (GO:0006898)
67                                      secondary alcohol biosynthetic process (GO:1902653)
68                                           regulation of cholesterol storage (GO:0010885)
69                                                          cholesterol import (GO:0070508)
70                                                               sterol import (GO:0035376)
71                                    monocarboxylic acid biosynthetic process (GO:0072330)
72                                            cholesterol biosynthetic process (GO:0006695)
73                           positive regulation of cellular metabolic process (GO:0031325)
74                                                 sterol biosynthetic process (GO:0016126)
75                         positive regulation of fatty acid metabolic process (GO:0045923)
76                                 regulation of receptor-mediated endocytosis (GO:0048259)
77                                             fatty acid biosynthetic process (GO:0006633)
78                             regulation of Cdc42 protein signal transduction (GO:0032489)
79                       positive regulation of triglyceride catabolic process (GO:0010898)
80                                                  lipid biosynthetic process (GO:0008610)
81                                   positive regulation of cholesterol efflux (GO:0010875)
82                        negative regulation of receptor-mediated endocytosis (GO:0048261)
83                                                       lipoprotein transport (GO:0042953)
84                                       regulation of lipid metabolic process (GO:0019216)
85                                       monocarboxylic acid metabolic process (GO:0032787)
86                                                    lipoprotein localization (GO:0044872)
87                                                     lipid catabolic process (GO:0016042)
88                      positive regulation of fatty acid biosynthetic process (GO:0045723)
89                                              intracellular sterol transport (GO:0032366)
90                                                steroid biosynthetic process (GO:0006694)
91                                    regulation of lipid biosynthetic process (GO:0046890)
92                                               regulation of lipase activity (GO:0060191)
93                        positive regulation of cellular biosynthetic process (GO:0031328)
94                                        regulation of amyloid-beta clearance (GO:1900221)
95                                              phospholipid metabolic process (GO:0006644)
96                                   regulation of intestinal lipid absorption (GO:1904729)
97             positive regulation of protein catabolic process in the vacuole (GO:1904352)
98                                 positive regulation of biosynthetic process (GO:0009891)
99                                 regulation of cholesterol metabolic process (GO:0090181)
100                                                  foam cell differentiation (GO:0090077)
101                                 positive regulation of cholesterol storage (GO:0010886)
102                               macrophage derived foam cell differentiation (GO:0010742)
103                              organic hydroxy compound biosynthetic process (GO:1901617)
104                                    regulation of steroid metabolic process (GO:0019218)
105                               organonitrogen compound biosynthetic process (GO:1901566)
106                             negative regulation of lipid metabolic process (GO:0045833)
107                          regulation of lysosomal protein catabolic process (GO:1905165)
108                              positive regulation of amyloid-beta clearance (GO:1900223)
109                                           cellular lipid catabolic process (GO:0044242)
110                                                       chemical homeostasis (GO:0048878)
111                                              cholesterol catabolic process (GO:0006707)
112                                                   sterol catabolic process (GO:0016127)
113                                       steroid hormone biosynthetic process (GO:0120178)
114                   regulation of low-density lipoprotein particle clearance (GO:0010988)
115                                                bile acid metabolic process (GO:0008206)
116                                   phosphatidylcholine biosynthetic process (GO:0006656)
117                                                  alcohol catabolic process (GO:0046164)
118                                          organophosphate catabolic process (GO:0046434)
119                                       regulation of phospholipase activity (GO:0010517)
120                                  positive regulation of lipid localization (GO:1905954)
121                              positive regulation of phospholipid transport (GO:2001140)
122                                      glycerophospholipid metabolic process (GO:0006650)
123                                         organic hydroxy compound transport (GO:0015850)
124        negative regulation of macrophage derived foam cell differentiation (GO:0010745)
125                                     positive regulation of lipid transport (GO:0032370)
126                                   C21-steroid hormone biosynthetic process (GO:0006700)
127                                                      membrane organization (GO:0061024)
128                                         positive regulation of endocytosis (GO:0045807)
129                    positive regulation of multicellular organismal process (GO:0051240)
130                                   negative regulation of catabolic process (GO:0009895)
131                             negative regulation of lipid catabolic process (GO:0050995)
132                                          carbohydrate derivative transport (GO:1901264)
133        positive regulation of macrophage derived foam cell differentiation (GO:0010744)
134                                                          protein transport (GO:0015031)
135                                                       fatty acid transport (GO:0015908)
136                                       positive regulation of lipid storage (GO:0010884)
137                                      C21-steroid hormone metabolic process (GO:0008207)
138                                             phospholipid catabolic process (GO:0009395)
139                                         negative regulation of endocytosis (GO:0045806)
140                                    regulation of primary metabolic process (GO:0080090)
141                    negative regulation of multicellular organismal process (GO:0051241)
142                                             bile acid biosynthetic process (GO:0006699)
143  regulation of low-density lipoprotein particle receptor catabolic process (GO:0032803)
144                              regulation of Rho protein signal transduction (GO:0035023)
145                             regulation of small molecule metabolic process (GO:0062012)
146                          positive regulation of cellular catabolic process (GO:0031331)
147                                                       artery morphogenesis (GO:0048844)
148                     negative regulation of cellular component organization (GO:0051129)
149                                                       glycolipid transport (GO:0046836)
150                      positive regulation of lipoprotein particle clearance (GO:0010986)
151                                    positive regulation of sterol transport (GO:0032373)
152                                            long-chain fatty acid transport (GO:0015909)
153                                                        response to insulin (GO:0032868)
154                                  regulation of bile acid metabolic process (GO:1904251)
155                          positive regulation of receptor catabolic process (GO:2000646)
156                                           positive regulation of transport (GO:0051050)
157                      negative regulation of endothelial cell proliferation (GO:0001937)
158                          negative regulation of endothelial cell migration (GO:0010596)
159                          regulation of nitrogen compound metabolic process (GO:0051171)
160                              negative regulation of amyloid-beta clearance (GO:1900222)
161                          negative regulation of cellular metabolic process (GO:0031324)
162                                   glycerophospholipid biosynthetic process (GO:0046474)
163 negative regulation of production of molecular mediator of immune response (GO:0002701)
164                                unsaturated fatty acid biosynthetic process (GO:0006636)
165                                                            anion transport (GO:0006820)
166                       positive regulation of receptor-mediated endocytosis (GO:0048260)
167                                 negative regulation of cholesterol storage (GO:0010887)
168                               regulation of bile acid biosynthetic process (GO:0070857)
169                                           peptidyl-amino acid modification (GO:0018193)
170                low-density lipoprotein particle receptor catabolic process (GO:0032802)
171                low-density lipoprotein receptor particle metabolic process (GO:0032799)
172                                                          protein oxidation (GO:0018158)
173                               positive regulation by host of viral process (GO:0044794)
174                   positive regulation of triglyceride biosynthetic process (GO:0010867)
175                                                   receptor internalization (GO:0031623)
176                                                        response to glucose (GO:0009749)
177                     positive regulation of cellular component organization (GO:0051130)
178                     negative regulation of fatty acid biosynthetic process (GO:0045717)
179                                          negative regulation of hemostasis (GO:1900047)
180                                           peptidyl-methionine modification (GO:0018206)
181                                                          ethanol oxidation (GO:0006069)
182                            negative regulation of amyloid fibril formation (GO:1905907)
183                           negative regulation of protein metabolic process (GO:0051248)
184                                   unsaturated fatty acid metabolic process (GO:0033559)
185                                     alpha-linolenic acid metabolic process (GO:0036109)
186                                                     platelet degranulation (GO:0002576)
187                                   negative regulation of metabolic process (GO:0009892)
188                                     negative regulation of cell activation (GO:0050866)
189                                         negative regulation of coagulation (GO:0050819)
190                                                    cGMP-mediated signaling (GO:0019934)
191                                                      intestinal absorption (GO:0050892)
192                                                 receptor metabolic process (GO:0043112)
193                                                 regulation of phagocytosis (GO:0050764)
194                                     regulation of amyloid fibril formation (GO:1905906)
195                                 regulation of sequestering of triglyceride (GO:0010889)
196                            regulation of triglyceride biosynthetic process (GO:0010866)
197                                    post-translational protein modification (GO:0043687)
198                                                  regulation of endocytosis (GO:0030100)
199                                                   amyloid fibril formation (GO:1990000)
200                    positive regulation of small molecule metabolic process (GO:0062013)
201                                       cellular response to nutrient levels (GO:0031669)
202     negative regulation of cytokine production involved in immune response (GO:0002719)
203                        negative regulation of fatty acid metabolic process (GO:0045922)
204                             regulation of cholesterol biosynthetic process (GO:0045540)
205                                 regulation of steroid biosynthetic process (GO:0050810)
206                                   positive regulation of catabolic process (GO:0009896)
207                                amyloid precursor protein metabolic process (GO:0042982)
208                                  nitric oxide mediated signal transduction (GO:0007263)
209                      positive regulation of nitric-oxide synthase activity (GO:0051000)
210                                                  ethanol metabolic process (GO:0006067)
211                  positive regulation of cellular protein catabolic process (GO:1903364)
212                                                     response to fatty acid (GO:0070542)
213                                                           long-term memory (GO:0007616)
214                                       negative regulation of lipid storage (GO:0010888)
215                                            linoleic acid metabolic process (GO:0043651)
216                          negative regulation of lipid biosynthetic process (GO:0051055)
217                                                regulation of lipid storage (GO:0010883)
218                                regulation of interleukin-1 beta production (GO:0032651)
219                                    long-chain fatty acid metabolic process (GO:0001676)
220              regulation of cytokine production involved in immune response (GO:0002718)
221                                         cellular protein metabolic process (GO:0044267)
222                                    negative regulation of defense response (GO:0031348)
223                                       transport across blood-brain barrier (GO:0150104)
224                                                 receptor catabolic process (GO:0032801)
225                                                         response to hexose (GO:0009746)
226                                                       regulated exocytosis (GO:0045055)
227                                   regulation of endothelial cell migration (GO:0010594)
228                                   negative regulation of protein transport (GO:0051224)
229                                             positive regulation of binding (GO:0051099)
230                                            regulation of blood coagulation (GO:0030193)
231                              positive regulation of monooxygenase activity (GO:0032770)
232                                       negative regulation of wound healing (GO:0061045)
233                     negative regulation of macromolecule metabolic process (GO:0010605)
234                                 long-chain fatty acid biosynthetic process (GO:0042759)
235                                         regulation of developmental growth (GO:0048638)
236                                                   regulation of cell death (GO:0010941)
237                                                 regulation of angiogenesis (GO:0045765)
238                                        regulation of inflammatory response (GO:0050727)
239                                                   apoptotic cell clearance (GO:0043277)
240                              cellular response to peptide hormone stimulus (GO:0071375)
241             negative regulation of blood vessel endothelial cell migration (GO:0043537)
242                            phosphate-containing compound metabolic process (GO:0006796)
243                           negative regulation of epithelial cell migration (GO:0010633)
244                                          cellular response to amyloid-beta (GO:1904646)
245                                       cyclic-nucleotide-mediated signaling (GO:0019935)
246                                     regulation of receptor internalization (GO:0002090)
247                                                          response to lipid (GO:0033993)
248         regulation of vascular associated smooth muscle cell proliferation (GO:1904705)
249                          regulation of protein-containing complex assembly (GO:0043254)
250                                                              ion transport (GO:0006811)
251                       negative regulation of response to external stimulus (GO:0032102)
252                                              regulation of protein binding (GO:0043393)
253                                regulation of cellular component biogenesis (GO:0044087)
254                                   negative regulation of protein secretion (GO:0050709)
255                                   negative regulation of secretion by cell (GO:1903531)
256                               regulation of nitric-oxide synthase activity (GO:0050999)
257                                   negative regulation of blood coagulation (GO:0030195)
258                                     cellular response to organic substance (GO:0071310)
259                                      cellular response to insulin stimulus (GO:0032869)
260                                                   response to amyloid-beta (GO:1904645)
261              establishment of protein localization to extracellular region (GO:0035592)
262                                   regulation of cellular metabolic process (GO:0031323)
263                                    regulation of protein metabolic process (GO:0051246)
264                                positive regulation of cell differentiation (GO:0045597)
265                        negative regulation of cell projection organization (GO:0031345)
266                            positive regulation of fat cell differentiation (GO:0045600)
267                               negative regulation of BMP signaling pathway (GO:0030514)
268                       negative regulation of cellular biosynthetic process (GO:0031327)
269                                        positive regulation of phagocytosis (GO:0050766)
    Overlap Adjusted.P.value
1     28/51     3.291336e-55
2     29/71     1.134840e-52
3     29/72     1.264418e-52
4     16/24     1.003687e-32
5     15/21     2.203564e-31
6     20/77     5.273224e-31
7     19/70     7.882518e-30
8     12/13     1.520527e-27
9     13/18     2.514128e-27
10    12/17     5.731565e-25
11    15/49     2.711706e-24
12    12/21     2.245426e-23
13    15/59     5.665269e-23
14   17/109     2.748742e-22
15    12/25     3.145271e-22
16      9/9     2.283165e-21
17    12/31     7.414146e-21
18    13/55     1.935295e-19
19     9/12     4.196729e-19
20      8/9     5.374944e-18
21    10/25     1.639871e-17
22     8/10     2.436689e-17
23      7/7     1.679428e-16
24      7/9     5.763376e-15
25    11/64     8.362646e-15
26     7/13     2.508790e-13
27    11/92     5.133855e-13
28    10/64     5.133855e-13
29      6/9     3.296018e-12
30      6/9     3.296018e-12
31      6/9     3.296018e-12
32     6/11     1.693836e-11
33     6/11     1.693836e-11
34     8/41     3.013332e-11
35     6/12     3.013332e-11
36     6/12     3.013332e-11
37     6/12     3.013332e-11
38     7/25     4.654994e-11
39     6/13     5.294950e-11
40      5/6     5.459029e-11
41      5/6     5.459029e-11
42      5/6     5.459029e-11
43     6/15     1.393181e-10
44     7/33     3.496187e-10
45      5/8     4.627510e-10
46      5/8     4.627510e-10
47     7/35     5.017364e-10
48     7/35     5.017364e-10
49     6/19     6.556580e-10
50      5/9     9.553575e-10
51     6/21     1.253116e-09
52    9/104     1.493946e-09
53     6/22     1.653549e-09
54     6/23     2.189811e-09
55     6/25     3.733511e-09
56     8/77     3.733511e-09
57     5/12     5.225810e-09
58    9/124     6.552660e-09
59     6/29     9.279729e-09
60      4/5     9.798195e-09
61     5/14     1.207993e-08
62     5/14     1.207993e-08
63     6/31     1.339781e-08
64    9/136     1.355933e-08
65     6/33     1.942867e-08
66    9/143     2.054367e-08
67     6/34     2.282600e-08
68     5/16     2.390304e-08
69      4/6     2.513038e-08
70      4/6     2.513038e-08
71     7/63     2.556641e-08
72     6/35     2.556641e-08
73    8/105     3.517095e-08
74     6/38     4.196695e-08
75     5/18     4.228478e-08
76     6/39     4.816188e-08
77     7/71     5.609765e-08
78      4/8     1.033779e-07
79      4/8     1.033779e-07
80     7/80     1.258618e-07
81     5/23     1.517283e-07
82     5/26     2.906610e-07
83     4/10     2.936601e-07
84     7/92     3.199662e-07
85    8/143     3.471498e-07
86     4/11     4.442138e-07
87     5/29     4.906437e-07
88     4/13     9.252034e-07
89     4/13     9.252034e-07
90     6/65     9.598111e-07
91     5/35     1.249797e-06
92     4/14     1.249797e-06
93    8/180     1.884951e-06
94     4/16     2.212485e-06
95     6/76     2.336232e-06
96      3/5     3.664395e-06
97      3/5     3.664395e-06
98     5/44     3.827136e-06
99     4/21     6.819051e-06
100     3/6     6.952354e-06
101     3/6     6.952354e-06
102     3/6     6.952354e-06
103    5/50     6.991423e-06
104    4/23     9.554179e-06
105   7/158     1.040987e-05
106    4/24     1.121951e-05
107     3/7     1.146235e-05
108     3/7     1.146235e-05
109    4/27     1.788032e-05
110    5/65     2.452122e-05
111     3/9     2.639634e-05
112     3/9     2.639634e-05
113    4/31     3.060279e-05
114    3/10     3.695601e-05
115    4/33     3.856854e-05
116    4/33     3.856854e-05
117    3/11     4.775659e-05
118    3/11     4.775659e-05
119    3/11     4.775659e-05
120    3/11     4.775659e-05
121    3/11     4.775659e-05
122    5/80     6.182763e-05
123    4/40     7.973389e-05
124    3/13     7.973389e-05
125    3/13     7.973389e-05
126    3/15     1.252218e-04
127   7/242     1.420233e-04
128    4/48     1.598563e-04
129   8/345     1.704405e-04
130    4/49     1.709436e-04
131    3/18     2.111817e-04
132    3/18     2.111817e-04
133    3/18     2.111817e-04
134   8/369     2.646441e-04
135    3/20     2.892290e-04
136    3/21     3.341258e-04
137    3/24     4.974036e-04
138    3/24     4.974036e-04
139    3/25     5.597802e-04
140   5/130     5.616142e-04
141   6/214     6.166972e-04
142    3/27     6.934199e-04
143     2/5     7.406583e-04
144    4/73     7.449454e-04
145    3/28     7.586859e-04
146   5/141     7.898802e-04
147    3/30     9.228897e-04
148    4/80     1.034287e-03
149     2/6     1.049782e-03
150     2/6     1.049782e-03
151     2/6     1.049782e-03
152    3/32     1.085012e-03
153    4/84     1.208000e-03
154     2/7     1.428577e-03
155     2/7     1.428577e-03
156    4/91     1.611630e-03
157    3/37     1.625395e-03
158    3/38     1.749224e-03
159     2/8     1.841132e-03
160     2/8     1.841132e-03
161    3/39     1.855101e-03
162   5/177     2.046657e-03
163     2/9     2.304288e-03
164     2/9     2.304288e-03
165    3/43     2.420344e-03
166    3/44     2.575438e-03
167    2/10     2.756295e-03
168    2/10     2.756295e-03
169    2/10     2.756295e-03
170    2/10     2.756295e-03
171    2/10     2.756295e-03
172    2/11     3.303347e-03
173    2/11     3.303347e-03
174    2/11     3.303347e-03
175    3/49     3.337798e-03
176    3/49     3.337798e-03
177   4/114     3.341630e-03
178    2/12     3.781332e-03
179    2/12     3.781332e-03
180    2/12     3.781332e-03
181    2/12     3.781332e-03
182    2/12     3.781332e-03
183    3/52     3.822266e-03
184    3/54     4.245657e-03
185    2/13     4.386588e-03
186   4/125     4.489058e-03
187    3/56     4.645735e-03
188    2/14     4.945884e-03
189    2/14     4.945884e-03
190    2/14     4.945884e-03
191    2/14     4.945884e-03
192    3/58     4.985945e-03
193    3/58     4.985945e-03
194    2/15     5.548828e-03
195    2/15     5.548828e-03
196    2/15     5.548828e-03
197   6/345     5.596173e-03
198    3/61     5.626994e-03
199    3/63     6.147256e-03
200    2/16     6.200855e-03
201    3/66     6.840974e-03
202    2/17     6.840974e-03
203    2/17     6.840974e-03
204    2/17     6.840974e-03
205    2/17     6.840974e-03
206    3/67     7.093595e-03
207    2/18     7.532008e-03
208    2/18     7.532008e-03
209    2/18     7.532008e-03
210    2/19     8.241667e-03
211    2/19     8.241667e-03
212    2/19     8.241667e-03
213    2/19     8.241667e-03
214    2/20     9.094348e-03
215    2/21     9.982653e-03
216    2/22     1.085553e-02
217    2/22     1.085553e-02
218    3/83     1.230478e-02
219    3/83     1.230478e-02
220    2/24     1.273659e-02
221   6/417     1.291939e-02
222    3/85     1.298477e-02
223    3/86     1.336097e-02
224    2/25     1.350640e-02
225    2/25     1.350640e-02
226   4/180     1.399465e-02
227    3/89     1.440735e-02
228    2/26     1.440735e-02
229    3/90     1.479001e-02
230    2/27     1.539039e-02
231    2/28     1.646589e-02
232    2/29     1.757027e-02
233   4/194     1.771224e-02
234    2/30     1.862299e-02
235    2/31     1.977865e-02
236   3/102     2.036757e-02
237   4/203     2.042828e-02
238   4/206     2.141587e-02
239    2/33     2.198466e-02
240   3/106     2.228428e-02
241    2/34     2.311351e-02
242   4/212     2.328380e-02
243    2/35     2.415927e-02
244    2/35     2.415927e-02
245    2/36     2.531623e-02
246    2/36     2.531623e-02
247   3/114     2.646649e-02
248    2/37     2.648825e-02
249   3/116     2.742785e-02
250   3/116     2.742785e-02
251   3/118     2.842391e-02
252   3/118     2.842391e-02
253    2/39     2.842391e-02
254    2/39     2.842391e-02
255    2/39     2.842391e-02
256    2/39     2.842391e-02
257    2/40     2.973753e-02
258   3/123     3.119488e-02
259   3/129     3.533580e-02
260    2/44     3.533580e-02
261    2/46     3.834204e-02
262    2/47     3.980515e-02
263    2/48     4.128649e-02
264   4/258     4.183273e-02
265    2/49     4.262417e-02
266    2/51     4.583569e-02
267    2/52     4.720898e-02
268    2/52     4.720898e-02
269    2/53     4.877011e-02
                                                                                                                                                                       Genes
1         SCARB1;CETP;LCAT;LIPC;NPC1L1;LIPG;CD36;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;STARD3;ABCG5;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;APOC2;APOC1
2   SCARB1;CETP;MTTP;PCSK9;LPL;LCAT;ABCB11;CYP7A1;LIPC;LIPG;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;ABCG5;EPHX2;APOA2;APOA1;APOC3;APOA4;APOA5;SOAT1;NPC1;NPC2;SOAT2;APOC2;ANGPTL3
3   SCARB1;CETP;MTTP;PCSK9;LPL;LCAT;ABCB11;CYP7A1;LIPC;LIPG;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;ABCG5;EPHX2;APOA2;APOA1;APOC3;APOA4;APOA5;SOAT1;NPC1;NPC2;SOAT2;APOC2;ANGPTL3
4                                                                              ABCA1;ABCG8;SCARB1;ABCG5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;NPC2;SOAT2;APOC2;APOC1;APOE
5                                                                                    ABCG8;CETP;STARD3;ABCG5;OSBPL5;APOA2;APOA1;LCAT;NPC1;NPC1L1;NPC2;CD36;APOB;LDLRAP1;LDLR
6                                              ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;HMGCR;APOA5;CYP7A1;CYP27A1;SOAT1;SOAT2;NPC1L1;ANGPTL3;APOE;DHCR7;LDLRAP1;APOB
7                                                      ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;HMGCR;LIPA;CYP7A1;CYP27A1;SOAT1;SOAT2;ANGPTL3;APOE;DHCR7;LDLRAP1;APOB
8                                                                                                           CETP;LIPC;APOC2;APOA2;APOA1;APOC3;LCAT;LPL;APOA4;APOE;APOB;APOA5
9                                                                                                   CETP;SCARB1;APOA2;APOA1;APOC3;LCAT;APOA4;LIPC;APOC2;APOC1;LIPG;APOE;PLTP
10                                                                                                       ABCA1;CETP;SCARB1;LIPC;APOC2;LIPG;APOA2;APOA1;APOC3;LCAT;APOA4;APOE
11                                                                             ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;CYP27A1;SOAT1;SOAT2;ANGPTL3;APOE;LDLRAP1;APOB
12                                                                                                   LIPC;SORT1;APOC2;APOH;APOC1;ANGPTL3;APOA1;APOC3;LPL;APOA4;ANGPTL4;APOA5
13                                                                                    ABCA1;SCARB1;OSBPL5;MTTP;APOA2;APOA1;APOC3;APOA4;APOA5;NPC2;APOC2;APOC1;APOE;LDLR;PLTP
14                                                                        ABCA1;SCARB1;ABCG8;CETP;ABCG5;OSBPL5;MTTP;APOA1;APOA4;ABCB11;APOA5;NPC2;NPC1L1;CD36;APOE;LDLR;PLTP
15                                                                                                   CETP;SCARB1;LIPC;APOC2;ANGPTL3;LPL;APOA1;APOC3;APOA4;APOE;ANGPTL4;APOA5
16                                                                                                                           CETP;LIPC;APOC2;APOA1;LCAT;LPL;APOA4;APOE;APOA5
17                                                                                                   CETP;SCARB1;LIPC;APOC2;ANGPTL3;LPL;APOA1;APOC3;APOA4;APOE;ANGPTL4;APOA5
18                                                                                                      CETP;APOA2;LPL;APOC3;APOA5;LIPC;LIPI;APOH;LIPG;APOC1;APOE;APOB;LPIN3
19                                                                                                                      ABCA1;APOC2;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOA5
20                                                                                                                               APOC2;APOA2;APOA1;APOC3;LPL;APOA4;APOE;APOB
21                                                                                                                   CETP;LRP1;APOC2;LIPG;APOC1;APOA2;TSPO;APOA1;APOA4;APOA5
22                                                                                                                              APOC2;MTTP;APOA2;APOA1;APOC3;APOA4;APOE;APOB
23                                                                                                                                     LIPC;APOC2;APOC1;APOC3;APOE;APOB;LDLR
24                                                                                                                                  NPC1L1;MTTP;APOA2;APOA1;APOA4;APOE;APOA5
25                                                                                                               LRP1;ADH1B;APOC2;APOA2;APOA1;LPL;APOC3;APOA4;LRP2;APOE;APOB
26                                                                                                                                APOC1;APOA2;APOA1;APOA4;APOE;LDLRAP1;APOA5
27                                                                                                               LRP1;ADH1B;APOC2;APOA2;APOA1;LPL;APOC3;APOA4;LRP2;APOE;APOB
28                                                                                                               ABCA1;CETP;LIPG;ANGPTL3;APOA1;APOA4;PPARG;APOE;ABCB11;APOA5
29                                                                                                                                   SORT1;APOC1;ANGPTL3;APOA2;APOC3;ANGPTL4
30                                                                                                                                        APOC1;APOA2;APOA1;APOA4;APOE;APOA5
31                                                                                                                                        ABCG8;ABCG5;NPC1L1;SOAT2;CD36;LDLR
32                                                                                                                                       ABCG8;ABCG5;APOC2;APOC1;APOA2;APOC3
33                                                                                                                                        ABCG8;ABCG5;NPC1L1;SOAT2;CD36;LDLR
34                                                                                                                                CETP;APOH;APOC1;APOA2;LPL;APOC3;APOE;APOA5
35                                                                                                                                        APOC1;APOA2;APOA1;APOA4;APOE;APOA5
36                                                                                                                                      ABCA1;CETP;LIPG;ANGPTL3;APOA1;ABCB11
37                                                                                                                                         SOAT1;SOAT2;APOC1;MTTP;APOC3;APOB
38                                                                                                                                APOA2;ANGPTL3;APOA1;APOA4;PPARG;APOE;APOA5
39                                                                                                                                        ABCA1;APOA2;APOA1;APOA4;APOE;APOA5
40                                                                                                                                         SORT1;APOC1;ANGPTL3;APOC3;ANGPTL4
41                                                                                                                                            LRPAP1;APOC2;APOC1;APOC3;PCSK9
42                                                                                                                                             APOC2;APOA2;APOA1;APOC3;APOA5
43                                                                                                                                         ABCA1;NPC1;STAR;NPC2;LDLRAP1;LDLR
44                                                                                                                                      CETP;LRP1;LIPG;APOA1;PPARG;APOE;PLTP
45                                                                                                                                             ABCG8;ABCG5;APOA1;APOA4;APOA5
46                                                                                                                                              APOC2;APOH;APOA1;APOA4;APOA5
47                                                                                                                                      LIPC;LIPI;LIPG;APOA2;LPL;APOC3;APOA5
48                                                                                                                                  SCARB1;APOC2;APOA1;APOA4;APOE;LDLR;APOA5
49                                                                                                                                       SCARB1;APOC2;APOA1;APOA4;APOA5;LDLR
50                                                                                                                                              APOC2;APOH;APOA1;APOA4;APOA5
51                                                                                                                                    APOC1;APOA2;ANGPTL3;APOC3;ABCB11;APOA5
52                                                                                                                     CYP27A1;STARD3;NPC1;STAR;TSPO;LRP2;ABCB11;LIPA;CYP7A1
53                                                                                                                                     APOC2;APOA2;ANGPTL3;APOA1;APOA4;APOA5
54                                                                                                                                            LIPC;LIPI;LIPG;APOC3;LPL;APOA5
55                                                                                                                                         SCARB1;OSBPL5;NPC2;MTTP;LDLR;PLTP
56                                                                                                                              CETP;LIPC;APOA2;APOA1;LCAT;APOA4;APOA5;LPIN3
57                                                                                                                                             APOC2;APOA1;APOC3;APOA4;APOA5
58                                                                                                                        LIPC;LIPI;LIPG;ANGPTL3;LPL;PPARG;CD36;ABCB11;LPIN3
59                                                                                                                                       APOC2;APOC1;APOA1;APOC3;APOA4;APOA5
60                                                                                                                                                     LRP1;APOC1;TSPO;APOA4
61                                                                                                                                                 ABCA1;LPL;PPARG;CD36;LDLR
62                                                                                                                                                  CETP;LIPC;APOA2;APOB;LPA
63                                                                                                                                            ABCA1;CETP;LPL;PPARG;CD36;APOB
64                                                                                                                        ABCA1;ABCG8;CETP;ABCG5;APOA1;APOA4;LRP2;APOA5;PLTP
65                                                                                                                                           CETP;LRP1;APOA1;PPARG;APOE;PLTP
66                                                                                                                        SCARB1;LRP1;APOA1;CD36;LRP2;APOE;LDLRAP1;APOB;LDLR
67                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
68                                                                                                                                               ABCA1;SCARB1;LPL;PPARG;APOB
69                                                                                                                                                    SCARB1;APOA1;CD36;LDLR
70                                                                                                                                                    SCARB1;APOA1;CD36;LDLR
71                                                                                                                                  CYP27A1;LIPC;LIPI;LIPG;LPL;ABCB11;CYP7A1
72                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
73                                                                                                                            APOC1;APOA2;PCSK9;APOA1;APOA4;PPARG;APOE;APOA5
74                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
75                                                                                                                                             APOC2;APOA1;APOA4;PPARG;APOA5
76                                                                                                                                    LRPAP1;APOC2;APOC1;APOC3;LDLRAP1;APOA5
77                                                                                                                                      FADS3;LIPC;LIPI;EPHX2;LIPG;LPL;FADS1
78                                                                                                                                                    ABCA1;APOA1;APOC3;APOE
79                                                                                                                                                   APOC2;APOA1;APOA4;APOA5
80                                                                                                                                       LIPC;STAR;LIPI;LIPG;LPL;HMGCR;FADS1
81                                                                                                                                                LRP1;APOA1;PPARG;APOE;PLTP
82                                                                                                                                            LRPAP1;APOC2;APOC1;PCSK9;APOC3
83                                                                                                                                                      LRP1;PPARG;CD36;APOB
84                                                                                                                                  NPC2;APOC2;APOC1;APOC3;PPARG;HMGCR;DHCR7
85                                                                                                                            NPC1;ADH1B;ANGPTL3;LPL;PPARG;VDAC1;CD36;ABCB11
86                                                                                                                                                      LRP1;PPARG;CD36;APOB
87                                                                                                                                                  LIPC;LIPI;LIPG;LPL;APOA4
88                                                                                                                                                   APOC2;APOA1;APOA4;APOA5
89                                                                                                                                                      ABCA1;NPC1;STAR;NPC2
90                                                                                                                                    CYP27A1;STAR;HMGCR;DHCR7;ABCB11;CYP7A1
91                                                                                                                                               STAR;APOA1;APOA4;APOE;APOA5
92                                                                                                                                                    LIPC;APOA2;ANGPTL3;LPL
93                                                                                                                             SCARB1;STAR;APOC2;APOA1;APOA4;CD36;APOA5;LDLR
94                                                                                                                                                    LRPAP1;LRP1;HMGCR;APOE
95                                                                                                                                         LIPG;APOA2;ANGPTL3;LPL;LCAT;FADS1
96                                                                                                                                                         APOA1;APOA4;APOA5
97                                                                                                                                                            LRP1;LRP2;LDLR
98                                                                                                                                               APOA1;APOA4;APOE;CD36;APOA5
99                                                                                                                                                  EPHX2;APOE;LDLRAP1;KPNB1
100                                                                                                                                                        SOAT1;SOAT2;PPARG
101                                                                                                                                                          SCARB1;LPL;APOB
102                                                                                                                                                        SOAT1;SOAT2;PPARG
103                                                                                                                                        CYP27A1;HMGCR;DHCR7;ABCB11;CYP7A1
104                                                                                                                                                   STAR;EPHX2;APOE;ABCB11
105                                                                                                                                    VAPA;VAPB;APOA2;APOA1;LCAT;APOE;LPIN3
106                                                                                                                                                  APOC2;APOC1;APOA2;APOC3
107                                                                                                                                                           LRP1;LRP2;LDLR
108                                                                                                                                                         LRPAP1;LRP1;APOE
109                                                                                                                                                 LIPG;APOA2;ANGPTL3;LPIN3
110                                                                                                                                          CETP;ANGPTL3;APOA4;PPARG;ABCB11
111                                                                                                                                                      CYP27A1;APOE;CYP7A1
112                                                                                                                                                      CYP27A1;APOE;CYP7A1
113                                                                                                                                                   STARD3;STAR;TSPO;DHCR7
114                                                                                                                                                      APOC3;PCSK9;LDLRAP1
115                                                                                                                                               CYP27A1;NPC1;ABCB11;CYP7A1
116                                                                                                                                                   APOA2;LCAT;APOA1;LPIN3
117                                                                                                                                                      CYP27A1;APOE;CYP7A1
118                                                                                                                                                       LIPG;ANGPTL3;APOA2
119                                                                                                                                                       LRP1;APOC2;ANGPTL3
120                                                                                                                                                            LRP1;LPL;APOB
121                                                                                                                                                          CETP;APOA1;APOE
122                                                                                                                                              CETP;APOA1;LCAT;APOA4;APOA5
123                                                                                                                                                  ABCG8;ABCG5;NPC2;ABCB11
124                                                                                                                                                         ABCA1;CETP;PPARG
125                                                                                                                                                           CETP;LRP1;APOE
126                                                                                                                                                         STARD3;STAR;TSPO
127                                                                                                                                    NPC1;VAPA;VAPB;LRP2;LDLRAP1;APOB;LDLR
128                                                                                                                                                  LRP1;APOE;LDLRAP1;APOA5
129                                                                                                                              GHR;ABCA1;LRPAP1;LRP1;APOC2;CD36;APOE;APOA5
130                                                                                                                                                  APOC1;APOA2;APOC3;HMGCR
131                                                                                                                                                        APOC1;APOA2;APOC3
132                                                                                                                                                         SCARB1;NPC2;PLTP
133                                                                                                                                                            LPL;CD36;APOB
134                                                                                                                                ABCA1;LRP1;MTTP;PPARG;CD36;LRP2;APOE;APOB
135                                                                                                                                                          PPARG;APOE;CD36
136                                                                                                                                                          SCARB1;LPL;APOB
137                                                                                                                                                         STARD3;STAR;TSPO
138                                                                                                                                                       LIPG;APOA2;ANGPTL3
139                                                                                                                                                        APOC2;APOC1;APOC3
140                                                                                                                                              PPARG;HMGCR;APOE;DHCR7;LDLR
141                                                                                                                                     LRPAP1;APOA2;APOA1;APOC3;APOA4;HMGCR
142                                                                                                                                                    CYP27A1;ABCB11;CYP7A1
143                                                                                                                                                               PCSK9;APOE
144                                                                                                                                                   ABCA1;APOA1;APOC3;APOE
145                                                                                                                                                        EPHX2;APOE;ABCB11
146                                                                                                                                             APOC2;APOA1;APOA4;APOE;APOA5
147                                                                                                                                                        LRP1;ANGPTL3;LRP2
148                                                                                                                                                  APOA2;APOA1;APOC3;APOA4
149                                                                                                                                                                NPC2;PLTP
150                                                                                                                                                             LIPG;LDLRAP1
151                                                                                                                                                                CETP;LIPG
152                                                                                                                                                          PPARG;APOE;CD36
153                                                                                                                                                  SORT1;PCSK9;PPARG;LPIN3
154                                                                                                                                                            ABCB11;CYP7A1
155                                                                                                                                                               PCSK9;APOE
156                                                                                                                                                    LRP1;APOA2;APOA1;APOE
157                                                                                                                                                          APOH;PPARG;APOE
158                                                                                                                                                          APOH;PPARG;APOE
159                                                                                                                                                                APOE;LDLR
160                                                                                                                                                             LRPAP1;HMGCR
161                                                                                                                                                        LRPAP1;PCSK9;APOE
162                                                                                                                                              LIPI;APOA2;APOA1;LCAT;LPIN3
163                                                                                                                                                              APOA2;APOA1
164                                                                                                                                                              FADS3;FADS1
165                                                                                                                                                         TSPO;VDAC2;VDAC1
166                                                                                                                                                      PCSK9;LDLRAP1;APOA5
167                                                                                                                                                              ABCA1;PPARG
168                                                                                                                                                              STAR;CYP7A1
169                                                                                                                                                              APOA2;APOA1
170                                                                                                                                                              MYLIP;PCSK9
171                                                                                                                                                              MYLIP;PCSK9
172                                                                                                                                                              APOA2;APOA1
173                                                                                                                                                                VAPA;APOE
174                                                                                                                                                              SCARB1;LDLR
175                                                                                                                                                        LRP1;CD36;LDLRAP1
176                                                                                                                                                         APOA2;LPL;CYP7A1
177                                                                                                                                                    LRP1;APOC2;APOE;APOA5
178                                                                                                                                                              APOC1;APOC3
179                                                                                                                                                                APOH;APOE
180                                                                                                                                                              APOA2;APOA1
181                                                                                                                                                              ALDH2;ADH1B
182                                                                                                                                                                APOE;LDLR
183                                                                                                                                                          HMGCR;APOE;LDLR
184                                                                                                                                                        FADS3;FADS2;FADS1
185                                                                                                                                                              FADS2;FADS1
186                                                                                                                                                    ITIH4;APOH;APOA1;CD36
187                                                                                                                                                        APOC2;APOC1;APOC3
188                                                                                                                                                                APOE;LDLR
189                                                                                                                                                                APOH;APOE
190                                                                                                                                                                APOE;CD36
191                                                                                                                                                              NPC1L1;CD36
192                                                                                                                                                        LRP1;CD36;LDLRAP1
193                                                                                                                                                       SCARB1;APOA2;APOA1
194                                                                                                                                                                APOE;LDLR
195                                                                                                                                                                LPL;PPARG
196                                                                                                                                                              SCARB1;LDLR
197                                                                                                                                        APOA2;PCSK9;APOA1;APOE;APOB;APOA5
198                                                                                                                                                         LRPAP1;LRP1;APOE
199                                                                                                                                                         APOA1;APOA4;CD36
200                                                                                                                                                            PPARG;LDLRAP1
201                                                                                                                                                          PCSK9;LPL;FADS1
202                                                                                                                                                              APOA2;APOA1
203                                                                                                                                                              APOC1;APOC3
204                                                                                                                                                               APOE;KPNB1
205                                                                                                                                                              STAR;CYP7A1
206                                                                                                                                                      APOA2;ANGPTL3;APOA5
207                                                                                                                                                             APOE;LDLRAP1
208                                                                                                                                                                APOE;CD36
209                                                                                                                                                              SCARB1;APOE
210                                                                                                                                                              ALDH2;ADH1B
211                                                                                                                                                               PCSK9;APOE
212                                                                                                                                                                 LPL;CD36
213                                                                                                                                                                APOE;LDLR
214                                                                                                                                                              ABCA1;PPARG
215                                                                                                                                                              FADS2;FADS1
216                                                                                                                                                              APOC1;APOC3
217                                                                                                                                                                 LPL;APOB
218                                                                                                                                                           APOA1;LPL;CD36
219                                                                                                                                                        FADS2;EPHX2;FADS1
220                                                                                                                                                              APOA2;APOA1
221                                                                                                                                        APOA2;PCSK9;APOA1;APOE;APOB;APOA5
222                                                                                                                                                         APOA1;PPARG;APOE
223                                                                                                                                                           LRP1;CD36;LRP2
224                                                                                                                                                              MYLIP;PCSK9
225                                                                                                                                                                APOA2;LPL
226                                                                                                                                                    ITIH4;APOH;APOA1;CD36
227                                                                                                                                                         SCARB1;APOH;APOE
228                                                                                                                                                               HMGCR;APOE
229                                                                                                                                                          LRP1;PPARG;APOE
230                                                                                                                                                                APOH;APOE
231                                                                                                                                                              SCARB1;APOE
232                                                                                                                                                                APOH;APOE
233                                                                                                                                                   LRPAP1;PCSK9;APOE;LDLR
234                                                                                                                                                              EPHX2;FADS1
235                                                                                                                                                                 GHR;APOE
236                                                                                                                                                         LRPAP1;LRP1;CD36
237                                                                                                                                               APOH;ANGPTL3;PPARG;ANGPTL4
238                                                                                                                                                     APOA1;LPL;PPARG;APOE
239                                                                                                                                                              SCARB1;LRP1
240                                                                                                                                                        PCSK9;PPARG;LPIN3
241                                                                                                                                                               PPARG;APOE
242                                                                                                                                                   EPHX2;ANGPTL3;LPL;LCAT
243                                                                                                                                                                APOH;APOE
244                                                                                                                                                                LRP1;CD36
245                                                                                                                                                                APOE;CD36
246                                                                                                                                                             LRPAP1;PCSK9
247                                                                                                                                                         APOA4;PPARG;CD36
248                                                                                                                                                            PPARG;LDLRAP1
249                                                                                                                                                          ABCA1;CD36;APOE
250                                                                                                                                                         TSPO;VDAC2;VDAC1
251                                                                                                                                                         APOA1;PPARG;APOE
252                                                                                                                                                      LRPAP1;LRP1;LDLRAP1
253                                                                                                                                                                APOE;CD36
254                                                                                                                                                               HMGCR;APOE
255                                                                                                                                                               HMGCR;APOE
256                                                                                                                                                              SCARB1;APOE
257                                                                                                                                                                APOH;APOE
258                                                                                                                                                         GHR;LRP2;LDLRAP1
259                                                                                                                                                        PCSK9;PPARG;LPIN3
260                                                                                                                                                                LRP1;CD36
261                                                                                                                                                               ABCA1;MTTP
262                                                                                                                                                              NPC2;ABCB11
263                                                                                                                                                                APOE;LDLR
264                                                                                                                                                      LPL;PPARG;CD36;APOB
265                                                                                                                                                               MYLIP;APOE
266                                                                                                                                                                LPL;PPARG
267                                                                                                                                                               PPARG;LRP2
268                                                                                                                                                              APOC1;APOC3
269                                                                                                                                                              APOA2;APOA1
[1] "GO_Cellular_Component_2021"
                                                          Term Overlap
1               high-density lipoprotein particle (GO:0034364)   12/19
2                                     chylomicron (GO:0042627)   10/10
3   triglyceride-rich plasma lipoprotein particle (GO:0034385)   10/15
4           very-low-density lipoprotein particle (GO:0034361)   10/15
5                                  early endosome (GO:0005769)  13/266
6                low-density lipoprotein particle (GO:0034362)     4/7
7     spherical high-density lipoprotein particle (GO:0034366)     4/8
8                     endoplasmic reticulum lumen (GO:0005788)  10/285
9                      endocytic vesicle membrane (GO:0030666)   8/158
10                 endoplasmic reticulum membrane (GO:0005789)  14/712
11                                       lysosome (GO:0005764)  11/477
12                                  lytic vacuole (GO:0000323)   8/219
13                              endocytic vesicle (GO:0030139)   7/189
14     clathrin-coated endocytic vesicle membrane (GO:0030669)    5/69
15              clathrin-coated endocytic vesicle (GO:0045334)    5/85
16               clathrin-coated vesicle membrane (GO:0030665)    5/90
17                             lysosomal membrane (GO:0005765)   8/330
18                  intracellular organelle lumen (GO:0070013)  12/848
19       collagen-containing extracellular matrix (GO:0062023)   8/380
20                        endocytic vesicle lumen (GO:0071682)    3/21
21                       organelle outer membrane (GO:0031968)   5/142
22 ATP-binding cassette (ABC) transporter complex (GO:0043190)     2/6
23                         lytic vacuole membrane (GO:0098852)   6/267
24                              endosome membrane (GO:0010008)   6/325
25                   mitochondrial outer membrane (GO:0005741)   4/126
26                   platelet dense granule lumen (GO:0031089)    2/14
27                                        vesicle (GO:0031982)   5/226
28                          endolysosome membrane (GO:0036020)    2/17
29                    basolateral plasma membrane (GO:0016323)   4/151
30                   cytoplasmic vesicle membrane (GO:0030659)   6/380
31                         platelet dense granule (GO:0042827)    2/21
32                                lysosomal lumen (GO:0043202)    3/86
33                                   endolysosome (GO:0036019)    2/25
34                        secretory granule lumen (GO:0034774)   5/316
35                          brush border membrane (GO:0031526)    2/37
36                         mitochondrial envelope (GO:0005740)   3/127
37       extracellular membrane-bounded organelle (GO:0065010)    2/56
38                          extracellular vesicle (GO:1903561)    2/59
39                                 vacuolar lumen (GO:0005775)   3/161
40                                        caveola (GO:0005901)    2/60
   Adjusted.P.value
1      5.261200e-24
2      6.209923e-24
3      9.203512e-21
4      9.203512e-21
5      1.246888e-10
6      7.731648e-08
7      1.321996e-07
8      6.153361e-07
9      8.075627e-07
10     1.200431e-06
11     6.211359e-06
12     7.353950e-06
13     2.938912e-05
14     2.938912e-05
15     7.671871e-05
16     9.509306e-05
17     1.065748e-04
18     1.698308e-04
19     2.574496e-04
20     2.574496e-04
21     6.432532e-04
22     8.164449e-04
23     1.420908e-03
24     3.827987e-03
25     3.898444e-03
26     4.116966e-03
27     4.199032e-03
28     5.675277e-03
29     6.551600e-03
30     6.795770e-03
31     7.845057e-03
32     1.043474e-02
33     1.043474e-02
34     1.423039e-02
35     2.126720e-02
36     2.763580e-02
37     4.460396e-02
38     4.700422e-02
39     4.700422e-02
40     4.700422e-02
                                                                                Genes
1                  CETP;APOC2;APOH;APOC1;APOA2;APOA1;APOC3;LCAT;APOA4;APOE;APOA5;PLTP
2                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
3                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
4                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
5          LRP1;SORT1;APOA2;PCSK9;APOA1;APOC3;APOA4;APOC2;LIPG;APOE;LDLRAP1;APOB;LDLR
6                                                               APOC2;APOE;APOB;APOA5
7                                                             APOC2;APOA2;APOA1;APOC3
8                            LRPAP1;LIPC;MTTP;APOA2;PCSK9;APOA1;APOA4;APOE;APOB;APOA5
9                                        SCARB1;LRP1;CD36;LRP2;APOE;LDLRAP1;APOB;LDLR
10 ABCA1;STARD3;HMGCR;CYP7A1;FADS2;NCEH1;SOAT1;VAPA;SOAT2;VAPB;DHCR7;APOB;FADS1;LPIN3
11                       SCARB1;STARD3;NPC1;LRP1;NPC2;SORT1;PCSK9;LRP2;APOB;LIPA;LDLR
12                                        SCARB1;NPC1;NPC2;SORT1;PCSK9;LRP2;LIPA;LDLR
13                                             ABCA1;SCARB1;LRP1;APOA1;CD36;APOE;APOB
14                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
15                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
16                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
17                                       SCARB1;STARD3;NPC1;LRP1;VAPA;PCSK9;LRP2;LDLR
18              CYP27A1;LIPC;ALDH2;MTTP;APOA2;PCSK9;APOA1;APOA4;APOE;APOB;APOA5;KPNB1
19                                  ITIH4;APOH;ANGPTL3;APOA1;APOC3;APOA4;ANGPTL4;APOE
20                                                                    APOA1;APOE;APOB
21                                                       VDAC3;TSPO;VDAC2;VDAC1;DHCR7
22                                                                        ABCG8;ABCG5
23                                                 SCARB1;STARD3;NPC1;LRP1;PCSK9;LRP2
24                                                STARD3;SORT1;PCSK9;ABCB11;APOB;LDLR
25                                                             VDAC3;TSPO;VDAC2;VDAC1
26                                                                         ITIH4;APOH
27                                                         ABCA1;CETP;VAPA;APOA1;APOE
28                                                                         PCSK9;LDLR
29                                                              LRP1;MTTP;ABCB11;LDLR
30                                                   SCARB1;LRP1;SORT1;CD36;APOB;LDLR
31                                                                         ITIH4;APOH
32                                                                     NPC2;APOB;LIPA
33                                                                         PCSK9;LDLR
34                                                        ITIH4;NPC2;APOH;APOA1;KPNB1
35                                                                          LRP2;CD36
36                                                                   STAR;VDAC2;VDAC1
37                                                                         APOA1;APOE
38                                                                         APOA1;APOE
39                                                                     NPC2;APOB;LIPA
40                                                                        SCARB1;CD36
[1] "GO_Molecular_Function_2021"
                                                                                                                                                                                Term
1                                                                                                                                                   cholesterol binding (GO:0015485)
2                                                                                                                                                        sterol binding (GO:0032934)
3                                                                                                                                         cholesterol transfer activity (GO:0120020)
4                                                                                                                                              sterol transfer activity (GO:0120015)
5                                                                                                                                 lipoprotein particle receptor binding (GO:0070325)
6                                                                                                       phosphatidylcholine-sterol O-acyltransferase activator activity (GO:0060228)
7                                                                                                                                          lipoprotein particle binding (GO:0071813)
8                                                                                                                              low-density lipoprotein particle binding (GO:0030169)
9                                                                                                                                             lipase inhibitor activity (GO:0055102)
10                                                                                                                    low-density lipoprotein particle receptor binding (GO:0050750)
11                                                                                                                                          lipoprotein lipase activity (GO:0004465)
12                                                                                                                                                 amyloid-beta binding (GO:0001540)
13                                                                                                                                         triglyceride lipase activity (GO:0004806)
14                                                                                                                                                      lipase activity (GO:0016298)
15                                                                                                                                                       lipase binding (GO:0035473)
16                                                                                                                                           apolipoprotein A-I binding (GO:0034186)
17                                                                                                                                      apolipoprotein receptor binding (GO:0034190)
18                                                                                                                                            phospholipase A1 activity (GO:0008970)
19                                                                                                                                            lipase activator activity (GO:0060229)
20                                                                                                                                  carboxylic ester hydrolase activity (GO:0052689)
21                                                                                                                                 voltage-gated anion channel activity (GO:0008308)
22                                                                                                                                   voltage-gated ion channel activity (GO:0005244)
23                                                                                                                             phosphatidylcholine transporter activity (GO:0008525)
24                                                                                                                                  protein heterodimerization activity (GO:0046982)
25                                                                                                                                phosphatidylcholine transfer activity (GO:0120019)
26                                                                                                                                               phospholipase activity (GO:0004620)
27                                                                                                                                           O-acyltransferase activity (GO:0008374)
28                                                                                                                            high-density lipoprotein particle binding (GO:0008035)
29                                                                                                                                           ceramide transfer activity (GO:0120017)
30                                                                                                                                         clathrin heavy chain binding (GO:0032050)
31                                                                                                                                     phospholipase inhibitor activity (GO:0004859)
32                                                                                                                                    protein homodimerization activity (GO:0042803)
33                                                                                                                                               anion channel activity (GO:0005253)
34                                                                                                                                       phospholipid transfer activity (GO:0120014)
35 oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen (GO:0016709)
36                                                                                                                                         steroid hydroxylase activity (GO:0008395)
37                                                                                                                                                         NADP binding (GO:0050661)
38                                                                                                                                         peptidase inhibitor activity (GO:0030414)
39                                                                                                                                     endopeptidase regulator activity (GO:0061135)
   Overlap Adjusted.P.value
1    17/50     2.288174e-28
2    17/60     4.390322e-27
3    11/18     5.744987e-22
4    11/19     1.020647e-21
5    10/28     4.677379e-17
6      6/6     3.484605e-14
7     8/24     2.055320e-13
8     6/17     3.140441e-10
9     5/10     1.805253e-09
10    6/23     2.016360e-09
11     4/5     9.113232e-09
12    7/80     1.430772e-07
13    5/23     1.612041e-07
14    6/49     1.859889e-07
15     3/5     3.788104e-06
16     3/5     3.788104e-06
17     3/6     7.112969e-06
18    3/10     3.991032e-05
19    3/12     6.897596e-05
20    5/96     1.501407e-04
21    3/16     1.501407e-04
22    3/16     1.501407e-04
23    3/18     2.082322e-04
24   6/188     3.016202e-04
25     2/5     7.035280e-04
26    4/73     7.035280e-04
27    3/30     8.567836e-04
28     2/6     9.653527e-04
29     2/8     1.732107e-03
30     2/9     2.147965e-03
31    2/10     2.592555e-03
32   8/636     7.345938e-03
33    3/68     7.879809e-03
34    2/22     1.181407e-02
35    2/36     2.870121e-02
36    2/36     2.870121e-02
37    2/36     2.870121e-02
38    2/40     3.429432e-02
39    2/46     4.375411e-02
                                                                                                Genes
1  ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;TSPO;VDAC2;VDAC1
2  ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;TSPO;VDAC2;VDAC1
3                                        ABCA1;ABCG8;CETP;ABCG5;NPC2;MTTP;APOA2;APOA1;APOA4;APOB;PLTP
4                                        ABCA1;ABCG8;CETP;ABCG5;NPC2;MTTP;APOA2;APOA1;APOA4;APOB;PLTP
5                                         LRPAP1;LRP1;APOA2;PCSK9;APOA1;APOC3;APOE;APOB;LDLRAP1;APOA5
6                                                                  APOC1;APOA2;APOA1;APOA4;APOE;APOA5
7                                                          SCARB1;LIPC;APOA2;LPL;PCSK9;CD36;LDLR;PLTP
8                                                                    SCARB1;LIPC;PCSK9;CD36;LDLR;PLTP
9                                                                     APOC2;APOC1;ANGPTL3;APOA2;APOC3
10                                                               LRPAP1;PCSK9;APOE;APOB;LDLRAP1;APOA5
11                                                                                 LIPC;LIPI;LIPG;LPL
12                                                           LRPAP1;LRP1;APOA1;CD36;APOE;LDLRAP1;LDLR
13                                                                            LIPC;LIPI;LIPG;LCAT;LPL
14                                                                       LIPC;LIPI;LIPG;LCAT;LPL;LIPA
15                                                                                  LRPAP1;APOB;APOA5
16                                                                                  ABCA1;SCARB1;LCAT
17                                                                                  APOA2;APOA1;PCSK9
18                                                                                      LIPC;LIPG;LPL
19                                                                                   APOC2;APOH;APOA5
20                                                                            LIPC;LIPG;LPL;LCAT;LIPA
21                                                                                  VDAC3;VDAC2;VDAC1
22                                                                                  VDAC3;VDAC2;VDAC1
23                                                                                    ABCA1;MTTP;PLTP
24                                                                   ABCG8;ABCG5;VAPA;VAPB;MTTP;APOA2
25                                                                                          MTTP;PLTP
26                                                                                 LIPC;LIPI;LIPG;LPL
27                                                                                   SOAT1;SOAT2;LCAT
28                                                                                         APOA2;PLTP
29                                                                                          MTTP;PLTP
30                                                                                          LRP1;LDLR
31                                                                                      APOC1;ANGPTL3
32                                                         GHR;STARD3;VAPB;EPHX2;APOA2;LPL;APOA4;APOE
33                                                                                  VDAC3;VDAC2;VDAC1
34                                                                                          MTTP;PLTP
35                                                                                     CYP27A1;CYP7A1
36                                                                                     CYP27A1;CYP7A1
37                                                                                        HMGCR;DHCR7
38                                                                                          ITIH4;LPA
39                                                                                          ITIH4;LPA
GO_known_annotations <- do.call(rbind, GO_enrichment)
GO_known_annotations <- GO_known_annotations[GO_known_annotations$Adjusted.P.value<0.05,]

