Last updated: 2021-11-12

Checks: 7 0

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b16d97c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


working directory clean

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30780_irnt_Liver_SORT1_known.Rmd) and HTML (docs/ukb-d-30780_irnt_Liver_SORT1_known.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd b16d97c wesleycrouse 2021-11-12 sort1 additional
html e6dc4d4 wesleycrouse 2021-11-12 LDL sort1
Rmd d7c5250 wesleycrouse 2021-11-12 SORT1 analysis

Overview

These are the results of a ctwas analysis of the UK Biobank trait LDL direct using Liver_SORT1 gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30780_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver_SORT1 eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10902
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1071  768  652  417  494  611  548  408  405  434  634  629  195  365  354 
  16   17   18   19   20   21   22 
 526  663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8365438

Load ctwas results

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0097361600 0.0001740824 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
     gene       snp 
44.804384  9.714547 
#report sample size
print(sample_size)
[1] 343621
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10902 8696600
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.01383996 0.04280033 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.02576947 0.33525503

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
         genename region_tag susie_pip        mu2          PVE          z
12008         HPR      16_38 1.0000000  209.84524 6.106880e-04 -17.240252
5563        ABCG8       2_27 0.9999667  313.61660 9.126513e-04 -20.293982
3721       INSIG2       2_69 0.9997835   62.50606 1.818647e-04  -9.364196
12687 RP4-781K5.7      1_121 0.9997323  203.71281 5.926828e-04 -15.108415
5544        CNIH4      1_114 0.9996225   48.38269 1.407493e-04   6.721857
5991        FADS1      11_34 0.9995362  160.57923 4.670982e-04  12.825883
10657      TRIM39       6_24 0.9986852   72.25254 2.099916e-04   8.848422
1999        PRKD2      19_33 0.9960497   32.48400 9.416095e-05   5.289849
7410        ABCA1       9_53 0.9953955   70.36807 2.038410e-04   7.982017
9390         GAS6      13_62 0.9881812   71.35449 2.052004e-04  -8.923688
1597         PLTP      20_28 0.9877966   61.56981 1.769928e-04  -5.732491
12715       SORT1       1_67 0.9873012 1681.66147 4.831795e-03 -41.793474
8531         TNKS       8_12 0.9843992   73.76708 2.113266e-04  11.026034
7040        INHBB       2_70 0.9822550   74.04749 2.116678e-04  -8.518936
2092          SP4       7_19 0.9770594  102.38295 2.911179e-04  10.693191
4704        DDX56       7_32 0.9746378   58.70502 1.665094e-04   9.446271
6093      CSNK1G3       5_75 0.9746220   84.22981 2.389034e-04   9.116291
6996         ACP6       1_73 0.9686707   25.67817 7.238700e-05   4.648193
6220         PELO       5_31 0.9671689   72.14660 2.030666e-04   8.426917
8865         FUT2      19_33 0.9654285  104.78618 2.944045e-04 -11.927107
233        NPC1L1       7_32 0.9639516   89.79973 2.519130e-04 -10.761931
11790      CYP2A6      19_28 0.9618743   32.00395 8.958642e-05   5.407028
3247         KDSR      18_35 0.9552673   24.68796 6.863260e-05  -4.526287
3562       ACVR1C       2_94 0.9388258   26.34290 7.197288e-05  -4.737778
6778         PKN3       9_66 0.9359865   47.70775 1.299507e-04  -6.620563
1114         SRRT       7_62 0.9266916   33.00835 8.901832e-05   5.547715
6391       TTC39B       9_13 0.9259989   23.04988 6.211543e-05  -4.287139
6957         USP1       1_39 0.8944443  253.87996 6.608487e-04  16.258211
3300     C10orf88      10_77 0.8796486   35.77485 9.158142e-05  -6.634448
9062      KLHDC7A       1_13 0.8184864   22.59315 5.381564e-05   4.124187
9072      SPTY2D1      11_13 0.8096215   33.54398 7.903455e-05  -5.557123
8931      CRACR2B       11_1 0.8018274   22.03492 5.141771e-05  -3.989585
8418         POP7       7_62 0.8015962   40.08302 9.350534e-05  -5.845258
      num_eqtl
12008        2
5563         1
3721         3
12687        1
5544         2
5991         2
10657        3
1999         2
7410         1
9390         1
1597         1
12715        1
8531         2
7040         1
2092         1
4704         2
6093         1
6996         2
6220         2
8865         1
233          1
11790        1
3247         1
3562         2
6778         1
1114         2
6391         3
6957         1
3300         2
9062         1
9072         1
8931         1
8418         1

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
           genename region_tag    susie_pip       mu2          PVE
12715         SORT1       1_67 9.873012e-01 1681.6615 4.831795e-03
4435          PSRC1       1_67 2.464714e-02 1673.2741 1.200201e-04
5436          PSMA5       1_67 7.880027e-03 1212.6447 2.780876e-05
4562          SRPK2       7_65 0.000000e+00  518.4576 0.000000e+00
6970        ATXN7L2       1_67 9.823180e-03  367.0754 1.049368e-05
5563          ABCG8       2_27 9.999667e-01  313.6166 9.126513e-04
11364 RP11-325F22.2       7_65 0.000000e+00  297.6048 0.000000e+00
781             PVR      19_32 0.000000e+00  295.7017 0.000000e+00
6957           USP1       1_39 8.944443e-01  253.8800 6.608487e-04
4317        ANGPTL3       1_39 1.149945e-01  249.6543 8.354808e-05
11684 RP11-136O12.2       8_83 3.004591e-03  235.9050 2.062732e-06
3441           POLK       5_45 4.086732e-03  217.4555 2.586228e-06
12008           HPR      16_38 1.000000e+00  209.8452 6.106880e-04
12687   RP4-781K5.7      1_121 9.997323e-01  203.7128 5.926828e-04
5431          SYPL2       1_67 1.643337e-02  198.5261 9.494332e-06
5377         GEMIN7      19_32 0.000000e+00  193.9781 0.000000e+00
5991          FADS1      11_34 9.995362e-01  160.5792 4.670982e-04
5240          NLRC5      16_31 8.890738e-02  159.6861 4.131667e-05
538          ZNF112      19_32 0.000000e+00  147.0610 0.000000e+00
11245    AC067959.1       2_13 3.200605e-09  145.4737 1.354993e-12
                z num_eqtl
12715 -41.7934744        1
4435  -41.6873361        1
5436  -35.4138115        2
4562   -1.4622459        1
6970  -19.2427445        2
5563  -20.2939818        1
11364   0.9704489        2
781   -10.0782525        2
6957   16.2582110        1
4317   16.1322287        1
11684  14.4041325        1
3441   17.5157647        1
12008 -17.2402523        2
12687 -15.1084154        1
5431  -14.1478749        2
5377   10.9432287        2
5991   12.8258829        2
5240   11.8602110        1
538    10.3860543        1
11245  -2.3287171        1

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
         genename region_tag susie_pip        mu2          PVE          z
12715       SORT1       1_67 0.9873012 1681.66147 0.0048317954 -41.793474
5563        ABCG8       2_27 0.9999667  313.61660 0.0009126513 -20.293982
6957         USP1       1_39 0.8944443  253.87996 0.0006608487  16.258211
12008         HPR      16_38 1.0000000  209.84524 0.0006106880 -17.240252
12687 RP4-781K5.7      1_121 0.9997323  203.71281 0.0005926828 -15.108415
5991        FADS1      11_34 0.9995362  160.57923 0.0004670982  12.825883
8865         FUT2      19_33 0.9654285  104.78618 0.0002944045 -11.927107
2092          SP4       7_19 0.9770594  102.38295 0.0002911179  10.693191
233        NPC1L1       7_32 0.9639516   89.79973 0.0002519130 -10.761931
6093      CSNK1G3       5_75 0.9746220   84.22981 0.0002389034   9.116291
7040        INHBB       2_70 0.9822550   74.04749 0.0002116678  -8.518936
8531         TNKS       8_12 0.9843992   73.76708 0.0002113266  11.026034
10657      TRIM39       6_24 0.9986852   72.25254 0.0002099916   8.848422
9390         GAS6      13_62 0.9881812   71.35449 0.0002052004  -8.923688
7410        ABCA1       9_53 0.9953955   70.36807 0.0002038410   7.982017
6220         PELO       5_31 0.9671689   72.14660 0.0002030666   8.426917
3721       INSIG2       2_69 0.9997835   62.50606 0.0001818647  -9.364196
1597         PLTP      20_28 0.9877966   61.56981 0.0001769928  -5.732491
4704        DDX56       7_32 0.9746378   58.70502 0.0001665094   9.446271
5544        CNIH4      1_114 0.9996225   48.38269 0.0001407493   6.721857
      num_eqtl
12715        1
5563         1
6957         1
12008        2
12687        1
5991         2
8865         1
2092         1
233          1
6093         1
7040         1
8531         2
10657        3
9390         1
7410         1
6220         2
3721         3
1597         1
4704         2
5544         2

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag    susie_pip       mu2          PVE
12715         SORT1       1_67 9.873012e-01 1681.6615 4.831795e-03
4435          PSRC1       1_67 2.464714e-02 1673.2741 1.200201e-04
5436          PSMA5       1_67 7.880027e-03 1212.6447 2.780876e-05
5563          ABCG8       2_27 9.999667e-01  313.6166 9.126513e-04
6970        ATXN7L2       1_67 9.823180e-03  367.0754 1.049368e-05
3441           POLK       5_45 4.086732e-03  217.4555 2.586228e-06
12008           HPR      16_38 1.000000e+00  209.8452 6.106880e-04
6957           USP1       1_39 8.944443e-01  253.8800 6.608487e-04
4317        ANGPTL3       1_39 1.149945e-01  249.6543 8.354808e-05
12687   RP4-781K5.7      1_121 9.997323e-01  203.7128 5.926828e-04
9978        ANKDD1B       5_45 4.085134e-03  144.6236 1.719355e-06
11684 RP11-136O12.2       8_83 3.004591e-03  235.9050 2.062732e-06
5431          SYPL2       1_67 1.643337e-02  198.5261 9.494332e-06
1930        PPP1R37      19_32 0.000000e+00  125.3261 0.000000e+00
5991          FADS1      11_34 9.995362e-01  160.5792 4.670982e-04
7955           FEN1      11_34 6.376688e-03  145.1988 2.694501e-06
4507          FADS2      11_34 6.376688e-03  145.1988 2.694501e-06
4112          YIPF2       19_9 2.205268e-09  126.5638 8.122524e-13
8865           FUT2      19_33 9.654285e-01  104.7862 2.944045e-04
5240          NLRC5      16_31 8.890738e-02  159.6861 4.131667e-05
              z num_eqtl
12715 -41.79347        1
4435  -41.68734        1
5436  -35.41381        2
5563  -20.29398        1
6970  -19.24274        2
3441   17.51576        1
12008 -17.24025        2
6957   16.25821        1
4317   16.13223        1
12687 -15.10842        1
9978   15.06698        2
11684  14.40413        1
5431  -14.14787        2
1930  -12.89212        2
5991   12.82588        2
7955   12.07264        1
4507   12.07264        1
4112   11.94206        1
8865  -11.92711        1
5240   11.86021        1