#GO enrichment analysis for cTWAS genes

genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
GO_ctwas_genes <- do.call(rbind, GO_enrichment)

#optionally subset to only significant GO terms
#GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Adjusted.P.value<0.05,]

#identify cTWAS genes in silver standard enriched GO terms
GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Term %in% GO_known_annotations$Term,]

overlap_genes <- lapply(GO_ctwas_genes$Genes, function(x){unlist(strsplit(x, ";"))})
overlap_genes <- -sort(-table(unlist(overlap_genes)))

#ctwas genes in silver standard enriched GO terms, not already in silver standard
overlap_genes[!(names(overlap_genes) %in% known_annotations)]
named integer(0)
save(overlap_genes, file=paste0(results_dir, "/overlap_genes.Rd"))
load(paste0(results_dir, "/overlap_genes.Rd"))

overlap_genes <- overlap_genes[!(names(overlap_genes) %in% known_annotations)]
overlap_genes
named integer(0)
overlap_genes <- names(overlap_genes)
#ctwas_gene_res[ctwas_gene_res$genename %in% overlap_genes, report_cols,]

Results for Paper

out_table <- ctwas_gene_res

report_cols <- report_cols[!(report_cols %in% c("mu2", "PVE"))]
report_cols <- c(report_cols,"silver","GO_overlap_silver", "bystander")

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

out_table$silver <- F
out_table$silver[out_table$genename %in% known_annotations] <- T

#create extended bystanders list (all silver standard, not just imputed silver standard)
# library(biomaRt)
# library(GenomicRanges)
# 
# ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
# G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
# G_list <- G_list[G_list$hgnc_symbol!="",]
# G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
# G_list$start <- G_list$start_position
# G_list$end <- G_list$end_position
# G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)
# 
# known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
# half_window <- 1000000
# known_annotations_positions$start <- known_annotations_positions$start_position - half_window
# known_annotations_positions$end <- known_annotations_positions$end_position + half_window
# known_annotations_positions$start[known_annotations_positions$start<1] <- 1
# known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)
# 
# bystanders_extended <- findOverlaps(known_annotations_granges,G_list_granges)
# bystanders_extended <- unique(subjectHits(bystanders_extended))
# bystanders_extended <- G_list$hgnc_symbol[bystanders_extended]
# bystanders_extended <- unique(bystanders_extended[!(bystanders_extended %in% known_annotations)])
# 
# save(bystanders_extended, file=paste0(results_dir, "/bystanders_extended.Rd"))

load(paste0(results_dir, "/bystanders_extended.Rd"))

#add extended bystanders list to output
out_table$bystander <- F
out_table$bystander[out_table$genename %in% bystanders_extended] <- T

#reload GO overlaps with silver standard
load(paste0(results_dir, "/overlap_genes.Rd"))

out_table$GO_overlap_silver <- NA
out_table$GO_overlap_silver[out_table$susie_pip>0.8] <- 0

for (i in names(overlap_genes)){
  out_table$GO_overlap_silver[out_table$genename==i] <- overlap_genes[i]
}

#report number of weights before imputation
nrow(gene_info)
[1] 11502

cTWAS identifies high-confidence liver genes associated with LDL cholesterol

library(dplyr)
library(ggplot2)

#png(filename = "output/LDL_manhattan_plot.png", width = 8, height = 5, units = "in", res=150)
pdf(file = "output/LDL_manhattan_plot.pdf", width = 5, height = 3)

full_gene_pip_summary <- data.frame(gene_name = ctwas_gene_res$genename, 
                                    gene_pip = ctwas_gene_res$susie_pip, 
                                    gene_id = ctwas_gene_res$id, 
                                    chr = as.integer(ctwas_gene_res$chrom),
                                    start = ctwas_gene_res$pos / 1e3,
                                    is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full_gene_pip_summary$is_highlight <- full_gene_pip_summary$gene_pip > 0.80

don <- full_gene_pip_summary %>% 
  
  # Compute chromosome size
  group_by(chr) %>% 
  summarise(chr_len=max(start)) %>% 
  
  # Calculate cumulative position of each chromosome
  mutate(tot=cumsum(chr_len)-chr_len) %>%
  dplyr::select(-chr_len) %>%
  
  # Add this info to the initial dataset
  left_join(full_gene_pip_summary, ., by=c("chr"="chr")) %>%
  
  # Add a cumulative position of each SNP
  arrange(chr, start) %>%
  mutate( BPcum=start+tot)


nudge_x <- rep(0, sum(don$is_highlight))
names(nudge_x) <- don$gene_name[don$is_highlight]
#nudge_x["USP1"] <- 0.2

nudge_y <- rep(0, sum(don$is_highlight))
names(nudge_y) <- don$gene_name[don$is_highlight]
#nudge_y["USP1"] <- 0.25

axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )

x_axis_labels <- axisdf$chr
x_axis_labels[seq(15,21,2)] <- ""

ggplot(don, aes(x=BPcum, y=gene_pip)) +
  
  # Show all points
  ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=1.7) +
  scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
  
  scale_x_continuous(label = x_axis_labels,
                     breaks = axisdf$center,
                     limits=) +
  
  scale_y_continuous(expand = c(0, 0), limits = c(0,1.25), breaks=(1:5)*0.2, minor_breaks=(1:10)*0.1) + # remove space between plot area and x axis
  
  # Add highlighted points
  ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="orange", size=1.7) +
  
  # Add label using ggrepel to avoid overlapping
  ggrepel::geom_label_repel(data=subset(don, is_highlight==T), 
                            aes(label=gene_name), 
                            size=1.8,
                            min.segment.length = 0, 
                            label.size = NA,
                            fill = alpha(c("white"),0),
                            max.time=20, max.iter=400000, max.overlaps=100, seed=10,
                            nudge_x = nudge_x, nudge_y = nudge_y,
                            force = 1,
                            force_pull = 1) +
  
  # Custom the theme:
  theme_bw() +
  theme( 
    text = element_text(size = 14),
    legend.position="none",
    panel.border = element_blank(),
    panel.grid.major.x = element_blank(),
    panel.grid.minor.x = element_blank(),
    axis.text.x = element_text(color = "grey20", size = 8, angle = 90, hjust = .5, vjust = .5, face = "plain"),
    axis.text.y = element_text(size=8),
    axis.title = element_text(size=9)
  ) +
  xlab("Chromosome") + 
  ylab("cTWAS PIP")

dev.off()
png 
  2 
#number of SNPs at PIP>0.8 threshold
sum(out_table$susie_pip>0.8)
[1] 35
#number of SNPs at PIP>0.5 threshold
sum(out_table$susie_pip>0.5)
[1] 64
#genes with PIP>0.8
head(out_table[order(-out_table$susie_pip),report_cols], sum(out_table$susie_pip>0.8))
      genename region_tag susie_pip          z num_eqtl silver
4433     PSRC1       1_67 1.0000000 -41.687336        1  FALSE
11327      HPR      16_38 0.9999997 -17.962770        2  FALSE
3720    INSIG2       2_69 0.9999957  -8.982702        3  FALSE
5561     ABCG8       2_27 0.9999453 -20.293982        1   TRUE
5988     FADS1      11_34 0.9998404  12.926351        2   TRUE
10612   TRIM39       6_24 0.9985885   8.840164        3  FALSE
7405     ABCA1       9_53 0.9955314   7.982017        1   TRUE
8523      TNKS       8_12 0.9910883  11.038564        2   TRUE
9365      GAS6      13_62 0.9883382  -8.923688        1  FALSE
1597      PLTP      20_28 0.9883283  -5.732491        1   TRUE
1999     PRKD2      19_33 0.9871587   5.072217        2  FALSE
7036     INHBB       2_70 0.9825109  -8.518936        1  FALSE
5542     CNIH4      1_114 0.9789702   6.145535        2  FALSE
2092       SP4       7_19 0.9759456  10.693191        1  FALSE
6090   CSNK1G3       5_75 0.9745191   9.116291        1  FALSE
11257   CYP2A6      19_28 0.9650551   5.407028        1  FALSE
8853      FUT2      19_33 0.9641649 -11.927107        1  FALSE
3247      KDSR      18_35 0.9602264  -4.526287        1  FALSE
233     NPC1L1       7_32 0.9515004 -10.761931        1   TRUE
4702     DDX56       7_32 0.9495892   9.641861        2  FALSE
6387    TTC39B       9_13 0.9450026  -4.334495        3  FALSE
1114      SRRT       7_62 0.9405116   5.424996        2  FALSE
6774      PKN3       9_66 0.9380390  -6.620563        1  FALSE
3300  C10orf88      10_77 0.9371487  -6.787850        2  FALSE
6217      PELO       5_31 0.9363014   8.288398        2  FALSE
8571    STAT5B      17_25 0.9336311   5.426252        2  FALSE
3562    ACVR1C       2_94 0.9320372  -4.687370        2  FALSE
6953      USP1       1_39 0.8941255  16.258211        1  FALSE
9046   KLHDC7A       1_13 0.8393363   4.124187        1  FALSE
8918   CRACR2B       11_1 0.8274447  -3.989585        1  FALSE
9054   SPTY2D1      11_13 0.8251281  -5.557123        1  FALSE
8411      POP7       7_62 0.8234854  -5.845258        1  FALSE
5413     SYTL1       1_19 0.8163154  -3.962854        1  FALSE
6097      ALLC        2_2 0.8133753   4.919066        1  FALSE
3212     CCND2       12_4 0.8041948  -4.065830        1  FALSE
      GO_overlap_silver bystander
4433                  0      TRUE
11327                 0     FALSE
3720                  0     FALSE
5561                 16     FALSE
5988                 11     FALSE
10612                 0     FALSE
7405                 38     FALSE
8523                  0     FALSE
9365                  0     FALSE
1597                 20     FALSE
1999                  0     FALSE
7036                  0     FALSE
5542                  0     FALSE
2092                  0     FALSE
6090                  0     FALSE
11257                 0     FALSE
8853                  0     FALSE
3247                  0     FALSE
233                  11     FALSE
4702                  0      TRUE
6387                  0     FALSE
1114                  0     FALSE
6774                  0     FALSE
3300                  0     FALSE
6217                  0     FALSE
8571                  0     FALSE
3562                  0     FALSE
6953                  0      TRUE
9046                  0     FALSE
8918                  0     FALSE
9054                  0     FALSE
8411                  0     FALSE
5413                  0     FALSE
6097                  0     FALSE
3212                  0     FALSE
head(out_table[order(-out_table$susie_pip),report_cols[-(7:8)]], sum(out_table$susie_pip>0.8))
      genename region_tag susie_pip          z num_eqtl silver
4433     PSRC1       1_67 1.0000000 -41.687336        1  FALSE
11327      HPR      16_38 0.9999997 -17.962770        2  FALSE
3720    INSIG2       2_69 0.9999957  -8.982702        3  FALSE
5561     ABCG8       2_27 0.9999453 -20.293982        1   TRUE
5988     FADS1      11_34 0.9998404  12.926351        2   TRUE
10612   TRIM39       6_24 0.9985885   8.840164        3  FALSE
7405     ABCA1       9_53 0.9955314   7.982017        1   TRUE
8523      TNKS       8_12 0.9910883  11.038564        2   TRUE
9365      GAS6      13_62 0.9883382  -8.923688        1  FALSE
1597      PLTP      20_28 0.9883283  -5.732491        1   TRUE
1999     PRKD2      19_33 0.9871587   5.072217        2  FALSE
7036     INHBB       2_70 0.9825109  -8.518936        1  FALSE
5542     CNIH4      1_114 0.9789702   6.145535        2  FALSE
2092       SP4       7_19 0.9759456  10.693191        1  FALSE
6090   CSNK1G3       5_75 0.9745191   9.116291        1  FALSE
11257   CYP2A6      19_28 0.9650551   5.407028        1  FALSE
8853      FUT2      19_33 0.9641649 -11.927107        1  FALSE
3247      KDSR      18_35 0.9602264  -4.526287        1  FALSE
233     NPC1L1       7_32 0.9515004 -10.761931        1   TRUE
4702     DDX56       7_32 0.9495892   9.641861        2  FALSE
6387    TTC39B       9_13 0.9450026  -4.334495        3  FALSE
1114      SRRT       7_62 0.9405116   5.424996        2  FALSE
6774      PKN3       9_66 0.9380390  -6.620563        1  FALSE
3300  C10orf88      10_77 0.9371487  -6.787850        2  FALSE
6217      PELO       5_31 0.9363014   8.288398        2  FALSE
8571    STAT5B      17_25 0.9336311   5.426252        2  FALSE
3562    ACVR1C       2_94 0.9320372  -4.687370        2  FALSE
6953      USP1       1_39 0.8941255  16.258211        1  FALSE
9046   KLHDC7A       1_13 0.8393363   4.124187        1  FALSE
8918   CRACR2B       11_1 0.8274447  -3.989585        1  FALSE
9054   SPTY2D1      11_13 0.8251281  -5.557123        1  FALSE
8411      POP7       7_62 0.8234854  -5.845258        1  FALSE
5413     SYTL1       1_19 0.8163154  -3.962854        1  FALSE
6097      ALLC        2_2 0.8133753   4.919066        1  FALSE
3212     CCND2       12_4 0.8041948  -4.065830        1  FALSE
head(out_table[order(-out_table$susie_pip),report_cols[c(1,7:8)]], sum(out_table$susie_pip>0.8))
      genename GO_overlap_silver bystander
4433     PSRC1                 0      TRUE
11327      HPR                 0     FALSE
3720    INSIG2                 0     FALSE
5561     ABCG8                16     FALSE
5988     FADS1                11     FALSE
10612   TRIM39                 0     FALSE
7405     ABCA1                38     FALSE
8523      TNKS                 0     FALSE
9365      GAS6                 0     FALSE
1597      PLTP                20     FALSE
1999     PRKD2                 0     FALSE
7036     INHBB                 0     FALSE
5542     CNIH4                 0     FALSE
2092       SP4                 0     FALSE
6090   CSNK1G3                 0     FALSE
11257   CYP2A6                 0     FALSE
8853      FUT2                 0     FALSE
3247      KDSR                 0     FALSE
233     NPC1L1                11     FALSE
4702     DDX56                 0      TRUE
6387    TTC39B                 0     FALSE
1114      SRRT                 0     FALSE
6774      PKN3                 0     FALSE
3300  C10orf88                 0     FALSE
6217      PELO                 0     FALSE
8571    STAT5B                 0     FALSE
3562    ACVR1C                 0     FALSE
6953      USP1                 0      TRUE
9046   KLHDC7A                 0     FALSE
8918   CRACR2B                 0     FALSE
9054   SPTY2D1                 0     FALSE
8411      POP7                 0     FALSE
5413     SYTL1                 0     FALSE
6097      ALLC                 0     FALSE
3212     CCND2                 0     FALSE

cTWAS avoids false positives when multiple genes are in a region

TNKS is a silver standard (assumed true positive gene) that is correctly detected. The bystander gene RP11-115J16.2 is significant using TWAS but has low PIP using cTWAS.

#TNKS gene
locus_plot4("8_12", label="cTWAS")

out_table[out_table$region_tag=="8_12",report_cols[-(7:8)]]
out_table[out_table$region_tag=="8_12",report_cols[c(1,7:8)]]

FADS1 is a silver standard gene (assumed true positive gene) that is correctly detected. There are 5 significant TWAS genes at this locus, including FADS2, another silver standard gene. FADS2 is not detected due to its high LD with FADS1. The remaining 3 bystander genes at this locus have low PIP using cTWAS.

#FADS1 gene
locus_plot3("11_34", focus="FADS1")

out_table[out_table$region_tag=="11_34",report_cols[-(7:8)]]
out_table[out_table$region_tag=="11_34",report_cols[c(1,7:8)]]

#number of significant TWAS genes at this locus
sum(abs(out_table$z[out_table$region_tag=="11_34"])>sig_thresh)

cTWAS avoids false positives when SNPs in a region are (considerably) more significant

POLK is a gene that is significant using TWAS but not detected using TWAS. cTWAS places a high posterior probability on SNPs are this locus. OpenTargets suggets that the causal gene at this locus is HMGCR (note: different GWAS, similar population), which is not imputed in our dataset. cTWAS selected the variants at this locus because the causal gene is not imputed. Note that MR-JTI claims POLK is causal using their method, and their paper includes a discussion of its potential relevance to LDL.

locus_plot("5_45", label="TWAS")
#locus_plot("5_45", label="TWAS", rerun_ctwas = T)

out_table[out_table$region_tag=="5_45",report_cols[-(7:8)]]
out_table[out_table$region_tag=="5_45",report_cols[c(1,7:8)]]

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))

#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
    ctwas      TWAS 
0.1304348 0.4130435 
#specificity / (1 - False Positive Rate)
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9962894 0.9220779 
#precision / PPV / (1 - False Discovery Rate)
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
    ctwas      TWAS 
0.7500000 0.3114754 
#store sensitivity and specificity calculations for plots
sensitivity_plot <- sensitivity
specificity_plot <- specificity

#precision / PPV by PIP threshold
pip_range <- c(0.5, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
number_detected <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes using PIP threshold
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower]
  
  number_detected[i] <- length(ctwas_genes)
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste0(">= ", c(0, pip_range[-length(pip_range)]))

precision_range <- precision_range*100

precision_range <- c(precision_range, precision["TWAS"]*100)
names(precision_range)[4] <- "TWAS Bonferroni"
number_detected <- c(number_detected, length(twas_genes))

barplot(precision_range, ylim=c(0,100), main="Precision for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
25b795b wesleycrouse 2022-06-24
#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

#false discovery rate by PIP threshold

barplot(100-precision_range, ylim=c(0,100), main="False Discovery Rate for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% Bystanders in Detected Genes")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(100-precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
25b795b wesleycrouse 2022-06-24
#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

####################

#png(file = "output/LDL_silver_standard_precision.png", width = 3, height = 3.5, units = "in", res=150)
pdf(file = "output/LDL_silver_standard_precision.pdf", width = 2.75, height = 3.5)


par(mar=c(6.1, 4.1, 1, 2.1))

par(las=2)

colset  <- c("#ebebeb","#bebada","#fb8072","#ffffb3","#8dd3c7","#87CEFA")

number_detected <- number_detected[names(precision_range)!=">= 0.5"]
precision_range <- precision_range[names(precision_range)!=">= 0.5"]

names(precision_range)[names(precision_range)==">= 0"] <- "All Genes"
names(precision_range)[names(precision_range)==">= 0.8"] <- "cTWAS (PIP > 0.8)"
names(precision_range)[names(precision_range)=="TWAS Bonferroni"] <- "TWAS (Bonf.)"

barplot(precision_range, ylim=c(0,100), main="", xlab="", ylab="% Detected Genes in Silver Standard", cex.lab=0.8, cex.names=0.7)
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)

xx <- barplot(precision_range, add=T, col=colset[c(1,3,5)], cex.lab=0.8, cex.names=0.7)
#text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.6)
detected_label <- c(number_detected[1], paste0(number_detected[-1], "\ndetected"))
text(x = xx, y = rep(-3, length(number_detected)), label = detected_label, pos = 3, cex=0.55)

dev.off()
png 
  2 
par(las=1)

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

For all 69 silver standard genes, sequentially bin each gene using the following criteria: 1) gene not imputed; 2) gene detected by cTWAS at PIP>0.8; 3) gene insignificant by TWAS; 4) gene nearby a detected silver standard gene; 5) gene nearby a detected bystander gene; 6) gene nearby a detected SNP; 7) inconclusive.

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

#categorize silver standard genes by case
silver_standard_case <- c()
uncertain_regions <- matrix(NA, 0, 2)

for (i in 1:length(known_annotations)){
  current_gene <- known_annotations[i]
  
  if (current_gene %in% ctwas_gene_res$genename) {
    if (ctwas_gene_res$susie_pip[ctwas_gene_res$genename == current_gene] > 0.8){
      silver_standard_case <- c(silver_standard_case, "Detected (PIP > 0.8)")
    } else {
      if (abs(ctwas_gene_res$z[ctwas_gene_res$genename == current_gene]) < sig_thresh){
        silver_standard_case <- c(silver_standard_case, "Insignificant z-score")
      } else {
        current_region <- ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]
        current_gene_res <- ctwas_gene_res[ctwas_gene_res$region_tag==current_region,]
        current_snp_res <- ctwas_snp_res[ctwas_snp_res$region_tag==current_region,]
        
        if (any(current_gene_res$susie_pip>0.8)){
          if (any(current_gene_res$genename[current_gene_res$susie_pip>0.8] %in% known_annotations)){
            silver_standard_case <- c(silver_standard_case, "Nearby Silver Standard Gene")
          } else {
            silver_standard_case <- c(silver_standard_case, "Nearby Bystander Gene")
          }
        } else {
          #if (any(current_snp_res$susie_pip>0.8)){
          if (sum(current_snp_res$susie_pip)>0.8){
            silver_standard_case <- c(silver_standard_case, "Nearby SNP(s)")
          } else {
            silver_standard_case <- c(silver_standard_case, "Inconclusive")
            
            uncertain_regions <- rbind(uncertain_regions, c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
            
            print(c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
          }
        }
      }
    }
  } else {
    silver_standard_case <- c(silver_standard_case, "Not Imputed")
  }
}
names(silver_standard_case) <- known_annotations

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
      Insignificant z-score                 Not Imputed 
                         27                          23 
              Nearby SNP(s)        Detected (PIP > 0.8) 
                         11                           6 
      Nearby Bystander Gene Nearby Silver Standard Gene 
                          1                           1 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)
# for (i in 1:nrow(uncertain_regions)){
#   locus_plot3(uncertain_regions[i,2], focus=uncertain_regions[i,1])
# }

#pie chart of outcomes for silver standard genes
df <- data.frame(-sort(-table(silver_standard_case)))
names(df) <- c("Outcome", "Frequency")
#df <- df[df$Outcome!="Not Imputed",] #exclude genes not imputed
df$Outcome <- droplevels(df$Outcome) #exclude genes not imputed

bp<- ggplot(df, aes(x=Outcome, y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity", position=position_dodge()) + 
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) + theme(legend.position = "none")
bp

Version Author Date
f9f87d9 wesleycrouse 2022-08-10
314ab69 wesleycrouse 2022-08-10
25b795b wesleycrouse 2022-06-24
pie <- ggplot(df, aes(x="", y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity")
pie <- pie + coord_polar("y", start=0) + theme_minimal() + theme(axis.title.y=element_blank())
pie

Version Author Date
f9f87d9 wesleycrouse 2022-08-10
314ab69 wesleycrouse 2022-08-10
25b795b wesleycrouse 2022-06-24
locus_plot3(focus="KPNB1", region_tag="17_27")

Version Author Date
25b795b wesleycrouse 2022-06-24
locus_plot3(focus="LPIN3", region_tag="20_25")

Version Author Date
25b795b wesleycrouse 2022-06-24
locus_plot3(focus="LIPC", region_tag="15_26")

Version Author Date
25b795b wesleycrouse 2022-06-24

Some cTWAS genes share biological characteristics with silver standard genes

Perform GO enrichment analysis using silver standard genes. Identify detected cTWAS genes not already in silver standard that are also members of these GO terms.

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

#GO enrichment analysis for silver standard genes
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- known_annotations
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
for (db in dbs){
  print(db)
  df <- GO_enrichment[[db]]
  df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
  print(df)
  plotEnrich(GO_enrichment[[db]])
}
[1] "GO_Biological_Process_2021"
                                                                                       Term
1                                                        cholesterol transport (GO:0030301)
2                                                      cholesterol homeostasis (GO:0042632)
3                                                           sterol homeostasis (GO:0055092)
4                                                           cholesterol efflux (GO:0033344)
5                                                             sterol transport (GO:0015918)
6                                                cholesterol metabolic process (GO:0008203)
7                                                     sterol metabolic process (GO:0016125)
8                            triglyceride-rich lipoprotein particle remodeling (GO:0034370)
9                                 high-density lipoprotein particle remodeling (GO:0034375)
10                                               reverse cholesterol transport (GO:0043691)
11                                         secondary alcohol metabolic process (GO:1902652)
12                                   regulation of lipoprotein lipase activity (GO:0051004)
13                                                      phospholipid transport (GO:0015914)
14                                                             lipid transport (GO:0006869)
15                                                    acylglycerol homeostasis (GO:0055090)
16                            very-low-density lipoprotein particle remodeling (GO:0034372)
17                                                    triglyceride homeostasis (GO:0070328)
18                                              triglyceride metabolic process (GO:0006641)
19                                                         phospholipid efflux (GO:0033700)
20                                                      chylomicron remodeling (GO:0034371)
21                                         regulation of cholesterol transport (GO:0032374)
22                                                        chylomicron assembly (GO:0034378)
23                                               chylomicron remnant clearance (GO:0034382)
24                                               lipoprotein metabolic process (GO:0042157)
25                                               diterpenoid metabolic process (GO:0016101)
26                            positive regulation of steroid metabolic process (GO:0045940)
27                                                  retinoid metabolic process (GO:0001523)
28                                                           lipid homeostasis (GO:0055088)
29                                      negative regulation of lipase activity (GO:0060192)
30                           positive regulation of cholesterol esterification (GO:0010873)
31                                           intestinal cholesterol absorption (GO:0030299)
32                                negative regulation of cholesterol transport (GO:0032375)
33                                                 intestinal lipid absorption (GO:0098856)
34                                              acylglycerol metabolic process (GO:0006639)
35                                    regulation of cholesterol esterification (GO:0010872)
36                                                    phospholipid homeostasis (GO:0055091)
37                              very-low-density lipoprotein particle assembly (GO:0034379)
38                              positive regulation of lipid metabolic process (GO:0045834)
39                                  high-density lipoprotein particle assembly (GO:0034380)
40                          negative regulation of lipoprotein lipase activity (GO:0051005)
41                       negative regulation of lipoprotein particle clearance (GO:0010985)
42              regulation of very-low-density lipoprotein particle remodeling (GO:0010901)
43                                         intracellular cholesterol transport (GO:0032367)
44                                positive regulation of cholesterol transport (GO:0032376)
45                             regulation of intestinal cholesterol absorption (GO:0030300)
46                          positive regulation of lipoprotein lipase activity (GO:0051006)
47                                              acylglycerol catabolic process (GO:0046464)
48                           positive regulation of lipid biosynthetic process (GO:0046889)
49                       positive regulation of triglyceride metabolic process (GO:0090208)
50                         positive regulation of triglyceride lipase activity (GO:0061365)
51                                       regulation of lipid catabolic process (GO:0050994)
52                                                   steroid metabolic process (GO:0008202)
53                              positive regulation of lipid catabolic process (GO:0050996)
54                                              triglyceride catabolic process (GO:0019433)
55                                             organophosphate ester transport (GO:0015748)
56                                       phosphatidylcholine metabolic process (GO:0046470)
57                                regulation of triglyceride catabolic process (GO:0010896)
58                                                fatty acid metabolic process (GO:0006631)
59                               regulation of fatty acid biosynthetic process (GO:0042304)
60                                              regulation of sterol transport (GO:0032371)
61              cellular response to low-density lipoprotein particle stimulus (GO:0071404)
62                                 low-density lipoprotein particle remodeling (GO:0034374)
63                  regulation of macrophage derived foam cell differentiation (GO:0010743)
64                                                 organic substance transport (GO:0071702)
65                                            regulation of cholesterol efflux (GO:0010874)
66                                               receptor-mediated endocytosis (GO:0006898)
67                                      secondary alcohol biosynthetic process (GO:1902653)
68                                           regulation of cholesterol storage (GO:0010885)
69                                                          cholesterol import (GO:0070508)
70                                                               sterol import (GO:0035376)
71                                    monocarboxylic acid biosynthetic process (GO:0072330)
72                                            cholesterol biosynthetic process (GO:0006695)
73                           positive regulation of cellular metabolic process (GO:0031325)
74                                                 sterol biosynthetic process (GO:0016126)
75                         positive regulation of fatty acid metabolic process (GO:0045923)
76                                 regulation of receptor-mediated endocytosis (GO:0048259)
77                                             fatty acid biosynthetic process (GO:0006633)
78                             regulation of Cdc42 protein signal transduction (GO:0032489)
79                       positive regulation of triglyceride catabolic process (GO:0010898)
80                                                  lipid biosynthetic process (GO:0008610)
81                                   positive regulation of cholesterol efflux (GO:0010875)
82                        negative regulation of receptor-mediated endocytosis (GO:0048261)
83                                                       lipoprotein transport (GO:0042953)
84                                       regulation of lipid metabolic process (GO:0019216)
85                                       monocarboxylic acid metabolic process (GO:0032787)
86                                                    lipoprotein localization (GO:0044872)
87                                                     lipid catabolic process (GO:0016042)
88                      positive regulation of fatty acid biosynthetic process (GO:0045723)
89                                              intracellular sterol transport (GO:0032366)
90                                                steroid biosynthetic process (GO:0006694)
91                                    regulation of lipid biosynthetic process (GO:0046890)
92                                               regulation of lipase activity (GO:0060191)
93                        positive regulation of cellular biosynthetic process (GO:0031328)
94                                        regulation of amyloid-beta clearance (GO:1900221)
95                                              phospholipid metabolic process (GO:0006644)
96                                   regulation of intestinal lipid absorption (GO:1904729)
97             positive regulation of protein catabolic process in the vacuole (GO:1904352)
98                                 positive regulation of biosynthetic process (GO:0009891)
99                                 regulation of cholesterol metabolic process (GO:0090181)
100                                                  foam cell differentiation (GO:0090077)
101                                 positive regulation of cholesterol storage (GO:0010886)
102                               macrophage derived foam cell differentiation (GO:0010742)
103                              organic hydroxy compound biosynthetic process (GO:1901617)
104                                    regulation of steroid metabolic process (GO:0019218)
105                               organonitrogen compound biosynthetic process (GO:1901566)
106                             negative regulation of lipid metabolic process (GO:0045833)
107                          regulation of lysosomal protein catabolic process (GO:1905165)
108                              positive regulation of amyloid-beta clearance (GO:1900223)
109                                           cellular lipid catabolic process (GO:0044242)
110                                                       chemical homeostasis (GO:0048878)
111                                              cholesterol catabolic process (GO:0006707)
112                                                   sterol catabolic process (GO:0016127)
113                                       steroid hormone biosynthetic process (GO:0120178)
114                   regulation of low-density lipoprotein particle clearance (GO:0010988)
115                                                bile acid metabolic process (GO:0008206)
116                                   phosphatidylcholine biosynthetic process (GO:0006656)
117                                                  alcohol catabolic process (GO:0046164)
118                                          organophosphate catabolic process (GO:0046434)
119                                       regulation of phospholipase activity (GO:0010517)
120                                  positive regulation of lipid localization (GO:1905954)
121                              positive regulation of phospholipid transport (GO:2001140)
122                                      glycerophospholipid metabolic process (GO:0006650)
123                                         organic hydroxy compound transport (GO:0015850)
124        negative regulation of macrophage derived foam cell differentiation (GO:0010745)
125                                     positive regulation of lipid transport (GO:0032370)
126                                   C21-steroid hormone biosynthetic process (GO:0006700)
127                                                      membrane organization (GO:0061024)
128                                         positive regulation of endocytosis (GO:0045807)
129                    positive regulation of multicellular organismal process (GO:0051240)
130                                   negative regulation of catabolic process (GO:0009895)
131                             negative regulation of lipid catabolic process (GO:0050995)
132                                          carbohydrate derivative transport (GO:1901264)
133        positive regulation of macrophage derived foam cell differentiation (GO:0010744)
134                                                          protein transport (GO:0015031)
135                                                       fatty acid transport (GO:0015908)
136                                       positive regulation of lipid storage (GO:0010884)
137                                      C21-steroid hormone metabolic process (GO:0008207)
138                                             phospholipid catabolic process (GO:0009395)
139                                         negative regulation of endocytosis (GO:0045806)
140                                    regulation of primary metabolic process (GO:0080090)
141                    negative regulation of multicellular organismal process (GO:0051241)
142                                             bile acid biosynthetic process (GO:0006699)
143  regulation of low-density lipoprotein particle receptor catabolic process (GO:0032803)
144                              regulation of Rho protein signal transduction (GO:0035023)
145                             regulation of small molecule metabolic process (GO:0062012)
146                          positive regulation of cellular catabolic process (GO:0031331)
147                                                       artery morphogenesis (GO:0048844)
148                     negative regulation of cellular component organization (GO:0051129)
149                                                       glycolipid transport (GO:0046836)
150                      positive regulation of lipoprotein particle clearance (GO:0010986)
151                                    positive regulation of sterol transport (GO:0032373)
152                                            long-chain fatty acid transport (GO:0015909)
153                                                        response to insulin (GO:0032868)
154                                  regulation of bile acid metabolic process (GO:1904251)
155                          positive regulation of receptor catabolic process (GO:2000646)
156                                           positive regulation of transport (GO:0051050)
157                      negative regulation of endothelial cell proliferation (GO:0001937)
158                          negative regulation of endothelial cell migration (GO:0010596)
159                          regulation of nitrogen compound metabolic process (GO:0051171)
160                              negative regulation of amyloid-beta clearance (GO:1900222)
161                          negative regulation of cellular metabolic process (GO:0031324)
162                                   glycerophospholipid biosynthetic process (GO:0046474)
163 negative regulation of production of molecular mediator of immune response (GO:0002701)
164                                unsaturated fatty acid biosynthetic process (GO:0006636)
165                                                            anion transport (GO:0006820)
166                       positive regulation of receptor-mediated endocytosis (GO:0048260)
167                                 negative regulation of cholesterol storage (GO:0010887)
168                               regulation of bile acid biosynthetic process (GO:0070857)
169                                           peptidyl-amino acid modification (GO:0018193)
170                low-density lipoprotein particle receptor catabolic process (GO:0032802)
171                low-density lipoprotein receptor particle metabolic process (GO:0032799)
172                                                          protein oxidation (GO:0018158)
173                               positive regulation by host of viral process (GO:0044794)
174                   positive regulation of triglyceride biosynthetic process (GO:0010867)
175                                                   receptor internalization (GO:0031623)
176                                                        response to glucose (GO:0009749)
177                     positive regulation of cellular component organization (GO:0051130)
178                     negative regulation of fatty acid biosynthetic process (GO:0045717)
179                                          negative regulation of hemostasis (GO:1900047)
180                                           peptidyl-methionine modification (GO:0018206)
181                                                          ethanol oxidation (GO:0006069)
182                            negative regulation of amyloid fibril formation (GO:1905907)
183                           negative regulation of protein metabolic process (GO:0051248)
184                                   unsaturated fatty acid metabolic process (GO:0033559)
185                                     alpha-linolenic acid metabolic process (GO:0036109)
186                                                     platelet degranulation (GO:0002576)
187                                   negative regulation of metabolic process (GO:0009892)
188                                     negative regulation of cell activation (GO:0050866)
189                                         negative regulation of coagulation (GO:0050819)
190                                                    cGMP-mediated signaling (GO:0019934)
191                                                      intestinal absorption (GO:0050892)
192                                                 receptor metabolic process (GO:0043112)
193                                                 regulation of phagocytosis (GO:0050764)
194                                     regulation of amyloid fibril formation (GO:1905906)
195                                 regulation of sequestering of triglyceride (GO:0010889)
196                            regulation of triglyceride biosynthetic process (GO:0010866)
197                                    post-translational protein modification (GO:0043687)
198                                                  regulation of endocytosis (GO:0030100)
199                                                   amyloid fibril formation (GO:1990000)
200                    positive regulation of small molecule metabolic process (GO:0062013)
201                                       cellular response to nutrient levels (GO:0031669)
202     negative regulation of cytokine production involved in immune response (GO:0002719)
203                        negative regulation of fatty acid metabolic process (GO:0045922)
204                             regulation of cholesterol biosynthetic process (GO:0045540)
205                                 regulation of steroid biosynthetic process (GO:0050810)
206                                   positive regulation of catabolic process (GO:0009896)
207                                amyloid precursor protein metabolic process (GO:0042982)
208                                  nitric oxide mediated signal transduction (GO:0007263)
209                      positive regulation of nitric-oxide synthase activity (GO:0051000)
210                                                  ethanol metabolic process (GO:0006067)
211                  positive regulation of cellular protein catabolic process (GO:1903364)
212                                                     response to fatty acid (GO:0070542)
213                                                           long-term memory (GO:0007616)
214                                       negative regulation of lipid storage (GO:0010888)
215                                            linoleic acid metabolic process (GO:0043651)
216                          negative regulation of lipid biosynthetic process (GO:0051055)
217                                                regulation of lipid storage (GO:0010883)
218                                regulation of interleukin-1 beta production (GO:0032651)
219                                    long-chain fatty acid metabolic process (GO:0001676)
220              regulation of cytokine production involved in immune response (GO:0002718)
221                                         cellular protein metabolic process (GO:0044267)
222                                    negative regulation of defense response (GO:0031348)
223                                       transport across blood-brain barrier (GO:0150104)
224                                                 receptor catabolic process (GO:0032801)
225                                                         response to hexose (GO:0009746)
226                                                       regulated exocytosis (GO:0045055)
227                                   regulation of endothelial cell migration (GO:0010594)
228                                   negative regulation of protein transport (GO:0051224)
229                                             positive regulation of binding (GO:0051099)
230                                            regulation of blood coagulation (GO:0030193)
231                              positive regulation of monooxygenase activity (GO:0032770)
232                                       negative regulation of wound healing (GO:0061045)
233                     negative regulation of macromolecule metabolic process (GO:0010605)
234                                 long-chain fatty acid biosynthetic process (GO:0042759)
235                                         regulation of developmental growth (GO:0048638)
236                                                   regulation of cell death (GO:0010941)
237                                                 regulation of angiogenesis (GO:0045765)
238                                        regulation of inflammatory response (GO:0050727)
239                                                   apoptotic cell clearance (GO:0043277)
240                              cellular response to peptide hormone stimulus (GO:0071375)
241             negative regulation of blood vessel endothelial cell migration (GO:0043537)
242                            phosphate-containing compound metabolic process (GO:0006796)
243                           negative regulation of epithelial cell migration (GO:0010633)
244                                          cellular response to amyloid-beta (GO:1904646)
245                                       cyclic-nucleotide-mediated signaling (GO:0019935)
246                                     regulation of receptor internalization (GO:0002090)
247                                                          response to lipid (GO:0033993)
248         regulation of vascular associated smooth muscle cell proliferation (GO:1904705)
249                          regulation of protein-containing complex assembly (GO:0043254)
250                                                              ion transport (GO:0006811)
251                       negative regulation of response to external stimulus (GO:0032102)
252                                              regulation of protein binding (GO:0043393)
253                                regulation of cellular component biogenesis (GO:0044087)
254                                   negative regulation of protein secretion (GO:0050709)
255                                   negative regulation of secretion by cell (GO:1903531)
256                               regulation of nitric-oxide synthase activity (GO:0050999)
257                                   negative regulation of blood coagulation (GO:0030195)
258                                     cellular response to organic substance (GO:0071310)
259                                      cellular response to insulin stimulus (GO:0032869)
260                                                   response to amyloid-beta (GO:1904645)
261              establishment of protein localization to extracellular region (GO:0035592)
262                                   regulation of cellular metabolic process (GO:0031323)
263                                    regulation of protein metabolic process (GO:0051246)
264                                positive regulation of cell differentiation (GO:0045597)
265                        negative regulation of cell projection organization (GO:0031345)
266                            positive regulation of fat cell differentiation (GO:0045600)
267                               negative regulation of BMP signaling pathway (GO:0030514)
268                       negative regulation of cellular biosynthetic process (GO:0031327)
269                                        positive regulation of phagocytosis (GO:0050766)
    Overlap Adjusted.P.value
1     28/51     3.291336e-55
2     29/71     1.134840e-52
3     29/72     1.264418e-52
4     16/24     1.003687e-32
5     15/21     2.203564e-31
6     20/77     5.273224e-31
7     19/70     7.882518e-30
8     12/13     1.520527e-27
9     13/18     2.514128e-27
10    12/17     5.731565e-25
11    15/49     2.711706e-24
12    12/21     2.245426e-23
13    15/59     5.665269e-23
14   17/109     2.748742e-22
15    12/25     3.145271e-22
16      9/9     2.283165e-21
17    12/31     7.414146e-21
18    13/55     1.935295e-19
19     9/12     4.196729e-19
20      8/9     5.374944e-18
21    10/25     1.639871e-17
22     8/10     2.436689e-17
23      7/7     1.679428e-16
24      7/9     5.763376e-15
25    11/64     8.362646e-15
26     7/13     2.508790e-13
27    11/92     5.133855e-13
28    10/64     5.133855e-13
29      6/9     3.296018e-12
30      6/9     3.296018e-12
31      6/9     3.296018e-12
32     6/11     1.693836e-11
33     6/11     1.693836e-11
34     8/41     3.013332e-11
35     6/12     3.013332e-11
36     6/12     3.013332e-11
37     6/12     3.013332e-11
38     7/25     4.654994e-11
39     6/13     5.294950e-11
40      5/6     5.459029e-11
41      5/6     5.459029e-11
42      5/6     5.459029e-11
43     6/15     1.393181e-10
44     7/33     3.496187e-10
45      5/8     4.627510e-10
46      5/8     4.627510e-10
47     7/35     5.017364e-10
48     7/35     5.017364e-10
49     6/19     6.556580e-10
50      5/9     9.553575e-10
51     6/21     1.253116e-09
52    9/104     1.493946e-09
53     6/22     1.653549e-09
54     6/23     2.189811e-09
55     6/25     3.733511e-09
56     8/77     3.733511e-09
57     5/12     5.225810e-09
58    9/124     6.552660e-09
59     6/29     9.279729e-09
60      4/5     9.798195e-09
61     5/14     1.207993e-08
62     5/14     1.207993e-08
63     6/31     1.339781e-08
64    9/136     1.355933e-08
65     6/33     1.942867e-08
66    9/143     2.054367e-08
67     6/34     2.282600e-08
68     5/16     2.390304e-08
69      4/6     2.513038e-08
70      4/6     2.513038e-08
71     7/63     2.556641e-08
72     6/35     2.556641e-08
73    8/105     3.517095e-08
74     6/38     4.196695e-08
75     5/18     4.228478e-08
76     6/39     4.816188e-08
77     7/71     5.609765e-08
78      4/8     1.033779e-07
79      4/8     1.033779e-07
80     7/80     1.258618e-07
81     5/23     1.517283e-07
82     5/26     2.906610e-07
83     4/10     2.936601e-07
84     7/92     3.199662e-07
85    8/143     3.471498e-07
86     4/11     4.442138e-07
87     5/29     4.906437e-07
88     4/13     9.252034e-07
89     4/13     9.252034e-07
90     6/65     9.598111e-07
91     5/35     1.249797e-06
92     4/14     1.249797e-06
93    8/180     1.884951e-06
94     4/16     2.212485e-06
95     6/76     2.336232e-06
96      3/5     3.664395e-06
97      3/5     3.664395e-06
98     5/44     3.827136e-06
99     4/21     6.819051e-06
100     3/6     6.952354e-06
101     3/6     6.952354e-06
102     3/6     6.952354e-06
103    5/50     6.991423e-06
104    4/23     9.554179e-06
105   7/158     1.040987e-05
106    4/24     1.121951e-05
107     3/7     1.146235e-05
108     3/7     1.146235e-05
109    4/27     1.788032e-05
110    5/65     2.452122e-05
111     3/9     2.639634e-05
112     3/9     2.639634e-05
113    4/31     3.060279e-05
114    3/10     3.695601e-05
115    4/33     3.856854e-05
116    4/33     3.856854e-05
117    3/11     4.775659e-05
118    3/11     4.775659e-05
119    3/11     4.775659e-05
120    3/11     4.775659e-05
121    3/11     4.775659e-05
122    5/80     6.182763e-05
123    4/40     7.973389e-05
124    3/13     7.973389e-05
125    3/13     7.973389e-05
126    3/15     1.252218e-04
127   7/242     1.420233e-04
128    4/48     1.598563e-04
129   8/345     1.704405e-04
130    4/49     1.709436e-04
131    3/18     2.111817e-04
132    3/18     2.111817e-04
133    3/18     2.111817e-04
134   8/369     2.646441e-04
135    3/20     2.892290e-04
136    3/21     3.341258e-04
137    3/24     4.974036e-04
138    3/24     4.974036e-04
139    3/25     5.597802e-04
140   5/130     5.616142e-04
141   6/214     6.166972e-04
142    3/27     6.934199e-04
143     2/5     7.406583e-04
144    4/73     7.449454e-04
145    3/28     7.586859e-04
146   5/141     7.898802e-04
147    3/30     9.228897e-04
148    4/80     1.034287e-03
149     2/6     1.049782e-03
150     2/6     1.049782e-03
151     2/6     1.049782e-03
152    3/32     1.085012e-03
153    4/84     1.208000e-03
154     2/7     1.428577e-03
155     2/7     1.428577e-03
156    4/91     1.611630e-03
157    3/37     1.625395e-03
158    3/38     1.749224e-03
159     2/8     1.841132e-03
160     2/8     1.841132e-03
161    3/39     1.855101e-03
162   5/177     2.046657e-03
163     2/9     2.304288e-03
164     2/9     2.304288e-03
165    3/43     2.420344e-03
166    3/44     2.575438e-03
167    2/10     2.756295e-03
168    2/10     2.756295e-03
169    2/10     2.756295e-03
170    2/10     2.756295e-03
171    2/10     2.756295e-03
172    2/11     3.303347e-03
173    2/11     3.303347e-03
174    2/11     3.303347e-03
175    3/49     3.337798e-03
176    3/49     3.337798e-03
177   4/114     3.341630e-03
178    2/12     3.781332e-03
179    2/12     3.781332e-03
180    2/12     3.781332e-03
181    2/12     3.781332e-03
182    2/12     3.781332e-03
183    3/52     3.822266e-03
184    3/54     4.245657e-03
185    2/13     4.386588e-03
186   4/125     4.489058e-03
187    3/56     4.645735e-03
188    2/14     4.945884e-03
189    2/14     4.945884e-03
190    2/14     4.945884e-03
191    2/14     4.945884e-03
192    3/58     4.985945e-03
193    3/58     4.985945e-03
194    2/15     5.548828e-03
195    2/15     5.548828e-03
196    2/15     5.548828e-03
197   6/345     5.596173e-03
198    3/61     5.626994e-03
199    3/63     6.147256e-03
200    2/16     6.200855e-03
201    3/66     6.840974e-03
202    2/17     6.840974e-03
203    2/17     6.840974e-03
204    2/17     6.840974e-03
205    2/17     6.840974e-03
206    3/67     7.093595e-03
207    2/18     7.532008e-03
208    2/18     7.532008e-03
209    2/18     7.532008e-03
210    2/19     8.241667e-03
211    2/19     8.241667e-03
212    2/19     8.241667e-03
213    2/19     8.241667e-03
214    2/20     9.094348e-03
215    2/21     9.982653e-03
216    2/22     1.085553e-02
217    2/22     1.085553e-02
218    3/83     1.230478e-02
219    3/83     1.230478e-02
220    2/24     1.273659e-02
221   6/417     1.291939e-02
222    3/85     1.298477e-02
223    3/86     1.336097e-02
224    2/25     1.350640e-02
225    2/25     1.350640e-02
226   4/180     1.399465e-02
227    3/89     1.440735e-02
228    2/26     1.440735e-02
229    3/90     1.479001e-02
230    2/27     1.539039e-02
231    2/28     1.646589e-02
232    2/29     1.757027e-02
233   4/194     1.771224e-02
234    2/30     1.862299e-02
235    2/31     1.977865e-02
236   3/102     2.036757e-02
237   4/203     2.042828e-02
238   4/206     2.141587e-02
239    2/33     2.198466e-02
240   3/106     2.228428e-02
241    2/34     2.311351e-02
242   4/212     2.328380e-02
243    2/35     2.415927e-02
244    2/35     2.415927e-02
245    2/36     2.531623e-02
246    2/36     2.531623e-02
247   3/114     2.646649e-02
248    2/37     2.648825e-02
249   3/116     2.742785e-02
250   3/116     2.742785e-02
251   3/118     2.842391e-02
252   3/118     2.842391e-02
253    2/39     2.842391e-02
254    2/39     2.842391e-02
255    2/39     2.842391e-02
256    2/39     2.842391e-02
257    2/40     2.973753e-02
258   3/123     3.119488e-02
259   3/129     3.533580e-02
260    2/44     3.533580e-02
261    2/46     3.834204e-02
262    2/47     3.980515e-02
263    2/48     4.128649e-02
264   4/258     4.183273e-02
265    2/49     4.262417e-02
266    2/51     4.583569e-02
267    2/52     4.720898e-02
268    2/52     4.720898e-02
269    2/53     4.877011e-02
                                                                                                                                                                       Genes
1         SCARB1;CETP;LCAT;LIPC;NPC1L1;LIPG;CD36;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;STARD3;ABCG5;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;APOC2;APOC1
2   SCARB1;CETP;MTTP;PCSK9;LPL;LCAT;ABCB11;CYP7A1;LIPC;LIPG;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;ABCG5;EPHX2;APOA2;APOA1;APOC3;APOA4;APOA5;SOAT1;NPC1;NPC2;SOAT2;APOC2;ANGPTL3
3   SCARB1;CETP;MTTP;PCSK9;LPL;LCAT;ABCB11;CYP7A1;LIPC;LIPG;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;ABCG5;EPHX2;APOA2;APOA1;APOC3;APOA4;APOA5;SOAT1;NPC1;NPC2;SOAT2;APOC2;ANGPTL3
4                                                                              ABCA1;ABCG8;SCARB1;ABCG5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;NPC2;SOAT2;APOC2;APOC1;APOE
5                                                                                    ABCG8;CETP;STARD3;ABCG5;OSBPL5;APOA2;APOA1;LCAT;NPC1;NPC1L1;NPC2;CD36;APOB;LDLRAP1;LDLR
6                                              ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;HMGCR;APOA5;CYP7A1;CYP27A1;SOAT1;SOAT2;NPC1L1;ANGPTL3;APOE;DHCR7;LDLRAP1;APOB
7                                                      ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;HMGCR;LIPA;CYP7A1;CYP27A1;SOAT1;SOAT2;ANGPTL3;APOE;DHCR7;LDLRAP1;APOB
8                                                                                                           CETP;LIPC;APOC2;APOA2;APOA1;APOC3;LCAT;LPL;APOA4;APOE;APOB;APOA5
9                                                                                                   CETP;SCARB1;APOA2;APOA1;APOC3;LCAT;APOA4;LIPC;APOC2;APOC1;LIPG;APOE;PLTP
10                                                                                                       ABCA1;CETP;SCARB1;LIPC;APOC2;LIPG;APOA2;APOA1;APOC3;LCAT;APOA4;APOE
11                                                                             ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;CYP27A1;SOAT1;SOAT2;ANGPTL3;APOE;LDLRAP1;APOB
12                                                                                                   LIPC;SORT1;APOC2;APOH;APOC1;ANGPTL3;APOA1;APOC3;LPL;APOA4;ANGPTL4;APOA5
13                                                                                    ABCA1;SCARB1;OSBPL5;MTTP;APOA2;APOA1;APOC3;APOA4;APOA5;NPC2;APOC2;APOC1;APOE;LDLR;PLTP
14                                                                        ABCA1;SCARB1;ABCG8;CETP;ABCG5;OSBPL5;MTTP;APOA1;APOA4;ABCB11;APOA5;NPC2;NPC1L1;CD36;APOE;LDLR;PLTP
15                                                                                                   CETP;SCARB1;LIPC;APOC2;ANGPTL3;LPL;APOA1;APOC3;APOA4;APOE;ANGPTL4;APOA5
16                                                                                                                           CETP;LIPC;APOC2;APOA1;LCAT;LPL;APOA4;APOE;APOA5
17                                                                                                   CETP;SCARB1;LIPC;APOC2;ANGPTL3;LPL;APOA1;APOC3;APOA4;APOE;ANGPTL4;APOA5
18                                                                                                      CETP;APOA2;LPL;APOC3;APOA5;LIPC;LIPI;APOH;LIPG;APOC1;APOE;APOB;LPIN3
19                                                                                                                      ABCA1;APOC2;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOA5
20                                                                                                                               APOC2;APOA2;APOA1;APOC3;LPL;APOA4;APOE;APOB
21                                                                                                                   CETP;LRP1;APOC2;LIPG;APOC1;APOA2;TSPO;APOA1;APOA4;APOA5
22                                                                                                                              APOC2;MTTP;APOA2;APOA1;APOC3;APOA4;APOE;APOB
23                                                                                                                                     LIPC;APOC2;APOC1;APOC3;APOE;APOB;LDLR
24                                                                                                                                  NPC1L1;MTTP;APOA2;APOA1;APOA4;APOE;APOA5
25                                                                                                               LRP1;ADH1B;APOC2;APOA2;APOA1;LPL;APOC3;APOA4;LRP2;APOE;APOB
26                                                                                                                                APOC1;APOA2;APOA1;APOA4;APOE;LDLRAP1;APOA5
27                                                                                                               LRP1;ADH1B;APOC2;APOA2;APOA1;LPL;APOC3;APOA4;LRP2;APOE;APOB
28                                                                                                               ABCA1;CETP;LIPG;ANGPTL3;APOA1;APOA4;PPARG;APOE;ABCB11;APOA5
29                                                                                                                                   SORT1;APOC1;ANGPTL3;APOA2;APOC3;ANGPTL4
30                                                                                                                                        APOC1;APOA2;APOA1;APOA4;APOE;APOA5
31                                                                                                                                        ABCG8;ABCG5;NPC1L1;SOAT2;CD36;LDLR
32                                                                                                                                       ABCG8;ABCG5;APOC2;APOC1;APOA2;APOC3
33                                                                                                                                        ABCG8;ABCG5;NPC1L1;SOAT2;CD36;LDLR
34                                                                                                                                CETP;APOH;APOC1;APOA2;LPL;APOC3;APOE;APOA5
35                                                                                                                                        APOC1;APOA2;APOA1;APOA4;APOE;APOA5
36                                                                                                                                      ABCA1;CETP;LIPG;ANGPTL3;APOA1;ABCB11
37                                                                                                                                         SOAT1;SOAT2;APOC1;MTTP;APOC3;APOB
38                                                                                                                                APOA2;ANGPTL3;APOA1;APOA4;PPARG;APOE;APOA5
39                                                                                                                                        ABCA1;APOA2;APOA1;APOA4;APOE;APOA5
40                                                                                                                                         SORT1;APOC1;ANGPTL3;APOC3;ANGPTL4
41                                                                                                                                            LRPAP1;APOC2;APOC1;APOC3;PCSK9
42                                                                                                                                             APOC2;APOA2;APOA1;APOC3;APOA5
43                                                                                                                                         ABCA1;NPC1;STAR;NPC2;LDLRAP1;LDLR
44                                                                                                                                      CETP;LRP1;LIPG;APOA1;PPARG;APOE;PLTP
45                                                                                                                                             ABCG8;ABCG5;APOA1;APOA4;APOA5
46                                                                                                                                              APOC2;APOH;APOA1;APOA4;APOA5
47                                                                                                                                      LIPC;LIPI;LIPG;APOA2;LPL;APOC3;APOA5
48                                                                                                                                  SCARB1;APOC2;APOA1;APOA4;APOE;LDLR;APOA5
49                                                                                                                                       SCARB1;APOC2;APOA1;APOA4;APOA5;LDLR
50                                                                                                                                              APOC2;APOH;APOA1;APOA4;APOA5
51                                                                                                                                    APOC1;APOA2;ANGPTL3;APOC3;ABCB11;APOA5
52                                                                                                                     CYP27A1;STARD3;NPC1;STAR;TSPO;LRP2;ABCB11;LIPA;CYP7A1
53                                                                                                                                     APOC2;APOA2;ANGPTL3;APOA1;APOA4;APOA5
54                                                                                                                                            LIPC;LIPI;LIPG;APOC3;LPL;APOA5
55                                                                                                                                         SCARB1;OSBPL5;NPC2;MTTP;LDLR;PLTP
56                                                                                                                              CETP;LIPC;APOA2;APOA1;LCAT;APOA4;APOA5;LPIN3
57                                                                                                                                             APOC2;APOA1;APOC3;APOA4;APOA5
58                                                                                                                        LIPC;LIPI;LIPG;ANGPTL3;LPL;PPARG;CD36;ABCB11;LPIN3
59                                                                                                                                       APOC2;APOC1;APOA1;APOC3;APOA4;APOA5
60                                                                                                                                                     LRP1;APOC1;TSPO;APOA4
61                                                                                                                                                 ABCA1;LPL;PPARG;CD36;LDLR
62                                                                                                                                                  CETP;LIPC;APOA2;APOB;LPA
63                                                                                                                                            ABCA1;CETP;LPL;PPARG;CD36;APOB
64                                                                                                                        ABCA1;ABCG8;CETP;ABCG5;APOA1;APOA4;LRP2;APOA5;PLTP
65                                                                                                                                           CETP;LRP1;APOA1;PPARG;APOE;PLTP
66                                                                                                                        SCARB1;LRP1;APOA1;CD36;LRP2;APOE;LDLRAP1;APOB;LDLR
67                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
68                                                                                                                                               ABCA1;SCARB1;LPL;PPARG;APOB
69                                                                                                                                                    SCARB1;APOA1;CD36;LDLR
70                                                                                                                                                    SCARB1;APOA1;CD36;LDLR
71                                                                                                                                  CYP27A1;LIPC;LIPI;LIPG;LPL;ABCB11;CYP7A1
72                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
73                                                                                                                            APOC1;APOA2;PCSK9;APOA1;APOA4;PPARG;APOE;APOA5
74                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
75                                                                                                                                             APOC2;APOA1;APOA4;PPARG;APOA5
76                                                                                                                                    LRPAP1;APOC2;APOC1;APOC3;LDLRAP1;APOA5
77                                                                                                                                      FADS3;LIPC;LIPI;EPHX2;LIPG;LPL;FADS1
78                                                                                                                                                    ABCA1;APOA1;APOC3;APOE
79                                                                                                                                                   APOC2;APOA1;APOA4;APOA5
80                                                                                                                                       LIPC;STAR;LIPI;LIPG;LPL;HMGCR;FADS1
81                                                                                                                                                LRP1;APOA1;PPARG;APOE;PLTP
82                                                                                                                                            LRPAP1;APOC2;APOC1;PCSK9;APOC3
83                                                                                                                                                      LRP1;PPARG;CD36;APOB
84                                                                                                                                  NPC2;APOC2;APOC1;APOC3;PPARG;HMGCR;DHCR7