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.0199046
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag    susie_pip       mu2          PVE
12715         SORT1       1_67 9.873012e-01 1681.6615 4.831795e-03
4435          PSRC1       1_67 2.464714e-02 1673.2741 1.200201e-04
5436          PSMA5       1_67 7.880027e-03 1212.6447 2.780876e-05
5563          ABCG8       2_27 9.999667e-01  313.6166 9.126513e-04
6970        ATXN7L2       1_67 9.823180e-03  367.0754 1.049368e-05
3441           POLK       5_45 4.086732e-03  217.4555 2.586228e-06
12008           HPR      16_38 1.000000e+00  209.8452 6.106880e-04
6957           USP1       1_39 8.944443e-01  253.8800 6.608487e-04
4317        ANGPTL3       1_39 1.149945e-01  249.6543 8.354808e-05
12687   RP4-781K5.7      1_121 9.997323e-01  203.7128 5.926828e-04
9978        ANKDD1B       5_45 4.085134e-03  144.6236 1.719355e-06
11684 RP11-136O12.2       8_83 3.004591e-03  235.9050 2.062732e-06
5431          SYPL2       1_67 1.643337e-02  198.5261 9.494332e-06
1930        PPP1R37      19_32 0.000000e+00  125.3261 0.000000e+00
5991          FADS1      11_34 9.995362e-01  160.5792 4.670982e-04
7955           FEN1      11_34 6.376688e-03  145.1988 2.694501e-06
4507          FADS2      11_34 6.376688e-03  145.1988 2.694501e-06
4112          YIPF2       19_9 2.205268e-09  126.5638 8.122524e-13
8865           FUT2      19_33 9.654285e-01  104.7862 2.944045e-04
5240          NLRC5      16_31 8.890738e-02  159.6861 4.131667e-05
              z num_eqtl
12715 -41.79347        1
4435  -41.68734        1
5436  -35.41381        2
5563  -20.29398        1
6970  -19.24274        2
3441   17.51576        1
12008 -17.24025        2
6957   16.25821        1
4317   16.13223        1
12687 -15.10842        1
9978   15.06698        2
11684  14.40413        1
5431  -14.14787        2
1930  -12.89212        2
5991   12.82588        2
7955   12.07264        1
4507   12.07264        1
4112   11.94206        1
8865  -11.92711        1
5240   11.86021        1

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]
report_cols_region <- report_cols[!(report_cols %in% c("num_eqtl"))]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols_region])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 1_67"
      genename region_tag   susie_pip         mu2          PVE           z
4434      VAV3       1_67 0.065099832   24.320182 4.607517e-06  -2.1042470
1073  SLC25A24       1_67 0.008611429    6.469190 1.621233e-07   0.9234769
6966   FAM102B       1_67 0.007746337    6.075857 1.369696e-07  -1.1378586
3009    STXBP3       1_67 0.017008399   18.337108 9.076420e-07   2.9982594
3438     GPSM2       1_67 0.008080202    9.107535 2.141625e-07  -1.9348222
3437     CLCC1       1_67 0.008069139   11.438836 2.686144e-07   2.5660415
10286    TAF13       1_67 0.010760437    9.452750 2.960114e-07  -1.5591453
10955 TMEM167B       1_67 0.013756111   11.324506 4.533517e-07  -1.5270485
315       SARS       1_67 0.014473303   94.891762 3.996837e-06   9.5234950
12715    SORT1       1_67 0.987301191 1681.661467 4.831795e-03 -41.7934744
5436     PSMA5       1_67 0.007880027 1212.644656 2.780876e-05 -35.4138115
5431     SYPL2       1_67 0.016433368  198.526066 9.494332e-06 -14.1478749
6970   ATXN7L2       1_67 0.009823180  367.075403 1.049368e-05 -19.2427445
4435     PSRC1       1_67 0.024647145 1673.274100 1.200201e-04 -41.6873361
8615  CYB561D1       1_67 0.063213063  127.989209 2.354510e-05  10.6827516
9259    AMIGO1       1_67 0.018715231   27.987319 1.524322e-06  -3.9630816
6445     GPR61       1_67 0.007845449   23.052571 5.263292e-07   4.2425343
587      GNAI3       1_67 0.054241321   31.679097 5.000614e-06  -3.8408490
7977     GSTM4       1_67 0.014374335   30.871560 1.291417e-06   4.7825961
10821    GSTM2       1_67 0.008660380   14.362332 3.619780e-07   2.9726102
4430     GSTM1       1_67 0.018905914   29.235760 1.608542e-06   4.2590068
4433     GSTM3       1_67 0.007854604   20.899567 4.777293e-07  -3.9546683
4432     GSTM5       1_67 0.014116282   14.798554 6.079389e-07   2.3798227

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "Region: 2_27"
        genename region_tag    susie_pip        mu2          PVE
12661  LINC01126       2_27 1.311448e-05  17.794481 6.791362e-10
2977       THADA       2_27 1.774105e-06   8.185093 4.225938e-11
6208     PLEKHH2       2_27 6.426620e-06  16.108349 3.012687e-10
11022 C1GALT1C1L       2_27 3.979730e-06  24.312863 2.815853e-10
4930    DYNC2LI1       2_27 8.642848e-07   8.220899 2.067743e-11
5563       ABCG8       2_27 9.999667e-01 313.616602 9.126513e-04
4943      LRPPRC       2_27 2.558980e-06  12.554554 9.349503e-11
                 z
12661   0.91913800
2977   -2.34643541
6208   -2.96266114
11022   3.06095256
4930   -0.02538894
5563  -20.29398177
4943   -0.91853212

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "Region: 5_45"
          genename region_tag   susie_pip        mu2          PVE
8340          ENC1       5_45 0.001035337   5.039858 1.518520e-08
7307          GFM2       5_45 0.001320858   6.976638 2.681778e-08
7306          NSA2       5_45 0.002589266  15.645763 1.178946e-07
10458      FAM169A       5_45 0.001100229   6.142066 1.966608e-08
3441          POLK       5_45 0.004086732 217.455496 2.586228e-06
12287 CTC-366B18.4       5_45 0.049947636 104.949701 1.525515e-05
9978       ANKDD1B       5_45 0.004085134 144.623555 1.719355e-06
6186          POC5       5_45 0.004045610  49.433109 5.819990e-07
11757   AC113404.1       5_45 0.001796895  13.679364 7.153341e-08
5717        IQGAP2       5_45 0.005523966  22.930980 3.686328e-07
7281         F2RL2       5_45 0.001225391   6.622802 2.361765e-08
9219           F2R       5_45 0.002030873  11.367751 6.718581e-08
7287         F2RL1       5_45 0.011051116  27.615939 8.881499e-07
5718         CRHBP       5_45 0.001234901   6.618927 2.378702e-08
7288         AGGF1       5_45 0.001164389   6.093567 2.064857e-08
4314         ZBED3       5_45 0.005668933  21.527896 3.551593e-07
2729         PDE8B       5_45 0.001128430   5.782481 1.898931e-08
7289         WDR41       5_45 0.001113305   5.646907 1.829553e-08
4313         AP3B1       5_45 0.004175976  18.483106 2.246225e-07
                z
8340   -0.4000089
7307   -0.4062418
7306   -2.0511430
10458  -0.9826944
3441   17.5157647
12287 -10.7732063
9978   15.0669830
6186   -7.0119331
11757   2.3250769
5717    2.5652287
7281    0.5923159
9219   -1.2065901
7287    2.2468261
5718   -0.6287222
7288   -0.5067707
4314   -1.8752115
2729    0.4406481
7289   -0.4097230
4313    1.7055957

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "Region: 16_38"
      genename region_tag   susie_pip       mu2          PVE          z
9196     CMTR2      16_38 0.005337161  17.92485 2.784109e-07   3.141964
5237     CHST4      16_38 0.002247854  13.04318 8.532411e-08   5.644697
7757     ZNF23      16_38 0.002629850  14.09995 1.079118e-07  -2.837908
6535     ZNF19      16_38 0.006317105  22.57561 4.150285e-07  -1.744263
10432      TAT      16_38 0.002454268  22.40243 1.600064e-07   5.466577
5236  MARVELD3      16_38 0.003036604  21.35162 1.886858e-07  -2.077911
366     PHLPP2      16_38 0.005090025  51.93105 7.692497e-07  -7.224850
11042   ATXN1L      16_38 0.002283953  56.92601 3.783713e-07  -8.126354
1752    ZNF821      16_38 0.002273640  46.15333 3.053831e-07   7.585503
12612   PKD1L3      16_38 0.003294069  99.19138 9.508828e-07   4.998967
12008      HPR      16_38 1.000000000 209.84524 6.106880e-04 -17.240252

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "Region: 1_39"
     genename region_tag   susie_pip        mu2          PVE          z
6956    TM2D1       1_39 0.056959707  23.071148 3.824347e-06  2.1432487
4316    KANK4       1_39 0.008972516   5.075472 1.325290e-07  0.5123038
6957     USP1       1_39 0.894444325 253.879959 6.608487e-04 16.2582110
4317  ANGPTL3       1_39 0.114994538 249.654254 8.354808e-05 16.1322287
3024    DOCK7       1_39 0.010009135  24.336915 7.088958e-07  4.4594815
3733    ATG4C       1_39 0.024969688  81.344478 5.911007e-06 -8.6477262

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip        mu2          PVE
14015     rs2495502       1_34 1.0000000  283.39830 8.247409e-04
68004     rs1042034       2_13 1.0000000  233.15915 6.785358e-04
68010      rs934197       2_13 1.0000000  415.42498 1.208963e-03
69740      rs780093       2_16 1.0000000  160.58172 4.673222e-04
365662   rs12208357      6_103 1.0000000  234.68244 6.829688e-04
402311  rs763798411       7_65 1.0000000 3396.71235 9.885055e-03
753628  rs113408695      17_39 1.0000000  143.15204 4.165986e-04
787044   rs73013176       19_9 1.0000000  237.05896 6.898849e-04
797185   rs62117204      19_32 1.0000000  825.46404 2.402251e-03
797203  rs111794050      19_32 1.0000000  763.44994 2.221779e-03
797236     rs814573      19_32 1.0000000 2204.07229 6.414254e-03
797238  rs113345881      19_32 1.0000000  772.04516 2.246793e-03
797241   rs12721109      19_32 1.0000000 1341.06609 3.902748e-03
1025547    rs964184      11_70 1.0000000  238.93791 6.953530e-04
753654    rs8070232      17_39 1.0000000  144.02681 4.191444e-04
789854    rs2285626      19_15 1.0000000  245.81587 7.153692e-04
807513   rs34507316      20_13 1.0000000   78.16426 2.274723e-04
67955    rs11679386       2_12 1.0000000  127.40733 3.707786e-04
68013      rs548145       2_13 1.0000000  656.37348 1.910167e-03
68090     rs1848922       2_13 1.0000000  229.85857 6.689305e-04
500307  rs115478735       9_70 1.0000000  302.07219 8.790854e-04
1097413   rs1800961      20_28 1.0000000   70.80780 2.060636e-04
752712    rs1801689      17_38 1.0000000   79.68987 2.319121e-04
796899   rs73036721      19_30 1.0000000   57.37649 1.669761e-04
75418    rs72800939       2_28 1.0000000   55.14435 1.604801e-04
440113    rs4738679       8_45 1.0000000  106.62314 3.102929e-04
787082  rs137992968       19_9 1.0000000  112.56039 3.275713e-04
582936    rs4937122      11_77 0.9999999   77.06485 2.242728e-04
14026    rs10888896       1_34 0.9999999  131.44541 3.825302e-04
365846   rs56393506      6_104 0.9999999   88.86741 2.586204e-04
7471     rs79598313       1_18 0.9999996   46.26124 1.346286e-04
459774   rs13252684       8_83 0.9999991  216.74642 6.307712e-04
52932     rs2807848      1_112 0.9999990   58.52565 1.703202e-04
438718  rs140753685       8_42 0.9999981   54.26658 1.579254e-04
796944   rs62115478      19_30 0.9999959  179.71675 5.230065e-04
789879    rs3794991      19_15 0.9999931  212.34134 6.179479e-04
13985    rs11580527       1_34 0.9999819   87.73827 2.553298e-04
14033      rs471705       1_34 0.9999643  207.61741 6.041831e-04
347099    rs9496567       6_67 0.9999493   38.26875 1.113634e-04
317884   rs11376017       6_13 0.9998645   64.29661 1.870895e-04
787108    rs4804149      19_10 0.9998583   45.33233 1.319067e-04
787068    rs3745677       19_9 0.9998138   88.64445 2.579235e-04
807512    rs6075251      20_13 0.9997609   51.25984 1.491399e-04
365810  rs117733303      6_104 0.9994569   97.23060 2.828052e-04
538661   rs17875416      10_71 0.9991968   37.10628 1.078993e-04
787073    rs1569372       19_9 0.9990931  268.63428 7.810659e-04
787161     rs322144      19_10 0.9989403   54.42858 1.582293e-04
603362    rs7397189      12_36 0.9988891   33.42230 9.715697e-05
789838   rs12981966      19_15 0.9986767   90.09468 2.618450e-04
787065  rs147985405       19_9 0.9984711 2244.59923 6.522207e-03
428445    rs1495743       8_20 0.9975054   40.03842 1.162285e-04
789519    rs2302209      19_14 0.9967822   42.18165 1.223613e-04
321970     rs454182       6_22 0.9961194   31.79158 9.216027e-05
279291    rs7701166       5_45 0.9959927   32.16840 9.324077e-05
440081   rs56386732       8_45 0.9953284   34.15926 9.894531e-05
401241    rs3197597       7_61 0.9951083   31.93647 9.248632e-05
812466   rs76981217      20_24 0.9948789   35.06138 1.015125e-04
607728  rs148481241      12_44 0.9919763   26.93591 7.775948e-05
619946     rs653178      12_67 0.9918978   91.31515 2.635907e-04
322407    rs3130253       6_23 0.9891939   28.48415 8.199833e-05
1052542  rs12445804      16_12 0.9889191   33.19453 9.553171e-05
136562     rs709149        3_9 0.9842266   35.13157 1.006266e-04
402322    rs4997569       7_65 0.9829557 3420.88216 9.785711e-03
728365    rs4396539      16_37 0.9817537   26.83979 7.668349e-05
279232   rs10062361       5_45 0.9809662  198.65357 5.671144e-04
143572    rs9834932       3_24 0.9787030   64.78782 1.845290e-04
812470   rs73124945      20_24 0.9782549   32.06393 9.128284e-05
812417    rs6029132      20_24 0.9779037   38.62864 1.099324e-04
624035   rs11057830      12_76 0.9778745   25.37370 7.220831e-05
243844  rs114756490      4_100 0.9644687   25.75683 7.229378e-05
459763   rs79658059       8_83 0.9607192  258.87917 7.237922e-04
564013    rs6591179      11_36 0.9597312   25.78495 7.201719e-05
385473  rs141379002       7_33 0.9597292   25.04656 6.995473e-05
820471   rs62219001       21_2 0.9590058   25.62942 7.152870e-05
221115    rs1458038       4_54 0.9578839   51.20624 1.427434e-04
475021    rs1556516       9_16 0.9540145   71.53687 1.986119e-04
756787    rs4969183      17_44 0.9529555   47.80066 1.325644e-04
588845   rs11048034       12_9 0.9494114   34.77366 9.607825e-05
467826    rs7024888        9_3 0.9442346   25.75505 7.077219e-05
321431   rs75080831       6_19 0.9414962   55.50200 1.520714e-04
622900    rs1169300      12_74 0.9403212   66.55848 1.821377e-04
322378   rs28986304       6_23 0.9401426   41.98181 1.148617e-04
618039    rs1196760      12_63 0.9388555   25.37039 6.931804e-05
68007    rs78610189       2_13 0.9211001   58.28823 1.562457e-04
349835   rs12199109       6_73 0.9187283   24.37639 6.517437e-05
192740    rs5855544      3_120 0.9183709   23.51557 6.284835e-05
424122  rs117037226       8_11 0.9089191   23.58510 6.238545e-05
14016     rs1887552       1_34 0.9064797  326.56512 8.614859e-04
365656    rs9456502      6_103 0.9048365   32.52889 8.565637e-05
194527   rs36205397        4_4 0.8917378   37.33934 9.690009e-05
505257   rs10905277       10_8 0.8890510   27.52765 7.122233e-05
168565     rs189174       3_74 0.8879801   42.98935 1.110924e-04
724473     rs821840      16_31 0.8876263  154.64172 3.994635e-04
538372   rs12244851      10_70 0.8848188   35.55355 9.154985e-05
803158   rs74273659       20_5 0.8839709   24.37799 6.271280e-05
787149     rs322125      19_10 0.8839093   98.44547 2.532350e-04
576653  rs201912654      11_59 0.8672199   39.31461 9.922098e-05
196752    rs2002574       4_10 0.8654715   24.48735 6.167581e-05
789928   rs12984303      19_15 0.8638363   24.54658 6.170819e-05
815969   rs10641149      20_32 0.8632498   26.79960 6.732635e-05
118659    rs7569317      2_120 0.8624280   43.75055 1.098062e-04
1058530    rs763665      16_38 0.8577432  137.83737 3.440682e-04
67807     rs6531234       2_12 0.8552413   41.73982 1.038866e-04
827712    rs2835302      21_17 0.8505265   25.61363 6.339853e-05
787118   rs58495388      19_10 0.8502362   33.27765 8.234033e-05
800968   rs34003091      19_39 0.8469877  101.75007 2.508027e-04
839800  rs145678077      22_17 0.8439364   24.90997 6.117912e-05
812435    rs6102034      20_24 0.8436944   95.23413 2.338289e-04
483007   rs11144506       9_35 0.8431092   26.72443 6.557113e-05
356038    rs9321207       6_86 0.8403145   30.12016 7.365792e-05
582939   rs74612335      11_77 0.8386661   75.15697 1.834335e-04
279255    rs3843482       5_45 0.8331412  389.96981 9.455182e-04
811211   rs11167269      20_21 0.8262414   55.46835 1.333744e-04
931949  rs535137438       5_31 0.8224762   31.27791 7.486543e-05
532551   rs10882161      10_59 0.8096986   29.44109 6.937413e-05
753639    rs9303012      17_39 0.8093213  135.16292 3.183456e-04
807493   rs78348000      20_13 0.8011579   29.84630 6.958712e-05
                 z
14015    -6.292225
68004   -16.573036
68010   -33.060888
69740    14.142603
365662  -12.282337
402311   -3.272149
753628  -12.768796
787044   16.232742
797185   44.672230
797203   33.599649
797236  -55.537887
797238   34.318568
797241   46.325818
1025547  16.661098
753654    8.091491
789854   18.215134
807513    6.814661
67955   -11.909428
68013   -33.086010
68090   -25.412292
500307  -19.011790
1097413   8.896957
752712   -9.396430
796899    7.787947
75418     7.845728
440113   11.699924
787082   10.752566
582936  -12.147947
14026   -11.893801
365846  -14.088321
7471     -7.024638
459774  -11.964411
52932     7.882775
438718   -7.799241
796944   14.326186
789879   21.492060
13985    11.167216
14033   -16.262997
347099    6.340216
317884    8.507919
787108   -6.519414
787068   -9.335807
807512    2.329832
365810  -10.097959
538661    6.266313
787073  -10.005506
787161   -3.946578
603362    5.770964
789838   -1.822895
787065   48.935175
428445    6.515969
789519   -6.636049
321970   -4.779053
279291    2.484790
440081    7.012272
401241    5.045242
812466   -7.692477
607728   -5.095452
619946  -11.050062
322407   -5.641451
1052542  -5.772374
136562    6.781974
402322    2.984117
728365    5.232860
279232  -20.320600
143572    8.481579
812470    7.775426
812417    6.762459
624035   -4.929635
243844   -4.988910
459763   16.022043
564013   -4.893333
385473   -4.896981
820471    4.948445
221115    7.417851
475021    8.992146
756787   -7.169275
588845   -6.133690
467826    5.055827
321431    7.906709
622900   -8.685477
322378   -7.382502
618039    4.866700
68007     8.385467
349835   -4.857045
192740    4.593724
424122   -4.192202
14016     9.868570
365656   -5.963991
194527   -6.159378
505257   -5.125802
168565   -6.767794
724473   13.475251
538372    4.883085
803158   -4.646762
787149    7.470403
576653    6.305597
196752    4.558284
789928   -4.516645
815969   -5.075761
118659   -7.900653
1058530  11.285714
67807     7.170830
827712    4.653743
787118   -5.531347
800968   10.423688
839800    4.868601
812435   11.189979
483007   -5.042667
356038   -5.401634
582939  -11.904831
279255  -25.034352
811211    7.795037
931949    5.067634
532551    5.475649
753639   -2.259115
807493   -5.220624

SNPs with largest effect sizes

#plot PIP vs effect size
#plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag    susie_pip      mu2          PVE
402322   rs4997569       7_65 9.829557e-01 3420.882 9.785711e-03
402314  rs10274607       7_65 6.568395e-02 3411.352 6.520877e-04
402317  rs13230660       7_65 1.763701e-01 3408.700 1.749581e-03
402329   rs6952534       7_65 7.708635e-03 3406.742 7.642528e-05
402328   rs4730069       7_65 1.970167e-03 3403.406 1.951359e-05
402311 rs763798411       7_65 1.000000e+00 3396.712 9.885055e-03
402321  rs10242713       7_65 6.069594e-05 3390.662 5.989139e-07
402324  rs10249965       7_65 8.715420e-07 3363.587 8.531223e-09
402336   rs1013016       7_65 0.000000e+00 3216.926 0.000000e+00
402361   rs8180737       7_65 0.000000e+00 3065.938 0.000000e+00
402354  rs17778396       7_65 0.000000e+00 3064.282 0.000000e+00
402355   rs2237621       7_65 0.000000e+00 3063.058 0.000000e+00
402388  rs10224564       7_65 0.000000e+00 3057.255 0.000000e+00
402326  rs71562637       7_65 0.000000e+00 3056.533 0.000000e+00
402373  rs10255779       7_65 0.000000e+00 3056.267 0.000000e+00
402390  rs78132606       7_65 0.000000e+00 3040.831 0.000000e+00
402393   rs4610671       7_65 0.000000e+00 3035.828 0.000000e+00
402395  rs12669532       7_65 0.000000e+00 2912.556 0.000000e+00
402352   rs2237618       7_65 0.000000e+00 2858.276 0.000000e+00
402397 rs118089279       7_65 0.000000e+00 2835.054 0.000000e+00
402384  rs73188303       7_65 0.000000e+00 2827.128 0.000000e+00
787065 rs147985405       19_9 9.984711e-01 2244.599 6.522207e-03
402394 rs560364150       7_65 0.000000e+00 2237.943 0.000000e+00
787060  rs73015020       19_9 8.949230e-04 2232.714 5.814858e-06
787058 rs138175288       19_9 4.220323e-04 2230.913 2.739988e-06
787061  rs77140532       19_9 6.329720e-05 2227.531 4.103256e-07
787059 rs138294113       19_9 1.041836e-04 2226.911 6.751850e-07
787063  rs10412048       19_9 1.308379e-05 2224.251 8.469105e-08
787062 rs112552009       19_9 3.159260e-05 2223.220 2.044035e-07
797236    rs814573      19_32 1.000000e+00 2204.072 6.414254e-03
787057  rs55997232       19_9 1.647129e-08 2203.737 1.056349e-10
402380  rs10261738       7_65 0.000000e+00 1848.199 0.000000e+00
787066  rs17248769       19_9 1.554718e-06 1690.831 7.650188e-09
787067   rs2228671       19_9 1.068626e-06 1679.767 5.223904e-09
797231  rs34878901      19_32 0.000000e+00 1526.404 0.000000e+00
874797  rs12740374       1_67 4.242375e-04 1445.136 1.784178e-06
874793   rs7528419       1_67 4.907785e-04 1442.138 2.059741e-06
874804    rs646776       1_67 4.449647e-04 1441.323 1.866411e-06
874803    rs629301       1_67 4.297103e-04 1437.930 1.798182e-06
797228   rs8106922      19_32 0.000000e+00 1437.533 0.000000e+00
874815    rs583104       1_67 4.532478e-04 1397.560 1.843430e-06
402335 rs368909701       7_65 0.000000e+00 1395.874 0.000000e+00
874818   rs4970836       1_67 4.466012e-04 1394.716 1.812700e-06
874820   rs1277930       1_67 4.563564e-04 1390.073 1.846130e-06
874821    rs599839       1_67 4.709081e-04 1389.161 1.903746e-06
874801   rs3832016       1_67 3.230354e-04 1350.618 1.269705e-06
874798    rs660240       1_67 3.206728e-04 1343.461 1.253740e-06
797241  rs12721109      19_32 1.000000e+00 1341.066 3.902748e-03
874816    rs602633       1_67 3.563030e-04 1322.388 1.371193e-06
797156  rs62120566      19_32 0.000000e+00 1321.045 0.000000e+00
                 z
402322   2.9841166
402314   2.8669582
402317   2.9479628
402329   2.8884240
402328   2.8658735
402311  -3.2721491
402321   2.8123983
402324   2.8497381
402336  -2.3988524
402361   2.8328454
402354   2.7980012
402355   2.8029605
402388   2.7911904
402326   2.6635936
402373   2.8135791
402390   2.7728082
402393   2.7249742
402395   2.7702573
402352   2.4663255
402397   2.6667208
402384   2.4217031
787065  48.9351750
402394   1.8694582
787060  48.7956295
787058  48.7806894
787061  48.7379874
787059  48.7519286
787063  48.7012269
787062  48.7051628
797236 -55.5378874
787057  48.5243103
402380   2.6665109
787066  40.8424908
787067  40.7026250
797231 -16.3492722
874797  41.7934744
874793  41.7369129
874804 -41.7333995
874803 -41.6873361
797228 -15.6770531
874815 -41.0870961
402335   0.7778883
874818 -41.0454951
874820 -40.9759931
874821 -40.9589874
874801 -40.3959842
874798 -40.2895814
797241  46.3258178
874816 -39.9564086
797156  33.7353904