85                                                                                                                            NPC1;ADH1B;ANGPTL3;LPL;PPARG;VDAC1;CD36;ABCB11
86                                                                                                                                                      LRP1;PPARG;CD36;APOB
87                                                                                                                                                  LIPC;LIPI;LIPG;LPL;APOA4
88                                                                                                                                                   APOC2;APOA1;APOA4;APOA5
89                                                                                                                                                      ABCA1;NPC1;STAR;NPC2
90                                                                                                                                    CYP27A1;STAR;HMGCR;DHCR7;ABCB11;CYP7A1
91                                                                                                                                               STAR;APOA1;APOA4;APOE;APOA5
92                                                                                                                                                    LIPC;APOA2;ANGPTL3;LPL
93                                                                                                                             SCARB1;STAR;APOC2;APOA1;APOA4;CD36;APOA5;LDLR
94                                                                                                                                                    LRPAP1;LRP1;HMGCR;APOE
95                                                                                                                                         LIPG;APOA2;ANGPTL3;LPL;LCAT;FADS1
96                                                                                                                                                         APOA1;APOA4;APOA5
97                                                                                                                                                            LRP1;LRP2;LDLR
98                                                                                                                                               APOA1;APOA4;APOE;CD36;APOA5
99                                                                                                                                                  EPHX2;APOE;LDLRAP1;KPNB1
100                                                                                                                                                        SOAT1;SOAT2;PPARG
101                                                                                                                                                          SCARB1;LPL;APOB
102                                                                                                                                                        SOAT1;SOAT2;PPARG
103                                                                                                                                        CYP27A1;HMGCR;DHCR7;ABCB11;CYP7A1
104                                                                                                                                                   STAR;EPHX2;APOE;ABCB11
105                                                                                                                                    VAPA;VAPB;APOA2;APOA1;LCAT;APOE;LPIN3
106                                                                                                                                                  APOC2;APOC1;APOA2;APOC3
107                                                                                                                                                           LRP1;LRP2;LDLR
108                                                                                                                                                         LRPAP1;LRP1;APOE
109                                                                                                                                                 LIPG;APOA2;ANGPTL3;LPIN3
110                                                                                                                                          CETP;ANGPTL3;APOA4;PPARG;ABCB11
111                                                                                                                                                      CYP27A1;APOE;CYP7A1
112                                                                                                                                                      CYP27A1;APOE;CYP7A1
113                                                                                                                                                   STARD3;STAR;TSPO;DHCR7
114                                                                                                                                                      APOC3;PCSK9;LDLRAP1
115                                                                                                                                               CYP27A1;NPC1;ABCB11;CYP7A1
116                                                                                                                                                   APOA2;LCAT;APOA1;LPIN3
117                                                                                                                                                      CYP27A1;APOE;CYP7A1
118                                                                                                                                                       LIPG;ANGPTL3;APOA2
119                                                                                                                                                       LRP1;APOC2;ANGPTL3
120                                                                                                                                                            LRP1;LPL;APOB
121                                                                                                                                                          CETP;APOA1;APOE
122                                                                                                                                              CETP;APOA1;LCAT;APOA4;APOA5
123                                                                                                                                                  ABCG8;ABCG5;NPC2;ABCB11
124                                                                                                                                                         ABCA1;CETP;PPARG
125                                                                                                                                                           CETP;LRP1;APOE
126                                                                                                                                                         STARD3;STAR;TSPO
127                                                                                                                                    NPC1;VAPA;VAPB;LRP2;LDLRAP1;APOB;LDLR
128                                                                                                                                                  LRP1;APOE;LDLRAP1;APOA5
129                                                                                                                              GHR;ABCA1;LRPAP1;LRP1;APOC2;CD36;APOE;APOA5
130                                                                                                                                                  APOC1;APOA2;APOC3;HMGCR
131                                                                                                                                                        APOC1;APOA2;APOC3
132                                                                                                                                                         SCARB1;NPC2;PLTP
133                                                                                                                                                            LPL;CD36;APOB
134                                                                                                                                ABCA1;LRP1;MTTP;PPARG;CD36;LRP2;APOE;APOB
135                                                                                                                                                          PPARG;APOE;CD36
136                                                                                                                                                          SCARB1;LPL;APOB
137                                                                                                                                                         STARD3;STAR;TSPO
138                                                                                                                                                       LIPG;APOA2;ANGPTL3
139                                                                                                                                                        APOC2;APOC1;APOC3
140                                                                                                                                              PPARG;HMGCR;APOE;DHCR7;LDLR
141                                                                                                                                     LRPAP1;APOA2;APOA1;APOC3;APOA4;HMGCR
142                                                                                                                                                    CYP27A1;ABCB11;CYP7A1
143                                                                                                                                                               PCSK9;APOE
144                                                                                                                                                   ABCA1;APOA1;APOC3;APOE
145                                                                                                                                                        EPHX2;APOE;ABCB11
146                                                                                                                                             APOC2;APOA1;APOA4;APOE;APOA5
147                                                                                                                                                        LRP1;ANGPTL3;LRP2
148                                                                                                                                                  APOA2;APOA1;APOC3;APOA4
149                                                                                                                                                                NPC2;PLTP
150                                                                                                                                                             LIPG;LDLRAP1
151                                                                                                                                                                CETP;LIPG
152                                                                                                                                                          PPARG;APOE;CD36
153                                                                                                                                                  SORT1;PCSK9;PPARG;LPIN3
154                                                                                                                                                            ABCB11;CYP7A1
155                                                                                                                                                               PCSK9;APOE
156                                                                                                                                                    LRP1;APOA2;APOA1;APOE
157                                                                                                                                                          APOH;PPARG;APOE
158                                                                                                                                                          APOH;PPARG;APOE
159                                                                                                                                                                APOE;LDLR
160                                                                                                                                                             LRPAP1;HMGCR
161                                                                                                                                                        LRPAP1;PCSK9;APOE
162                                                                                                                                              LIPI;APOA2;APOA1;LCAT;LPIN3
163                                                                                                                                                              APOA2;APOA1
164                                                                                                                                                              FADS3;FADS1
165                                                                                                                                                         TSPO;VDAC2;VDAC1
166                                                                                                                                                      PCSK9;LDLRAP1;APOA5
167                                                                                                                                                              ABCA1;PPARG
168                                                                                                                                                              STAR;CYP7A1
169                                                                                                                                                              APOA2;APOA1
170                                                                                                                                                              MYLIP;PCSK9
171                                                                                                                                                              MYLIP;PCSK9
172                                                                                                                                                              APOA2;APOA1
173                                                                                                                                                                VAPA;APOE
174                                                                                                                                                              SCARB1;LDLR
175                                                                                                                                                        LRP1;CD36;LDLRAP1
176                                                                                                                                                         APOA2;LPL;CYP7A1
177                                                                                                                                                    LRP1;APOC2;APOE;APOA5
178                                                                                                                                                              APOC1;APOC3
179                                                                                                                                                                APOH;APOE
180                                                                                                                                                              APOA2;APOA1
181                                                                                                                                                              ALDH2;ADH1B
182                                                                                                                                                                APOE;LDLR
183                                                                                                                                                          HMGCR;APOE;LDLR
184                                                                                                                                                        FADS3;FADS2;FADS1
185                                                                                                                                                              FADS2;FADS1
186                                                                                                                                                    ITIH4;APOH;APOA1;CD36
187                                                                                                                                                        APOC2;APOC1;APOC3
188                                                                                                                                                                APOE;LDLR
189                                                                                                                                                                APOH;APOE
190                                                                                                                                                                APOE;CD36
191                                                                                                                                                              NPC1L1;CD36
192                                                                                                                                                        LRP1;CD36;LDLRAP1
193                                                                                                                                                       SCARB1;APOA2;APOA1
194                                                                                                                                                                APOE;LDLR
195                                                                                                                                                                LPL;PPARG
196                                                                                                                                                              SCARB1;LDLR
197                                                                                                                                        APOA2;PCSK9;APOA1;APOE;APOB;APOA5
198                                                                                                                                                         LRPAP1;LRP1;APOE
199                                                                                                                                                         APOA1;APOA4;CD36
200                                                                                                                                                            PPARG;LDLRAP1
201                                                                                                                                                          PCSK9;LPL;FADS1
202                                                                                                                                                              APOA2;APOA1
203                                                                                                                                                              APOC1;APOC3
204                                                                                                                                                               APOE;KPNB1
205                                                                                                                                                              STAR;CYP7A1
206                                                                                                                                                      APOA2;ANGPTL3;APOA5
207                                                                                                                                                             APOE;LDLRAP1
208                                                                                                                                                                APOE;CD36
209                                                                                                                                                              SCARB1;APOE
210                                                                                                                                                              ALDH2;ADH1B
211                                                                                                                                                               PCSK9;APOE
212                                                                                                                                                                 LPL;CD36
213                                                                                                                                                                APOE;LDLR
214                                                                                                                                                              ABCA1;PPARG
215                                                                                                                                                              FADS2;FADS1
216                                                                                                                                                              APOC1;APOC3
217                                                                                                                                                                 LPL;APOB
218                                                                                                                                                           APOA1;LPL;CD36
219                                                                                                                                                        FADS2;EPHX2;FADS1
220                                                                                                                                                              APOA2;APOA1
221                                                                                                                                        APOA2;PCSK9;APOA1;APOE;APOB;APOA5
222                                                                                                                                                         APOA1;PPARG;APOE
223                                                                                                                                                           LRP1;CD36;LRP2
224                                                                                                                                                              MYLIP;PCSK9
225                                                                                                                                                                APOA2;LPL
226                                                                                                                                                    ITIH4;APOH;APOA1;CD36
227                                                                                                                                                         SCARB1;APOH;APOE
228                                                                                                                                                               HMGCR;APOE
229                                                                                                                                                          LRP1;PPARG;APOE
230                                                                                                                                                                APOH;APOE
231                                                                                                                                                              SCARB1;APOE
232                                                                                                                                                                APOH;APOE
233                                                                                                                                                   LRPAP1;PCSK9;APOE;LDLR
234                                                                                                                                                              EPHX2;FADS1
235                                                                                                                                                                 GHR;APOE
236                                                                                                                                                         LRPAP1;LRP1;CD36
237                                                                                                                                               APOH;ANGPTL3;PPARG;ANGPTL4
238                                                                                                                                                     APOA1;LPL;PPARG;APOE
239                                                                                                                                                              SCARB1;LRP1
240                                                                                                                                                        PCSK9;PPARG;LPIN3
241                                                                                                                                                               PPARG;APOE
242                                                                                                                                                   EPHX2;ANGPTL3;LPL;LCAT
243                                                                                                                                                                APOH;APOE
244                                                                                                                                                                LRP1;CD36
245                                                                                                                                                                APOE;CD36
246                                                                                                                                                             LRPAP1;PCSK9
247                                                                                                                                                         APOA4;PPARG;CD36
248                                                                                                                                                            PPARG;LDLRAP1
249                                                                                                                                                          ABCA1;CD36;APOE
250                                                                                                                                                         TSPO;VDAC2;VDAC1
251                                                                                                                                                         APOA1;PPARG;APOE
252                                                                                                                                                      LRPAP1;LRP1;LDLRAP1
253                                                                                                                                                                APOE;CD36
254                                                                                                                                                               HMGCR;APOE
255                                                                                                                                                               HMGCR;APOE
256                                                                                                                                                              SCARB1;APOE
257                                                                                                                                                                APOH;APOE
258                                                                                                                                                         GHR;LRP2;LDLRAP1
259                                                                                                                                                        PCSK9;PPARG;LPIN3
260                                                                                                                                                                LRP1;CD36
261                                                                                                                                                               ABCA1;MTTP
262                                                                                                                                                              NPC2;ABCB11
263                                                                                                                                                                APOE;LDLR
264                                                                                                                                                      LPL;PPARG;CD36;APOB
265                                                                                                                                                               MYLIP;APOE
266                                                                                                                                                                LPL;PPARG
267                                                                                                                                                               PPARG;LRP2
268                                                                                                                                                              APOC1;APOC3
269                                                                                                                                                              APOA2;APOA1
[1] "GO_Cellular_Component_2021"
                                                          Term Overlap
1               high-density lipoprotein particle (GO:0034364)   12/19
2                                     chylomicron (GO:0042627)   10/10
3   triglyceride-rich plasma lipoprotein particle (GO:0034385)   10/15
4           very-low-density lipoprotein particle (GO:0034361)   10/15
5                                  early endosome (GO:0005769)  13/266
6                low-density lipoprotein particle (GO:0034362)     4/7
7     spherical high-density lipoprotein particle (GO:0034366)     4/8
8                     endoplasmic reticulum lumen (GO:0005788)  10/285
9                      endocytic vesicle membrane (GO:0030666)   8/158
10                 endoplasmic reticulum membrane (GO:0005789)  14/712
11                                       lysosome (GO:0005764)  11/477
12                                  lytic vacuole (GO:0000323)   8/219
13                              endocytic vesicle (GO:0030139)   7/189
14     clathrin-coated endocytic vesicle membrane (GO:0030669)    5/69
15              clathrin-coated endocytic vesicle (GO:0045334)    5/85
16               clathrin-coated vesicle membrane (GO:0030665)    5/90
17                             lysosomal membrane (GO:0005765)   8/330
18                  intracellular organelle lumen (GO:0070013)  12/848
19       collagen-containing extracellular matrix (GO:0062023)   8/380
20                        endocytic vesicle lumen (GO:0071682)    3/21
21                       organelle outer membrane (GO:0031968)   5/142
22 ATP-binding cassette (ABC) transporter complex (GO:0043190)     2/6
23                         lytic vacuole membrane (GO:0098852)   6/267
24                              endosome membrane (GO:0010008)   6/325
25                   mitochondrial outer membrane (GO:0005741)   4/126
26                   platelet dense granule lumen (GO:0031089)    2/14
27                                        vesicle (GO:0031982)   5/226
28                          endolysosome membrane (GO:0036020)    2/17
29                    basolateral plasma membrane (GO:0016323)   4/151
30                   cytoplasmic vesicle membrane (GO:0030659)   6/380
31                         platelet dense granule (GO:0042827)    2/21
32                                lysosomal lumen (GO:0043202)    3/86
33                                   endolysosome (GO:0036019)    2/25
34                        secretory granule lumen (GO:0034774)   5/316
35                          brush border membrane (GO:0031526)    2/37
36                         mitochondrial envelope (GO:0005740)   3/127
37       extracellular membrane-bounded organelle (GO:0065010)    2/56
38                          extracellular vesicle (GO:1903561)    2/59
39                                 vacuolar lumen (GO:0005775)   3/161
40                                        caveola (GO:0005901)    2/60
   Adjusted.P.value
1      5.261200e-24
2      6.209923e-24
3      9.203512e-21
4      9.203512e-21
5      1.246888e-10
6      7.731648e-08
7      1.321996e-07
8      6.153361e-07
9      8.075627e-07
10     1.200431e-06
11     6.211359e-06
12     7.353950e-06
13     2.938912e-05
14     2.938912e-05
15     7.671871e-05
16     9.509306e-05
17     1.065748e-04
18     1.698308e-04
19     2.574496e-04
20     2.574496e-04
21     6.432532e-04
22     8.164449e-04
23     1.420908e-03
24     3.827987e-03
25     3.898444e-03
26     4.116966e-03
27     4.199032e-03
28     5.675277e-03
29     6.551600e-03
30     6.795770e-03
31     7.845057e-03
32     1.043474e-02
33     1.043474e-02
34     1.423039e-02
35     2.126720e-02
36     2.763580e-02
37     4.460396e-02
38     4.700422e-02
39     4.700422e-02
40     4.700422e-02
                                                                                Genes
1                  CETP;APOC2;APOH;APOC1;APOA2;APOA1;APOC3;LCAT;APOA4;APOE;APOA5;PLTP
2                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
3                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
4                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
5          LRP1;SORT1;APOA2;PCSK9;APOA1;APOC3;APOA4;APOC2;LIPG;APOE;LDLRAP1;APOB;LDLR
6                                                               APOC2;APOE;APOB;APOA5
7                                                             APOC2;APOA2;APOA1;APOC3
8                            LRPAP1;LIPC;MTTP;APOA2;PCSK9;APOA1;APOA4;APOE;APOB;APOA5
9                                        SCARB1;LRP1;CD36;LRP2;APOE;LDLRAP1;APOB;LDLR
10 ABCA1;STARD3;HMGCR;CYP7A1;FADS2;NCEH1;SOAT1;VAPA;SOAT2;VAPB;DHCR7;APOB;FADS1;LPIN3
11                       SCARB1;STARD3;NPC1;LRP1;NPC2;SORT1;PCSK9;LRP2;APOB;LIPA;LDLR
12                                        SCARB1;NPC1;NPC2;SORT1;PCSK9;LRP2;LIPA;LDLR
13                                             ABCA1;SCARB1;LRP1;APOA1;CD36;APOE;APOB
14                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
15                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
16                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
17                                       SCARB1;STARD3;NPC1;LRP1;VAPA;PCSK9;LRP2;LDLR
18              CYP27A1;LIPC;ALDH2;MTTP;APOA2;PCSK9;APOA1;APOA4;APOE;APOB;APOA5;KPNB1
19                                  ITIH4;APOH;ANGPTL3;APOA1;APOC3;APOA4;ANGPTL4;APOE
20                                                                    APOA1;APOE;APOB
21                                                       VDAC3;TSPO;VDAC2;VDAC1;DHCR7
22                                                                        ABCG8;ABCG5
23                                                 SCARB1;STARD3;NPC1;LRP1;PCSK9;LRP2
24                                                STARD3;SORT1;PCSK9;ABCB11;APOB;LDLR
25                                                             VDAC3;TSPO;VDAC2;VDAC1
26                                                                         ITIH4;APOH
27                                                         ABCA1;CETP;VAPA;APOA1;APOE
28                                                                         PCSK9;LDLR
29                                                              LRP1;MTTP;ABCB11;LDLR
30                                                   SCARB1;LRP1;SORT1;CD36;APOB;LDLR
31                                                                         ITIH4;APOH
32                                                                     NPC2;APOB;LIPA
33                                                                         PCSK9;LDLR
34                                                        ITIH4;NPC2;APOH;APOA1;KPNB1
35                                                                          LRP2;CD36
36                                                                   STAR;VDAC2;VDAC1
37                                                                         APOA1;APOE
38                                                                         APOA1;APOE
39                                                                     NPC2;APOB;LIPA
40                                                                        SCARB1;CD36
[1] "GO_Molecular_Function_2021"
                                                                                                                                                                                Term
1                                                                                                                                                   cholesterol binding (GO:0015485)
2                                                                                                                                                        sterol binding (GO:0032934)
3                                                                                                                                         cholesterol transfer activity (GO:0120020)
4                                                                                                                                              sterol transfer activity (GO:0120015)
5                                                                                                                                 lipoprotein particle receptor binding (GO:0070325)
6                                                                                                       phosphatidylcholine-sterol O-acyltransferase activator activity (GO:0060228)
7                                                                                                                                          lipoprotein particle binding (GO:0071813)
8                                                                                                                              low-density lipoprotein particle binding (GO:0030169)
9                                                                                                                                             lipase inhibitor activity (GO:0055102)
10                                                                                                                    low-density lipoprotein particle receptor binding (GO:0050750)
11                                                                                                                                          lipoprotein lipase activity (GO:0004465)
12                                                                                                                                                 amyloid-beta binding (GO:0001540)
13                                                                                                                                         triglyceride lipase activity (GO:0004806)
14                                                                                                                                                      lipase activity (GO:0016298)
15                                                                                                                                                       lipase binding (GO:0035473)
16                                                                                                                                           apolipoprotein A-I binding (GO:0034186)
17                                                                                                                                      apolipoprotein receptor binding (GO:0034190)
18                                                                                                                                            phospholipase A1 activity (GO:0008970)
19                                                                                                                                            lipase activator activity (GO:0060229)
20                                                                                                                                  carboxylic ester hydrolase activity (GO:0052689)
21                                                                                                                                 voltage-gated anion channel activity (GO:0008308)
22                                                                                                                                   voltage-gated ion channel activity (GO:0005244)
23                                                                                                                             phosphatidylcholine transporter activity (GO:0008525)
24                                                                                                                                  protein heterodimerization activity (GO:0046982)
25                                                                                                                                phosphatidylcholine transfer activity (GO:0120019)
26                                                                                                                                               phospholipase activity (GO:0004620)
27                                                                                                                                           O-acyltransferase activity (GO:0008374)
28                                                                                                                            high-density lipoprotein particle binding (GO:0008035)
29                                                                                                                                           ceramide transfer activity (GO:0120017)
30                                                                                                                                         clathrin heavy chain binding (GO:0032050)
31                                                                                                                                     phospholipase inhibitor activity (GO:0004859)
32                                                                                                                                    protein homodimerization activity (GO:0042803)
33                                                                                                                                               anion channel activity (GO:0005253)
34                                                                                                                                       phospholipid transfer activity (GO:0120014)
35 oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen (GO:0016709)
36                                                                                                                                         steroid hydroxylase activity (GO:0008395)
37                                                                                                                                                         NADP binding (GO:0050661)
38                                                                                                                                         peptidase inhibitor activity (GO:0030414)
39                                                                                                                                     endopeptidase regulator activity (GO:0061135)
   Overlap Adjusted.P.value
1    17/50     2.288174e-28
2    17/60     4.390322e-27
3    11/18     5.744987e-22
4    11/19     1.020647e-21
5    10/28     4.677379e-17
6      6/6     3.484605e-14
7     8/24     2.055320e-13
8     6/17     3.140441e-10
9     5/10     1.805253e-09
10    6/23     2.016360e-09
11     4/5     9.113232e-09
12    7/80     1.430772e-07
13    5/23     1.612041e-07
14    6/49     1.859889e-07
15     3/5     3.788104e-06
16     3/5     3.788104e-06
17     3/6     7.112969e-06
18    3/10     3.991032e-05
19    3/12     6.897596e-05
20    5/96     1.501407e-04
21    3/16     1.501407e-04
22    3/16     1.501407e-04
23    3/18     2.082322e-04
24   6/188     3.016202e-04
25     2/5     7.035280e-04
26    4/73     7.035280e-04
27    3/30     8.567836e-04
28     2/6     9.653527e-04
29     2/8     1.732107e-03
30     2/9     2.147965e-03
31    2/10     2.592555e-03
32   8/636     7.345938e-03
33    3/68     7.879809e-03
34    2/22     1.181407e-02
35    2/36     2.870121e-02
36    2/36     2.870121e-02
37    2/36     2.870121e-02
38    2/40     3.429432e-02
39    2/46     4.375411e-02
                                                                                                Genes
1  ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;TSPO;VDAC2;VDAC1
2  ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;TSPO;VDAC2;VDAC1
3                                        ABCA1;ABCG8;CETP;ABCG5;NPC2;MTTP;APOA2;APOA1;APOA4;APOB;PLTP
4                                        ABCA1;ABCG8;CETP;ABCG5;NPC2;MTTP;APOA2;APOA1;APOA4;APOB;PLTP
5                                         LRPAP1;LRP1;APOA2;PCSK9;APOA1;APOC3;APOE;APOB;LDLRAP1;APOA5
6                                                                  APOC1;APOA2;APOA1;APOA4;APOE;APOA5
7                                                          SCARB1;LIPC;APOA2;LPL;PCSK9;CD36;LDLR;PLTP
8                                                                    SCARB1;LIPC;PCSK9;CD36;LDLR;PLTP
9                                                                     APOC2;APOC1;ANGPTL3;APOA2;APOC3
10                                                               LRPAP1;PCSK9;APOE;APOB;LDLRAP1;APOA5
11                                                                                 LIPC;LIPI;LIPG;LPL
12                                                           LRPAP1;LRP1;APOA1;CD36;APOE;LDLRAP1;LDLR
13                                                                            LIPC;LIPI;LIPG;LCAT;LPL
14                                                                       LIPC;LIPI;LIPG;LCAT;LPL;LIPA
15                                                                                  LRPAP1;APOB;APOA5
16                                                                                  ABCA1;SCARB1;LCAT
17                                                                                  APOA2;APOA1;PCSK9
18                                                                                      LIPC;LIPG;LPL
19                                                                                   APOC2;APOH;APOA5
20                                                                            LIPC;LIPG;LPL;LCAT;LIPA
21                                                                                  VDAC3;VDAC2;VDAC1
22                                                                                  VDAC3;VDAC2;VDAC1
23                                                                                    ABCA1;MTTP;PLTP
24                                                                   ABCG8;ABCG5;VAPA;VAPB;MTTP;APOA2
25                                                                                          MTTP;PLTP
26                                                                                 LIPC;LIPI;LIPG;LPL
27                                                                                   SOAT1;SOAT2;LCAT
28                                                                                         APOA2;PLTP
29                                                                                          MTTP;PLTP
30                                                                                          LRP1;LDLR
31                                                                                      APOC1;ANGPTL3
32                                                         GHR;STARD3;VAPB;EPHX2;APOA2;LPL;APOA4;APOE
33                                                                                  VDAC3;VDAC2;VDAC1
34                                                                                          MTTP;PLTP
35                                                                                     CYP27A1;CYP7A1
36                                                                                     CYP27A1;CYP7A1
37                                                                                        HMGCR;DHCR7
38                                                                                          ITIH4;LPA
39                                                                                          ITIH4;LPA
GO_known_annotations <- do.call(rbind, GO_enrichment)
GO_known_annotations <- GO_known_annotations[GO_known_annotations$Adjusted.P.value<0.05,]