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag  susie_pip        mu2          PVE
402311  rs763798411       7_65 1.00000000 3396.71235 0.0098850546
402322    rs4997569       7_65 0.98295573 3420.88216 0.0097857107
787065  rs147985405       19_9 0.99847109 2244.59923 0.0065222074
797236     rs814573      19_32 1.00000000 2204.07229 0.0064142537
797241   rs12721109      19_32 1.00000000 1341.06609 0.0039027478
797185   rs62117204      19_32 1.00000000  825.46404 0.0024022514
797238  rs113345881      19_32 1.00000000  772.04516 0.0022467927
797203  rs111794050      19_32 1.00000000  763.44994 0.0022217790
68013      rs548145       2_13 1.00000000  656.37348 0.0019101670
402317   rs13230660       7_65 0.17637011 3408.69952 0.0017495808
68010      rs934197       2_13 1.00000000  415.42498 0.0012089627
279255    rs3843482       5_45 0.83314121  389.96981 0.0009455182
500307  rs115478735       9_70 1.00000000  302.07219 0.0008790854
14016     rs1887552       1_34 0.90647969  326.56512 0.0008614859
14015     rs2495502       1_34 1.00000000  283.39830 0.0008247409
787073    rs1569372       19_9 0.99909305  268.63428 0.0007810659
459763   rs79658059       8_83 0.96071923  258.87917 0.0007237922
789854    rs2285626      19_15 1.00000000  245.81587 0.0007153692
1025547    rs964184      11_70 1.00000000  238.93791 0.0006953530
787044   rs73013176       19_9 1.00000000  237.05896 0.0006898849
365662   rs12208357      6_103 1.00000000  234.68244 0.0006829688
68004     rs1042034       2_13 1.00000000  233.15915 0.0006785358
68090     rs1848922       2_13 1.00000000  229.85857 0.0006689305
402314   rs10274607       7_65 0.06568395 3411.35159 0.0006520877
459774   rs13252684       8_83 0.99999914  216.74642 0.0006307712
789879    rs3794991      19_15 0.99999308  212.34134 0.0006179479
14033      rs471705       1_34 0.99996426  207.61741 0.0006041831
279232   rs10062361       5_45 0.98096616  198.65357 0.0005671144
796944   rs62115478      19_30 0.99999588  179.71675 0.0005230065
907819    rs6544713       2_27 0.76455919  223.20976 0.0004966433
69740      rs780093       2_16 1.00000000  160.58172 0.0004673222
753654    rs8070232      17_39 1.00000000  144.02681 0.0004191444
365676    rs3818678      6_103 0.75522628  190.32636 0.0004183082
753628  rs113408695      17_39 1.00000000  143.15204 0.0004165986
724473     rs821840      16_31 0.88762627  154.64172 0.0003994635
14026    rs10888896       1_34 0.99999990  131.44541 0.0003825302
67955    rs11679386       2_12 1.00000000  127.40733 0.0003707786
1058530    rs763665      16_38 0.85774323  137.83737 0.0003440682
304134   rs12657266       5_92 0.74890902  153.03976 0.0003335444
1058537  rs77303550      16_38 0.70612966  160.90896 0.0003306625
787082  rs137992968       19_9 0.99999998  112.56039 0.0003275713
753639    rs9303012      17_39 0.80932130  135.16292 0.0003183456
440113    rs4738679       8_45 0.99999998  106.62314 0.0003102929
459762    rs2980875       8_83 0.57334932  184.71361 0.0003082042
365810  rs117733303      6_104 0.99945686   97.23060 0.0002828052
619946     rs653178      12_67 0.99189778   91.31515 0.0002635907
789838   rs12981966      19_15 0.99867667   90.09468 0.0002618450
365846   rs56393506      6_104 0.99999988   88.86741 0.0002586204
787068    rs3745677       19_9 0.99981385   88.64445 0.0002579235
13985    rs11580527       1_34 0.99998185   87.73827 0.0002553298
                 z
402311   -3.272149
402322    2.984117
787065   48.935175
797236  -55.537887
797241   46.325818
797185   44.672230
797238   34.318568
797203   33.599649
68013   -33.086010
402317    2.947963
68010   -33.060888
279255  -25.034352
500307  -19.011790
14016     9.868570
14015    -6.292225
787073  -10.005506
459763   16.022043
789854   18.215134
1025547  16.661098
787044   16.232742
365662  -12.282337
68004   -16.573036
68090   -25.412292
402314    2.866958
459774  -11.964411
789879   21.492060
14033   -16.262997
279232  -20.320600
796944   14.326186
907819   20.377651
69740    14.142603
753654    8.091491
365676    9.947776
753628  -12.768796
724473   13.475251
14026   -11.893801
67955   -11.909428
1058530  11.285714
304134  -13.894754
1058537  13.732910
787082   10.752566
753639   -2.259115
440113   11.699924
459762   22.102229
365810  -10.097959
619946  -11.050062
789838   -1.822895
365846  -14.088321
787068   -9.335807
13985    11.167216

SNPs with largest z scores

#histogram of (abs) SNP z scores
hist(abs(ctwas_snp_res$z))

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag    susie_pip       mu2          PVE
797236    rs814573      19_32 1.000000e+00 2204.0723 6.414254e-03
787065 rs147985405       19_9 9.984711e-01 2244.5992 6.522207e-03
787060  rs73015020       19_9 8.949230e-04 2232.7142 5.814858e-06
787058 rs138175288       19_9 4.220323e-04 2230.9134 2.739988e-06
787059 rs138294113       19_9 1.041836e-04 2226.9115 6.751850e-07
787061  rs77140532       19_9 6.329720e-05 2227.5310 4.103256e-07
787062 rs112552009       19_9 3.159260e-05 2223.2203 2.044035e-07
787063  rs10412048       19_9 1.308379e-05 2224.2510 8.469105e-08
787057  rs55997232       19_9 1.647129e-08 2203.7367 1.056349e-10
797241  rs12721109      19_32 1.000000e+00 1341.0661 3.902748e-03
797185  rs62117204      19_32 1.000000e+00  825.4640 2.402251e-03
797172   rs1551891      19_32 0.000000e+00  505.0338 0.000000e+00
874797  rs12740374       1_67 4.242375e-04 1445.1360 1.784178e-06
874793   rs7528419       1_67 4.907785e-04 1442.1381 2.059741e-06
874804    rs646776       1_67 4.449647e-04 1441.3230 1.866411e-06
874803    rs629301       1_67 4.297103e-04 1437.9299 1.798182e-06
874815    rs583104       1_67 4.532478e-04 1397.5602 1.843430e-06
874818   rs4970836       1_67 4.466012e-04 1394.7162 1.812700e-06
874820   rs1277930       1_67 4.563564e-04 1390.0734 1.846130e-06
874821    rs599839       1_67 4.709081e-04 1389.1613 1.903746e-06
787066  rs17248769       19_9 1.554718e-06 1690.8311 7.650188e-09
787067   rs2228671       19_9 1.068626e-06 1679.7674 5.223904e-09
874801   rs3832016       1_67 3.230354e-04 1350.6175 1.269705e-06
874798    rs660240       1_67 3.206728e-04 1343.4608 1.253740e-06
874816    rs602633       1_67 3.563030e-04 1322.3880 1.371193e-06
787056   rs9305020       19_9 4.507505e-14 1277.3679 1.675608e-16
797232    rs405509      19_32 0.000000e+00  976.8097 0.000000e+00
874784   rs4970834       1_67 6.395977e-04  998.6813 1.858892e-06
797238 rs113345881      19_32 1.000000e+00  772.0452 2.246793e-03
797156  rs62120566      19_32 0.000000e+00 1321.0446 0.000000e+00
797203 rs111794050      19_32 1.000000e+00  763.4499 2.221779e-03
68013     rs548145       2_13 1.000000e+00  656.3735 1.910167e-03
797209   rs4802238      19_32 0.000000e+00  977.7255 0.000000e+00
68010     rs934197       2_13 1.000000e+00  415.4250 1.208963e-03
797150 rs188099946      19_32 0.000000e+00 1266.3237 0.000000e+00
797220   rs2972559      19_32 0.000000e+00 1298.6714 0.000000e+00
797144 rs201314191      19_32 0.000000e+00 1174.4706 0.000000e+00
874805   rs3902354       1_67 3.762837e-04  853.0124 9.340951e-07
874794  rs11102967       1_67 3.694905e-04  849.2612 9.131978e-07
874819   rs4970837       1_67 4.316205e-04  845.9641 1.062611e-06
797211  rs56394238      19_32 0.000000e+00  968.7922 0.000000e+00
797188   rs2965169      19_32 0.000000e+00  367.3413 0.000000e+00
797212   rs3021439      19_32 0.000000e+00  864.3578 0.000000e+00
874789    rs611917       1_67 3.401829e-04  800.1403 7.921343e-07
68040   rs12997242       2_13 5.728673e-11  384.1172 6.403805e-14
797219  rs12162222      19_32 0.000000e+00 1112.8952 0.000000e+00
68014     rs478588       2_13 1.461258e-10  604.3616 2.570064e-13
797149  rs62119327      19_32 0.000000e+00 1034.6875 0.000000e+00
68015   rs56350433       2_13 5.923595e-12  351.2369 6.054883e-15
68020   rs56079819       2_13 5.935585e-12  350.4366 6.053315e-15
               z
797236 -55.53789
787065  48.93517
787060  48.79563
787058  48.78069
787059  48.75193
787061  48.73799
787062  48.70516
787063  48.70123
787057  48.52431
797241  46.32582
797185  44.67223
797172  42.26680
874797  41.79347
874793  41.73691
874804 -41.73340
874803 -41.68734
874815 -41.08710
874818 -41.04550
874820 -40.97599
874821 -40.95899
787066  40.84249
787067  40.70262
874801 -40.39598
874798 -40.28958
874816 -39.95641
787056  34.84073
797232  34.63979
874784  34.62492
797238  34.31857
797156  33.73539
797203  33.59965
68013  -33.08601
797209 -33.07569
68010  -33.06089
797150  33.04407
797220 -32.28660
797144  32.06858
874805 -32.00383
874794 -31.93893
874819 -31.85593
797211 -31.55187
797188  31.38057
797212 -31.04506
874789  30.97527
68040  -30.81528
797219 -30.49671
68014  -30.48811
797149  30.41868
68015  -30.23229
68020  -30.19307

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 33
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    print(plotEnrich(GO_enrichment[[db]]))
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
                                                      Term Overlap
1             peptidyl-serine phosphorylation (GO:0018105)   5/156
2                peptidyl-serine modification (GO:0018209)   5/169
3                             lipid transport (GO:0006869)   4/109
4                       cholesterol transport (GO:0030301)    3/51
5           intestinal cholesterol absorption (GO:0030299)     2/9
6       cellular response to sterol depletion (GO:0071501)     2/9
7  negative regulation of cholesterol storage (GO:0010887)    2/10
8                     protein phosphorylation (GO:0006468)   6/496
9                 intestinal lipid absorption (GO:0098856)    2/11
10                    cholesterol homeostasis (GO:0042632)    3/71
11                         sterol homeostasis (GO:0055092)    3/72
12              cholesterol metabolic process (GO:0008203)    3/77
13          regulation of cholesterol storage (GO:0010885)    2/16
14                        response to insulin (GO:0032868)    3/84
15         activin receptor signaling pathway (GO:0032924)    2/19
16       negative regulation of lipid storage (GO:0010888)    2/20
17                           sterol transport (GO:0015918)    2/21
18                         cholesterol efflux (GO:0033344)    2/24
19     regulation of DNA biosynthetic process (GO:2000278)    2/29
20      cellular protein modification process (GO:0006464)  7/1025
21           regulation of cholesterol efflux (GO:0010874)    2/33
22     secondary alcohol biosynthetic process (GO:1902653)    2/34
23                organic substance transport (GO:0071702)   3/136
24           cholesterol biosynthetic process (GO:0006695)    2/35
25                sterol biosynthetic process (GO:0016126)    2/38
   Adjusted.P.value                                    Genes
1       0.001778112             CSNK1G3;TNKS;PKN3;PRKD2;GAS6
2       0.001778112             CSNK1G3;TNKS;PKN3;PRKD2;GAS6
3       0.004505375                  ABCA1;ABCG8;NPC1L1;PLTP
4       0.007029494                       ABCA1;ABCG8;NPC1L1
5       0.007029494                             ABCG8;NPC1L1
6       0.007029494                            INSIG2;NPC1L1
7       0.007144915                             ABCA1;TTC39B
8       0.007144915      CSNK1G3;ACVR1C;TNKS;PKN3;PRKD2;GAS6
9       0.007144915                             ABCG8;NPC1L1
10      0.009177895                       ABCA1;ABCG8;TTC39B
11      0.009177895                       ABCA1;ABCG8;TTC39B
12      0.010261090                      ABCA1;INSIG2;NPC1L1
13      0.010736790                             ABCA1;TTC39B
14      0.011366853                       INSIG2;SORT1;INHBB
15      0.013218960                             ACVR1C;INHBB
16      0.013755552                             ABCA1;TTC39B
17      0.014294428                             ABCG8;NPC1L1
18      0.017688424                              ABCA1;ABCG8
19      0.024523690                               TNKS;PRKD2
20      0.026889526 CSNK1G3;ACVR1C;TNKS;PKN3;PRKD2;FUT2;GAS6
21      0.028088337                              PLTP;TTC39B
22      0.028088337                            INSIG2;NPC1L1
23      0.028088337                         ABCA1;ABCG8;PLTP
24      0.028276991                            INSIG2;NPC1L1
25      0.031974245                            INSIG2;NPC1L1
[1] "GO_Cellular_Component_2021"

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
                                            Term Overlap Adjusted.P.value
1 high-density lipoprotein particle (GO:0034364)    2/19       0.01685639
2    endoplasmic reticulum membrane (GO:0005789)   6/712       0.01843438
                                 Genes
1                             HPR;PLTP
2 ABCA1;CYP2A6;INSIG2;KDSR;FADS1;CNIH4
[1] "GO_Molecular_Function_2021"
                                                   Term Overlap
1            cholesterol transfer activity (GO:0120020)    3/18
2                 sterol transfer activity (GO:0120015)    3/19
3 phosphatidylcholine transporter activity (GO:0008525)    2/18
  Adjusted.P.value            Genes
1     0.0001655238 ABCA1;ABCG8;PLTP
2     0.0001655238 ABCA1;ABCG8;PLTP
3     0.0112569839       ABCA1;PLTP
CNIH4 gene(s) from the input list not found in DisGeNET CURATEDPELO gene(s) from the input list not found in DisGeNET CURATEDACP6 gene(s) from the input list not found in DisGeNET CURATEDTTC39B gene(s) from the input list not found in DisGeNET CURATEDUSP1 gene(s) from the input list not found in DisGeNET CURATEDTNKS gene(s) from the input list not found in DisGeNET CURATEDPKN3 gene(s) from the input list not found in DisGeNET CURATEDTRIM39 gene(s) from the input list not found in DisGeNET CURATEDSPTY2D1 gene(s) from the input list not found in DisGeNET CURATEDCSNK1G3 gene(s) from the input list not found in DisGeNET CURATEDRP4-781K5.7 gene(s) from the input list not found in DisGeNET CURATEDDDX56 gene(s) from the input list not found in DisGeNET CURATEDHPR gene(s) from the input list not found in DisGeNET CURATEDC10orf88 gene(s) from the input list not found in DisGeNET CURATEDCRACR2B gene(s) from the input list not found in DisGeNET CURATEDNPC1L1 gene(s) from the input list not found in DisGeNET CURATEDPOP7 gene(s) from the input list not found in DisGeNET CURATED
                        Description        FDR Ratio BgRatio
5          Blood Platelet Disorders 0.01370851  2/16 16/9703
24   Hypercholesterolemia, Familial 0.01370851  2/16 18/9703
39                  Opisthorchiasis 0.01370851  1/16  1/9703
46                  Tangier Disease 0.01370851  1/16  1/9703
61         Caliciviridae Infections 0.01370851  1/16  1/9703
67          Infections, Calicivirus 0.01370851  1/16  1/9703
81  Opisthorchis felineus Infection 0.01370851  1/16  1/9703
82 Opisthorchis viverrini Infection 0.01370851  1/16  1/9703
93        Hypoalphalipoproteinemias 0.01370851  1/16  1/9703
99       Tangier Disease Neuropathy 0.01370851  1/16  1/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
                    description size overlap          FDR       database
1       Coronary Artery Disease  154      10 1.358080e-07 disease_GLAD4U
2                 Dyslipidaemia   85       8 3.890274e-07 disease_GLAD4U
3              Coronary Disease  172       9 3.367936e-06 disease_GLAD4U
4          Hypercholesterolemia   61       6 3.097224e-05 disease_GLAD4U
5              Arteriosclerosis  174       8 4.663087e-05 disease_GLAD4U
6           Myocardial Ischemia  182       8 5.505551e-05 disease_GLAD4U
7   Arterial Occlusive Diseases  175       7 6.079951e-04 disease_GLAD4U
8               Hyperlipidemias   65       5 7.717716e-04 disease_GLAD4U
9        Cholesterol metabolism   32       4 1.052462e-03   pathway_KEGG
10               Heart Diseases  228       7 2.458608e-03 disease_GLAD4U
11      Cardiovascular Diseases  283       7 9.055220e-03 disease_GLAD4U
12 Fat digestion and absorption   23       3 1.241474e-02   pathway_KEGG
13            Vascular Diseases  235       6 2.464145e-02 disease_GLAD4U
14                      Obesity  172       5 4.851973e-02 disease_GLAD4U
                                                           userId
1  SORT1;ABCG8;INSIG2;NPC1L1;TTC39B;ABCA1;SPTY2D1;FADS1;FUT2;PLTP
2               SORT1;ABCG8;INSIG2;NPC1L1;TTC39B;ABCA1;FADS1;PLTP
3          SORT1;ABCG8;INSIG2;NPC1L1;TTC39B;ABCA1;FADS1;FUT2;PLTP
4                            SORT1;ABCG8;INSIG2;NPC1L1;ABCA1;PLTP
5                  SORT1;ABCG8;NPC1L1;TTC39B;ABCA1;FADS1;HPR;PLTP
6               SORT1;ABCG8;INSIG2;NPC1L1;TTC39B;ABCA1;FADS1;PLTP
7                      SORT1;ABCG8;NPC1L1;TTC39B;ABCA1;FADS1;PLTP
8                                   SORT1;ABCG8;NPC1L1;ABCA1;PLTP
9                                          SORT1;ABCG8;ABCA1;PLTP
10                     SORT1;ABCG8;NPC1L1;TTC39B;ABCA1;FADS1;PLTP
11                       SORT1;ABCG8;TTC39B;ABCA1;FADS1;GAS6;PLTP
12                                             ABCG8;NPC1L1;ABCA1
13                             SORT1;ABCG8;NPC1L1;ABCA1;GAS6;PLTP
14                                 INSIG2;TTC39B;ABCA1;FADS1;PLTP

Sensitivity, specificity and precision for silver standard genes

library("readxl")

known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

unrelated_genes <- ctwas_gene_res$genename[!(ctwas_gene_res$genename %in% known_annotations)]

#number of genes in known annotations
print(length(known_annotations))
[1] 69
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 47
#assign ctwas, TWAS, and bystander genes
ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh]
novel_genes <- ctwas_genes[!(ctwas_genes %in% twas_genes)]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.582873
#number of ctwas genes
length(ctwas_genes)
[1] 33
#number of TWAS genes
length(twas_genes)
[1] 217
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip      mu2          PVE         z
9062  KLHDC7A       1_13 0.8184864 22.59315 5.381564e-05  4.124187
6391   TTC39B       9_13 0.9259989 23.04988 6.211543e-05 -4.287139
8931  CRACR2B       11_1 0.8018274 22.03492 5.141771e-05 -3.989585
3247     KDSR      18_35 0.9552673 24.68796 6.863260e-05 -4.526287
     num_eqtl
9062        1
6391        3
8931        1
3247        1
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
    ctwas      TWAS 
0.1014493 0.2898551 
#specificity
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9976048 0.9818517 
#precision / PPV
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
    ctwas      TWAS 
0.2121212 0.0921659 
#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1))

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=2)

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12

Sensitivity, specificity and precision for silver standard genes - bystanders only

This section first uses imputed silver standard genes to identify bystander genes within 1Mb. The bystander gene list is then subset to only genes with imputed expression in this analysis. Then, the ctwas and TWAS gene lists from this analysis are subset to only genes that are in the (subset) silver standard and bystander genes. These gene lists are then used to compute sensitivity, specificity and precision for ctwas and TWAS.