#GO enrichment analysis for cTWAS genes

genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
GO_ctwas_genes <- do.call(rbind, GO_enrichment)

#identify cTWAS genes in silver standard enriched GO terms
GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Term %in% GO_known_annotations$Term,]

GO_ctwas_genes_byterms <- as.data.frame(matrix(NA, 0, 2))

for (i in 1:nrow(GO_ctwas_genes)){
  for (j in unlist(strsplit(GO_ctwas_genes$Genes[i], split=";"))){
    GO_ctwas_genes_byterms<- rbind(GO_ctwas_genes_byterms, c(j, GO_ctwas_genes$Term[i]))
  }
  colnames(GO_ctwas_genes_byterms) <- c("Gene", "GO_term")
}
Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "CETP"): invalid factor level,
NA generated
GO_ctwas_genes_byterms <- GO_ctwas_genes_byterms[order(GO_ctwas_genes_byterms$Gene),]
GO_ctwas_genes_byterms <- GO_ctwas_genes_byterms[!(GO_ctwas_genes_byterms$Gene %in% known_annotations),]

#detected cTWAS genes (not on silver standard) that overlap with GO terms enriched for silver standard genes

GO_ctwas_genes_byterms
     Gene                            GO_term
2    <NA> cholesterol transport (GO:0030301)
3    <NA> cholesterol transport (GO:0030301)
4    <NA> cholesterol transport (GO:0030301)
5    <NA> cholesterol transport (GO:0030301)
6    <NA> cholesterol transport (GO:0030301)
7    <NA> cholesterol transport (GO:0030301)
8    <NA> cholesterol transport (GO:0030301)
9    <NA> cholesterol transport (GO:0030301)
10   <NA> cholesterol transport (GO:0030301)
11   <NA> cholesterol transport (GO:0030301)
12   <NA> cholesterol transport (GO:0030301)
13   <NA> cholesterol transport (GO:0030301)
14   <NA> cholesterol transport (GO:0030301)
15   <NA> cholesterol transport (GO:0030301)
16   <NA> cholesterol transport (GO:0030301)
17   <NA> cholesterol transport (GO:0030301)
18   <NA> cholesterol transport (GO:0030301)
19   <NA> cholesterol transport (GO:0030301)
20   <NA> cholesterol transport (GO:0030301)
21   <NA> cholesterol transport (GO:0030301)
22   <NA> cholesterol transport (GO:0030301)
23   <NA> cholesterol transport (GO:0030301)
24   <NA> cholesterol transport (GO:0030301)
25   <NA> cholesterol transport (GO:0030301)
26   <NA> cholesterol transport (GO:0030301)
27   <NA> cholesterol transport (GO:0030301)
28   <NA> cholesterol transport (GO:0030301)
30   <NA>                               <NA>
31   <NA>                               <NA>
32   <NA>                               <NA>
33   <NA>                               <NA>
34   <NA>                               <NA>
35   <NA>                               <NA>
36   <NA>                               <NA>
37   <NA>                               <NA>
38   <NA>                               <NA>
39   <NA>                               <NA>
40   <NA>                               <NA>
41   <NA>                               <NA>
42   <NA>                               <NA>
43   <NA>                               <NA>
44   <NA>                               <NA>
45   <NA>                               <NA>
46   <NA>                               <NA>
47   <NA>                               <NA>
48   <NA>                               <NA>
49   <NA>                               <NA>
50   <NA>                               <NA>
51   <NA>                               <NA>
52   <NA>                               <NA>
53   <NA>                               <NA>
54   <NA>                               <NA>
55   <NA>                               <NA>
56   <NA>                               <NA>
57   <NA>                               <NA>
59   <NA>                               <NA>
60   <NA>                               <NA>
61   <NA>                               <NA>
62   <NA>                               <NA>
63   <NA>                               <NA>
64   <NA>                               <NA>
65   <NA>                               <NA>
66   <NA>                               <NA>
67   <NA>                               <NA>
68   <NA>                               <NA>
69   <NA>                               <NA>
70   <NA>                               <NA>
71   <NA>                               <NA>
72   <NA>                               <NA>
73   <NA>                               <NA>
74   <NA>                               <NA>
75   <NA>                               <NA>
76   <NA>                               <NA>
77   <NA>                               <NA>
78   <NA>                               <NA>
79   <NA>                               <NA>
80   <NA>                               <NA>
81   <NA>                               <NA>
82   <NA>                               <NA>
83   <NA>                               <NA>
84   <NA>                               <NA>
85   <NA>                               <NA>
86   <NA>                               <NA>
87   <NA>                               <NA>
88   <NA>                               <NA>
90   <NA>                               <NA>
91   <NA>                               <NA>
92   <NA>                               <NA>
93   <NA>                               <NA>
94   <NA>                               <NA>
95   <NA>                               <NA>
96   <NA>                               <NA>
97   <NA>                               <NA>
98   <NA>                               <NA>
99   <NA>                               <NA>
100  <NA>                               <NA>
101  <NA>                               <NA>
102  <NA>                               <NA>
103  <NA>                               <NA>
104  <NA>                               <NA>
105  <NA>                               <NA>
106  <NA>                               <NA>
107  <NA>                               <NA>
108  <NA>                               <NA>
109  <NA>                               <NA>
110  <NA>                               <NA>
111  <NA>                               <NA>
112  <NA>                               <NA>
113  <NA>                               <NA>
114  <NA>                               <NA>
115  <NA>                               <NA>
116  <NA>                               <NA>
117  <NA>                               <NA>
118  <NA>                               <NA>
119  <NA>                               <NA>
120  <NA>                               <NA>
121  <NA>                               <NA>
122  <NA>                               <NA>
123  <NA>                               <NA>
124  <NA>                               <NA>
125  <NA>                               <NA>
126  <NA>                               <NA>
127  <NA>                               <NA>
128  <NA>                               <NA>
129  <NA>                               <NA>
130  <NA>                               <NA>
131  <NA>                               <NA>
132  <NA>                               <NA>
133  <NA>                               <NA>
134  <NA>                               <NA>
135  <NA>                               <NA>
136  <NA>                               <NA>
137  <NA>                               <NA>
138  <NA>                               <NA>
139  <NA>                               <NA>
140  <NA>                               <NA>
141  <NA>                               <NA>
142  <NA>                               <NA>
143  <NA>                               <NA>
144  <NA>                               <NA>
145  <NA>                               <NA>
146  <NA>                               <NA>
147  <NA>                               <NA>
148  <NA>                               <NA>
149  <NA>                               <NA>
150  <NA>                               <NA>
151  <NA>                               <NA>
152  <NA>                               <NA>
153  <NA>                               <NA>
154  <NA>                               <NA>
155  <NA>                               <NA>
156  <NA>                               <NA>
157  <NA>                               <NA>
158  <NA>                               <NA>
159  <NA>                               <NA>
160  <NA>                               <NA>
161  <NA>                               <NA>
162  <NA>                               <NA>
163  <NA>                               <NA>
164  <NA>                               <NA>
165  <NA>                               <NA>
166  <NA>                               <NA>
167  <NA>                               <NA>
168  <NA>                               <NA>
169  <NA>                               <NA>
171  <NA>                               <NA>
172  <NA>                               <NA>
173  <NA>                               <NA>
174  <NA>                               <NA>
175  <NA>                               <NA>
176  <NA>                               <NA>
177  <NA>                               <NA>
178  <NA>                               <NA>
179  <NA>                               <NA>
180  <NA>                               <NA>
181  <NA>                               <NA>
182  <NA>                               <NA>
183  <NA>                               <NA>
185  <NA>                               <NA>
186  <NA>                               <NA>
187  <NA>                               <NA>
188  <NA>                               <NA>
189  <NA>                               <NA>
190  <NA>                               <NA>
191  <NA>                               <NA>
192  <NA>                               <NA>
193  <NA>                               <NA>
194  <NA>                               <NA>
195  <NA>                               <NA>
196  <NA>                               <NA>
197  <NA>                               <NA>
198  <NA>                               <NA>
199  <NA>                               <NA>
200  <NA>                               <NA>
201  <NA>                               <NA>
202  <NA>                               <NA>
203  <NA>                               <NA>
204  <NA>                               <NA>
205  <NA>                               <NA>
206  <NA>                               <NA>
207  <NA>                               <NA>
208  <NA>                               <NA>
209  <NA>                               <NA>
210  <NA>                               <NA>
211  <NA>                               <NA>
212  <NA>                               <NA>
213  <NA>                               <NA>
214  <NA>                               <NA>
215  <NA>                               <NA>
216  <NA>                               <NA>
217  <NA>                               <NA>
218  <NA>                               <NA>
219  <NA>                               <NA>
220  <NA>                               <NA>
221  <NA>                               <NA>
223  <NA>                               <NA>
224  <NA>                               <NA>
225  <NA>                               <NA>
226  <NA>                               <NA>
227  <NA>                               <NA>
228  <NA>                               <NA>
229  <NA>                               <NA>
230  <NA>                               <NA>
231  <NA>                               <NA>
232  <NA>                               <NA>
233  <NA>                               <NA>
234  <NA>                               <NA>
235  <NA>                               <NA>
236  <NA>                               <NA>
238  <NA>                               <NA>
239  <NA>                               <NA>
240  <NA>                               <NA>
241  <NA>                               <NA>
242  <NA>                               <NA>
243  <NA>                               <NA>
244  <NA>                               <NA>
245  <NA>                               <NA>
246  <NA>                               <NA>
247  <NA>                               <NA>
248  <NA>                               <NA>
249  <NA>                               <NA>
250  <NA>                               <NA>
251  <NA>                               <NA>
252  <NA>                               <NA>
253  <NA>                               <NA>
255  <NA>                               <NA>
256  <NA>                               <NA>
257  <NA>                               <NA>
258  <NA>                               <NA>
259  <NA>                               <NA>
260  <NA>                               <NA>
261  <NA>                               <NA>
262  <NA>                               <NA>
263  <NA>                               <NA>
264  <NA>                               <NA>
265  <NA>                               <NA>
266  <NA>                               <NA>
267  <NA>                               <NA>
268  <NA>                               <NA>
269  <NA>                               <NA>
270  <NA>                               <NA>
271  <NA>                               <NA>
272  <NA>                               <NA>
273  <NA>                               <NA>
274  <NA>                               <NA>
276  <NA>                               <NA>
277  <NA>                               <NA>
278  <NA>                               <NA>
279  <NA>                               <NA>
280  <NA>                               <NA>
281  <NA>                               <NA>
282  <NA>                               <NA>
283  <NA>                               <NA>
284  <NA>                               <NA>
285  <NA>                               <NA>
286  <NA>                               <NA>
287  <NA>                               <NA>
288  <NA>                               <NA>
289  <NA>                               <NA>
290  <NA>                               <NA>
291  <NA>                               <NA>
292  <NA>                               <NA>
293  <NA>                               <NA>
294  <NA>                               <NA>
295  <NA>                               <NA>
296  <NA>                               <NA>
297  <NA>                               <NA>
298  <NA>                               <NA>
299  <NA>                               <NA>
300  <NA>                               <NA>
301  <NA>                               <NA>
302  <NA>                               <NA>
303  <NA>                               <NA>
304  <NA>                               <NA>
305  <NA>                               <NA>
306  <NA>                               <NA>
307  <NA>                               <NA>
308  <NA>                               <NA>
309  <NA>                               <NA>
310  <NA>                               <NA>
311  <NA>                               <NA>
312  <NA>                               <NA>
313  <NA>                               <NA>
314  <NA>                               <NA>
315  <NA>                               <NA>
316  <NA>                               <NA>
317  <NA>                               <NA>
318  <NA>                               <NA>
319  <NA>                               <NA>
320  <NA>                               <NA>
321  <NA>                               <NA>
322  <NA>                               <NA>
323  <NA>                               <NA>
324  <NA>                               <NA>
325  <NA>                               <NA>
326  <NA>                               <NA>
327  <NA>                               <NA>
328  <NA>                               <NA>
329  <NA>                               <NA>
330  <NA>                               <NA>
331  <NA>                               <NA>
332  <NA>                               <NA>
333  <NA>                               <NA>
334  <NA>                               <NA>
335  <NA>                               <NA>
336  <NA>                               <NA>
337  <NA>                               <NA>
338  <NA>                               <NA>
339  <NA>                               <NA>
340  <NA>                               <NA>
341  <NA>                               <NA>
342  <NA>                               <NA>
343  <NA>                               <NA>
344  <NA>                               <NA>
345  <NA>                               <NA>
346  <NA>                               <NA>
347  <NA>                               <NA>
348  <NA>                               <NA>
349  <NA>                               <NA>
350  <NA>                               <NA>
351  <NA>                               <NA>
352  <NA>                               <NA>
353  <NA>                               <NA>
354  <NA>                               <NA>
355  <NA>                               <NA>
356  <NA>                               <NA>
357  <NA>                               <NA>
358  <NA>                               <NA>
359  <NA>                               <NA>
360  <NA>                               <NA>
361  <NA>                               <NA>
362  <NA>                               <NA>
363  <NA>                               <NA>
364  <NA>                               <NA>
365  <NA>                               <NA>
366  <NA>                               <NA>
367  <NA>                               <NA>
368  <NA>                               <NA>
369  <NA>                               <NA>
370  <NA>                               <NA>
371  <NA>                               <NA>
372  <NA>                               <NA>
373  <NA>                               <NA>
374  <NA>                               <NA>
375  <NA>                               <NA>
376  <NA>                               <NA>
377  <NA>                               <NA>
378  <NA>                               <NA>
379  <NA>                               <NA>
380  <NA>                               <NA>
381  <NA>                               <NA>
382  <NA>                               <NA>
383  <NA>                               <NA>
384  <NA>                               <NA>
385  <NA>                               <NA>
386  <NA>                               <NA>
387  <NA>                               <NA>
388  <NA>                               <NA>
389  <NA>                               <NA>
390  <NA>                               <NA>
391  <NA>                               <NA>
392  <NA>                               <NA>
393  <NA>                               <NA>
394  <NA>                               <NA>
395  <NA>                               <NA>
396  <NA>                               <NA>
397  <NA>                               <NA>
398  <NA>                               <NA>
399  <NA>                               <NA>
400  <NA>                               <NA>
401  <NA>                               <NA>
402  <NA>                               <NA>
403  <NA>                               <NA>
404  <NA>                               <NA>
405  <NA>                               <NA>
406  <NA>                               <NA>
407  <NA>                               <NA>
408  <NA>                               <NA>
409  <NA>                               <NA>
410  <NA>                               <NA>
411  <NA>                               <NA>
412  <NA>                               <NA>
413  <NA>                               <NA>
414  <NA>                               <NA>
415  <NA>                               <NA>
416  <NA>                               <NA>
417  <NA>                               <NA>
418  <NA>                               <NA>
419  <NA>                               <NA>
420  <NA>                               <NA>
421  <NA>                               <NA>
422  <NA>                               <NA>
423  <NA>                               <NA>
424  <NA>                               <NA>
425  <NA>                               <NA>
426  <NA>                               <NA>
427  <NA>                               <NA>
428  <NA>                               <NA>
429  <NA>                               <NA>
430  <NA>                               <NA>
431  <NA>                               <NA>
432  <NA>                               <NA>
433  <NA>                               <NA>
434  <NA>                               <NA>
435  <NA>                               <NA>
436  <NA>                               <NA>
437  <NA>                               <NA>
438  <NA>                               <NA>
439  <NA>                               <NA>
440  <NA>                               <NA>
441  <NA>                               <NA>
442  <NA>                               <NA>
443  <NA>                               <NA>
444  <NA>                               <NA>
445  <NA>                               <NA>
446  <NA>                               <NA>
447  <NA>                               <NA>
448  <NA>                               <NA>
449  <NA>                               <NA>
450  <NA>                               <NA>
451  <NA>                               <NA>
452  <NA>                               <NA>
453  <NA>                               <NA>
454  <NA>                               <NA>
455  <NA>                               <NA>
456  <NA>                               <NA>
457  <NA>                               <NA>
458  <NA>                               <NA>
459  <NA>                               <NA>
460  <NA>                               <NA>
461  <NA>                               <NA>
462  <NA>                               <NA>
463  <NA>                               <NA>
464  <NA>                               <NA>
465  <NA>                               <NA>
466  <NA>                               <NA>
467  <NA>                               <NA>
468  <NA>                               <NA>
469  <NA>                               <NA>
470  <NA>                               <NA>
471  <NA>                               <NA>
472  <NA>                               <NA>
473  <NA>                               <NA>
474  <NA>                               <NA>
475  <NA>                               <NA>
476  <NA>                               <NA>
477  <NA>                               <NA>
478  <NA>                               <NA>
479  <NA>                               <NA>
480  <NA>                               <NA>
481  <NA>                               <NA>
482  <NA>                               <NA>
483  <NA>                               <NA>
484  <NA>                               <NA>
485  <NA>                               <NA>
486  <NA>                               <NA>
487  <NA>                               <NA>
488  <NA>                               <NA>
489  <NA>                               <NA>
490  <NA>                               <NA>
491  <NA>                               <NA>
492  <NA>                               <NA>
493  <NA>                               <NA>
494  <NA>                               <NA>
495  <NA>                               <NA>
496  <NA>                               <NA>
497  <NA>                               <NA>
498  <NA>                               <NA>
499  <NA>                               <NA>
500  <NA>                               <NA>
502  <NA>                               <NA>
503  <NA>                               <NA>
504  <NA>                               <NA>
505  <NA>                               <NA>
506  <NA>                               <NA>
507  <NA>                               <NA>
509  <NA>                               <NA>
510  <NA>                               <NA>
511  <NA>                               <NA>
512  <NA>                               <NA>
513  <NA>                               <NA>
514  <NA>                               <NA>
515  <NA>                               <NA>
516  <NA>                               <NA>
517  <NA>                               <NA>
518  <NA>                               <NA>
519  <NA>                               <NA>
520  <NA>                               <NA>
521  <NA>                               <NA>
522  <NA>                               <NA>
523  <NA>                               <NA>
524  <NA>                               <NA>
525  <NA>                               <NA>
526  <NA>                               <NA>
527  <NA>                               <NA>
528  <NA>                               <NA>
529  <NA>                               <NA>
530  <NA>                               <NA>
531  <NA>                               <NA>
532  <NA>                               <NA>
533  <NA>                               <NA>
534  <NA>                               <NA>
535  <NA>                               <NA>
536  <NA>                               <NA>
537  <NA>                               <NA>
538  <NA>                               <NA>
539  <NA>                               <NA>
540  <NA>                               <NA>
541  <NA>                               <NA>
542  <NA>                               <NA>
543  <NA>                               <NA>
544  <NA>                               <NA>
545  <NA>                               <NA>
547  <NA>                               <NA>
548  <NA>                               <NA>
549  <NA>                               <NA>
550  <NA>                               <NA>
551  <NA>                               <NA>
552  <NA>                               <NA>
553  <NA>                               <NA>
554  <NA>                               <NA>
555  <NA>                               <NA>
556  <NA>                               <NA>
557  <NA>                               <NA>
558  <NA>                               <NA>
559  <NA>                               <NA>
560  <NA>                               <NA>
561  <NA>                               <NA>
562  <NA>                               <NA>
563  <NA>                               <NA>
564  <NA>                               <NA>
565  <NA>                               <NA>
566  <NA>                               <NA>
567  <NA>                               <NA>
568  <NA>                               <NA>
569  <NA>                               <NA>
570  <NA>                               <NA>
571  <NA>                               <NA>
572  <NA>                               <NA>
573  <NA>                               <NA>
574  <NA>                               <NA>
575  <NA>                               <NA>
576  <NA>                               <NA>
577  <NA>                               <NA>
578  <NA>                               <NA>
579  <NA>                               <NA>
580  <NA>                               <NA>
581  <NA>                               <NA>
582  <NA>                               <NA>
583  <NA>                               <NA>
584  <NA>                               <NA>
585  <NA>                               <NA>
586  <NA>                               <NA>
587  <NA>                               <NA>
588  <NA>                               <NA>
589  <NA>                               <NA>
590  <NA>                               <NA>
591  <NA>                               <NA>
592  <NA>                               <NA>
593  <NA>                               <NA>
594  <NA>                               <NA>
595  <NA>                               <NA>
596  <NA>                               <NA>
597  <NA>                               <NA>
598  <NA>                               <NA>
599  <NA>                               <NA>
600  <NA>                               <NA>
601  <NA>                               <NA>
602  <NA>                               <NA>
603  <NA>                               <NA>
604  <NA>                               <NA>
605  <NA>                               <NA>
606  <NA>                               <NA>
607  <NA>                               <NA>
608  <NA>                               <NA>
609  <NA>                               <NA>
610  <NA>                               <NA>
611  <NA>                               <NA>
612  <NA>                               <NA>
613  <NA>                               <NA>
614  <NA>                               <NA>
616  <NA>                               <NA>
617  <NA>                               <NA>
618  <NA>                               <NA>
619  <NA>                               <NA>
620  <NA>                               <NA>
621  <NA>                               <NA>
622  <NA>                               <NA>
623  <NA>                               <NA>
624  <NA>                               <NA>
625  <NA>                               <NA>
626  <NA>                               <NA>
627  <NA>                               <NA>
628  <NA>                               <NA>
629  <NA>                               <NA>
630  <NA>                               <NA>
632  <NA>                               <NA>
633  <NA>                               <NA>
634  <NA>                               <NA>
636  <NA>                               <NA>
637  <NA>                               <NA>
638  <NA>                               <NA>
640  <NA>                               <NA>
641  <NA>                               <NA>
642  <NA>                               <NA>
643  <NA>                               <NA>
644  <NA>                               <NA>
645  <NA>                               <NA>
646  <NA>                               <NA>
647  <NA>                               <NA>
648  <NA>                               <NA>
649  <NA>                               <NA>
650  <NA>                               <NA>
651  <NA>                               <NA>
652  <NA>                               <NA>
653  <NA>                               <NA>
654  <NA>                               <NA>
655  <NA>                               <NA>
656  <NA>                               <NA>
657  <NA>                               <NA>
658  <NA>                               <NA>
659  <NA>                               <NA>
660  <NA>                               <NA>
661  <NA>                               <NA>
662  <NA>                               <NA>
663  <NA>                               <NA>
664  <NA>                               <NA>
665  <NA>                               <NA>
666  <NA>                               <NA>
667  <NA>                               <NA>
668  <NA>                               <NA>
669  <NA>                               <NA>
670  <NA>                               <NA>
671  <NA>                               <NA>
672  <NA>                               <NA>
673  <NA>                               <NA>
674  <NA>                               <NA>
675  <NA>                               <NA>
676  <NA>                               <NA>
677  <NA>                               <NA>
678  <NA>                               <NA>
679  <NA>                               <NA>
680  <NA>                               <NA>
681  <NA>                               <NA>
682  <NA>                               <NA>
683  <NA>                               <NA>
684  <NA>                               <NA>
685  <NA>                               <NA>
686  <NA>                               <NA>
687  <NA>                               <NA>
688  <NA>                               <NA>
689  <NA>                               <NA>
690  <NA>                               <NA>
691  <NA>                               <NA>
692  <NA>                               <NA>
693  <NA>                               <NA>
694  <NA>                               <NA>
695  <NA>                               <NA>
696  <NA>                               <NA>
697  <NA>                               <NA>
698  <NA>                               <NA>
699  <NA>                               <NA>
700  <NA>                               <NA>
701  <NA>                               <NA>
702  <NA>                               <NA>
703  <NA>                               <NA>
704  <NA>                               <NA>
705  <NA>                               <NA>
706  <NA>                               <NA>
707  <NA>                               <NA>
708  <NA>                               <NA>
709  <NA>                               <NA>
710  <NA>                               <NA>
711  <NA>                               <NA>
712  <NA>                               <NA>
713  <NA>                               <NA>
714  <NA>                               <NA>
715  <NA>                               <NA>
716  <NA>                               <NA>
717  <NA>                               <NA>
718  <NA>                               <NA>
719  <NA>                               <NA>
720  <NA>                               <NA>
721  <NA>                               <NA>
722  <NA>                               <NA>
723  <NA>                               <NA>
724  <NA>                               <NA>
725  <NA>                               <NA>
726  <NA>                               <NA>
727  <NA>                               <NA>
728  <NA>                               <NA>
729  <NA>                               <NA>
730  <NA>                               <NA>
731  <NA>                               <NA>
732  <NA>                               <NA>
733  <NA>                               <NA>
734  <NA>                               <NA>
735  <NA>                               <NA>
736  <NA>                               <NA>
737  <NA>                               <NA>
738  <NA>                               <NA>
739  <NA>                               <NA>
740  <NA>                               <NA>
741  <NA>                               <NA>
742  <NA>                               <NA>
743  <NA>                               <NA>
744  <NA>                               <NA>
745  <NA>                               <NA>
746  <NA>                               <NA>
747  <NA>                               <NA>
748  <NA>                               <NA>
749  <NA>                               <NA>
750  <NA>                               <NA>
751  <NA>                               <NA>
752  <NA>                               <NA>
753  <NA>                               <NA>
754  <NA>                               <NA>
755  <NA>                               <NA>
756  <NA>                               <NA>
757  <NA>                               <NA>
758  <NA>                               <NA>
759  <NA>                               <NA>
760  <NA>                               <NA>
761  <NA>                               <NA>
762  <NA>                               <NA>
763  <NA>                               <NA>
765  <NA>                               <NA>
766  <NA>                               <NA>
767  <NA>                               <NA>
768  <NA>                               <NA>
769  <NA>                               <NA>
770  <NA>                               <NA>
771  <NA>                               <NA>
772  <NA>                               <NA>
773  <NA>                               <NA>
774  <NA>                               <NA>
775  <NA>                               <NA>
776  <NA>                               <NA>
777  <NA>                               <NA>
778  <NA>                               <NA>
779  <NA>                               <NA>
780  <NA>                               <NA>
781  <NA>                               <NA>
782  <NA>                               <NA>
783  <NA>                               <NA>
784  <NA>                               <NA>
785  <NA>                               <NA>
786  <NA>                               <NA>
787  <NA>                               <NA>
788  <NA>                               <NA>
789  <NA>                               <NA>
790  <NA>                               <NA>
791  <NA>                               <NA>
792  <NA>                               <NA>
793  <NA>                               <NA>
794  <NA>                               <NA>
795  <NA>                               <NA>
796  <NA>                               <NA>
797  <NA>                               <NA>
798  <NA>                               <NA>
799  <NA>                               <NA>
801  <NA>                               <NA>
802  <NA>                               <NA>
803  <NA>                               <NA>
804  <NA>                               <NA>
805  <NA>                               <NA>
806  <NA>                               <NA>
807  <NA>                               <NA>
808  <NA>                               <NA>
809  <NA>                               <NA>
810  <NA>                               <NA>
811  <NA>                               <NA>
812  <NA>                               <NA>
813  <NA>                               <NA>
814  <NA>                               <NA>
815  <NA>                               <NA>
816  <NA>                               <NA>
817  <NA>                               <NA>
818  <NA>                               <NA>
819  <NA>                               <NA>
820  <NA>                               <NA>
821  <NA>                               <NA>
822  <NA>                               <NA>
823  <NA>                               <NA>
824  <NA>                               <NA>
825  <NA>                               <NA>
826  <NA>                               <NA>
827  <NA>                               <NA>
828  <NA>                               <NA>
829  <NA>                               <NA>
830  <NA>                               <NA>
831  <NA>                               <NA>
832  <NA>                               <NA>
833  <NA>                               <NA>
834  <NA>                               <NA>
835  <NA>                               <NA>
836  <NA>                               <NA>
837  <NA>                               <NA>
838  <NA>                               <NA>
839  <NA>                               <NA>
840  <NA>                               <NA>
841  <NA>                               <NA>
842  <NA>                               <NA>
843  <NA>                               <NA>
844  <NA>                               <NA>
845  <NA>                               <NA>
846  <NA>                               <NA>
847  <NA>                               <NA>
848  <NA>                               <NA>
849  <NA>                               <NA>
850  <NA>                               <NA>
851  <NA>                               <NA>
852  <NA>                               <NA>
853  <NA>                               <NA>
854  <NA>                               <NA>
855  <NA>                               <NA>
856  <NA>                               <NA>
857  <NA>                               <NA>
858  <NA>                               <NA>
859  <NA>                               <NA>
860  <NA>                               <NA>
861  <NA>                               <NA>
862  <NA>                               <NA>
863  <NA>                               <NA>
864  <NA>                               <NA>
865  <NA>                               <NA>
866  <NA>                               <NA>
867  <NA>                               <NA>
868  <NA>                               <NA>
869  <NA>                               <NA>
870  <NA>                               <NA>
871  <NA>                               <NA>
872  <NA>                               <NA>
873  <NA>                               <NA>
874  <NA>                               <NA>
875  <NA>                               <NA>
876  <NA>                               <NA>
877  <NA>                               <NA>
878  <NA>                               <NA>
879  <NA>                               <NA>
880  <NA>                               <NA>
881  <NA>                               <NA>
882  <NA>                               <NA>
883  <NA>                               <NA>
884  <NA>                               <NA>
885  <NA>                               <NA>
886  <NA>                               <NA>
887  <NA>                               <NA>
888  <NA>                               <NA>
889  <NA>                               <NA>
890  <NA>                               <NA>
891  <NA>                               <NA>
892  <NA>                               <NA>
893  <NA>                               <NA>
894  <NA>                               <NA>
895  <NA>                               <NA>
896  <NA>                               <NA>
897  <NA>                               <NA>
898  <NA>                               <NA>
899  <NA>                               <NA>
900  <NA>                               <NA>
901  <NA>                               <NA>
902  <NA>                               <NA>
903  <NA>                               <NA>
904  <NA>                               <NA>
905  <NA>                               <NA>
906  <NA>                               <NA>
907  <NA>                               <NA>
908  <NA>                               <NA>
909  <NA>                               <NA>
910  <NA>                               <NA>
911  <NA>                               <NA>
912  <NA>                               <NA>
913  <NA>                               <NA>
914  <NA>                               <NA>
915  <NA>                               <NA>
916  <NA>                               <NA>
917  <NA>                               <NA>
918  <NA>                               <NA>
919  <NA>                               <NA>
920  <NA>                               <NA>
922  <NA>                               <NA>
923  <NA>                               <NA>
924  <NA>                               <NA>
925  <NA>                               <NA>
926  <NA>                               <NA>
927  <NA>                               <NA>
928  <NA>                               <NA>
929  <NA>                               <NA>
930  <NA>                               <NA>
931  <NA>                               <NA>
932  <NA>                               <NA>
933  <NA>                               <NA>
934  <NA>                               <NA>
935  <NA>                               <NA>
936  <NA>                               <NA>
937  <NA>                               <NA>
939  <NA>                               <NA>
940  <NA>                               <NA>
941  <NA>                               <NA>
942  <NA>                               <NA>
943  <NA>                               <NA>
944  <NA>                               <NA>
945  <NA>                               <NA>
946  <NA>                               <NA>
947  <NA>                               <NA>
948  <NA>                               <NA>
949  <NA>                               <NA>
950  <NA>                               <NA>
951  <NA>                               <NA>
952  <NA>                               <NA>
953  <NA>                               <NA>
954  <NA>                               <NA>
955  <NA>                               <NA>
956  <NA>                               <NA>
957  <NA>                               <NA>
958  <NA>                               <NA>
959  <NA>                               <NA>
960  <NA>                               <NA>
961  <NA>                               <NA>
962  <NA>                               <NA>
963  <NA>                               <NA>
964  <NA>                               <NA>
965  <NA>                               <NA>
966  <NA>                               <NA>
967  <NA>                               <NA>
968  <NA>                               <NA>
969  <NA>                               <NA>
970  <NA>                               <NA>
971  <NA>                               <NA>
972  <NA>                               <NA>
973  <NA>                               <NA>
974  <NA>                               <NA>
975  <NA>                               <NA>
976  <NA>                               <NA>
977  <NA>                               <NA>
978  <NA>                               <NA>
979  <NA>                               <NA>
980  <NA>                               <NA>
981  <NA>                               <NA>
982  <NA>                               <NA>
983  <NA>                               <NA>
984  <NA>                               <NA>
985  <NA>                               <NA>
986  <NA>                               <NA>
987  <NA>                               <NA>
988  <NA>                               <NA>
989  <NA>                               <NA>
990  <NA>                               <NA>
991  <NA>                               <NA>
992  <NA>                               <NA>
993  <NA>                               <NA>
994  <NA>                               <NA>
995  <NA>                               <NA>
996  <NA>                               <NA>
997  <NA>                               <NA>
998  <NA>                               <NA>
999  <NA>                               <NA>
1000 <NA>                               <NA>
1001 <NA>                               <NA>
1002 <NA>                               <NA>
1003 <NA>                               <NA>
1004 <NA>                               <NA>
1005 <NA>                               <NA>
1006 <NA>                               <NA>
1007 <NA>                               <NA>
1008 <NA>                               <NA>
1009 <NA>                               <NA>
1010 <NA>                               <NA>
1011 <NA>                               <NA>
1012 <NA>                               <NA>
1013 <NA>                               <NA>
1014 <NA>                               <NA>
1015 <NA>                               <NA>
1016 <NA>                               <NA>
1017 <NA>                               <NA>
1018 <NA>                               <NA>
1019 <NA>                               <NA>
1020 <NA>                               <NA>
1021 <NA>                               <NA>
1022 <NA>                               <NA>
1023 <NA>                               <NA>
1024 <NA>                               <NA>
1025 <NA>                               <NA>
1026 <NA>                               <NA>
1027 <NA>                               <NA>
1028 <NA>                               <NA>
1029 <NA>                               <NA>
1030 <NA>                               <NA>
1031 <NA>                               <NA>
1032 <NA>                               <NA>
1033 <NA>                               <NA>
1034 <NA>                               <NA>
1035 <NA>                               <NA>
1036 <NA>                               <NA>
1037 <NA>                               <NA>
1038 <NA>                               <NA>
1039 <NA>                               <NA>
1040 <NA>                               <NA>
1041 <NA>                               <NA>
1042 <NA>                               <NA>
1043 <NA>                               <NA>
1044 <NA>                               <NA>
1045 <NA>                               <NA>
1046 <NA>                               <NA>
1047 <NA>                               <NA>
1049 <NA>                               <NA>
1050 <NA>                               <NA>
1051 <NA>                               <NA>
1052 <NA>                               <NA>
1053 <NA>                               <NA>
1054 <NA>                               <NA>
1055 <NA>                               <NA>
1056 <NA>                               <NA>
1057 <NA>                               <NA>
1058 <NA>                               <NA>
1059 <NA>                               <NA>
1060 <NA>                               <NA>
1061 <NA>                               <NA>
1062 <NA>                               <NA>
1063 <NA>                               <NA>
1064 <NA>                               <NA>
1065 <NA>                               <NA>
1066 <NA>                               <NA>
1067 <NA>                               <NA>
1068 <NA>                               <NA>
1069 <NA>                               <NA>
1070 <NA>                               <NA>
1071 <NA>                               <NA>
1072 <NA>                               <NA>
1073 <NA>                               <NA>
1074 <NA>                               <NA>
1075 <NA>                               <NA>
1076 <NA>                               <NA>
1077 <NA>                               <NA>
1078 <NA>                               <NA>
1079 <NA>                               <NA>
1080 <NA>                               <NA>
1081 <NA>                               <NA>
1082 <NA>                               <NA>
1083 <NA>                               <NA>
1084 <NA>                               <NA>
1085 <NA>                               <NA>
1086 <NA>                               <NA>
1087 <NA>                               <NA>
1088 <NA>                               <NA>
1089 <NA>                               <NA>
1090 <NA>                               <NA>
1091 <NA>                               <NA>
1092 <NA>                               <NA>
1093 <NA>                               <NA>
1094 <NA>                               <NA>
1095 <NA>                               <NA>
1097 <NA>                               <NA>
1098 <NA>                               <NA>
1099 <NA>                               <NA>
1100 <NA>                               <NA>
1101 <NA>                               <NA>
1102 <NA>                               <NA>
1104 <NA>                               <NA>
1105 <NA>                               <NA>
1106 <NA>                               <NA>
1107 <NA>                               <NA>
1108 <NA>                               <NA>
1109 <NA>                               <NA>
1110 <NA>                               <NA>
1111 <NA>                               <NA>
1112 <NA>                               <NA>
1113 <NA>                               <NA>
1114 <NA>                               <NA>
1115 <NA>                               <NA>
1116 <NA>                               <NA>
1117 <NA>                               <NA>
1118 <NA>                               <NA>
1119 <NA>                               <NA>
1120 <NA>                               <NA>
1121 <NA>                               <NA>
1122 <NA>                               <NA>
1123 <NA>                               <NA>
1124 <NA>                               <NA>
1125 <NA>                               <NA>
1126 <NA>                               <NA>
1127 <NA>                               <NA>
1128 <NA>                               <NA>
1129 <NA>                               <NA>
1130 <NA>                               <NA>
1131 <NA>                               <NA>
1132 <NA>                               <NA>
1133 <NA>                               <NA>
1134 <NA>                               <NA>
1135 <NA>                               <NA>
1136 <NA>                               <NA>
1138 <NA>                               <NA>
1139 <NA>                               <NA>
1140 <NA>                               <NA>
1141 <NA>                               <NA>
1142 <NA>                               <NA>
1143 <NA>                               <NA>
1144 <NA>                               <NA>
1145 <NA>                               <NA>
1146 <NA>                               <NA>
1147 <NA>                               <NA>
1148 <NA>                               <NA>
1149 <NA>                               <NA>
1150 <NA>                               <NA>
1151 <NA>                               <NA>
1152 <NA>                               <NA>
1153 <NA>                               <NA>
1154 <NA>                               <NA>
1155 <NA>                               <NA>
1156 <NA>                               <NA>
1157 <NA>                               <NA>
1158 <NA>                               <NA>
1159 <NA>                               <NA>
1160 <NA>                               <NA>
1161 <NA>                               <NA>
1162 <NA>                               <NA>
1163 <NA>                               <NA>
1164 <NA>                               <NA>
1165 <NA>                               <NA>
1166 <NA>                               <NA>
1167 <NA>                               <NA>
1168 <NA>                               <NA>
1169 <NA>                               <NA>
1170 <NA>                               <NA>
1171 <NA>                               <NA>
1172 <NA>                               <NA>
1173 <NA>                               <NA>
1174 <NA>                               <NA>
1175 <NA>                               <NA>
1176 <NA>                               <NA>
1177 <NA>                               <NA>
1178 <NA>                               <NA>
1179 <NA>                               <NA>
1180 <NA>                               <NA>
1181 <NA>                               <NA>
1182 <NA>                               <NA>
1184 <NA>                               <NA>
1185 <NA>                               <NA>
1186 <NA>                               <NA>
1187 <NA>                               <NA>
1188 <NA>                               <NA>
1189 <NA>                               <NA>
1190 <NA>                               <NA>
1191 <NA>                               <NA>
1192 <NA>                               <NA>
1194 <NA>                               <NA>
1195 <NA>                               <NA>
1196 <NA>                               <NA>
1197 <NA>                               <NA>
1198 <NA>                               <NA>
1199 <NA>                               <NA>
1200 <NA>                               <NA>
1201 <NA>                               <NA>
1202 <NA>                               <NA>
1203 <NA>                               <NA>
1204 <NA>                               <NA>
1205 <NA>                               <NA>
1206 <NA>                               <NA>
1207 <NA>                               <NA>
1208 <NA>                               <NA>
1209 <NA>                               <NA>
1210 <NA>                               <NA>
1211 <NA>                               <NA>
1212 <NA>                               <NA>
1213 <NA>                               <NA>
1214 <NA>                               <NA>
1215 <NA>                               <NA>
1217 <NA>                               <NA>
1218 <NA>                               <NA>
1219 <NA>                               <NA>
1220 <NA>                               <NA>
1221 <NA>                               <NA>
1222 <NA>                               <NA>
1223 <NA>                               <NA>
1224 <NA>                               <NA>
1225 <NA>                               <NA>
1226 <NA>                               <NA>
1227 <NA>                               <NA>
1228 <NA>                               <NA>
1229 <NA>                               <NA>
1230 <NA>                               <NA>
1231 <NA>                               <NA>
1232 <NA>                               <NA>
1233 <NA>                               <NA>
1234 <NA>                               <NA>
1235 <NA>                               <NA>
1236 <NA>                               <NA>
1237 <NA>                               <NA>
1238 <NA>                               <NA>
1239 <NA>                               <NA>
1240 <NA>                               <NA>
1241 <NA>                               <NA>
1242 <NA>                               <NA>
1243 <NA>                               <NA>
1244 <NA>                               <NA>
1245 <NA>                               <NA>
1246 <NA>                               <NA>
1247 <NA>                               <NA>
1248 <NA>                               <NA>
1249 <NA>                               <NA>
1250 <NA>                               <NA>
1251 <NA>                               <NA>
1252 <NA>                               <NA>
1253 <NA>                               <NA>
1254 <NA>                               <NA>
1255 <NA>                               <NA>
1256 <NA>                               <NA>
1257 <NA>                               <NA>
1259 <NA>                               <NA>
1260 <NA>                               <NA>
1261 <NA>                               <NA>
1262 <NA>                               <NA>
1263 <NA>                               <NA>
1264 <NA>                               <NA>
1265 <NA>                               <NA>
1266 <NA>                               <NA>
1267 <NA>                               <NA>
1268 <NA>                               <NA>
1269 <NA>                               <NA>
1270 <NA>                               <NA>
1271 <NA>                               <NA>
1272 <NA>                               <NA>
1273 <NA>                               <NA>
1274 <NA>                               <NA>
1275 <NA>                               <NA>
1276 <NA>                               <NA>
1277 <NA>                               <NA>
1278 <NA>                               <NA>
1279 <NA>                               <NA>
1280 <NA>                               <NA>
1281 <NA>                               <NA>
1282 <NA>                               <NA>
1283 <NA>                               <NA>
1284 <NA>                               <NA>
1285 <NA>                               <NA>
1286 <NA>                               <NA>
1287 <NA>                               <NA>
1288 <NA>                               <NA>
1289 <NA>                               <NA>
1290 <NA>                               <NA>
1291 <NA>                               <NA>
1292 <NA>                               <NA>
1293 <NA>                               <NA>
1294 <NA>                               <NA>
1295 <NA>                               <NA>
1296 <NA>                               <NA>
1297 <NA>                               <NA>
1298 <NA>                               <NA>
1299 <NA>                               <NA>
1300 <NA>                               <NA>
1301 <NA>                               <NA>
1302 <NA>                               <NA>
1303 <NA>                               <NA>
1304 <NA>                               <NA>
1305 <NA>                               <NA>
1306 <NA>                               <NA>
1307 <NA>                               <NA>
1308 <NA>                               <NA>
1309 <NA>                               <NA>
1310 <NA>                               <NA>
1311 <NA>                               <NA>
1312 <NA>                               <NA>
1313 <NA>                               <NA>
1314 <NA>                               <NA>
1315 <NA>                               <NA>
1316 <NA>                               <NA>
1317 <NA>                               <NA>
1318 <NA>                               <NA>
1319 <NA>                               <NA>
1320 <NA>                               <NA>
1321 <NA>                               <NA>
1322 <NA>                               <NA>
1323 <NA>                               <NA>
1324 <NA>                               <NA>
1325 <NA>                               <NA>
1326 <NA>                               <NA>
1327 <NA>                               <NA>
1328 <NA>                               <NA>
1329 <NA>                               <NA>
1330 <NA>                               <NA>
1331 <NA>                               <NA>
1332 <NA>                               <NA>
1333 <NA>                               <NA>
1334 <NA>                               <NA>
1335 <NA>                               <NA>
1336 <NA>                               <NA>
1337 <NA>                               <NA>
1338 <NA>                               <NA>
1339 <NA>                               <NA>
1340 <NA>                               <NA>
1341 <NA>                               <NA>
1342 <NA>                               <NA>
1343 <NA>                               <NA>
1344 <NA>                               <NA>
1345 <NA>                               <NA>
1346 <NA>                               <NA>
1347 <NA>                               <NA>
1348 <NA>                               <NA>
1349 <NA>                               <NA>
1350 <NA>                               <NA>
1351 <NA>                               <NA>
1352 <NA>                               <NA>
1353 <NA>                               <NA>
1354 <NA>                               <NA>
1355 <NA>                               <NA>
1356 <NA>                               <NA>
1357 <NA>                               <NA>
1358 <NA>                               <NA>
1359 <NA>                               <NA>
1360 <NA>                               <NA>
1361 <NA>                               <NA>
1362 <NA>                               <NA>
1364 <NA>                               <NA>
1365 <NA>                               <NA>
1366 <NA>                               <NA>
1367 <NA>                               <NA>
1368 <NA>                               <NA>
1369 <NA>                               <NA>
1370 <NA>                               <NA>
1371 <NA>                               <NA>
1372 <NA>                               <NA>
1373 <NA>                               <NA>
1374 <NA>                               <NA>
1375 <NA>                               <NA>
1376 <NA>                               <NA>
1377 <NA>                               <NA>
1378 <NA>                               <NA>
1379 <NA>                               <NA>
1380 <NA>                               <NA>
1381 <NA>                               <NA>
1382 <NA>                               <NA>
1383 <NA>                               <NA>
1384 <NA>                               <NA>
1386 <NA>                               <NA>
1387 <NA>                               <NA>
1388 <NA>                               <NA>
1389 <NA>                               <NA>
1390 <NA>                               <NA>
1391 <NA>                               <NA>
1392 <NA>                               <NA>
1393 <NA>                               <NA>
1394 <NA>                               <NA>
1395 <NA>                               <NA>
1397 <NA>                               <NA>
1398 <NA>                               <NA>
1399 <NA>                               <NA>
1400 <NA>                               <NA>
1401 <NA>                               <NA>
1402 <NA>                               <NA>
1403 <NA>                               <NA>
1404 <NA>                               <NA>
1406 <NA>                               <NA>
1407 <NA>                               <NA>
1408 <NA>                               <NA>
1409 <NA>                               <NA>
1410 <NA>                               <NA>
1411 <NA>                               <NA>
1412 <NA>                               <NA>
1413 <NA>                               <NA>
1414 <NA>                               <NA>
1415 <NA>                               <NA>
1416 <NA>                               <NA>
1417 <NA>                               <NA>
1418 <NA>                               <NA>
1419 <NA>                               <NA>
1420 <NA>                               <NA>
1421 <NA>                               <NA>
1422 <NA>                               <NA>
1423 <NA>                               <NA>
1424 <NA>                               <NA>
1425 <NA>                               <NA>
1427 <NA>                               <NA>
1428 <NA>                               <NA>
1429 <NA>                               <NA>
1430 <NA>                               <NA>
1431 <NA>                               <NA>
1432 <NA>                               <NA>
1433 <NA>                               <NA>
1434 <NA>                               <NA>
1435 <NA>                               <NA>
1436 <NA>                               <NA>
1437 <NA>                               <NA>
1438 <NA>                               <NA>
1439 <NA>                               <NA>
1440 <NA>                               <NA>
1441 <NA>                               <NA>
1442 <NA>                               <NA>
1443 <NA>                               <NA>
1444 <NA>                               <NA>
1445 <NA>                               <NA>
1446 <NA>                               <NA>
1447 <NA>                               <NA>
1448 <NA>                               <NA>
1449 <NA>                               <NA>
1450 <NA>                               <NA>
1451 <NA>                               <NA>
1452 <NA>                               <NA>
1453 <NA>                               <NA>
1454 <NA>                               <NA>
1455 <NA>                               <NA>
1456 <NA>                               <NA>
1457 <NA>                               <NA>
1458 <NA>                               <NA>
1459 <NA>                               <NA>
1460 <NA>                               <NA>
1461 <NA>                               <NA>
1462 <NA>                               <NA>
1463 <NA>                               <NA>
1465 <NA>                               <NA>
1466 <NA>                               <NA>
1467 <NA>                               <NA>
1468 <NA>                               <NA>
1469 <NA>                               <NA>
1470 <NA>                               <NA>
1471 <NA>                               <NA>
1472 <NA>                               <NA>
1473 <NA>                               <NA>
1474 <NA>                               <NA>
1475 <NA>                               <NA>
1476 <NA>                               <NA>
1477 <NA>                               <NA>
1478 <NA>                               <NA>
1479 <NA>                               <NA>
1480 <NA>                               <NA>
1481 <NA>                               <NA>
1482 <NA>                               <NA>
1483 <NA>                               <NA>
1484 <NA>                               <NA>
1485 <NA>                               <NA>
1486 <NA>                               <NA>
1487 <NA>                               <NA>
1488 <NA>                               <NA>
1489 <NA>                               <NA>
1490 <NA>                               <NA>
1491 <NA>                               <NA>
1492 <NA>                               <NA>
1494 <NA>                               <NA>
1495 <NA>                               <NA>
1496 <NA>                               <NA>
1497 <NA>                               <NA>
1498 <NA>                               <NA>
1499 <NA>                               <NA>
1500 <NA>                               <NA>
1501 <NA>                               <NA>
1502 <NA>                               <NA>
1503 <NA>                               <NA>
1504 <NA>                               <NA>
1505 <NA>                               <NA>
1506 <NA>                               <NA>
1507 <NA>                               <NA>
1508 <NA>                               <NA>
1509 <NA>                               <NA>
1510 <NA>                               <NA>
1511 <NA>                               <NA>
1512 <NA>                               <NA>
1513 <NA>                               <NA>
1514 <NA>                               <NA>
1515 <NA>                               <NA>
1516 <NA>                               <NA>
1517 <NA>                               <NA>
1518 <NA>                               <NA>
1519 <NA>                               <NA>
1520 <NA>                               <NA>
1521 <NA>                               <NA>
1522 <NA>                               <NA>
1524 <NA>                               <NA>
1525 <NA>                               <NA>
1526 <NA>                               <NA>
1527 <NA>                               <NA>
1528 <NA>                               <NA>
1529 <NA>                               <NA>
1530 <NA>                               <NA>
1531 <NA>                               <NA>
1532 <NA>                               <NA>
1533 <NA>                               <NA>
1534 <NA>                               <NA>
1535 <NA>                               <NA>
1536 <NA>                               <NA>
1537 <NA>                               <NA>
1538 <NA>                               <NA>
1539 <NA>                               <NA>
1540 <NA>                               <NA>
1541 <NA>                               <NA>
1542 <NA>                               <NA>
1543 <NA>                               <NA>
1544 <NA>                               <NA>
1545 <NA>                               <NA>
1546 <NA>                               <NA>
1547 <NA>                               <NA>
1548 <NA>                               <NA>
1549 <NA>                               <NA>
1550 <NA>                               <NA>
1551 <NA>                               <NA>
1552 <NA>                               <NA>
1553 <NA>                               <NA>
1554 <NA>                               <NA>
1555 <NA>                               <NA>
1556 <NA>                               <NA>
1557 <NA>                               <NA>
1558 <NA>                               <NA>
1559 <NA>                               <NA>
1560 <NA>                               <NA>
1561 <NA>                               <NA>
1562 <NA>                               <NA>
1563 <NA>                               <NA>
1564 <NA>                               <NA>
1565 <NA>                               <NA>
1566 <NA>                               <NA>
1567 <NA>                               <NA>
1568 <NA>                               <NA>
1569 <NA>                               <NA>
1570 <NA>                               <NA>
1571 <NA>                               <NA>
1572 <NA>                               <NA>
1573 <NA>                               <NA>
1574 <NA>                               <NA>
1575 <NA>                               <NA>
1576 <NA>                               <NA>
1577 <NA>                               <NA>
1578 <NA>                               <NA>
1579 <NA>                               <NA>
1580 <NA>                               <NA>
1581 <NA>                               <NA>
1582 <NA>                               <NA>
1583 <NA>                               <NA>
1584 <NA>                               <NA>
1585 <NA>                               <NA>
1586 <NA>                               <NA>
1587 <NA>                               <NA>
1588 <NA>                               <NA>
1589 <NA>                               <NA>
1590 <NA>                               <NA>
1591 <NA>                               <NA>
1592 <NA>                               <NA>
1593 <NA>                               <NA>
1594 <NA>                               <NA>
1595 <NA>                               <NA>
1596 <NA>                               <NA>
1598 <NA>                               <NA>
1599 <NA>                               <NA>
1600 <NA>                               <NA>
1601 <NA>                               <NA>
1602 <NA>                               <NA>
1603 <NA>                               <NA>
1604 <NA>                               <NA>
1606 <NA>                               <NA>
1607 <NA>                               <NA>
1608 <NA>                               <NA>
1609 <NA>                               <NA>
1610 <NA>                               <NA>
1611 <NA>                               <NA>
1612 <NA>                               <NA>
1613 <NA>                               <NA>
1614 <NA>                               <NA>
1615 <NA>                               <NA>
1616 <NA>                               <NA>
1617 <NA>                               <NA>
1618 <NA>                               <NA>
1619 <NA>                               <NA>
1620 <NA>                               <NA>
1621 <NA>                               <NA>
1622 <NA>                               <NA>
1623 <NA>                               <NA>
1624 <NA>                               <NA>
1625 <NA>                               <NA>
1626 <NA>                               <NA>
1627 <NA>                               <NA>
1628 <NA>                               <NA>
1629 <NA>                               <NA>
1630 <NA>                               <NA>
1631 <NA>                               <NA>
1632 <NA>                               <NA>
1633 <NA>                               <NA>
1634 <NA>                               <NA>
1635 <NA>                               <NA>
1636 <NA>                               <NA>
1637 <NA>                               <NA>
1638 <NA>                               <NA>
1639 <NA>                               <NA>
1640 <NA>                               <NA>
1641 <NA>                               <NA>
1642 <NA>                               <NA>
1643 <NA>                               <NA>
1644 <NA>                               <NA>
1645 <NA>                               <NA>
1646 <NA>                               <NA>
1647 <NA>                               <NA>
1649 <NA>                               <NA>
1650 <NA>                               <NA>
1651 <NA>                               <NA>
1652 <NA>                               <NA>
1653 <NA>                               <NA>
1654 <NA>                               <NA>
1655 <NA>                               <NA>
1656 <NA>                               <NA>
1657 <NA>                               <NA>
1658 <NA>                               <NA>
1659 <NA>                               <NA>
1660 <NA>                               <NA>
1661 <NA>                               <NA>
1662 <NA>                               <NA>
1663 <NA>                               <NA>
1664 <NA>                               <NA>
1665 <NA>                               <NA>
1666 <NA>                               <NA>
1667 <NA>                               <NA>
1668 <NA>                               <NA>
1669 <NA>                               <NA>
1670 <NA>                               <NA>
1671 <NA>                               <NA>
1672 <NA>                               <NA>
1673 <NA>                               <NA>
1674 <NA>                               <NA>
1675 <NA>                               <NA>
1676 <NA>                               <NA>
1677 <NA>                               <NA>
1678 <NA>                               <NA>
1679 <NA>                               <NA>
1680 <NA>                               <NA>
1681 <NA>                               <NA>
1682 <NA>                               <NA>
1683 <NA>                               <NA>
1684 <NA>                               <NA>
1685 <NA>                               <NA>
1686 <NA>                               <NA>
1687 <NA>                               <NA>
1688 <NA>                               <NA>
1689 <NA>                               <NA>
1690 <NA>                               <NA>
1691 <NA>                               <NA>
1692 <NA>                               <NA>
1693 <NA>                               <NA>
1694 <NA>                               <NA>
1695 <NA>                               <NA>
1696 <NA>                               <NA>
1697 <NA>                               <NA>
1698 <NA>                               <NA>
1699 <NA>                               <NA>
1700 <NA>                               <NA>
1701 <NA>                               <NA>
1702 <NA>                               <NA>
1703 <NA>                               <NA>
1704 <NA>                               <NA>
1705 <NA>                               <NA>
1706 <NA>                               <NA>
1707 <NA>                               <NA>
1708 <NA>                               <NA>
1709 <NA>                               <NA>
1710 <NA>                               <NA>
1711 <NA>                               <NA>
1712 <NA>                               <NA>
1713 <NA>                               <NA>
1714 <NA>                               <NA>
1715 <NA>                               <NA>
1716 <NA>                               <NA>
1717 <NA>                               <NA>
1718 <NA>                               <NA>