library(biomaRt)
library(GenomicRanges)
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':

    anyDuplicated, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter,
    Find, get, grep, grepl, intersect, is.unsorted, lapply, Map,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, Position, rank, rbind, Reduce, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min
Loading required package: S4Vectors

Attaching package: 'S4Vectors'
The following object is masked from 'package:base':

    expand.grid
Loading required package: IRanges
Loading required package: GenomeInfoDb
# ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
# G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
# G_list <- G_list[G_list$hgnc_symbol!="",]
# G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
# G_list$start <- G_list$start_position
# G_list$end <- G_list$end_position
# G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)
# 
# #remove genes without imputed expression from gene lists
# known_annotations <- known_annotations[known_annotations %in% ctwas_gene_res$genename]
# 
# known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
# half_window <- 1000000
# known_annotations_positions$start <- known_annotations_positions$start_position - half_window
# known_annotations_positions$end <- known_annotations_positions$end_position + half_window
# known_annotations_positions$start[known_annotations_positions$start<1] <- 1
# known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)
# 
# bystanders <- findOverlaps(known_annotations_granges,G_list_granges)
# bystanders <- unique(subjectHits(bystanders))
# bystanders <- G_list$hgnc_symbol[bystanders]
# bystanders <- unique(bystanders[!(bystanders %in% known_annotations)])
# unrelated_genes <- bystanders
# 
# #save gene lists
# save(known_annotations, file=paste0(results_dir, "/known_annotations_SORT1.Rd"))
# save(unrelated_genes, file=paste0(results_dir, "/bystanders_SORT1.Rd"))


load(paste0(results_dir, "/known_annotations_SORT1.Rd"))
load(paste0(results_dir, "/bystanders_SORT1.Rd"))


#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 47
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 571
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.582873
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 9
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 68
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
    ctwas      TWAS 
0.1489362 0.4255319 
#specificity / (1 - False Positive Rate)
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9964974 0.9159370 
#precision / PPV / (1 - False Discovery Rate)
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
    ctwas      TWAS 
0.7777778 0.2941176 
#store sensitivity and specificity calculations for plots
sensitivity_plot <- sensitivity
specificity_plot <- specificity

#precision / PPV by PIP bin
pip_range <- c(0.2, 0.4, 0.6, 0.8, 1)
precision_range <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes in PIP bin
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower & ctwas_gene_res_subset$susie_pip<pip_upper]
  
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste(c(0, pip_range[-length(pip_range)]), pip_range,sep=" - ")

barplot(precision_range, ylim=c(0,1), main="Precision by PIP Range", xlab="PIP Range", ylab="Precision")
abline(h=0.2, lty=2)
abline(h=0.4, lty=2)
abline(h=0.6, lty=2)
abline(h=0.8, lty=2)
barplot(precision_range, add=T, col="darkgrey")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#precision / PPV by PIP threshold
#pip_range <- c(0.2, 0.4, 0.6, 0.8, 1)
pip_range <- c(0.5, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
number_detected <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes using PIP threshold
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower]
  
  number_detected[i] <- length(ctwas_genes)
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste0(">= ", c(0, pip_range[-length(pip_range)]))

precision_range <- precision_range*100

precision_range <- c(precision_range, precision["TWAS"]*100)
names(precision_range)[4] <- "TWAS Bonferroni"
number_detected <- c(number_detected, length(twas_genes))

barplot(precision_range, ylim=c(0,100), main="Precision for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

#false discovery rate by PIP threshold

barplot(100-precision_range, ylim=c(0,100), main="False Discovery Rate for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% Bystanders in Detected Genes")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(100-precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12

PIP Manhattan Plot

library(tibble)
library(tidyverse)
── Attaching packages ────────────────────────────────── tidyverse 1.3.0 ──
✔ tidyr   1.1.0     ✔ dplyr   1.0.7
✔ readr   1.4.0     ✔ stringr 1.4.0
✔ purrr   0.3.4     ✔ forcats 0.4.0
── Conflicts ───────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::collapse()        masks IRanges::collapse()
✖ dplyr::combine()         masks BiocGenerics::combine()
✖ dplyr::desc()            masks IRanges::desc()
✖ tidyr::expand()          masks S4Vectors::expand()
✖ tidyr::extract()         masks disgenet2r::extract()
✖ dplyr::filter()          masks stats::filter()
✖ dplyr::first()           masks S4Vectors::first()
✖ dplyr::lag()             masks stats::lag()
✖ BiocGenerics::Position() masks ggplot2::Position(), base::Position()
✖ purrr::reduce()          masks GenomicRanges::reduce(), IRanges::reduce()
✖ dplyr::rename()          masks S4Vectors::rename()
✖ dplyr::select()          masks biomaRt::select()
✖ dplyr::slice()           masks IRanges::slice()
full.gene.pip.summary <- data.frame(gene_name = ctwas_gene_res$genename, 
                                    gene_pip = ctwas_gene_res$susie_pip, 
                                    gene_id = ctwas_gene_res$id, 
                                    chr = as.integer(ctwas_gene_res$chrom),
                                    start = ctwas_gene_res$pos / 1e3,
                                    is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full.gene.pip.summary$is_highlight <- full.gene.pip.summary$gene_pip > 0.80

don <- full.gene.pip.summary %>% 
  
  # Compute chromosome size
  group_by(chr) %>% 
  summarise(chr_len=max(start)) %>% 
  
  # Calculate cumulative position of each chromosome
  mutate(tot=cumsum(chr_len)-chr_len) %>%
  dplyr::select(-chr_len) %>%
  
  # Add this info to the initial dataset
  left_join(full.gene.pip.summary, ., by=c("chr"="chr")) %>%
  
  # Add a cumulative position of each SNP
  arrange(chr, start) %>%
  mutate( BPcum=start+tot)

axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )

x_axis_labels <- axisdf$chr
x_axis_labels[seq(1,21,2)] <- ""

ggplot(don, aes(x=BPcum, y=gene_pip)) +
  
  # Show all points
  ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=2) +
  scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
  
  # custom X axis:
  # scale_x_continuous(label = axisdf$chr, 
  #                    breaks= axisdf$center,
  #                    guide = guide_axis(n.dodge = 2)) +
  scale_x_continuous(label = x_axis_labels,
                     breaks = axisdf$center) +
  
  scale_y_continuous(expand = c(0, 0), limits = c(0,1.25), breaks=(1:5)*0.2, minor_breaks=(1:10)*0.1) + # remove space between plot area and x axis
  
  # Add highlighted points
  ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="orange", size=2) +
  
  # Add label using ggrepel to avoid overlapping
  ggrepel::geom_label_repel(data=subset(don, is_highlight==T), 
                            aes(label=gene_name), 
                            size=4,
                            min.segment.length = 0, 
                            label.size = NA,
                            fill = alpha(c("white"),0)) +
  
  # Custom the theme:
  theme_bw() +
  theme( 
    text = element_text(size = 14),
    legend.position="none",
    panel.border = element_blank(),
    panel.grid.major.x = element_blank(),
    panel.grid.minor.x = element_blank()
  ) +
  xlab("Chromosome") + 
  ylab("cTWAS PIP")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12

Locus Plots - 1_67

library(ctwas)

Attaching package: 'ctwas'
The following object is masked _by_ '.GlobalEnv':

    z_snp
locus_plot <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS"){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
  a$ifcausal <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}

locus_plot("1_67", label="TWAS")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12

Locus Plots - 5_45 - Thin

locus_plot("5_45", label="TWAS")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12

Locus Plots - 5_45 - Re-run

#locus_plot("5_45", label="TWAS", rerun_ctwas = T)

Locus Plots - 8_12

locus_plot4 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS"){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
  a$ifcausal <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  #legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  #legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}

locus_plot4("8_12", label="cTWAS")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
locus_plot5 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", focus){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[which(a$genename==focus)]
  a$ifcausal <- as.numeric(a$id==focus)

  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 0.7 ,c("Focal Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}

locus_plot5("19_33", focus="PRKD2")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12

Locus Plots - Exploring known annotations

This section produces locus plots for all silver standard genes with known annotations. The highlighted gene at each region is the silver standard gene. Note that if no genes in a region have PIP>0.8, then only the result using thinned SNPs is displayed.

locus_plot3 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", focus){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[which(a$genename==focus)]
  a$ifcausal <- as.numeric(a$id==focus)

  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}
load(paste0(results_dir, "/known_annotations_SORT1.Rd"))
load(paste0(results_dir, "/bystanders_SORT1.Rd"))

for (i in 1:length(known_annotations)){
  focus <- known_annotations[i]
  region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]

  locus_plot3(region_tag, focus=focus)
  mtext(text=region_tag)

  print(focus)
  print(region_tag)
  print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
}

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "ITIH4"
[1] "3_36"
      genename region_tag   susie_pip       mu2          PVE          z
2847      RRP9       3_36 0.008912679  8.053289 2.088824e-07 -0.9533837
374      PARP3       3_36 0.008813915  7.946108 2.038185e-07  0.9395160
11516     ACY1       3_36 0.007063585  5.902054 1.213246e-07 -0.5115172
7244     POC1A       3_36 0.006621583  5.439133 1.048122e-07  0.6100943
11578     TWF2       3_36 0.010426443 10.279732 3.119165e-07 -1.4613887
7245     PPM1M       3_36 0.008144510  7.075939 1.677140e-07 -1.0722712
7915    GLYCTK       3_36 0.020740001 14.425844 8.707035e-07 -1.6364989
7247     WDR82       3_36 0.006887422  5.638483 1.130158e-07 -0.3708077
2853     DNAH1       3_36 0.023205709 17.785965 1.201137e-06  2.8547462
158       PHF7       3_36 0.010706220  9.513164 2.964022e-07  1.0713405
159     SEMA3G       3_36 0.010798965  9.205085 2.892879e-07 -0.4278002
2856     TNNC1       3_36 0.074836640 20.834388 4.537486e-06 -3.4591550
160      NISCH       3_36 0.006431110  5.078652 9.505057e-08  0.2448166
161      STAB1       3_36 0.089874339 21.813723 5.705396e-06  3.5822738
7918    NT5DC2       3_36 0.006439435  5.124729 9.603709e-08 -0.5772516
7203      GNL3       3_36 0.081279075 24.021784 5.682040e-06 -3.6426177
7204     PBRM1       3_36 0.008572620  6.953344 1.734713e-07 -0.8048656
239     GLT8D1       3_36 0.025262850 17.372092 1.277188e-06  2.5357598
2861      NEK4       3_36 0.029870402 18.721242 1.627406e-06 -2.8779547
482      ITIH1       3_36 0.079833141 27.970002 6.498244e-06  3.3942500
6912     ITIH3       3_36 0.114733859 31.481630 1.051161e-05  3.5156979
481      ITIH4       3_36 0.007120365  6.630771 1.373999e-07  0.8376918
12349   MUSTN1       3_36 0.009317317  8.974420 2.433423e-07  2.0802688
10835  TMEM110       3_36 0.007528361  6.948477 1.522336e-07  1.5371064
7202    SFMBT1       3_36 0.009982870  9.825276 2.854437e-07  2.0068207
7201     PRKCD       3_36 0.007211035  6.210166 1.303230e-07 -0.6434864
7200       TKT       3_36 0.017086334 13.589481 6.757283e-07  2.5841158
12386    DCP1A       3_36 0.007488504  6.484291 1.413116e-07  0.5186961
236       CHDH       3_36 0.006480354  5.067465 9.556740e-08  0.1444517
486     IL17RB       3_36 0.006663043  5.296065 1.026943e-07  0.1956411
2783     ACTR8       3_36 0.006661519  5.259447 1.019609e-07  0.3348511
      num_eqtl
2847         1
374          1
11516        1
7244         1
11578        2
7245         3
7915         1
7247         1
2853         2
158          1
159          1
2856         2
160          2
161          1
7918         2
7203         2
7204         1
239          2
2861         1
482          1
6912         1
481          3
12349        2
10835        2
7202         1
7201         1
7200         1
12386        2
236          1
486          2
2783         3

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "EPHX2"
[1] "8_27"
      genename region_tag   susie_pip       mu2          PVE           z
11425    PNMA2       8_27 0.006147874  4.946154 8.849381e-08 -0.21331428
1295    DPYSL2       8_27 0.006115659  4.894635 8.711318e-08  0.04738342
3371    ADRA1A       8_27 0.008801745  8.466693 2.168717e-07 -0.92728371
1869    TRIM35       8_27 0.015125046 13.787497 6.068794e-07  1.42379941
3374     EPHX2       8_27 0.006430530  5.386957 1.008116e-07 -0.24570047
3368       CLU       8_27 0.007487306  6.879418 1.498986e-07  0.59866869
7893    SCARA3       8_27 0.019713918 16.397585 9.407476e-07 -1.50201507
8304     ESCO2       8_27 0.010205907  9.920080 2.946369e-07  1.06980762
5838    CCDC25       8_27 0.012295854 11.750613 4.204744e-07  1.25261686
7894       PBK       8_27 0.006767015  5.887178 1.159377e-07  0.48335074
7895    SCARA5       8_27 0.006113499  4.891171 8.702079e-08 -0.01387977
9998     NUGGC       8_27 0.037028402 22.632887 2.438907e-06  2.06999161
      num_eqtl
11425        1
1295         1
3371         2
1869         2
3374         2
3368         1
7893         2
8304         2
5838         1
7894         1
7895         1
9998         2

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "ABCA1"
[1] "9_53"
     genename region_tag   susie_pip       mu2          PVE          z
7410    ABCA1       9_53 0.995395541 70.368069 2.038410e-04  7.9820172
2193     FKTN       9_53 0.001193971  7.325906 2.545514e-08 -0.7642857
1314  TMEM38B       9_53 0.001903917  7.860778 4.355459e-08  0.7019380
     num_eqtl
7410        1
2193        1
1314        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "LPL"
[1] "8_21"
       genename region_tag   susie_pip       mu2          PVE          z
5836 CSGALNACT1       8_21 0.007456082  5.829327 1.264880e-07 -0.8624862
1906     INTS10       8_21 0.009985748  7.775824 2.259682e-07 -0.5466864
8739        LPL       8_21 0.023413721 16.909622 1.152191e-06 -1.8179375
     num_eqtl
5836        1
1906        1
8739        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "APOA5"
[1] "11_70"
     genename region_tag   susie_pip        mu2          PVE            z
4868    BUD13      11_70 0.005760699  36.876902 6.182297e-07   4.11527976
3154    APOA1      11_70 0.004278331   6.652390 8.282709e-08   1.11150616
7898 PAFAH1B2      11_70 0.005499480   7.725576 1.236439e-07  -0.01722766
6005    SIDT2      11_70 0.004139980   5.468270 6.588226e-08   0.50104522
6006    TAGLN      11_70 0.004614639  18.478031 2.481497e-07  -1.55444774
6785    PCSK7      11_70 0.012766000  16.431533 6.104544e-07   0.97935688
7745   RNF214      11_70 0.004787354   6.579102 9.166055e-08  -0.52468931
2466   CEP164      11_70 0.004664222   5.763477 7.823193e-08  -0.30209785
9720    BACE1      11_70 0.004495693  21.121393 2.763373e-07  -4.13706265
4881    FXYD2      11_70 0.004684096   6.128819 8.354547e-08  -0.37435241
2465    APOA5      11_70 0.032499003 145.137431 1.372681e-05 -11.35991043
     num_eqtl
4868        1
3154        2
7898        2
6005        1
6006        1
6785        1
7745        1
2466        2
9720        1
4881        2
2465        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "MTTP"
[1] "4_66"
           genename region_tag   susie_pip       mu2          PVE
7980         TSPAN5       4_66 0.014674407 11.179397 4.774185e-07
6091          EIF4E       4_66 0.009482212  6.919558 1.909450e-07
7222         METAP1       4_66 0.007832039  5.097756 1.161914e-07
12374 RP11-571L19.8       4_66 0.008322181  5.636996 1.365228e-07
8496           ADH6       4_66 0.009968595  7.562593 2.193941e-07
10115         ADH1B       4_66 0.014780501 11.319478 4.868956e-07
11584         ADH1C       4_66 0.143197702 32.307606 1.346360e-05
10057          ADH7       4_66 0.009291555 10.533608 2.848301e-07
5055           MTTP       4_66 0.010983181  8.019871 2.563397e-07
5686        TRMT10A       4_66 0.011475866  9.119569 3.045651e-07
               z num_eqtl
7980  -1.2321573        2
6091   0.9082871        1
7222  -0.1831346        1
12374 -0.4759060        3
8496   0.7334699        2
10115 -1.1153042        1
11584 -3.1932254        3
10057  1.9684512        2
5055  -0.7972018        1
5686  -1.1240076        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "DHCR7"
[1] "11_40"
          genename region_tag  susie_pip       mu2          PVE
8487         DHCR7      11_40 0.01773926  6.126264 3.162652e-07
8486       NADSYN1      11_40 0.01846773  6.522820 3.505656e-07
11530     KRTAP5-7      11_40 0.05750340 17.790367 2.977137e-06
11761     KRTAP5-9      11_40 0.01702918  5.723847 2.836626e-07
10650    KRTAP5-10      11_40 0.02462858  9.363322 6.711036e-07
6613       FAM86C1      11_40 0.01812508  6.338261 3.343262e-07
11744 RP11-849H4.2      11_40 0.01598480  5.100621 2.372742e-07
4859        RNF121      11_40 0.08438209 21.653507 5.317394e-06
4851        IL18BP      11_40 0.01565080  4.892748 2.228486e-07
4852         NUMA1      11_40 0.01679770  5.589051 2.732172e-07
9490        LRTOMT      11_40 0.01736402  5.915645 2.989322e-07
2462         FOLR3      11_40 0.01725682  5.854641 2.940229e-07
7453        INPPL1      11_40 0.01567344  4.906976 2.238198e-07
6900          CLPB      11_40 0.02252713  8.482540 5.560991e-07
11125    LINC01537      11_40 0.02069388  7.644949 4.604016e-07
                z num_eqtl
8487   0.65130261        1
8486   0.72652201        1
11530  2.05073754        1
11761  0.41678412        1
10650 -1.13422621        2
6613   0.45043836        1
11744 -0.32070634        1
4859   2.08692398        2
4851  -0.10323637        2
4852   0.44145029        1
9490  -0.65197454        1
2462  -0.63775295        1
7453   0.05040952        1
6900   1.03637029        1
11125 -0.84083998        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "LIPA"
[1] "10_57"
         genename region_tag   susie_pip       mu2          PVE          z
3295        IFIT2      10_57 0.010965069  6.795438 2.168449e-07 -0.6053359
3294        IFIT3      10_57 0.009447275  5.332101 1.465970e-07 -0.3100521
9655        IFIT1      10_57 0.022963912 14.073769 9.405385e-07  1.4103375
2253         LIPA      10_57 0.014680323  9.664353 4.128846e-07  1.0134814
6227        IFIT5      10_57 0.009249289  5.124159 1.379276e-07  0.2173750
6228        PANK1      10_57 0.015037652  9.901033 4.332921e-07 -1.6480922
11305 RP11-80H5.9      10_57 0.017494284 11.390715 5.799192e-07 -1.8221939
4960       KIF20B      10_57 0.013172614  8.598397 3.296171e-07 -1.5022578
11224   LINC00865      10_57 0.017715849 11.514908 5.936668e-07  1.6098123
10558      IFIT1B      10_57 0.010816977  6.661864 2.097114e-07 -0.6164140
      num_eqtl
3295         1
3294         1
9655         2
2253         1
6227         3
6228         1
11305        1
4960         1
11224        1
10558        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "LDLRAP1"
[1] "1_18"
          genename region_tag   susie_pip        mu2          PVE
3127          SYF2       1_18 0.007421533   6.668378 1.440238e-07
9783           RHD       1_18 0.006831065  43.925912 8.732317e-07
9453       TMEM50A       1_18 0.073989028  97.506077 2.099517e-05
9940          RHCE       1_18 0.007318047  64.649717 1.376836e-06
10578       TMEM57       1_18 0.384331155 100.841359 1.127884e-04
6571       LDLRAP1       1_18 0.007455503   8.855688 1.921408e-07
11070 RP11-70P17.1       1_18 0.017573873  17.547450 8.974325e-07
3130        MAN1C1       1_18 0.006859267   6.059395 1.209560e-07
6933       SELENON       1_18 0.030657158  20.024234 1.786521e-06
3129        MTFR1L       1_18 0.012751504  12.670202 4.701812e-07
8700        PDIK1L       1_18 0.035796331  23.470168 2.444978e-06
10206      FAM110D       1_18 0.007329688   6.264318 1.336225e-07
5406        CNKSR1       1_18 0.012521149  12.521539 4.562703e-07
4099         CEP85       1_18 0.013538518  14.905762 5.872805e-07
5405      SH3BGRL3       1_18 0.022295299  18.546477 1.203358e-06
8065          CD52       1_18 0.015681040  13.740455 6.270415e-07
6581        UBXN11       1_18 0.015681040  13.740455 6.270415e-07
8797         AIM1L       1_18 0.006748074   5.518993 1.083827e-07
8795        ZNF683       1_18 0.006513347   5.410474 1.025557e-07
3133         DHDDS       1_18 0.010598647  13.547692 4.178651e-07
10473        HMGN2       1_18 0.006663401   5.607062 1.087306e-07
3132       RPS6KA1       1_18 0.006440604   5.224797 9.793012e-08
525           PIGV       1_18 0.007151950  11.000297 2.289545e-07
10574      ZDHHC18       1_18 0.006769204   8.649976 1.704013e-07
5414          GPN2       1_18 0.008348650  13.689703 3.326064e-07
11698        TRNP1       1_18 0.033770287  19.267182 1.893535e-06
                z num_eqtl
3127    0.7426202        1
9783   -6.4603360        1
9453   10.0815103        1
9940    8.1134433        2
10578 -10.2641908        1
6571    1.9336337        2
11070   2.9461337        1
3130   -1.0646970        1
6933   -2.1819486        1
3129    2.2702594        2
8700    3.2275633        1
10206   0.6465781        1
5406    2.3608913        2
4099    2.3661103        1
5405   -2.8355236        1
8065   -1.2648216        1
6581   -1.2648216        1
8797    0.4474766        1
8795    0.5504045        1
3133    2.6796586        2
10473   0.5156134        1
3132    0.3917090        1
525    -2.2722478        2
10574   1.8553085        1
5414    2.5894296        1
11698   1.1357927        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "ANGPTL3"
[1] "1_39"
     genename region_tag   susie_pip        mu2          PVE          z
6956    TM2D1       1_39 0.056959707  23.071148 3.824347e-06  2.1432487
4316    KANK4       1_39 0.008972516   5.075472 1.325290e-07  0.5123038
6957     USP1       1_39 0.894444325 253.879959 6.608487e-04 16.2582110
4317  ANGPTL3       1_39 0.114994538 249.654254 8.354808e-05 16.1322287
3024    DOCK7       1_39 0.010009135  24.336915 7.088958e-07  4.4594815
3733    ATG4C       1_39 0.024969688  81.344478 5.911007e-06 -8.6477262
     num_eqtl
6956        1
4316        1
6957        1
4317        1
3024        1
3733        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "APOB"
[1] "2_13"
        genename region_tag    susie_pip       mu2          PVE          z
1053        APOB       2_13 1.618250e-11  62.92961 2.963609e-15 -11.725895
11245 AC067959.1       2_13 3.200605e-09 145.47372 1.354993e-12  -2.328717
      num_eqtl
1053         1
11245        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "APOE"
[1] "19_32"
      genename region_tag susie_pip        mu2 PVE           z num_eqtl
6721    ZNF233      19_32         0 115.540308   0  -9.2725820        2
6722    ZNF235      19_32         0 106.459190   0  -9.2122953        1
538     ZNF112      19_32         0 147.061017   0  10.3860543        1
12133   ZNF285      19_32         0  14.844074   0   0.9962471        2
12637   ZNF229      19_32         0  91.589291   0  10.9591492        2
7760    ZNF180      19_32         0  28.966742   0  -3.9159702        3
781        PVR      19_32         0 295.701702   0 -10.0782525        2
9745  CEACAM19      19_32         0  64.977515   0   9.4554813        2
9810      BCAM      19_32         0 109.853221   0   4.6421318        1
4048   NECTIN2      19_32         0 109.049177   0   6.2443536        2
4050    TOMM40      19_32         0  25.471829   0  -1.4020544        1
4049      APOE      19_32         0  47.814697   0  -2.0092826        1
11300    APOC2      19_32         0  57.109667   0  -9.1630690        2
8231    ZNF296      19_32         0 111.900459   0   5.4593536        1
5377    GEMIN7      19_32         0 193.978064   0  10.9432287        2
104      MARK4      19_32         0  24.156056   0  -2.2463768        1
1930   PPP1R37      19_32         0 125.326110   0 -12.8921201        2
109   TRAPPC6A      19_32         0  30.419699   0   1.8816459        1
9989   BLOC1S3      19_32         0  11.134819   0   2.3014119        1
12704  EXOC3L2      19_32         0  25.621613   0  -1.3436507        1
1933       CKM      19_32         0  15.790117   0  -1.5738464        1
1937     ERCC2      19_32         0  11.393491   0   2.3297330        2
3143    CD3EAP      19_32         0  27.197891   0  -3.0806361        1
3738      FOSB      19_32         0  18.939030   0  -2.3658041        1
196      ERCC1      19_32         0  14.630613   0  -0.2091619        1
10862    PPM1N      19_32         0  31.392476   0   5.4808308        1
3741      RTN2      19_32         0  31.851486   0   5.5300783        1
3742      VASP      19_32         0  12.782928   0   1.8957985        1
3739      OPA3      19_32         0  13.745582   0  -0.4654901        2
1942      KLC3      19_32         0  10.261197   0   1.7718715        1
10863 CEACAM16      19_32         0   7.492021   0   1.8740580        1
12131    APOC4      19_32         0  49.134556   0   8.0662459        2
10965   IGSF23      19_32         0  12.715131   0   1.9670520        1
8908      GPR4      19_32         0  66.214998   0  -3.5802828        1
3740    SNRPD2      19_32         0  10.032421   0   1.0366923        1
189      QPCTL      19_32         0  24.612260   0  -2.0303487        2
1949      DMPK      19_32         0  20.547022   0  -1.8090245        1
9659      DMWD      19_32         0  19.622427   0  -1.7547946        1
3743     SYMPK      19_32         0   4.904062   0  -0.0525717        1
8809     MYPOP      19_32         0  21.246603   0   1.8490001        1
1963    CCDC61      19_32         0  21.113500   0   1.8414612        2
3628     HIF3A      19_32         0  20.433740   0  -1.8024680        2
190      PPP5C      19_32         0  13.448632   0   1.3374649        1
8073     CCDC8      19_32         0   7.392266   0   0.7230949        2
9281    PNMAL1      19_32         0  20.657761   0  -1.8154111        4
10682   PNMAL2      19_32         0   5.246629   0  -0.2727077        1
11190   PPP5D1      19_32         0   6.392915   0  -0.5603345        1
6726     CALM3      19_32         0  54.624374   0   3.2242313        2