cTWAS detects some genes that are not significant using a stringent TWAS threshold

TTC39B is a member of the Dyslipidaemia term in the disease_GLAD4U. This gene was not included in our silver standard. This gene is not significant using TWAS but is detected by cTWAS.

locus_plot3(focus="TTC39B", region_tag="9_13")

False positives by TWAS are frequently due to nearby causal variants, not genes

pip_threshold <- 0.5

false_positives <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh & ctwas_gene_res$susie_pip<pip_threshold]

df_plot <- data.frame(Outcome=c("SNPs", "Genes", "Both", "Neither"), Frequency=rep(0,4))

for (i in 1:length(false_positives)){
  gene <- false_positives[i]
  region <- ctwas_gene_res$region_tag[ctwas_gene_res$genename==gene]

  gene_pip <- sum(ctwas_gene_res$susie_pip[ctwas_gene_res$region_tag==region]) - ctwas_gene_res$susie_pip[ctwas_gene_res$genename==gene]
  snp_pip <- sum(ctwas_snp_res$susie_pip[ctwas_snp_res$region_tag==region])

  if (gene_pip < 0.5 & snp_pip < 0.5){
    df_plot$Frequency[df_plot$Outcome=="Neither"] <- df_plot$Frequency[df_plot$Outcome=="Neither"] + 1
  } else if (gene_pip >= 0.5 & snp_pip >= 0.5){
    df_plot$Frequency[df_plot$Outcome=="Both"] <- df_plot$Frequency[df_plot$Outcome=="Both"] + 1
  } else if (gene_pip < 0.5 & snp_pip >= 0.5){
    df_plot$Frequency[df_plot$Outcome=="SNPs"] <- df_plot$Frequency[df_plot$Outcome=="SNPs"] + 1
  } else if (gene_pip >= 0.5 & snp_pip < 0.5){
    df_plot$Frequency[df_plot$Outcome=="Genes"] <- df_plot$Frequency[df_plot$Outcome=="Genes"] + 1
  }
}

pie <- ggplot(df_plot, aes(x="", y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity")
pie <- pie + coord_polar("y", start=0) + theme_minimal() + theme(axis.title.y=element_blank())
pie

Version Author Date
25b795b wesleycrouse 2022-06-24
pip_threshold <- 0.5

false_positives <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh & ctwas_gene_res$susie_pip<pip_threshold]
false_positives <- data.frame(genename=as.character(false_positives), region_tag=as.character(NA), cs_index=as.integer(NA), cs_cor=as.numeric(NA),stringsAsFactors=F)

regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))

for (i in 1:nrow(false_positives)){
  gene <- false_positives$genename[i]
  gene_id <- ctwas_gene_res$id[ctwas_gene_res$genename==gene]
  region_tag1 <- as.character(ctwas_gene_res$region_tag1[ctwas_gene_res$genename==gene])
  region_tag2 <- as.character(ctwas_gene_res$region_tag2[ctwas_gene_res$genename==gene])

  region_tag <- ctwas_gene_res$region_tag[ctwas_gene_res$genename==gene]
  false_positives$region_tag[i] <- region_tag

  ctwas_res_subset <- ctwas_res[ctwas_res$region_tag==region_tag,]

  if (!any(ctwas_res_subset$cs_index!=0)){
    next
  }

  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]

  cs_index <- ctwas_res_subset$cs_index[which(ctwas_res_subset$genename==gene)]
  
  if (cs_index!=0){
    false_positives$cs_index[i] <- cs_index
    false_positives$cs_cor[i] <- 1
    next
  }
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))

  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)

  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  
  R_snp_gene <- R_snp_gene[rownames(R_snp_gene) %in% region$sid,,drop=F]
  
  gene_correlations <- c(R_gene[gene_id, !(colnames(R_gene) %in% gene_id)], R_snp_gene[,gene_id])
  gene_correlations <- abs(gene_correlations[ctwas_res_subset$id[ctwas_res_subset$cs_index!=0]])
  gene_correlations <- -sort(-gene_correlations)
  
  false_positives$cs_index[i] <- ctwas_res_subset$cs_index[ctwas_res_subset$id==names(gene_correlations)[1]]
  false_positives$cs_cor[i] <- gene_correlations[1]
}

cor_threshold <- 0.5

df_plot <- data.frame(Outcome=c("SNPs", "Genes", "Both", "Neither"), Frequency=rep(0,4))

for (i in 1:nrow(false_positives)){
  gene <- false_positives$genename[i]
  region_tag <- false_positives$region_tag[i]
  cs_index <- false_positives$cs_index[i]
  cs_cor <- false_positives$cs_cor[i]
  
  if (isTRUE(cs_cor >= cor_threshold)){
    ctwas_res_subset <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
    ctwas_res_subset <- ctwas_res_subset[ctwas_res_subset$cs_index==cs_index,]
    ctwas_res_subset <- ctwas_res_subset[!sapply(ctwas_res_subset$genename==gene, isTRUE),]
    
    gene_pip <- sum(ctwas_res_subset$susie_pip[ctwas_res_subset$type=="gene"])
    snp_pip <- sum(ctwas_res_subset$susie_pip[ctwas_res_subset$type=="SNP"])
    
    if (gene_pip < 0.5 & snp_pip < 0.5){
      df_plot$Frequency[df_plot$Outcome=="Neither"] <- df_plot$Frequency[df_plot$Outcome=="Neither"] + 1
    } else if (gene_pip >= 0.5 & snp_pip >= 0.5){
      df_plot$Frequency[df_plot$Outcome=="Both"] <- df_plot$Frequency[df_plot$Outcome=="Both"] + 1
    } else if (gene_pip < 0.5 & snp_pip >= 0.5){
      df_plot$Frequency[df_plot$Outcome=="SNPs"] <- df_plot$Frequency[df_plot$Outcome=="SNPs"] + 1
    } else if (gene_pip >= 0.5 & snp_pip < 0.5){
      df_plot$Frequency[df_plot$Outcome=="Genes"] <- df_plot$Frequency[df_plot$Outcome=="Genes"] + 1
    }
  }
}

pie <- ggplot(df_plot, aes(x="", y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity")
pie <- pie + coord_polar("y", start=0) + theme_minimal() + theme(axis.title.y=element_blank())
pie

Version Author Date
b48afdd wesleycrouse 2022-06-30
#number of false positive genes with PIP < threshold
nrow(false_positives)
[1] 170
#number of genes assigned to "pure" credible set
sum(false_positives$cs_cor>cor_threshold, na.rm=T)
[1] 83
df_plot <- data.frame(Outcome=c("Confounding by Variants", "Confounding by Genes"), Frequency=rep(0,2))

for (i in 1:nrow(false_positives)){
  gene <- false_positives$genename[i]
  region_tag <- false_positives$region_tag[i]
  cs_index <- false_positives$cs_index[i]
  cs_cor <- false_positives$cs_cor[i]
  
  if (isTRUE(cs_cor >= cor_threshold)){
    ctwas_res_subset <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
    ctwas_res_subset <- ctwas_res_subset[ctwas_res_subset$cs_index==cs_index,]
    ctwas_res_subset <- ctwas_res_subset[!sapply(ctwas_res_subset$genename==gene, isTRUE),]
    
    gene_pip <- sum(ctwas_res_subset$susie_pip[ctwas_res_subset$type=="gene"])
    snp_pip <- sum(ctwas_res_subset$susie_pip[ctwas_res_subset$type=="SNP"])
    
    if (gene_pip > snp_pip){
      df_plot$Frequency[df_plot$Outcome=="Confounding by Genes"] <- df_plot$Frequency[df_plot$Outcome=="Confounding by Genes"] + 1
    } else {
      df_plot$Frequency[df_plot$Outcome=="Confounding by Variants"] <- df_plot$Frequency[df_plot$Outcome=="Confounding by Variants"] + 1
    }
  }
}

pie <- ggplot(df_plot, aes(x="", y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity")
pie <- pie + coord_polar("y", start=0) + theme_minimal() + theme(axis.title.y=element_blank())
pie

Version Author Date
0d6eac4 wesleycrouse 2022-07-06
81aa4a9 wesleycrouse 2022-07-06
d5102c3 wesleycrouse 2022-07-01
############

df_plot$Outcome <- as.character(df_plot$Outcome)

df_plot$Outcome[df_plot$Outcome=="Confounding by Variants"] <- "Confounding\nby Variants"
df_plot$Outcome[df_plot$Outcome=="Confounding by Genes"] <- "Confounding\nby Genes"

df_plot$Outcome <- paste0(df_plot$Outcome, "\n(n=", df_plot$Frequency, ")")

pdf(file = "output/LDL_TWAS_false_positive.pdf", width = 2.5, height = 3.5)

pie <- ggplot(df_plot, aes(x="", y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity")
#pie <- pie + coord_polar("y", start=0) + theme_minimal() + theme(axis.title.y=element_blank(), legend.position="top")
pie <- pie + coord_polar("y", start=0) + theme_minimal() 
pie <- pie + theme(axis.title.y=element_blank(), 
                   legend.position="none",
                   axis.text = element_blank(),
                   axis.ticks = element_blank(),
                   panel.grid  = element_blank())

pie <- pie + geom_text(aes(label = Outcome), position = position_stack(vjust = 0.5), size=2.5)

pie

dev.off()
png 
  2 

Updated locus plots

locus_plot_final <- function(region_tag, xlim=NULL, return_table=F, focus=NULL, label_panel="TWAS", label_genes=NULL, label_pos=NULL, plot_eqtl=NULL, draw_gene_track=T, rerun_ctwas=F, rerun_load_only=F, legend_side="right", legend_panel="cTWAS"){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
    
    if (!rerun_load_only){
      ctwas::ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
                       ld_R_dir = dirname(region$regRDS)[1],
                       ld_regions_custom = "temp_reg.txt", thin = 1, 
                       outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
                       group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
                       estimate_group_prior = F, estimate_group_prior_var = F)
    }
    
    a_bkup <- a         
    a <- as.data.frame(data.table::fread("temp.susieIrss.txt", header = T))
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$genename <- NA
    a$gene_type <- NA

    a[a$type=="gene",c("genename", "gene_type")] <- a_bkup[match(a$id[a$type=="gene"], a_bkup$id),c("genename","gene_type")]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a_pos_bkup <- a$pos
  a$pos[a$type=="gene"] <- G_list$tss[match(sapply(a$id[a$type=="gene"], function(x){unlist(strsplit(x, "[.]"))[1]}) ,G_list$ensembl_gene_id)]
  a$pos[is.na(a$pos)] <- a_pos_bkup[is.na(a$pos)]
  a$pos <- a$pos/1000000
  
  if (!is.null(xlim)){
    
    if (is.na(xlim[1])){
      xlim[1] <- min(a$pos)
    }
    
    if (is.na(xlim[2])){
      xlim[2] <- max(a$pos)
    }
    
    a <- a[a$pos>=xlim[1] & a$pos<=xlim[2],,drop=F]
  }
  
  if (is.null(focus)){
    focus <- a$genename[a$z==max(abs(a$z)[a$type=="gene"])]
  }
  
  if (is.null(label_genes)){
    label_genes <- focus
  }
  
  if (is.null(label_pos)){
    label_pos <- rep(3, length(label_genes))
  }
  
  if (is.null(plot_eqtl)){
    plot_eqtl <- focus
  }
  
  focus <- a$id[which(a$genename==focus)]
  a$focus <- 0
  a$focus <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  start <- min(a$pos)
  end <- max(a$pos)
  
  if (draw_gene_track){
    layout(matrix(1:4, ncol = 1), widths = 1, heights = c(1.5,0.25,1.5,0.75), respect = FALSE)
  } else {
    layout(matrix(1:3, ncol = 1), widths = 1, heights = c(1.5,0.25,1.5), respect = FALSE)
  }
  
  par(mar = c(0, 4.1, 0, 2.1))
  
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"), frame.plot=FALSE, bg = colorsall[1], ylab = "-log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.1), xaxt = 'n', xlim=c(start, end))
  
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$focus == 1], a$PVALUE[a$type == "SNP" & a$focus == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$focus == 1], a$PVALUE[a$type == "gene" & a$focus == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (legend_panel=="TWAS"){
    x_pos <- ifelse(legend_side=="right", max(a$pos)-0.2*(max(a$pos)-min(a$pos)), min(a$pos)+0.05*(max(a$pos)-min(a$pos)))
    legend(x_pos, y= max(a$PVALUE), c("Gene", "SNP","Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = c(22,21,19,19,19), col = c("black", "black", "salmon", "purple", colorsall[1]), cex=0.7, title.adj = 0)
  }
  
  if (label_panel=="TWAS"){
    for (i in 1:length(label_genes)){
      text(a$pos[a$genename==label_genes[i]], a$PVALUE[a$genename==label_genes[i]], labels=label_genes[i], pos=label_pos[i], cex=0.7)
    }
  }
  
  par(mar = c(0.25, 4.1, 0.25, 2.1))
  
  plot(NA, xlim = c(start, end), ylim = c(0, length(plot_eqtl)), frame.plot = F, axes = F, xlab = NA, ylab = NA)
  
  for (i in 1:length(plot_eqtl)){
    cgene <- a$id[which(a$genename==plot_eqtl[i])]
    load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
    eqtls <- rownames(wgtlist[[cgene]])
    eqtl_pos <- a$pos[a$id %in% eqtls]
    
    col="grey"
    
    rect(start, length(plot_eqtl)+1-i-0.8, end, length(plot_eqtl)+1-i-0.2, col = col, border = T, lwd = 1)
  
    if (length(eqtl_pos)>0){
      for (j in 1:length(eqtl_pos)){
        segments(x0=eqtl_pos[j], x1=eqtl_pos[j], y0=length(plot_eqtl)+1-i-0.2, length(plot_eqtl)+1-i-0.8, lwd=1.5)  
      }
    }
  }
  
  text(start, length(plot_eqtl)-(1:length(plot_eqtl))+0.5,  
       labels = plot_eqtl, srt = 0, pos = 2, xpd = TRUE, cex=0.7)
  
  par(mar = c(4.1, 4.1, 0, 2.1))
  
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"),frame.plot=FALSE, col = "white", ylim= c(0,1.1), ylab = "cTWAS PIP", xlim = c(start, end))
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$focus == 1], a$susie_pip[a$type == "SNP" & a$focus == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$focus == 1], a$susie_pip[a$type == "gene" & a$focus == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (legend_panel=="cTWAS"){
    x_pos <- ifelse(legend_side=="right", max(a$pos)-0.2*(max(a$pos)-min(a$pos)), min(a$pos)+0.05*(max(a$pos)-min(a$pos)))
    legend(x_pos, y= 1 ,c("Gene", "SNP","Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = c(22,21,19,19,19), col = c("black", "black", "salmon", "purple", colorsall[1]), cex=0.7, title.adj = 0)
  }
  
  if (label_panel=="cTWAS"){
    for (i in 1:length(label_genes)){
      text(a$pos[a$genename==label_genes[i]], a$susie_pip[a$genename==label_genes[i]], labels=label_genes[i], pos=label_pos[i], cex=0.7)
    }
  }
  
  if (draw_gene_track){
    source("code/trackplot.R")
  
    query_ucsc = TRUE
    build = "hg38"
    col = "gray70"
    txname = NULL
    genename = NULL
    collapse_txs = TRUE
    gene_model = "data/hg38.ensGene.gtf.gz"
    isGTF = T
    
    ##########
    start <- min(a$pos)*1000000
    end <- max(a$pos)*1000000
    chr <- paste0("chr",as.character(unique(a$chrom)))
  
    #collect gene models
    if(is.null(gene_model)){
      if(query_ucsc){
        message("Missing gene model. Trying to query UCSC genome browser..")
        etbl = .extract_geneModel_ucsc(chr, start = start, end = end, refBuild = build, txname = txname, genename = genename)
      } else{
        etbl = NULL
      }
    } else{
      if(isGTF){
        etbl = .parse_gtf(gtf = gene_model, chr = chr, start = start, end = end, txname = txname, genename = genename)  
      } else{
        etbl = .extract_geneModel(ucsc_tbl = gene_model, chr = chr, start = start, end = end, txname = txname, genename = genename)  
      }
    }
    
    #draw gene models
    if(!is.null(etbl)){
      if(collapse_txs){
        etbl = .collapse_tx(etbl)
      }
      
      #subset to protein coding genes in ensembl and lincRNAs included in the analysis
      #etbl <- etbl[names(etbl) %in% G_list$ensembl_gene_id]
      etbl <- etbl[names(etbl) %in% c(G_list$ensembl_gene_id[G_list$gene_biotype=="protein_coding"], sapply(a$id[a$type=="gene"], function(x){unlist(strsplit(x, split="[.]"))[1]}))]
      
      for (i in 1:length(etbl)){
        ensembl_name <- attr(etbl[[i]], "gene")
        gene_name <- G_list$hgnc_symbol[match(ensembl_name, G_list$ensembl_gene_id)]
        if (gene_name==""){
          gene_name <- a$genename[sapply(a$id, function(x){unlist(strsplit(x,split="[.]"))[1]})==ensembl_name]
        }
        if (length(gene_name)>0){
          attr(etbl[[i]], "gene") <- gene_name
        }
        
        attr(etbl[[i]], "imputed") <- ensembl_name %in% sapply(ctwas_gene_res$id, function(x){unlist(strsplit(x, split="[.]"))[1]})
        
      }
      
      par(mar = c(0, 4.1, 0, 2.1))
      
      plot(NA, xlim = c(start, end), ylim = c(0, length(etbl)), frame.plot = FALSE, axes = FALSE, xlab = NA, ylab = NA)
      
      etbl <- etbl[order(-sapply(etbl, function(x){attr(x, "start")}))]
      
      for(tx_id in 1:length(etbl)){
        txtbl = etbl[[tx_id]]
        
        if (attr(txtbl, "imputed")){
          exon_col = "#192a56"
        } else {
          exon_col = "darkred"
        }

        segments(x0 = attr(txtbl, "start"), y0 = tx_id-0.45, x1 = attr(txtbl, "end"), y1 = tx_id-0.45, col = exon_col, lwd = 1)
    
        if(is.na(attr(txtbl, "tx"))){
          text(x = start, y = tx_id-0.45, labels = paste0(attr(txtbl, "gene")), cex = 0.7, adj = 0, srt = 0, pos = 2, xpd = TRUE)
        } else {
          text(x = start, y = tx_id-0.45, labels = paste0(attr(txtbl, "tx"), " [", attr(txtbl, "gene"), "]"), cex = 0.7, adj = 0, srt = 0, pos = 2, xpd = TRUE)
        }
        
        rect(xleft = txtbl[[1]], ybottom = tx_id-0.75, xright = txtbl[[2]], ytop = tx_id-0.25, col = exon_col, border = NA)
        if(attr(txtbl, "strand") == "+"){
          dirat = pretty(x = c(min(txtbl[[1]]), max(txtbl[[2]])))
          dirat[1] = min(txtbl[[1]]) #Avoid drawing arrows outside gene length
          dirat[length(dirat)] = max(txtbl[[2]])
          points(x = dirat, y = rep(tx_id-0.45, length(dirat)), pch = ">", col = exon_col)
        }else{
          dirat = pretty(x = c(min(txtbl[[1]]), max(txtbl[[2]])))
          dirat[1] = min(txtbl[[1]]) #Avoid drawing arrows outside gene length
          dirat[length(dirat)] = max(txtbl[[2]])
          points(x = dirat, y = rep(tx_id-0.45, length(dirat)), pch = "<", col = exon_col)
        }
      }
    }
  }
  
  if (return_table){
    return(a)
  }
}

TNKS

a <- locus_plot_final(region_tag = "8_12", focus="TNKS", label_genes=c("TNKS"), label_pos=c(3), plot_eqtl=c("TNKS"), return_table=T)

a[a$type=="gene",]

POLK

a <- locus_plot_final(region_tag = "5_45", xlim=c(75,76), return_table=T,
                      focus="POLK",
                      label_genes=c("POLK", "ANKDD1B", "POC5"),
                      label_pos=c(3,3,3),
                      plot_eqtl=c("POLK"), rerun_ctwas=T, rerun_load_only=F,
                      label_panel="cTWAS")

a[a$type=="gene",]

PRKD2

a <- locus_plot_final(region_tag="19_33", xlim=c(NA,46.85), return_table=T,
                      focus="PRKD2",
                      label_genes=c("STRN4","SLC1A5","PRKD2","FKRP","DACT3"),
                      label_pos=c(3,3,3,3,3),
                      plot_eqtl=c("PRKD2"),
                      label_panel="cTWAS")

a[a$type=="gene",]

Genes nearby and nearest to GWAS peaks

####################

#####load positions for all genes on autosomes in ENSEMBL, subset to only protein coding and lncRNA with non-missing HGNC symbol
# library(biomaRt)
# 
# ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
# G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype", "ensembl_gene_id", "strand"), values=1:22, mart=ensembl)
# 
# save(G_list, file=paste0(results_dir, "/G_list_", trait_id, ".RData"))
load(paste0(results_dir, "/G_list_", trait_id, ".RData"))

G_list <- G_list[G_list$gene_biotype %in% c("protein_coding"),]

G_list$hgnc_symbol[G_list$hgnc_symbol==""] <- "-"

G_list$tss <- G_list[,c("end_position", "start_position")][cbind(1:nrow(G_list),G_list$strand/2+1.5)]



#####load z scores from the analysis and add positions from the LD reference
load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))

# LDR_dir <- "/project2/mstephens/wcrouse/UKB_LDR_0.1/"
# LDR_files <- list.files(LDR_dir)
# LDR_files <- LDR_files[grep(".Rvar" ,LDR_files)]
# 
# z_snp$chrom <- as.integer(NA)
# z_snp$pos <- as.integer(NA)
# 
# for (i in 1:length(LDR_files)){
#   print(i)
# 
#   LDR_info <- read.table(paste0(LDR_dir, LDR_files[i]), header=T)
#   z_snp_index <- which(z_snp$id %in% LDR_info$id)
#   z_snp[z_snp_index,c("chrom", "pos")] <- t(sapply(z_snp_index, function(x){unlist(LDR_info[match(z_snp$id[x], LDR_info$id),c("chrom", "pos")])}))
# }
# 
# z_snp <- z_snp[,c("id", "z", "chrom","pos")]
# save(z_snp, file=paste0(results_dir, "/z_snp_pos_", trait_id, ".RData"))
load(paste0(results_dir, "/z_snp_pos_", trait_id, ".RData"))

####################
#identify genes within 500kb of genome-wide significant variant ("nearby")
G_list$nearby <- NA

window_size <- 500000

for (chr in 1:22){
  #index genes on chromosome
  G_list_index <- which(G_list$chromosome_name==chr)
  
  #subset z_snp to chromosome, then subset to significant genome-wide significant variants
  z_snp_chr <- z_snp[z_snp$chrom==chr,,drop=F]
  z_snp_chr <- z_snp_chr[abs(z_snp_chr$z)>qnorm(1-(5E-8/2), lower=T),,drop=F]
  
  #iterate over genes on chromsome and check if a genome-wide significant SNP is within the window
  for (i in G_list_index){
    window_start <- G_list$start_position[i] - window_size
    window_end <- G_list$end_position[i] + window_size
    G_list$nearby[i] <- any(z_snp_chr$pos>=window_start & z_snp_chr$pos<=window_end)
  }
}

####################
#identify genes that are nearest to lead genome-wide significant variant ("nearest")
G_list$nearest <- F
G_list$distance <- Inf
G_list$which_nearest <- NA

window_size <- 500000

n_peaks <- 0

for (chr in 1:22){
  #index genes on chromosome
  G_list_index <- which(G_list$chromosome_name==chr & G_list$gene_biotype=="protein_coding")
  
  #subset z_snp to chromosome, then subset to significant genome-wide significant variants
  z_snp_chr <- z_snp[z_snp$chrom==chr,,drop=F]
  z_snp_chr <- z_snp_chr[abs(z_snp_chr$z)>qnorm(1-(5E-8/2), lower=T),,drop=F]
  
  while (nrow(z_snp_chr)>0){
    n_peaks <- n_peaks + 1
    
    lead_index <- which.max(abs(z_snp_chr$z))
    lead_position <- z_snp_chr$pos[lead_index]
    
    distances <- sapply(G_list_index, function(i){
      if (lead_position >= G_list$start_position[i] & lead_position <= G_list$end_position[i]){
        distance <- 0
      } else {
        distance <- min(abs(G_list$start_position[i] - lead_position), abs(G_list$end_position[i] - lead_position))
      }
      distance
    })
    
    min_distance <- min(distances)
    
    G_list$nearest[G_list_index[distances==min_distance]] <- T
    
    nearest_genes <- paste0(G_list$hgnc_symbol[G_list_index[distances==min_distance]], collapse=", ")
    
    update_index <- which(G_list$distance[G_list_index] > distances)
    G_list$distance[G_list_index][update_index] <- distances[update_index]
    G_list$which_nearest[G_list_index][update_index] <- nearest_genes
    
    window_start <- lead_position - window_size
    window_end <- lead_position + window_size
    z_snp_chr <- z_snp_chr[!(z_snp_chr$pos>=window_start & z_snp_chr$pos<=window_end),,drop=F]
  }
}

G_list$distance[G_list$distance==Inf] <- NA

#report number of GWAS peaks
sum(n_peaks)
[1] 182

Summary table of results

library(readxl)

known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

results_summary <- ctwas_gene_res[ctwas_gene_res$susie_pip>0.8,c("genename", "id", "region_tag", "susie_pip", "z", "num_eqtl")]
names(results_summary)[names(results_summary)=="id"] <- "ensembl_gene_id"
results_summary$ensembl_gene_id <- sapply(results_summary$ensembl_gene_id, function(x){unlist(strsplit(x, split="[.]"))[1]})
results_summary <- cbind(results_summary, G_list[match(results_summary$ensembl_gene_id, G_list$ensembl_gene_id),c("chromosome_name", "start_position", "nearby", "nearest", "distance", "which_nearest")])
names(results_summary)[names(results_summary)=="chromosome_name"] <- "chromosome"

results_summary$known <- results_summary$genename %in% known_annotations

results_summary$twas_fp <- NA
results_summary$gene_nearest_region_peak <- NA

for (i in 1:nrow(results_summary)){
  genename <- results_summary$genename[i]
  region_tag <- results_summary$region_tag[i]

  ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$region_tag==region_tag & ctwas_gene_res$genename!=genename,]
  results_summary$twas_fp[i] <- any(ctwas_gene_res_subset$z > sig_thresh & ctwas_gene_res_subset$susie_pip < 0.8)
  
  ctwas_snp_res_subset <- ctwas_snp_res[ctwas_snp_res$region_tag==region_tag,]
  chromosome <- unique(ctwas_snp_res_subset$chrom)
  lead_position <- ctwas_snp_res_subset$pos[which.max(abs(ctwas_snp_res_subset$z))]

  G_list_index <- which(G_list$chromosome_name==chromosome)

  distances <- sapply(G_list_index, function(i){
    if (lead_position >= G_list$start_position[i] & lead_position <= G_list$end_position[i]){
      distance <- 0
    } else {
      distance <- min(abs(G_list$start_position[i] - lead_position), abs(G_list$end_position[i] - lead_position))
    }
    distance
  })

  results_summary$gene_nearest_region_peak[i] <- paste0(G_list$hgnc_symbol[G_list_index[which(distances==min(distances))]], collapse="; ")
}

####################
#GO enrichment of cTWAS genes
# genes <- results_summary$genename
# 
# dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
# GO_enrichment <- enrichr(genes, dbs)
# 
# save(GO_enrichment, file=paste0(results_dir, "/", trait_id, "_enrichment_results.RData"))

####################
#enrichment of silver standard genes
# genes <- known_annotations
# 
# dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
# GO_enrichment_silver_standard <- enrichr(genes, dbs)
# 
# save(GO_enrichment_silver_standard, file=paste0(results_dir, "/",trait_id, "silver_standard_enrichment_results.RData"))

####################
#report GO cTWAS

load(paste0(results_dir, "/", trait_id, "_enrichment_results.RData"))

GO_enrichment <- do.call(rbind, GO_enrichment)
GO_enrichment$DB <- sapply(rownames(GO_enrichment), function(x){unlist(strsplit(x, split="[.]"))[1]})
rownames(GO_enrichment) <- NULL

GO_enrichment_out <- cbind(GO_enrichment[,c("Term", "DB"),drop=F],
                           GO_enrichment[,!(colnames(GO_enrichment) %in% 
                                            c("Term", "DB", "Old.P.value", "Old.Adjusted.P.value")), drop=F])

write.csv(GO_enrichment_out, file="output/LDL_GO_ctwas.csv", row.names=F)

GO_enrichment <- GO_enrichment[GO_enrichment$Adjusted.P.value < 0.05,]
GO_enrichment <- GO_enrichment[order(-GO_enrichment$Odds.Ratio),]

results_summary$GO <- sapply(results_summary$genename, function(x){terms <- GO_enrichment$Term[grep(x, GO_enrichment$Genes)];
                                             if (length(terms)>0){terms <- terms[1:min(length(terms),5)]};
                                             paste0(terms, collapse="; ")})

####################
#report GO silver standard

load(paste0(results_dir, "/", trait_id, "silver_standard_enrichment_results.RData"))

GO_enrichment_silver_standard <- do.call(rbind, GO_enrichment_silver_standard)
GO_enrichment_silver_standard$DB <- sapply(rownames(GO_enrichment_silver_standard), function(x){unlist(strsplit(x, split="[.]"))[1]})
rownames(GO_enrichment_silver_standard) <- NULL

GO_enrichment_silver_standard_out <- cbind(GO_enrichment_silver_standard[,c("Term", "DB"),drop=F],
                                                 GO_enrichment_silver_standard[,!(colnames(GO_enrichment_silver_standard) %in% c("Term", "DB", "Old.P.value", "Old.Adjusted.P.value")),drop=F])

write.csv(GO_enrichment_silver_standard_out, file="output/LDL_GO_silver.csv", row.names=F)

GO_enrichment_silver_standard <- GO_enrichment_silver_standard[GO_enrichment_silver_standard$Adjusted.P.value < 0.05,]
GO_enrichment_silver_standard <- GO_enrichment_silver_standard[order(-GO_enrichment_silver_standard$Odds.Ratio),]

#reload GO cTWAS for GO crosswalk
load(paste0(results_dir, "/", trait_id, "_enrichment_results.RData"))

GO_enrichment <- do.call(rbind, GO_enrichment)
GO_enrichment$DB <- sapply(rownames(GO_enrichment), function(x){unlist(strsplit(x, split="[.]"))[1]})
rownames(GO_enrichment) <- NULL

#overlap between sets
GO_enrichment <- GO_enrichment[GO_enrichment$Term %in% GO_enrichment_silver_standard$Term,,drop=F]
GO_enrichment_silver_standard <- GO_enrichment_silver_standard[GO_enrichment_silver_standard$Term %in% GO_enrichment$Term,,drop=F]
GO_enrichment <- GO_enrichment[match(GO_enrichment_silver_standard$Term, GO_enrichment$Term),]

results_summary$GO_silver <- sapply(results_summary$genename, function(x){terms <- GO_enrichment$Term[grep(x, GO_enrichment$Genes)];
                                                                          if (length(terms)>0){terms <- terms[1:min(length(terms),5)]};
                                                                          paste0(terms, collapse="; ")})

####################
#report FUMA

FUMA <- data.table::fread(paste0("/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/FUMA_output/", trait_id, "/GS.txt"))
FUMA <- FUMA[FUMA$Category %in% c("GO_bp", "GO_cc", "GO_mf"),,drop=F]
FUMA <- FUMA[order(FUMA$p),]

FUMA <- FUMA[,-c("link")]
write.csv(FUMA, file="output/LDL_MAGMA.csv", row.names=F)

#reload GO cTWAS for GO crosswalk
load(paste0(results_dir, "/", trait_id, "_enrichment_results.RData"))
GO_enrichment <- do.call(rbind, GO_enrichment)
GO_enrichment$DB <- sapply(rownames(GO_enrichment), function(x){unlist(strsplit(x, split="[.]"))[1]})
rownames(GO_enrichment) <- NULL

GO_enrichment$Term_FUMA <- sapply(GO_enrichment$Term, function(x){rev(rev(unlist(strsplit(x, split=" [(]GO")))[-1])})
GO_enrichment$Term_FUMA <- paste0("GO_", toupper(gsub(" ", "_", GO_enrichment$Term_FUMA)))

#overlap between sets
GO_enrichment <- GO_enrichment[GO_enrichment$Term_FUMA %in% FUMA$GeneSet,,drop=F]
FUMA <- FUMA[FUMA$GeneSet %in% GO_enrichment$Term_FUMA]
GO_enrichment <- GO_enrichment[match(FUMA$GeneSet, GO_enrichment$Term_FUMA),]

results_summary$GO_MAGMA <- sapply(results_summary$genename, function(x){terms <- GO_enrichment$Term[grep(x, GO_enrichment$Genes)];
                                                                         if (length(terms)>0){terms <- terms[1:min(length(terms),5)]};
                                                                         paste0(terms, collapse="; ")})

####################
#report FUMA + susieGO

gsesusie <- as.data.frame(readxl::read_xlsx("gsesusie_enrichment.xlsx", sheet=trait_id))
gsesusie$GeneSet <- paste0("(", gsesusie$GeneSet, ")")

#reload GO cTWAS for GO crosswalk
load(paste0(results_dir, "/", trait_id, "_enrichment_results.RData"))
GO_enrichment <- do.call(rbind, GO_enrichment)
GO_enrichment$DB <- sapply(rownames(GO_enrichment), function(x){unlist(strsplit(x, split="[.]"))[1]})
rownames(GO_enrichment) <- NULL

GO_enrichment$GeneSet <- sapply(GO_enrichment$Term, function(x){rev(unlist(strsplit(x, " ")))[1]})

#overlap between sets
GO_enrichment <- GO_enrichment[GO_enrichment$GeneSet %in% gsesusie$GeneSet,,drop=F]
gsesusie <- gsesusie[gsesusie$GeneSet %in% GO_enrichment$GeneSet,,drop=F]
GO_enrichment <- GO_enrichment[match(gsesusie$GeneSet, GO_enrichment$GeneSet),]

results_summary$GO_MAGMA_SuSiE <- sapply(results_summary$genename, function(x){terms <- GO_enrichment$Term[grep(x, GO_enrichment$Genes)];
                                                                         if (length(terms)>0){terms <- terms[1:min(length(terms),5)]};
                                                                         paste0(terms, collapse="; ")})

write.csv(results_summary, file=paste0("results_summary_LDL_cholesterol_corrected.csv"), row.names=F)

#number of genes in silver standard or at least one enriched term from GO silver standard or GO MAGMA
sum(results_summary$GO_silver!="" | results_summary$GO_MAGMA!="" | results_summary$known)
[1] 19
#number of genes in silver standard or at least one enriched term from GO silver standard or GO MAGMA or GO cTWAS
sum(results_summary$GO_silver!="" | results_summary$GO_MAGMA!="" | results_summary$known | results_summary$GO!="")
[1] 23
####################
#table of all genes

results_all_genes <- ctwas_gene_res
results_all_genes <- results_all_genes[,!(colnames(results_all_genes) %in% c("type", "region_tag1", "region_tag2", "gene_type"))]
results_all_genes <- results_all_genes[,c("id", "genename", "chrom", "pos","region_tag", "cs_index", "susie_pip", "mu2", "PVE", "z", "num_eqtl")]
results_all_genes <- dplyr::rename(results_all_genes, PIP="susie_pip", tau2="mu2")

write.csv(results_all_genes, file=paste0("output/LDL_results_all_genes.csv"), row.names=F)

####################
#table of silver standard genes

#reload silver standard list
known_annotations <- readxl::read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- unique(known_annotations$`Gene Symbol`)

#reload bystander list
load(paste0(results_dir, "/bystanders.Rd"))
#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

results_silver_bystander <- results_all_genes[results_all_genes$genename %in% c(known_annotations, unrelated_genes),]
results_silver_bystander <- results_silver_bystander[,c("genename", "id", "chrom", "pos","region_tag", "cs_index", "PIP", "tau2", "PVE", "z", "num_eqtl")]

results_silver_bystander <- rbind(data.frame(genename=known_annotations[!(known_annotations %in% results_silver_bystander$genename)], id=NA, chrom=NA, pos=NA, region_tag=NA, cs_index=NA, PIP=NA, tau2=NA, PVE=NA, z=NA, num_eqtl=0), results_silver_bystander)

results_silver_bystander$annotation <- ""
results_silver_bystander$annotation[results_silver_bystander$genename %in% known_annotations] <- "known"
results_silver_bystander$annotation[results_silver_bystander$genename %in% unrelated_genes] <- "bystander"
results_silver_bystander <- results_silver_bystander[order(results_silver_bystander$annotation=="bystander"),]

write.csv(results_silver_bystander, file=paste0("output/LDL_results_silver_bystander.csv"), row.names=F)

Summary table of results - Compact version

results_summary_compact <- results_summary[results_summary$susie_pip>0.9,]

# results_summary_compact$evidence <- ""
# results_summary_compact$evidence[results_summary_compact$nearby & !results_summary_compact$nearest & !results_summary_compact$known] <- "Nearby"
# results_summary_compact$evidence[results_summary_compact$nearby & !results_summary_compact$nearest & results_summary_compact$known] <- "Nearby; Known"
# results_summary_compact$evidence[results_summary_compact$nearest & !results_summary_compact$known] <- "Nearest"
# results_summary_compact$evidence[results_summary_compact$nearest & results_summary_compact$known] <- "Nearest; Known"

results_summary_compact$evidence <- "Novel"
results_summary_compact$evidence[results_summary_compact$nearest & !results_summary_compact$known] <- "Nearest"
results_summary_compact$evidence[!results_summary_compact$nearest & results_summary_compact$known] <- "Known"
results_summary_compact$evidence[results_summary_compact$nearest & results_summary_compact$known] <- "Nearest; Known"

results_summary_compact$position <- paste0("chr", results_summary_compact$chromosome, ":", results_summary_compact$start_position)

results_summary_compact$z <- round(results_summary_compact$z, 2)

results_summary_compact <- results_summary_compact[,c("genename", "position", "susie_pip", "z", "evidence")]

rownames(results_summary_compact) <- NULL
colnames(results_summary_compact) <- c("Gene", "Position", "PIP", "Z-score", "Evidence")

write.csv(results_summary_compact, file=paste0("results_summary_LDL_cholesterol_compact.csv"), row.names=F)

Non-redundant GO results

library(enrichR)

#plot non-redundant GO results for all databases
load(paste0(results_dir, "/", trait_id, "_enrichment_results.RData"))

GO_enrichment <- do.call(rbind, GO_enrichment)
GO_enrichment <- GO_enrichment[order(GO_enrichment$Adjusted.P.value),]
GO_enrichment <- GO_enrichment[GO_enrichment$Adjusted.P.value < 0.05,]
GO_enrichment <- GO_enrichment[!duplicated(GO_enrichment$Genes),]

plotEnrich(GO_enrichment)

Version Author Date
f26dabe wesleycrouse 2022-07-29
plotEnrich(GO_enrichment, numChar=max(sapply(GO_enrichment$Term, nchar)))

Version Author Date
f26dabe wesleycrouse 2022-07-29
#plot non-redundant GO results for GO_Biological_Process_2021 only
load(paste0(results_dir, "/", trait_id, "_enrichment_results.RData"))

GO_enrichment <- GO_enrichment[["GO_Biological_Process_2021"]]
GO_enrichment <- GO_enrichment[GO_enrichment$Adjusted.P.value < 0.05,]
GO_enrichment <- GO_enrichment[!duplicated(GO_enrichment$Genes),]

plotEnrich(GO_enrichment)

Version Author Date
f26dabe wesleycrouse 2022-07-29
plotEnrich(GO_enrichment, numChar=max(sapply(GO_enrichment$Term, nchar)))

Version Author Date
f26dabe wesleycrouse 2022-07-29
GO_enrichment$Term <- sapply(GO_enrichment$Term, function(x){unlist(strsplit(x, " [(]GO:"))[1]})

plotEnrich(GO_enrichment)

Version Author Date
f26dabe wesleycrouse 2022-07-29
plotEnrich(GO_enrichment, numChar=max(sapply(GO_enrichment$Term, nchar)))

Version Author Date
f26dabe wesleycrouse 2022-07-29
####################

#non-redundant results excluding subsets
load(paste0(results_dir, "/", trait_id, "_enrichment_results.RData"))

GO_enrichment <- GO_enrichment[["GO_Biological_Process_2021"]]
GO_enrichment <- GO_enrichment[GO_enrichment$Adjusted.P.value < 0.05,]

GO_gene_list <- lapply(GO_enrichment$Genes, function(x){unlist(strsplit(x, ";"))})

GO_enrichment_indices <- 1

for (i in 2:length(GO_gene_list)){
  redundant_flag <- F
  
  for (j in 1:(i-1)){
    if (all(GO_gene_list[[i]] %in% GO_gene_list[[j]])){
      redundant_flag <- T
    }
  }
  if (!redundant_flag){
    GO_enrichment_indices <- c(GO_enrichment_indices, i)
  }
}

GO_enrichment <- GO_enrichment[GO_enrichment_indices,]
GO_enrichment$Term <- sapply(GO_enrichment$Term, function(x){unlist(strsplit(x, " [(]GO:"))[1]})

plotEnrich(GO_enrichment, title="", xlab="Gene Count", ylab="Enriched Terms")

Version Author Date
f26dabe wesleycrouse 2022-07-29
####################

GO_enrichment$Term[8] <- "positive regulation of cyclin-dependent\nprotein serine/threonine kinase activity"

pdf(file = "output/LDL_GO_nonredundant.pdf", width = 2.5, height = 3.5)

p <- enrichR::plotEnrich(GO_enrichment, title="", xlab="", ylab="Gene Count",
                         numChar=80)
p <- p + theme(legend.position="bottom", axis.title = element_text(size=6), axis.text=element_text(size=6))
p <- p + theme(legend.title=element_text(size=6),
               legend.text=element_text(size=6, angle = 90))
p

dev.off()
png 
  2 

slimGO

library(dplyr, ev)

slimGO_modified <-
function (GO = GO, tool = c("enrichR", "rGREAT", "GOfuncR"), 
    annoDb = annoDb, plots = FALSE, threshold = 0.7, pval=0.05) 
{
    if (tool == "enrichR") {
        GO <- GO %>% data.table::rbindlist(idcol = "Gene Ontology") %>% 
            dplyr::as_tibble() %>% dplyr::filter(`Gene Ontology` %in% 
            c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", 
                "GO_Molecular_Function_2021")) %>% dplyr::mutate(Term = stringr::str_extract(.$Term, 
            "\\(GO.*")) %>% dplyr::mutate(Term = stringr::str_replace_all(.$Term, 
            "[//(//)]", ""), "") %>% dplyr::mutate(`Gene Ontology` = dplyr::case_when(`Gene Ontology` == 
            "GO_Biological_Process_2021" ~ "BP", `Gene Ontology` == 
            "GO_Cellular_Component_2021" ~ "CC", `Gene Ontology` == 
            "GO_Molecular_Function_2021" ~ "MF")) %>% dplyr::select(p = P.value, 
            go = Term, "Gene Ontology") %>% dplyr::filter(p <= 
            pval)
    }
    else if (tool == "rGREAT") {
        GO <- GO %>% data.table::rbindlist(idcol = "Gene Ontology") %>% 
            dplyr::as_tibble() %>% dplyr::mutate(`Gene Ontology` = dplyr::case_when(`Gene Ontology` == 
            "GO Biological Process" ~ "BP", `Gene Ontology` == 
            "GO Cellular Component" ~ "CC", `Gene Ontology` == 
            "GO Molecular Function" ~ "MF")) %>% dplyr::select(p = Hyper_Raw_PValue, 
            go = ID, "Gene Ontology") %>% dplyr::filter(p <= pval)
    }
    else if (tool == "GOfuncR") {
        GO <- GO$results %>% dplyr::as_tibble() %>% dplyr::mutate(`Gene Ontology` = dplyr::case_when(ontology == 
            "biological_process" ~ "BP", ontology == "cellular_component" ~ 
            "CC", ontology == "molecular_function" ~ "MF")) %>% 
            dplyr::select(p = raw_p_overrep, go = node_id, "Gene Ontology") %>% 
            dplyr::filter(p <= pval)
    }
    else {
        stop(glue("{tool} is not supported, please choose either enrichR, rGREAT, or GOfuncR [Case Sensitive]"))
    }
    print(glue::glue("Submiting results from {tool} to rrvgo..."))
    .slim <- function(GO = GO, ont = ont, annoDb = annoDb, plots = plots, 
        tool = tool, threshold = threshold) {
        GO <- GO %>% dplyr::filter(`Gene Ontology` == ont)
        print(glue::glue("rrvgo is now slimming {ont} GO terms from {tool}"))
        simMatrix <- rrvgo::calculateSimMatrix(GO$go, orgdb = annoDb, 
            ont = ont, method = "Rel")
        reducedTerms <- rrvgo::reduceSimMatrix(simMatrix, setNames(-log10(GO$p), 
            GO$go), threshold = threshold, orgdb = annoDb)
        if (plots == TRUE) {
            p <- rrvgo::scatterPlot(simMatrix, reducedTerms)
            plot(p)
            rrvgo::treemapPlot(reducedTerms)
        }
        print(glue::glue("There are {max(reducedTerms$cluster)} clusters in your GO {ont} terms from {tool}"))
        reducedTerms %>% dplyr::as_tibble() %>% return()
    }

    slimmed <- GO %>% dplyr::select(`Gene Ontology`) %>% table() %>% 
        names() %>% purrr::set_names() %>% purrr::map_dfr(~.slim(GO = GO, 
        ont = ., annoDb = annoDb, tool = tool, plots = plots, 
        threshold = threshold), .id = "Gene Ontology") %>% dplyr::inner_join(GO) %>% 
        dplyr::filter(term == as.character(parentTerm)) %>% dplyr::mutate(`-log10.p-value` = -log10(p)) %>% 
        dplyr::mutate(`Gene Ontology` = dplyr::recode_factor(`Gene Ontology`, 
        BP = "Biological Process", CC = "Cellular Component", 
        MF = "Molecular Function")) %>% dplyr::arrange(dplyr::desc(`-log10.p-value`)) %>% 
    return()
}

load(paste0(results_dir, "/", trait_id, "_enrichment_results.RData"))

GO_enrichment_slim <- slimGO_modified(GO=GO_enrichment, tool="enrichR",annoDb = "org.Hs.eg.db", plots=T)

GO_enrichment <- do.call(rbind, GO_enrichment)
GO_enrichment$db <- sapply(rownames(GO_enrichment), function(x){unlist(strsplit(x, split="[.]"))[1]})
rownames(GO_enrichment) <- NULL
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, "/project2/mstephens/wcrouse/predictdb/mashr_Liver_nolnc.db")
query <- function(...) RSQLite::dbGetQuery(db, ...)
weights_table <- query("select * from weights")
extra_table <- query("select * from extra")
RSQLite::dbDisconnect(db)

HPR

a <- locus_plot_final(region_tag="16_38", xlim=c(71.6,72.4), return_table=T,
                      focus="HPR",
                      label_genes=c("MARVELD3", "PHLPP2", "ATXN1L", "ZNF821", "PKD1L3", "HPR"),
                      label_pos=c(3,3,3,3,3,3),
                      plot_eqtl=c("HPR"),
                      label_panel="cTWAS")

a[a$type=="gene",]

weights_table[weights_table$gene=="ENSG00000261701.6",]
a[a$id %in% c("rs150367531", "rs3794695"),]

CNIH4

a <- locus_plot_final(region_tag="1_114", xlim=c(224,225), return_table=T,
                      focus="CNIH4",
                      label_genes=c("CNIH4"),
                      label_pos=c(3),
                      plot_eqtl=c("CNIH4"))

a[a$type=="gene",]

weights_table[weights_table$gene=="ENSG00000143771.11",]
a[a$id %in% c("rs7517754", "rs56105022"),]

ACVR1C

a <- locus_plot_final(region_tag="2_94", xlim=c(157.4, NA), return_table=T,
                      focus="ACVR1C",
                      label_genes=c("ACVR1C", "CYTIP"),
                      label_pos=c(3,3),
                      label_panel="TWAS",
                      plot_eqtl=c("ACVR1C"),
                      legend_side="left")

a[a$type=="gene",]

weights_table[weights_table$gene=="ENSG00000123612.15",]
a[a$id %in% c("rs10164853", "rs114245489"),]

INHBB

a <- locus_plot_final(region_tag="2_70", xlim=c(119, 121), return_table=T,
                      focus="INHBB",
                      label_genes=c("INHBB","GLI2"),
                      label_pos=c(3,3),
                      label_panel="cTWAS",
                      plot_eqtl=c("INHBB"))

a[a$type=="gene",]

INSIG2

a <- locus_plot_final(region_tag="2_69", return_table=T,
                      focus="INSIG2",
                      label_genes=c("INSIG2"),
                      label_pos=c(3),
                      plot_eqtl=c("INSIG2"))

a[a$type=="gene",]

Silver Standard False Negatives - version 2

For all 69 silver standard genes, sequentially bin each gene using the following criteria: 1) gene not imputed; 2) gene detected by cTWAS at PIP>0.8; 3) gene insignificant by TWAS (with or without GWAS signal); 4) gene nearby a detected silver standard gene; 5) gene nearby a detected bystander gene; 6) gene nearby a detected SNP; 7) inconclusive.

library(ggplot2)

#reload silver standard genes
known_annotations <- readxl::read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
known_annotations <- as.character(unique(known_annotations$`Gene Symbol`))

#categorize silver standard genes by case
silver_standard_case <- c()
uncertain_regions <- matrix(NA, 0, 2)

for (i in 1:length(known_annotations)){
  current_gene <- known_annotations[i]
  
  if (current_gene %in% ctwas_gene_res$genename) {
    if (ctwas_gene_res$susie_pip[ctwas_gene_res$genename == current_gene] > 0.8){
      silver_standard_case <- c(silver_standard_case, "Detected (PIP > 0.8)")
    } else {
      if (abs(ctwas_gene_res$z[ctwas_gene_res$genename == current_gene]) < sig_thresh){

        if (G_list$nearby[which(G_list$hgnc_symbol==current_gene)]){
          silver_standard_case <- c(silver_standard_case, "Insignificant Z-score")
        } else {
          silver_standard_case <- c(silver_standard_case, "No GWAS Signal")
        }
      } else {
        current_region <- ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]
        current_gene_res <- ctwas_gene_res[ctwas_gene_res$region_tag==current_region,]
        current_snp_res <- ctwas_snp_res[ctwas_snp_res$region_tag==current_region,]
        if (any(current_gene_res$susie_pip>0.8)){
          if (any(current_gene_res$genename[current_gene_res$susie_pip>0.8] %in% known_annotations)){
            #silver_standard_case <- c(silver_standard_case, "Nearby Silver Standard Gene")
            silver_standard_case <- c(silver_standard_case, "Nearby Gene(s)")
          } else {
            #silver_standard_case <- c(silver_standard_case, "Nearby Bystander Gene")
            silver_standard_case <- c(silver_standard_case, "Nearby Gene(s)")
          }
        } else {
          #if (any(current_snp_res$susie_pip>0.8)){
          if (sum(current_snp_res$susie_pip)>0.8){
            silver_standard_case <- c(silver_standard_case, "Nearby Variant(s)")
          } else {
            silver_standard_case <- c(silver_standard_case, "Inconclusive")
            
            uncertain_regions <- rbind(uncertain_regions, c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
            
            print(c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
          }
        }
      }
    }
  } else {
    silver_standard_case <- c(silver_standard_case, "Not Imputed")
  }
}
names(silver_standard_case) <- known_annotations

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed        No GWAS Signal     Nearby Variant(s) 
                   23                    18                    11 
Insignificant Z-score  Detected (PIP > 0.8)        Nearby Gene(s) 
                    9                     6                     2 
##########
#pie chart of outcomes for silver standard genes

#collapse categories
silver_standard_case[silver_standard_case=="Nearby Variant(s)" | silver_standard_case=="Nearby Gene(s)"] <- "Significant Z-score but Undetected"

#format data
df <- data.frame(-sort(-table(silver_standard_case)))
names(df) <- c("Outcome", "Frequency")

#df$Outcome <- droplevels(df$Outcome)
#df$Outcome[df$Outcome=="Detected (PIP > 0.8)"] <- "Detected (PIP > 0.8)"

df$Outcome <- factor(df$Outcome, levels = rev(c("Detected (PIP > 0.8)", 
                                                "Significant Z-score but Undetected", 
                                                "Insignificant Z-score",
                                                "Not Imputed",
                                                "No GWAS Signal")))

levels(df$Outcome) <- rev(c("Detected\n(PIP > 0.8)", 
                            "Significant Z-score\nbut Undetected", 
                            "Insignificant\nZ-score", 
                            "Not\nImputed",
                            "No GWAS\nSignal"))

pdf(file = "output/LDL_false_negative.pdf", width = 2.75, height = 3.5)

pie <- ggplot(df, aes(x="", y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity")
pie <- pie + coord_polar("y", start=0) + theme_minimal() + theme(axis.title.y=element_blank(), legend.position="none")
pie <- pie + geom_text(aes(label = Outcome), position = position_stack(vjust = 0.5), size=2.5)
pie <- pie + guides(fill = guide_legend(reverse = TRUE))

hex <- scales::hue_pal()(4)
custom_colors <- hex

custom_colors[2] <- "grey95"
custom_colors[1] <- "grey50"
custom_colors[3] <- hex[4]
custom_colors[4] <- hex[3]
custom_colors[5] <- hex[2]

pie <- pie + scale_fill_manual(values=custom_colors)
pie

dev.off()
png 
  2 

Manhattan plot with annotations

library(dplyr)
library(ggplot2)

pdf(file = "output/LDL_manhattan_plot_annotated.pdf", width = 5, height = 3)

full_gene_pip_summary <- data.frame(gene_name = ctwas_gene_res$genename, 
                                    gene_pip = ctwas_gene_res$susie_pip, 
                                    gene_id = ctwas_gene_res$id, 
                                    chr = as.integer(ctwas_gene_res$chrom),
                                    start = ctwas_gene_res$pos / 1e3,
                                    is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full_gene_pip_summary$is_highlight <- full_gene_pip_summary$gene_pip > 0.80

#add annotations
full_gene_pip_summary$is_nearest <- full_gene_pip_summary$gene_name %in% results_summary$genename[results_summary$nearest]
full_gene_pip_summary$is_silver <- full_gene_pip_summary$gene_name %in% results_summary$genename[results_summary$known]

#format data frame
don <- full_gene_pip_summary %>% 
  
  # Compute chromosome size
  group_by(chr) %>% 
  summarise(chr_len=max(start)) %>% 
  
  # Calculate cumulative position of each chromosome
  mutate(tot=cumsum(chr_len)-chr_len) %>%
  dplyr::select(-chr_len) %>%
  
  # Add this info to the initial dataset
  left_join(full_gene_pip_summary, ., by=c("chr"="chr")) %>%
  
  # Add a cumulative position of each SNP
  arrange(chr, start) %>%
  mutate( BPcum=start+tot)

#adjust labels
nudge_x <- rep(0, sum(don$is_highlight))
names(nudge_x) <- don$gene_name[don$is_highlight]
#nudge_x["USP1"] <- 0.2

nudge_y <- rep(0, sum(don$is_highlight))
names(nudge_y) <- don$gene_name[don$is_highlight]
#nudge_y["USP1"] <- 0.25

#chromosome information and labeling
axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )

x_axis_labels <- axisdf$chr
x_axis_labels[seq(15,21,2)] <- ""

#initialize plot
p <- ggplot(don, aes(x=BPcum, y=gene_pip)) 

#show all points
point_size <- 1.7

p <- p + ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=point_size) + 
         scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
         scale_x_continuous(label = x_axis_labels,
                            breaks = axisdf$center, 
                            limits=) +
         scale_y_continuous(expand = c(0, 0), 
                            limits = c(0,1.25), 
                            breaks=(1:5)*0.2, 
                            minor_breaks=(1:10)*0.1) # remove space between plot area and x axis

#add highlighted points
p <- p + ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="#C77CFF", size=point_size)
p <- p + ggrastr::geom_point_rast(data=subset(don, is_nearest==T), color="#F8766D", size=point_size)
p <- p + ggrastr::geom_point_rast(data=subset(don, is_silver==T), color="#7CAE00", size=point_size)


#add label using ggrepel to avoid overlapping
p <- p + ggrepel::geom_label_repel(data=subset(don, is_highlight==T), 
                                   aes(label=gene_name), 
                                   size=1.8,
                                   min.segment.length = 0, 
                                   label.size = NA,
                                   fill = alpha(c("white"),0),
                                   max.time=20, 
                                   max.iter=400000, 
                                   max.overlaps=100,
                                   nudge_x = nudge_x, 
                                   nudge_y = nudge_y,
                                   force = 1,
                                   force_pull = 1,
                                   seed=10)

#customize the theme:
p <- p + theme_bw() + 
         theme(text = element_text(size = 14),
               legend.position="none",
               panel.border = element_blank(),
               panel.grid.major.x = element_blank(),
               panel.grid.minor.x = element_blank(),
               axis.text.x = element_text(color = "grey20", 
                                          size = 8, 
                                          angle = 90, 
                                          hjust = .5, 
                                          vjust = .5, 
                                          face = "plain"),
               axis.text.y = element_text(size=8),
               axis.title = element_text(size=9)) +
         xlab("Chromosome") + 
         ylab("cTWAS PIP")

p

dev.off()
png 
  2 

Updated locus plots - for paper

locus_plot_final_pub <- function(region_tag, xlim=NULL, return_table=F, focus=NULL, label_panel="TWAS", label_genes=NULL, label_pos=NULL, plot_eqtl=NULL, rerun_ctwas=F, rerun_load_only=F, legend_side="right", legend_panel="cTWAS", twas_ymax=NULL){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
    
    if (!rerun_load_only){
      ctwas::ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
                       ld_R_dir = dirname(region$regRDS)[1],
                       ld_regions_custom = "temp_reg.txt", thin = 1, 
                       outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
                       group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
                       estimate_group_prior = F, estimate_group_prior_var = F)
    }
    
    a_bkup <- a         
    a <- as.data.frame(data.table::fread("temp.susieIrss.txt", header = T))
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$genename <- NA
    a$gene_type <- NA

    a[a$type=="gene",c("genename", "gene_type")] <- a_bkup[match(a$id[a$type=="gene"], a_bkup$id),c("genename","gene_type")]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a_pos_bkup <- a$pos
  a$pos[a$type=="gene"] <- G_list$tss[match(sapply(a$id[a$type=="gene"], function(x){unlist(strsplit(x, "[.]"))[1]}) ,G_list$ensembl_gene_id)]
  a$pos[is.na(a$pos)] <- a_pos_bkup[is.na(a$pos)]
  a$pos <- a$pos/1000000
  
  if (!is.null(xlim)){
    
    if (is.na(xlim[1])){
      xlim[1] <- min(a$pos)
    }
    
    if (is.na(xlim[2])){
      xlim[2] <- max(a$pos)
    }
    
    a <- a[a$pos>=xlim[1] & a$pos<=xlim[2],,drop=F]
  }
  
  if (is.null(focus)){
    focus <- a$genename[a$z==max(abs(a$z)[a$type=="gene"])]
  }
  
  if (is.null(label_genes)){
    label_genes <- focus
  }
  
  if (is.null(label_pos)){
    label_pos <- rep(3, length(label_genes))
  }
  
  if (is.null(plot_eqtl)){
    plot_eqtl <- focus
  }
  
  focus <- a$id[which(a$genename==focus)]
  a$focus <- 0
  a$focus <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  start <- min(a$pos)
  end <- max(a$pos)
  
  layout(matrix(1:4, ncol = 1), widths = 1, heights = c(1.5,0.25,1.75,0.75), respect = FALSE)
  
  par(mar = c(0, 4.1, 0, 2.1))
  
  if (is.null(twas_ymax)){
    twas_ymax <- max(a$PVALUE)*1.1
  }
  
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"), frame.plot=FALSE, bg = colorsall[1], ylab = "-log10(p value)", panel.first = grid(), ylim =c(0, twas_ymax), xaxt = 'n', xlim=c(start, end))
  
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$focus == 1], a$PVALUE[a$type == "SNP" & a$focus == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$focus == 1], a$PVALUE[a$type == "gene" & a$focus == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (legend_panel=="TWAS"){
    x_pos <- ifelse(legend_side=="right", max(a$pos)-0.2*(max(a$pos)-min(a$pos)), min(a$pos))
    legend(x_pos, y= twas_ymax*0.95, c("Gene", "SNP","Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = c(22,21,19,19,19), col = c("black", "black", "salmon", "purple", colorsall[1]), cex=0.7, title.adj = 0)
  }
  
  if (label_panel=="TWAS" | label_panel=="both"){
    for (i in 1:length(label_genes)){
      text(a$pos[a$genename==label_genes[i]], a$PVALUE[a$genename==label_genes[i]], labels=label_genes[i], pos=label_pos[i], cex=0.7)
    }
  }
  
  par(mar = c(0.25, 4.1, 0.25, 2.1))
  
  plot(NA, xlim = c(start, end), ylim = c(0, length(plot_eqtl)), frame.plot = F, axes = F, xlab = NA, ylab = NA)
  
  for (i in 1:length(plot_eqtl)){
    cgene <- a$id[which(a$genename==plot_eqtl[i])]
    load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
    eqtls <- rownames(wgtlist[[cgene]])
    eqtl_pos <- a$pos[a$id %in% eqtls]
    
    #col="grey"
    col="#c6e8f0"
    
    rect(start, length(plot_eqtl)+1-i-0.8, end, length(plot_eqtl)+1-i-0.2, col = col, border = T, lwd = 1)
  
    if (length(eqtl_pos)>0){
      for (j in 1:length(eqtl_pos)){
        segments(x0=eqtl_pos[j], x1=eqtl_pos[j], y0=length(plot_eqtl)+1-i-0.2, length(plot_eqtl)+1-i-0.8, lwd=1.5)  
      }
    }
  }
  
  text(start, length(plot_eqtl)-(1:length(plot_eqtl))+0.5,  
       labels = paste0(plot_eqtl, " eQTL"), srt = 0, pos = 2, xpd = TRUE, cex=0.7)
  
  par(mar = c(4.1, 4.1, 0, 2.1))
  
  plot(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " position (Mb)"),frame.plot=FALSE, col = "white", ylim= c(0,1.1), ylab = "cTWAS PIP", xlim = c(start, end))
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$focus == 1], a$susie_pip[a$type == "SNP" & a$focus == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$focus == 1], a$susie_pip[a$type == "gene" & a$focus == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (legend_panel=="cTWAS"){
    x_pos <- ifelse(legend_side=="right", max(a$pos)-0.2*(max(a$pos)-min(a$pos)), min(a$pos))
    legend(x_pos, y= 1 ,c("Gene", "SNP","Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = c(22,21,19,19,19), col = c("black", "black", "salmon", "purple", colorsall[1]), cex=0.7, title.adj = 0)
  }
  
  if (label_panel=="cTWAS" | label_panel=="both"){
    for (i in 1:length(label_genes)){
      text(a$pos[a$genename==label_genes[i]], a$susie_pip[a$genename==label_genes[i]], labels=label_genes[i], pos=label_pos[i], cex=0.7)
    }
  }
  
  if (return_table){
    return(a)
  }
}

####################

library(Gviz)
Loading required package: grid
locus_plot_gene_track_pub <- function(a, label_pos=NULL){
  chr <- unique(a$chrom)
  start <- min(a$pos)*1000000
  end <- max(a$pos)*1000000
  
  biomTrack <- BiomartGeneRegionTrack(chromosome = chr,
                                      start = start,
                                      end = end,
                                      name = "ENSEMBL",
                                      biomart = ensembl,
                                      filters=list(biotype="protein_coding"))
  
  
  biomTrack <- as(biomTrack, "GeneRegionTrack")
  biomTrack <- biomTrack[biomTrack@range@elementMetadata@listData$feature %in% c("protein_coding", "utr3", "utr5")]
  
  if (isTRUE(label_pos=="above")){
    displayPars(biomTrack)$just.group <- "above"
  }
  
  grid.newpage()
  
  plotTracks(biomTrack, collapseTranscripts = "meta", transcriptAnnotation = "symbol", from=start, to=end, panel.only=T, add=F)
}

ACVR1C v2

pdf(file = "output/LDL_ACVR1C_plot.pdf", width = 5, height = 3.5)
a <- locus_plot_final_pub(region_tag="2_94", xlim=c(157.4, NA), return_table=T,
                      focus="ACVR1C",
                      label_genes=c("ACVR1C", "CYTIP"),
                      label_pos=c(3,3),
                      label_panel="both",
                      plot_eqtl=c("ACVR1C"),
                      legend_side="left",
                      legend_panel="cTWAS")
dev.off()
png 
  2 
pdf(file = "output/LDL_ACVR1C_plot_genetrack.pdf", width = 3.86, height = 0.3)
locus_plot_gene_track_pub(a, label_pos="above")
dev.off()
png 
  2 

HPR v2

pdf(file = "output/LDL_HPR_plot.pdf", width = 5, height = 3.5)
a <- locus_plot_final_pub(region_tag="16_38", xlim=c(71.6,72.4), return_table=T,
                      focus="HPR",
                      label_genes=c("MARVELD3", "PHLPP2", "ATXN1L", "ZNF821", "PKD1L3", "HPR"),
                      label_pos=c(3,3,3,3,3,3),
                      plot_eqtl=c("HPR"),
                      label_panel="both",
                      legend_side="left",
                      legend_panel="TWAS",
                      twas_ymax=85)
dev.off()
png 
  2 
pdf(file = "output/LDL_HPR_plot_genetrack.pdf", width = 3.86, height = 0.6)
locus_plot_gene_track_pub(a)
dev.off()
png 
  2 

POLK v2

pdf(file = "output/LDL_POLK_plot.pdf", width = 5, height = 3.5)
a <- locus_plot_final_pub(region_tag = "5_45", xlim=c(75,75.8), return_table=T,
                      focus="POLK",
                      label_genes=c("POLK", "ANKDD1B", "POC5"),
                      label_pos=c(3,3,3),
                      plot_eqtl=c("POLK"), rerun_ctwas=T, rerun_load_only=F,
                      label_panel="both",
                      legend_side="left",
                      legend_panel="cTWAS")
dev.off()

pdf(file = "output/LDL_POLK_plot_genetrack.pdf", width = 3.86, height = 0.4)
locus_plot_gene_track_pub(a, label_pos="above")
dev.off()

PRKD2 v2

pdf(file = "output/LDL_PRKD2_plot.pdf", width = 5, height = 3.5)
a <- locus_plot_final_pub(region_tag="19_33", xlim=c(NA, 46.85), return_table=T,
                      focus="PRKD2",
                      label_genes=c("STRN4","SLC1A5","PRKD2","FKRP","DACT3"),
                      label_pos=c(3,3,3,3,3),
                      plot_eqtl="PRKD2",
                      label_panel="both",
                      legend_side="left",
                      legend_panel="cTWAS")
dev.off()
png 
  2 
pdf(file = "output/LDL_PRKD2_plot_genetrack.pdf", width = 3.86, height = 0.4)
locus_plot_gene_track_pub(a, label_pos="above")
dev.off()
png 
  2 

HPR locus using other tools

coloc

library(coloc)

region_tag <- "16_38"

a <- ctwas_res[ctwas_res$region_tag==region_tag,]

region_snps <- a$id[a$type=="SNP"]
region_genes <- a$genename[a$type=="gene"]
region_geneid <- a$id[a$type=="gene"]


####################
#colocalization analysis

#load eQTL data and subset to region
eqtl <- as.data.frame(data.table::fread("/project2/mstephens/wcrouse/gtex/GTEx_Liver.allpairs_processed.txt.gz", header = T))
Registered S3 method overwritten by 'R.oo':
  method        from       
  throw.default R.methodsS3
eqtl <- eqtl[eqtl$rs_id_dbSNP151_GRCh38p7 %in% region_snps,,drop=F]

#load GWAS summary statistics and subset to region
z_snp <- VariantAnnotation::readVcf("/project2/compbio/gwas_summary_statistics/ukbb_neale_v3/ukb-d-30780_irnt.vcf")
z_snp <- as.data.frame(gwasvcf::vcf_to_tibble(z_snp))
z_snp <- z_snp[z_snp$rsid %in% region_snps,,drop=F]

save.image("HPR_locus_image.RData")

#load("HPR_locus_image.RData")

coloc_res <- rep(NA, length(region_genes))
names(coloc_res) <- region_genes

for (i in 1:length(region_genes)){
  gene <- region_genes[i]

  gene_id <- unlist(strsplit(a$id[match(gene, a$genename)], "[.]"))[1]
  eqtl_current <- eqtl[grep(gene_id, eqtl$gene_id),,drop=F]
  
  #drop variants with duplicated records
  eqtl_current <-  eqtl_current[!(eqtl_current$rs_id_dbSNP151_GRCh38p7 %in% names(which(table(eqtl_current$rs_id_dbSNP151_GRCh38p7)>1))),,drop=F]
  
  #drop invariant SNPs (standard error=0)
  eqtl_current <- eqtl_current[!is.na(eqtl_current$slope_se),]
  
  D1_eqtl <- list(snp=eqtl_current$rs_id_dbSNP151_GRCh38p7,
                  position=1:nrow(eqtl_current),
                  type="quant",
                  sdY=1,
                  beta=eqtl_current$slope,
                  varbeta=eqtl_current$slope_se^2)
  
  z_snp_index <- match(D1_eqtl$snp, z_snp$rsid)
  
  D2_gwas <- list(snp=D1_eqtl$snp,
                  position=1:length(D1_eqtl$snp),
                  type="quant",
                  sdY=1,
                  beta=z_snp$ES[z_snp_index],
                  varbeta=z_snp$SE[z_snp_index]^2)
  
  coloc_res_current <- coloc.abf(dataset1=D1_eqtl,
                                 dataset2=D2_gwas)
  
  coloc_res[i] <- coloc_res_current$summary["PP.H4.abf"]
}
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 6.41e-58  4.58e-55  1.40e-03  9.98e-01  1.19e-04 
[1] "PP abf for shared variant: 0.0119%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 1.05e-64  4.59e-55  2.28e-10  1.00e+00  8.66e-12 
[1] "PP abf for shared variant: 8.66e-10%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 1.03e-55  3.50e-55  2.26e-01  7.62e-01  1.20e-02 
[1] "PP abf for shared variant: 1.2%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 3.18e-55  1.27e-55  6.93e-01  2.76e-01  3.04e-02 
[1] "PP abf for shared variant: 3.04%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 3.62e-55  7.89e-56  7.88e-01  1.72e-01  3.98e-02 
[1] "PP abf for shared variant: 3.98%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 2.34e-56  4.34e-55  5.11e-02  9.45e-01  3.41e-03 
[1] "PP abf for shared variant: 0.341%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 7.60e-56  3.75e-55  1.66e-01  8.17e-01  1.73e-02 
[1] "PP abf for shared variant: 1.73%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 3.55e-55  8.74e-56  7.74e-01  1.90e-01  3.56e-02 
[1] "PP abf for shared variant: 3.56%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 2.76e-55  1.51e-55  6.02e-01  3.30e-01  6.79e-02 
[1] "PP abf for shared variant: 6.79%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 1.68e-56  4.38e-55  3.66e-02  9.55e-01  8.67e-03 
[1] "PP abf for shared variant: 0.867%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 1.11e-55  5.28e-56  2.42e-01  1.14e-01  6.44e-01 
[1] "PP abf for shared variant: 64.4%"
round(-sort(-coloc_res),3)
     HPR   ZNF821      TAT   ATXN1L    ZNF19   PHLPP2    CHST4   PKD1L3 
   0.644    0.068    0.040    0.036    0.030    0.017    0.012    0.009 
MARVELD3    CMTR2    ZNF23 
   0.003    0.000    0.000 

FOCUS

Note that results for PHLPP2 are not present despite being in the other analyses. FOCUS does an online query when importing the weights, and I believe that the single variant for PHLPP2 (rs7201649) is multiallelic and was dropped. Also note that the z scores for FOCUS are different than using cTWAS, even for genes with a single variant. I suspect that FOCUS is not scaling the weights by genotype variance, which was something we missed previously. Related, there is current an open issue on the FOCUS github about z scores not matching PrediXcan. Regardless, the z-scores are similar and I think the conclusions are valid.

library(tools)
library(RSQLite)

#prepare summary stats

load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))

z_snp <- z_snp[match(region_snps, z_snp$id),]

chr <- unlist(strsplit(region_tag, "_"))[1]

ld_snpinfo <- as.data.frame(data.table::fread(paste0("/project2/mstephens/wcrouse/UKB_analysis_known_anno/ukb-d-30780_irnt/Liver_nolnc_corrected/ukb-d-30780_irnt_Liver_ctwas_ld_R_chr", chr, ".txt")))
ld_snpinfo <- lapply(ld_snpinfo$RDS_file[ld_snpinfo$stop>min(a$pos) & ld_snpinfo$start<max(a$pos)], function(x){as.data.frame(data.table::fread(paste0(file_path_sans_ext(x), ".Rvar")))})
ld_snpinfo <- do.call(rbind, ld_snpinfo)

z_snp <- cbind(z_snp, ld_snpinfo[match(z_snp$id, ld_snpinfo$id), c("chrom", "pos")])
z_snp <- z_snp[,c("chrom", "id", "pos", "A1", "A2", "z", "ss")]
colnames(z_snp) <- c("CHR", "SNP", "BP", "A1", "A2", "Z", "N")

write.table(z_snp, file="/project2/mstephens/wcrouse/LDL_focus/LDL_HPR_locus.sumstats", sep="\t", quote=F, row.names=F, col.names=T)

#subset weights
weight <- "/project2/mstephens/wcrouse/predictdb/mashr_Liver_nolnc.db"
output_dir <- "/project2/mstephens/wcrouse/LDL_focus/"

weight_stem <- rev(unlist(strsplit(file_path_sans_ext(weight), "/")))[1]
  
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, weight)
query <- function(...) RSQLite::dbGetQuery(db, ...)
weights_table <- query("select * from weights")
extra_table <- query("select * from extra")
dbDisconnect(db)

weights_table <- weights_table[weights_table$gene %in% region_geneid,,drop=F]
extra_table <- extra_table[extra_table$gene %in% region_geneid,,drop=F]

weight_info = read.table(gzfile(paste0(file_path_sans_ext(weight), ".txt.gz")), header = T)
weight_info <- weight_info[weight_info$GENE %in% extra_table$gene,]

if (file.exists(paste0(output_dir, weight_stem, "_HPR_temp.db"))){
  file.remove(paste0(output_dir, weight_stem, "_HPR_temp.db"))
} 
[1] TRUE
db <- dbConnect(RSQLite::SQLite(), paste0(output_dir, weight_stem, "_HPR_temp.db"))
dbWriteTable(db, "extra", extra_table)
dbWriteTable(db, "weights", weights_table)
dbDisconnect(db)

if (file.exists(paste0(output_dir, weight_stem, "_HPR_temp.txt.gz"))){
  file.remove(paste0(output_dir, weight_stem, "_HPR_temp.txt.gz"))
} 
[1] TRUE
weight_info_gz <- gzfile(paste0(output_dir, weight_stem, "_HPR_temp.txt.gz"), "w")
write.table(weight_info, weight_info_gz, sep=" ", quote=F, row.names=F, col.names=T)
close(weight_info_gz)

save.image("HPR_locus_image_2.RData")

#run focus (in terminal)
#focus import mashr_Liver_nolnc_HPR_temp.db predixcan --tissue liver --name liver --assay rnaseq --output Liver_nolnc_HPR_focus

#focus finemap /project2/mstephens/wcrouse/LDL_focus/LDL_HPR_locus.sumstats /project2/mstephens/wcrouse/UKB_LD_bed_0.1/ukb_chr16.b38.bed /project2/mstephens/wcrouse/LDL_focus/Liver_nolnc_HPR_focus.db --chr 16 --out LDL_HPR_locus

#report focus results
focus_results <- as.data.frame(data.table::fread("/project2/mstephens/wcrouse/LDL_focus/LDL_HPR_locus.focus.tsv"))

focus_results <- focus_results[order(-focus_results$pip),]
focus_results[,c("mol_name", "pip")]
   mol_name      pip
1       HPR 1.00e+00
2    ATXN1L 7.49e-01
3    ZNF821 2.42e-01
4    PKD1L3 5.16e-02
5  MARVELD3 4.36e-02
6     CHST4 3.54e-03
7     ZNF23 1.76e-03
8     CMTR2 1.20e-03
9     ZNF19 1.10e-03
10      TAT 3.45e-04
11     NULL 9.76e-57

SMR

HPR is not significant using SMR while several other genes are. SMR uses the most significant eQTL for each gene as an instrument. The most significant eQTL for HPR is not significant in the GWAS. The HPR PredictDB prediction model has 2 variants, so I think that selecting the top SNP is the reason for this discrepency.

region_tag <- "16_38"

a <- ctwas_res[ctwas_res$region_tag==region_tag,]

region_snps <- a$id[a$type=="SNP"]
region_genes <- a$genename[a$type=="gene"]
region_geneid <- a$id[a$type=="gene"]

####################
#load eQTL data and subset to region
eqtl <- as.data.frame(data.table::fread("/project2/mstephens/wcrouse/gtex/GTEx_Liver.allpairs_processed.txt.gz", header = T))
eqtl <- eqtl[eqtl$rs_id_dbSNP151_GRCh38p7 %in% region_snps,,drop=F]

#subset to genes analyzed by cTWAS
eqtl$gene_id_trimmed <- sapply(eqtl$gene_id, function(x){unlist(strsplit(x, "[.]"))[1]})
eqtl <- eqtl[eqtl$gene_id_trimmed %in% sapply(region_geneid, function(x){unlist(strsplit(x, "[.]"))[1]}),,drop=F]

#drop duplicated gene+variant combinations
eqtl$record_id <- paste0(eqtl$gene_id, "_", eqtl$rs_id_dbSNP151_GRCh38p7)
eqtl <-  eqtl[!(eqtl$record_id %in% names(which(table(eqtl$record_id)>1))),,drop=F]

#output file for SMR
eqtl_out <- cbind(eqtl[,c("gene_id", "rs_id_dbSNP151_GRCh38p7")],
              100,
              eqtl[,c("pval_nominal", "slope")])

write.table(eqtl_out, file="/project2/mstephens/wcrouse/LDL_smr/LDL_HPR_locus.eqtl", sep="\t", quote=F, row.names=F, col.names=F)

# generate and update .esi and .epi
# .esi (chr, SNP, 0, position, the effect allele, the other allele and frequency)
# .epi (chr, probe ID, 0, position, gene ID and gene orientation)

esi <- eqtl[,c("rs_id_dbSNP151_GRCh38p7","alt","ref")]
esi <- cbind(esi,
             a[match(esi$rs_id_dbSNP151_GRCh38p7, a$id), c("chrom","pos")],
             0, NA)
rownames(esi) <- NULL
esi <- esi[,c("chrom","rs_id_dbSNP151_GRCh38p7","0","pos","alt","ref","NA")]

write.table(esi, file="/project2/mstephens/wcrouse/LDL_smr/LDL_HPR_locus.esi_temp", sep="\t", quote=F, row.names=F, col.names=F)

epi <- cbind(chr, a$id[a$type=="gene"], 0, a$pos[a$type=="gene"], a$id[a$type=="gene"], "+")
write.table(epi, file="/project2/mstephens/wcrouse/LDL_smr/LDL_HPR_locus.epi_temp", sep="\t", quote=F, row.names=F, col.names=F)

####################

#load GWAS summary statistics and subset to region
z_snp <- VariantAnnotation::readVcf("/project2/compbio/gwas_summary_statistics/ukbb_neale_v3/ukb-d-30780_irnt.vcf")
z_snp <- as.data.frame(gwasvcf::vcf_to_tibble(z_snp))
z_snp <- z_snp[z_snp$rsid %in% region_snps,,drop=F]


z_snp <- cbind(z_snp[,c("rsid", "ALT", "REF")],
              NA,
              z_snp[,c("ES", "SE", "LP", "SS")])
z_snp$LP <- 10^-z_snp$LP

colnames(z_snp) <- c("SNP", "A1", "A2", "freq", "b", "se", "p", "N")

write.table(z_snp, file="/project2/mstephens/wcrouse/LDL_smr/LDL_HPR_locus.SMRsumstats", sep="\t", quote=F, row.names=F, col.names=T)

####################

#prepare besd format (in terminal)
#~/causalTWAS/smr_Linux --eqtl-summary /project2/mstephens/wcrouse/LDL_smr/LDL_HPR_locus.eqtl --fastqtl-nominal-format --make-besd --out LDL_HPR_locus
#~/causalTWAS/smr_Linux --beqtl-summary /project2/mstephens/wcrouse/LDL_smr/LDL_HPR_locus --update-esi /project2/mstephens/wcrouse/LDL_smr/LDL_HPR_locus.esi_temp
#~/causalTWAS/smr_Linux --beqtl-summary /project2/mstephens/wcrouse/LDL_smr/LDL_HPR_locus --update-epi /project2/mstephens/wcrouse/LDL_smr/LDL_HPR_locus.epi_temp

#run SMR (in terminal)
#~/causalTWAS/smr_Linux --bfile /project2/mstephens/wcrouse/UKB_LD_bed_0.1/ukb_chr16.b38 --gwas-summary /project2/mstephens/wcrouse/LDL_smr/LDL_HPR_locus.SMRsumstats --beqtl-summary /project2/mstephens/wcrouse/LDL_smr/LDL_HPR_locus --out LDL_HPR_locus --peqtl-smr 5e-2

####################

smr_results <- as.data.frame(data.table::fread("/project2/mstephens/wcrouse/LDL_smr/LDL_HPR_locus.smr"))
smr_results$Gene <- a$genename[match(smr_results$probeID, a$id)]
smr_results[order(smr_results$p_SMR),!(colnames(smr_results) %in% c("probeID","ProbeChr","Probe_bp","topSNP_chr","topSNP_bp", "A1", "A2", "Freq", "b_GWAS","se_GWAS","b_eQTL","se_eQTL", "b_SMR", "se_SMR"))]
       Gene      topSNP       p_GWAS       p_eQTL        p_SMR
2     ZNF23  rs16972663 2.150305e-07 1.694987e-14 1.735368e-05
7    PHLPP2   rs4788822 1.543121e-12 9.018099e-06 1.700108e-04
3     CHST4  rs12923309 1.655313e-08 1.151219e-06 2.290061e-04
10   PKD1L3   rs2070939 2.396900e-05 4.445218e-06 1.882528e-03
8    ATXN1L  rs61452478 2.347416e-08 2.723270e-03 8.266624e-03
6  MARVELD3  rs12930418 1.861701e-03 3.545061e-06 9.777990e-03
4     ZNF19  rs16970692 1.660198e-03 3.034770e-04 1.769240e-02
9    ZNF821    rs918755 5.899293e-02 1.224759e-03 1.029911e-01
1     CMTR2   rs1424140 1.999001e-01 4.884779e-09 2.105236e-01
5       TAT  rs78845905 3.410397e-01 1.257560e-03 3.611595e-01
11      HPR rs148960548 4.457999e-01 2.793340e-06 4.517267e-01
        p_HEIDI nsnp_HEIDI
2  0.0036133230         20
7  0.3056144000          5
3  0.4519615000         11
10 0.0002191204         20
8            NA         NA
6  0.0164198200          5
4  0.0485677900          4
9            NA         NA
1  0.0796750600         20
5            NA         NA
11           NA         NA

POLK locus using other tools

coloc

region_tag <- "5_45"

a <- as.data.frame(data.table::fread("temp.susieIrss.txt", header = T))
    
a$genename <- NA
a$gene_type <- NA

a[a$type=="gene",c("genename", "gene_type")] <- ctwas_gene_res[match(a$id[a$type=="gene"], ctwas_gene_res$id),c("genename","gene_type")]

region_snps <- a$id[a$type=="SNP"]
region_genes <- a$genename[a$type=="gene"]
region_geneid <- a$id[a$type=="gene"]

####################
#colocalization analysis

#load eQTL data and subset to region
eqtl <- as.data.frame(data.table::fread("/project2/mstephens/wcrouse/gtex/GTEx_Liver.allpairs_processed.txt.gz", header = T))
eqtl <- eqtl[eqtl$rs_id_dbSNP151_GRCh38p7 %in% region_snps,,drop=F]

#load GWAS summary statistics and subset to region
z_snp <- VariantAnnotation::readVcf("/project2/compbio/gwas_summary_statistics/ukbb_neale_v3/ukb-d-30780_irnt.vcf")
z_snp <- as.data.frame(gwasvcf::vcf_to_tibble(z_snp))
z_snp <- z_snp[z_snp$rsid %in% region_snps,,drop=F]

save.image("POLK_locus_image.RData")

#load("POLK_locus_image.RData")

coloc_res <- rep(NA, length(region_genes))
names(coloc_res) <- region_genes

for (i in 1:length(region_genes)){
  gene <- region_genes[i]
  
  gene_id <- unlist(strsplit(a$id[match(gene, a$genename)], "[.]"))[1]
  eqtl_current <- eqtl[grep(gene_id, eqtl$gene_id),,drop=F]
  
  #drop variants with duplicated records
  eqtl_current <-  eqtl_current[!(eqtl_current$rs_id_dbSNP151_GRCh38p7 %in% names(which(table(eqtl_current$rs_id_dbSNP151_GRCh38p7)>1))),,drop=F]
  
  #drop invariant SNPs (standard error=0)
  eqtl_current <- eqtl_current[!is.na(eqtl_current$slope_se),]
  
  D1_eqtl <- list(snp=eqtl_current$rs_id_dbSNP151_GRCh38p7,
                  position=1:nrow(eqtl_current),
                  type="quant",
                  sdY=1,
                  beta=eqtl_current$slope,
                  varbeta=eqtl_current$slope_se^2)
  
  z_snp_index <- match(D1_eqtl$snp, z_snp$rsid)
  
  D2_gwas <- list(snp=D1_eqtl$snp,
                  position=1:length(D1_eqtl$snp),
                  type="quant",
                  sdY=1,
                  beta=z_snp$ES[z_snp_index],
                  varbeta=z_snp$SE[z_snp_index]^2)
  
  coloc_res_current <- coloc.abf(dataset1=D1_eqtl,
                                 dataset2=D2_gwas)
  
  coloc_res[i] <- coloc_res_current$summary["PP.H4.abf"]
}
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
5.43e-137 1.12e-137  7.89e-01  1.63e-01  4.83e-02 
[1] "PP abf for shared variant: 4.83%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
1.61e-137 5.22e-137  2.34e-01  7.59e-01  7.63e-03 
[1] "PP abf for shared variant: 0.763%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
1.68e-194 6.88e-137  2.44e-58  1.00e+00  1.07e-59 
[1] "PP abf for shared variant: 1.07e-57%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
5.01e-137 1.64e-137  7.28e-01  2.38e-01  3.43e-02 
[1] "PP abf for shared variant: 3.43%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
1.73e-137 2.61e-137  2.51e-01  3.79e-01  3.70e-01 
[1] "PP abf for shared variant: 37%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
4.11e-137 2.43e-137  5.96e-01  3.53e-01  5.06e-02 
[1] "PP abf for shared variant: 5.06%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
1.58e-137 5.21e-137  2.30e-01  7.57e-01  1.31e-02 
[1] "PP abf for shared variant: 1.31%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
4.24e-137 2.30e-137  6.16e-01  3.34e-01  4.92e-02 
[1] "PP abf for shared variant: 4.92%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
1.40e-121 1.18e-120  1.05e-01  8.90e-01  4.29e-03 
[1] "PP abf for shared variant: 0.429%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 8.89e-96  8.63e-96  4.94e-01  4.79e-01  2.73e-02 
[1] "PP abf for shared variant: 2.73%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 7.43e-48  2.50e-47  2.27e-01  7.65e-01  7.82e-03 
[1] "PP abf for shared variant: 0.782%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 5.48e-26  1.93e-16  2.83e-10  1.00e+00  3.60e-10 
[1] "PP abf for shared variant: 3.6e-08%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
    0.152     0.108     0.423     0.299     0.018 
[1] "PP abf for shared variant: 1.8%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
  0.13400   0.21800   0.24300   0.39500   0.00946 
[1] "PP abf for shared variant: 0.946%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
   0.3280    0.1590    0.3330    0.1620    0.0171 
[1] "PP abf for shared variant: 1.71%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
 7.85e-06  5.59e-01  6.15e-06  4.38e-01  3.11e-03 
[1] "PP abf for shared variant: 0.311%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
  0.26000   0.69500   0.01130   0.03000   0.00347 
[1] "PP abf for shared variant: 0.347%"
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
  0.44900   0.51800   0.01260   0.01450   0.00562 
[1] "PP abf for shared variant: 0.562%"
round(-sort(-coloc_res),3)
      POLK    ANKDD1B AC113404.1       ENC1    FAM169A      F2RL2 
     0.370      0.051      0.049      0.048      0.034      0.027 
     CRHBP      ZBED3       POC5      AGGF1        F2R       GFM2 
     0.018      0.017      0.013      0.009      0.008      0.008 
     AP3B1     IQGAP2      WDR41      PDE8B      F2RL1       NSA2 
     0.006      0.004      0.003      0.003      0.000      0.000 

FOCUS

I’m not sure why the “NULL” model is listed twice.

library(tools)
library(RSQLite)

#prepare summary stats

load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))

z_snp <- z_snp[match(region_snps, z_snp$id),]

chr <- unlist(strsplit(region_tag, "_"))[1]

ld_snpinfo <- as.data.frame(data.table::fread(paste0("/project2/mstephens/wcrouse/UKB_analysis_known_anno/ukb-d-30780_irnt/Liver_nolnc_corrected/ukb-d-30780_irnt_Liver_ctwas_ld_R_chr", chr, ".txt")))

ld_snpinfo <- lapply(ld_snpinfo$RDS_file[ld_snpinfo$stop>min(a$pos) & ld_snpinfo$start<max(a$pos)], function(x){as.data.frame(data.table::fread(paste0(file_path_sans_ext(x), ".Rvar")))})

ld_snpinfo <- do.call(rbind, ld_snpinfo)

z_snp <- cbind(z_snp, ld_snpinfo[match(z_snp$id, ld_snpinfo$id), c("chrom", "pos")])
z_snp <- z_snp[,c("chrom", "id", "pos", "A1", "A2", "z", "ss")]
colnames(z_snp) <- c("CHR", "SNP", "BP", "A1", "A2", "Z", "N")

write.table(z_snp, file="/project2/mstephens/wcrouse/LDL_focus/LDL_POLK_locus.sumstats", sep="\t", quote=F, row.names=F, col.names=T)

#subset weights
weight <- "/project2/mstephens/wcrouse/predictdb/mashr_Liver_nolnc.db"
output_dir <- "/project2/mstephens/wcrouse/LDL_focus/"

weight_stem <- rev(unlist(strsplit(file_path_sans_ext(weight), "/")))[1]
  
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, weight)
query <- function(...) RSQLite::dbGetQuery(db, ...)
weights_table <- query("select * from weights")
extra_table <- query("select * from extra")
dbDisconnect(db)

weights_table <- weights_table[weights_table$gene %in% region_geneid,,drop=F]
extra_table <- extra_table[extra_table$gene %in% region_geneid,,drop=F]

weight_info = read.table(gzfile(paste0(file_path_sans_ext(weight), ".txt.gz")), header = T)
weight_info <- weight_info[weight_info$GENE %in% extra_table$gene,]

if (file.exists(paste0(output_dir, weight_stem, "_POLK_temp.db"))){
  file.remove(paste0(output_dir, weight_stem, "_POLK_temp.db"))
} 
[1] TRUE
db <- dbConnect(RSQLite::SQLite(), paste0(output_dir, weight_stem, "_POLK_temp.db"))
dbWriteTable(db, "extra", extra_table)
dbWriteTable(db, "weights", weights_table)
dbDisconnect(db)

if (file.exists(paste0(output_dir, weight_stem, "_POLK_temp.txt.gz"))){
  file.remove(paste0(output_dir, weight_stem, "_POLK_temp.txt.gz"))
} 
[1] TRUE
weight_info_gz <- gzfile(paste0(output_dir, weight_stem, "_POLK_temp.txt.gz"), "w")
write.table(weight_info, weight_info_gz, sep=" ", quote=F, row.names=F, col.names=T)
close(weight_info_gz)

#run focus (in terminal)
#focus import mashr_Liver_nolnc_POLK_temp.db predixcan --tissue liver --name liver --assay rnaseq --output Liver_nolnc_POLK_focus

#focus finemap /project2/mstephens/wcrouse/LDL_focus/LDL_POLK_locus.sumstats /project2/mstephens/wcrouse/UKB_LD_bed_0.1/ukb_chr5.b38.bed /project2/mstephens/wcrouse/LDL_focus/Liver_nolnc_POLK_focus.db --chr 5 --out LDL_POLK_locus

#report focus results
focus_results <- as.data.frame(data.table::fread("/project2/mstephens/wcrouse/LDL_focus/LDL_POLK_locus.focus.tsv"))

focus_results <- focus_results[order(-focus_results$pip),]
focus_results[,c("mol_name", "pip")]
     mol_name      pip
1        POLK 1.00e+00
9        NULL 9.91e-01
2     ANKDD1B 7.98e-01
3        POC5 5.35e-01
10     IQGAP2 3.17e-03
11 AC113404.1 1.72e-03
12      F2RL1 1.63e-03
13      ZBED3 7.48e-04
14        F2R 6.68e-04
15      CRHBP 1.87e-04
16      F2RL2 1.84e-04
17      AGGF1 1.77e-04
18      WDR41 1.70e-04
19      PDE8B 1.68e-04
4        NSA2 4.33e-05
5        GFM2 2.13e-05
6     FAM169A 2.05e-05
7        ENC1 2.00e-05
8        NULL 1.74e-57
save.image("POLK_locus_image_2.RData")

SMR

region_tag <- "5_45"

a <- ctwas_res[ctwas_res$region_tag==region_tag,]

region_snps <- a$id[a$type=="SNP"]
region_genes <- a$genename[a$type=="gene"]
region_geneid <- a$id[a$type=="gene"]

####################
#load eQTL data and subset to region
eqtl <- as.data.frame(data.table::fread("/project2/mstephens/wcrouse/gtex/GTEx_Liver.allpairs_processed.txt.gz", header = T))
eqtl <- eqtl[eqtl$rs_id_dbSNP151_GRCh38p7 %in% region_snps,,drop=F]

#subset to genes analyzed by cTWAS
eqtl$gene_id_trimmed <- sapply(eqtl$gene_id, function(x){unlist(strsplit(x, "[.]"))[1]})
eqtl <- eqtl[eqtl$gene_id_trimmed %in% sapply(region_geneid, function(x){unlist(strsplit(x, "[.]"))[1]}),,drop=F]

#drop duplicated gene+variant combinations
eqtl$record_id <- paste0(eqtl$gene_id, "_", eqtl$rs_id_dbSNP151_GRCh38p7)
eqtl <-  eqtl[!(eqtl$record_id %in% names(which(table(eqtl$record_id)>1))),,drop=F]

#output file for SMR
eqtl_out <- cbind(eqtl[,c("gene_id", "rs_id_dbSNP151_GRCh38p7")],
              100,
              eqtl[,c("pval_nominal", "slope")])

write.table(eqtl_out, file="/project2/mstephens/wcrouse/LDL_smr/LDL_POLK_locus.eqtl", sep="\t", quote=F, row.names=F, col.names=F)

# generate and update .esi and .epi
# .esi (chr, SNP, 0, position, the effect allele, the other allele and frequency)
# .epi (chr, probe ID, 0, position, gene ID and gene orientation)

esi <- eqtl[,c("rs_id_dbSNP151_GRCh38p7","alt","ref")]
esi <- cbind(esi,
             a[match(esi$rs_id_dbSNP151_GRCh38p7, a$id), c("chrom","pos")],
             0, NA)
rownames(esi) <- NULL
esi <- esi[,c("chrom","rs_id_dbSNP151_GRCh38p7","0","pos","alt","ref","NA")]

write.table(esi, file="/project2/mstephens/wcrouse/LDL_smr/LDL_POLK_locus.esi_temp", sep="\t", quote=F, row.names=F, col.names=F)

epi <- cbind(chr, a$id[a$type=="gene"], 0, a$pos[a$type=="gene"], a$id[a$type=="gene"], "+")
write.table(epi, file="/project2/mstephens/wcrouse/LDL_smr/LDL_POLK_locus.epi_temp", sep="\t", quote=F, row.names=F, col.names=F)

####################

#load GWAS summary statistics and subset to region
z_snp <- VariantAnnotation::readVcf("/project2/compbio/gwas_summary_statistics/ukbb_neale_v3/ukb-d-30780_irnt.vcf")
z_snp <- as.data.frame(gwasvcf::vcf_to_tibble(z_snp))
z_snp <- z_snp[z_snp$rsid %in% region_snps,,drop=F]


z_snp <- cbind(z_snp[,c("rsid", "ALT", "REF")],
              NA,
              z_snp[,c("ES", "SE", "LP", "SS")])
z_snp$LP <- 10^-z_snp$LP

colnames(z_snp) <- c("SNP", "A1", "A2", "freq", "b", "se", "p", "N")

write.table(z_snp, file="/project2/mstephens/wcrouse/LDL_smr/LDL_POLK_locus.SMRsumstats", sep="\t", quote=F, row.names=F, col.names=T)

####################

#prepare besd format (in terminal)
#~/causalTWAS/smr_Linux --eqtl-summary /project2/mstephens/wcrouse/LDL_smr/LDL_POLK_locus.eqtl --fastqtl-nominal-format --make-besd --out LDL_POLK_locus
#~/causalTWAS/smr_Linux --beqtl-summary /project2/mstephens/wcrouse/LDL_smr/LDL_POLK_locus --update-esi /project2/mstephens/wcrouse/LDL_smr/LDL_POLK_locus.esi_temp
#~/causalTWAS/smr_Linux --beqtl-summary /project2/mstephens/wcrouse/LDL_smr/LDL_POLK_locus --update-epi /project2/mstephens/wcrouse/LDL_smr/LDL_POLK_locus.epi_temp

#run SMR (in terminal)
#~/causalTWAS/smr_Linux --bfile /project2/mstephens/wcrouse/UKB_LD_bed_0.1/ukb_chr5.b38 --gwas-summary /project2/mstephens/wcrouse/LDL_smr/LDL_POLK_locus.SMRsumstats --beqtl-summary /project2/mstephens/wcrouse/LDL_smr/LDL_POLK_locus --out LDL_POLK_locus --peqtl-smr 5e-2

####################

smr_results <- as.data.frame(data.table::fread("/project2/mstephens/wcrouse/LDL_smr/LDL_POLK_locus.smr"))
smr_results$Gene <- a$genename[match(smr_results$probeID, a$id)]
smr_results[order(smr_results$p_SMR),!(colnames(smr_results) %in% c("probeID","ProbeChr","Probe_bp","topSNP_chr","topSNP_bp", "A1", "A2", "Freq", "b_GWAS","se_GWAS","b_eQTL","se_eQTL", "b_SMR", "se_SMR"))]
         Gene      topSNP       p_GWAS       p_eQTL        p_SMR
7        POC5    rs253387 1.762788e-27 1.492120e-06 0.0000108333
5        POLK   rs7717505 3.066197e-68 3.501330e-04 0.0004610693
6     ANKDD1B  rs56009820 1.071297e-06 5.604621e-04 0.0048508060
12      F2RL1   rs2243003 1.865993e-02 1.504948e-11 0.0263386100
4     FAM169A   rs6878227 5.858143e-03 1.426750e-03 0.0370618900
1        ENC1 rs147462655 5.439388e-03 9.207157e-03 0.0573577500
3        NSA2  rs79669494 8.024168e-02 2.796510e-40 0.0828572800
9      IQGAP2    rs152339 1.103199e-01 1.042450e-05 0.1332804000
18      AP3B1   rs4133339 1.068799e-01 2.911100e-03 0.1562575000
16      PDE8B  rs34802194 1.874200e-01 1.115296e-13 0.1942915000
17      WDR41  rs73141052 2.867603e-01 1.025611e-05 0.3004444000
15      ZBED3  rs16874849 3.620704e-01 4.024459e-03 0.3849290000
13      CRHBP   rs2681669 5.038300e-01 7.801387e-04 0.5120631000
10      F2RL2    rs458661 5.097802e-01 3.599041e-04 0.5168476000
11        F2R    rs250742 5.412003e-01 1.432449e-05 0.5451419000
2        GFM2  rs17647023 6.463906e-01 5.567644e-06 0.6480498000
14      AGGF1  rs35359101 7.367107e-01 8.234453e-05 0.7376298000
8  AC113404.1   rs6882703 7.472794e-01 2.620308e-04 0.7482301000
      p_HEIDI nsnp_HEIDI
7  0.06184058          3
5  0.45160630          6
6          NA         NA
12 0.85453640          7
4          NA         NA
1          NA         NA
3  0.07907105          9
9  0.08843025          4
18         NA         NA
16 0.69012420         16
17         NA         NA
15         NA         NA
13         NA         NA
10         NA         NA
11 0.23430950          3
2          NA         NA
14         NA         NA
8          NA         NA

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
[1] C

attached base packages:
 [1] tools     grid      parallel  stats4    stats     graphics  grDevices
 [8] utils     datasets  methods   base     

other attached packages:
 [1] RSQLite_2.2.7        coloc_3.2-1          Gviz_1.28.3         
 [4] ctwas_0.1.34         forcats_0.4.0        stringr_1.4.0       
 [7] dplyr_1.0.9          purrr_0.3.4          readr_1.4.0         
[10] tidyr_1.1.0          tidyverse_1.3.0      tibble_3.1.7        
[13] GenomicRanges_1.36.0 GenomeInfoDb_1.20.0  IRanges_2.18.1      
[16] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
[19] readxl_1.3.1         WebGestaltR_0.4.4    disgenet2r_0.99.2   
[22] enrichR_3.0          cowplot_1.1.1        ggplot2_3.3.5       

loaded via a namespace (and not attached):
  [1] utf8_1.2.1                  R.utils_2.9.0              
  [3] tidyselect_1.1.2            AnnotationDbi_1.46.0       
  [5] htmlwidgets_1.3             BiocParallel_1.18.0        
  [7] munsell_0.5.0               codetools_0.2-16           
  [9] withr_2.4.1                 colorspace_1.4-1           
 [11] Biobase_2.44.0              knitr_1.23                 
 [13] rstudioapi_0.10             leaps_3.1                  
 [15] robustbase_0.93-5           labeling_0.3               
 [17] git2r_0.26.1                pgenlibr_0.3.1             
 [19] GenomeInfoDbData_1.2.1      bit64_4.0.5                
 [21] farver_2.1.0                rprojroot_2.0.2            
 [23] vctrs_0.4.1                 generics_0.0.2             
 [25] xfun_0.8                    biovizBase_1.32.0          
 [27] R6_2.5.0                    doParallel_1.0.16          
 [29] ggbeeswarm_0.6.0            AnnotationFilter_1.8.0     
 [31] bitops_1.0-6                cachem_1.0.5               
 [33] reshape_0.8.8               DelayedArray_0.10.0        
 [35] assertthat_0.2.1            promises_1.0.1             
 [37] scales_1.2.0                nnet_7.3-12                
 [39] beeswarm_0.2.3              gtable_0.3.0               
 [41] Cairo_1.5-12.2              ensembldb_2.8.0            
 [43] workflowr_1.6.2             rlang_1.0.2                
 [45] splines_3.6.1               rtracklayer_1.44.0         
 [47] lazyeval_0.2.2              acepack_1.4.1              
 [49] dichromat_2.0-0             broom_0.7.9                
 [51] checkmate_2.1.0             inline_0.3.15              
 [53] yaml_2.2.0                  reshape2_1.4.3             
 [55] modelr_0.1.8                snpStats_1.34.0            
 [57] GenomicFeatures_1.36.3      backports_1.1.4            
 [59] httpuv_1.5.1                Hmisc_4.2-0                
 [61] gwasvcf_0.1.0               logging_0.10-108           
 [63] ellipsis_0.3.2              RColorBrewer_1.1-2         
 [65] Rcpp_1.0.6                  plyr_1.8.4                 
 [67] base64enc_0.1-3             progress_1.2.2             
 [69] zlibbioc_1.30.0             RCurl_1.98-1.1             
 [71] prettyunits_1.0.2           rpart_4.1-15               
 [73] SummarizedExperiment_1.14.1 haven_2.3.1                
 [75] ggrepel_0.9.1               cluster_2.1.0              
 [77] fs_1.5.2                    apcluster_1.4.8            
 [79] magrittr_2.0.3              data.table_1.14.0          
 [81] reprex_0.3.0                mvtnorm_1.0-11             
 [83] whisker_0.3-2               ProtGenerics_1.16.0        
 [85] matrixStats_0.57.0          hms_1.1.0                  
 [87] evaluate_0.14               XML_3.98-1.20              
 [89] BMA_3.18.12                 gridExtra_2.3              
 [91] compiler_3.6.1              crayon_1.4.1               
 [93] R.oo_1.22.0                 htmltools_0.5.2            
 [95] pcaPP_1.9-73                later_0.8.0                
 [97] Formula_1.2-3               rrcov_1.4-7                
 [99] lubridate_1.7.4             DBI_1.1.1                  
[101] dbplyr_1.4.2                Matrix_1.5-3               
[103] cli_3.3.0                   R.methodsS3_1.7.1          
[105] igraph_1.3.5                pkgconfig_2.0.3            
[107] GenomicAlignments_1.20.1    foreign_0.8-71             
[109] xml2_1.3.2                  foreach_1.5.1              
[111] svglite_1.2.2               vipor_0.4.5                
[113] rngtools_1.5                XVector_0.24.0             
[115] rvest_0.3.5                 doRNG_1.8.2                
[117] VariantAnnotation_1.30.1    digest_0.6.20              
[119] Biostrings_2.52.0           rmarkdown_1.13             
[121] cellranger_1.1.0            htmlTable_1.13.1           
[123] gdtools_0.1.9               curl_3.3                   
[125] Rsamtools_2.0.0             rjson_0.2.20               
[127] lifecycle_1.0.1             jsonlite_1.6               
[129] BSgenome_1.52.0             fansi_0.5.0                
[131] pillar_1.7.0                lattice_0.20-38            
[133] ggrastr_0.2.3               fastmap_1.1.0              
[135] httr_1.4.1                  DEoptimR_1.0-8             
[137] survival_2.44-1.1           glue_1.6.2                 
[139] iterators_1.0.13            bit_4.0.4                  
[141] stringi_1.4.3               blob_1.2.1                 
[143] latticeExtra_0.6-28         memoise_2.0.0