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "NPC1L1"
[1] "7_32"
        genename region_tag   susie_pip       mu2          PVE           z
7330      STK17A       7_32 0.006414090  5.405182 1.008941e-07   0.5439997
2177        COA1       7_32 0.011779535  9.889774 3.390274e-07  -0.7042755
2178       BLVRA       7_32 0.006315331  5.151026 9.466951e-08   0.4660052
541       MRPS24       7_32 0.007219831  6.241177 1.311336e-07   0.3827818
2179       URGCP       7_32 0.007395391  6.536478 1.406777e-07  -0.6697027
927       UBE2D4       7_32 0.009713232  9.447748 2.670622e-07   1.1906995
11147 AC004951.6       7_32 0.009988303  8.243453 2.396190e-07   0.2209151
4706        DBNL       7_32 0.008351048  6.910010 1.679345e-07   0.1009981
3488        POLM       7_32 0.006250639  5.193249 9.446782e-08   0.5460441
2183       AEBP1       7_32 0.022616023 20.450642 1.345995e-06  -2.6280619
2184       POLD2       7_32 0.014036368 13.082079 5.343820e-07  -1.4227083
2185        MYL7       7_32 0.007671582  6.668056 1.488691e-07   0.4396483
2186         GCK       7_32 0.006292970  5.111982 9.361928e-08  -0.2515709
500       CAMK2B       7_32 0.011448736  9.069547 3.021784e-07  -1.5162371
233       NPC1L1       7_32 0.963951568 89.799732 2.519130e-04 -10.7619311
4704       DDX56       7_32 0.974637816 58.705019 1.665094e-04   9.4462712
6619       TMED4       7_32 0.011779695 45.305762 1.553130e-06   7.5475920
2101        OGDH       7_32 0.008233040 19.553123 4.684860e-07   0.1499623
      num_eqtl
7330         1
2177         2
2178         1
541          1
2179         2
927          1
11147        1
4706         2
3488         3
2183         1
2184         2
2185         1
2186         1
500          2
233          1
4704         2
6619         2
2101         2

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "SOAT1"
[1] "1_89"
           genename region_tag   susie_pip       mu2          PVE
5477        FAM163A       1_89 0.009167159  4.894659 1.305803e-07
3000         FAM20B       1_89 0.009869807  5.619835 1.614182e-07
9716          TOR3A       1_89 0.010997748  6.682763 2.138849e-07
5473           ABL2       1_89 0.009168965  4.896592 1.306576e-07
488           SOAT1       1_89 0.009182909  4.911512 1.312550e-07
8120       TOR1AIP2       1_89 0.011769789  7.349455 2.517353e-07
5476       TOR1AIP1       1_89 0.009194003  4.923366 1.317307e-07
11939 RP11-533E19.5       1_89 0.013686639  8.832932 3.518212e-07
4640         CEP350       1_89 0.044025422 20.382847 2.611492e-06
3008          QSOX1       1_89 0.036018911 18.387061 1.927362e-06
3408           LHX4       1_89 0.010832293  6.533828 2.059721e-07
11184         ACBD6       1_89 0.010823793  6.526117 2.055676e-07
5474           XPR1       1_89 0.026064750 15.183148 1.151690e-06
6245            MR1       1_89 0.009943485  5.692874 1.647368e-07
                z num_eqtl
5477  -0.07283498        1
3000   0.42412943        2
9716  -0.64642141        1
5473  -0.04638378        1
488   -0.14955596        1
8120   0.78824459        1
5476  -0.06998621        1
11939  1.29962295        2
4640   2.27414775        2
3008  -1.74016201        2
3408  -0.58114341        1
11184 -0.61546219        2
5474   1.57571425        2
6245   0.40422440        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "MYLIP"
[1] "6_13"
          genename region_tag   susie_pip       mu2          PVE         z
12277 RP11-560J1.2       6_13 0.006258658  6.277863 1.143440e-07 0.5773850
400         DTNBP1       6_13 0.024828937 19.136034 1.382708e-06 1.8923854
124          MYLIP       6_13 0.005437696 39.355857 6.227943e-07 6.1101946
4817          GMPR       6_13 0.009852449  9.816480 2.814623e-07 0.2573808
      num_eqtl
12277        2
400          1
124          2
4817         2

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "OSBPL5"
[1] "11_2"
        genename region_tag   susie_pip       mu2          PVE          z
926       TOLLIP       11_2 0.005892172 11.279305 1.934096e-07 -1.1132790
9307        MOB2       11_2 0.021035050 23.395361 1.432167e-06  2.2732312
9530       DUSP8       11_2 0.005016946  9.712891 1.418105e-07  1.2015225
10759   KRTAP5-1       11_2 0.010207639 16.802551 4.991382e-07 -1.7341826
11527    IFITM10       11_2 0.003760600  7.181078 7.858996e-08 -0.8538633
3146        CTSD       11_2 0.006277922 11.914524 2.176772e-07  1.2201456
4093       TNNI2       11_2 0.003443352  6.123122 6.135849e-08  0.4977574
12709      PRR33       11_2 0.003103652  6.436119 5.813228e-08  1.2367544
4092       TNNT3       11_2 0.003110993  5.117300 4.632977e-08 -0.1271889
7744        IGF2       11_2 0.003170213  5.256745 4.849820e-08  0.1447958
9455       ASCL2       11_2 0.004706846  8.845565 1.211646e-07 -0.8044614
2490    C11orf21       11_2 0.004270528  8.041761 9.994315e-08 -0.7150719
9508       TSSC4       11_2 0.004275455  8.294521 1.032034e-07 -0.9083240
9251      PHLDA2       11_2 0.037010195 28.576194 3.077840e-06 -2.5765310
10734     NAP1L4       11_2 0.020732883 23.353782 1.409085e-06 -2.2381727
264       OSBPL5       11_2 0.008807622 15.130551 3.878231e-07 -1.6475511
67        ZNF195       11_2 0.005812778 11.170732 1.889669e-07  1.1809650
9140          TH       11_2 0.017305764 22.322118 1.124208e-06  2.0988645
10758     FAM99A       11_2 0.003545402  6.356068 6.558045e-08  0.5299554
11117 AP006285.6       11_2 0.003969445  7.584440 8.761403e-08 -0.9091754
11209 AP006285.7       11_2 0.004604045  8.906721 1.193377e-07  0.8556168
10757   KRTAP5-6       11_2 0.003056331  4.950785 4.403468e-08  0.1958622
      num_eqtl
926          2
9307         2
9530         1
10759        1
11527        1
3146         2
4093         1
12709        2
4092         2
7744         1
9455         1
2490         2
9508         1
9251         1
10734        1
264          1
67           2
9140         1
10758        2
11117        3
11209        1
10757        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "SCARB1"
[1] "12_76"
          genename region_tag   susie_pip       mu2          PVE
10916 RP11-83B20.1      12_76 0.087880449 27.427537 7.014543e-06
783         SCARB1      12_76 0.009051033  6.717003 1.769270e-07
6070           UBC      12_76 0.013557335  9.017802 3.557913e-07
989           AACS      12_76 0.008772012  4.959455 1.266058e-07
               z num_eqtl
10916 -2.2707583        1
783   -1.3579091        1
6070   0.9059691        1
989   -0.1677513        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "VDAC3"
[1] "8_37"
     genename region_tag   susie_pip       mu2          PVE          z
726     AP3M2       8_37 0.009690732  5.042460 1.422065e-07 -0.1640405
1883     PLAT       8_37 0.009714433  5.066447 1.432324e-07  0.2157926
916     VDAC3       8_37 0.021066166 12.682981 7.775479e-07 -1.3606126
7961  SLC20A2       8_37 0.009633496  4.984289 1.397357e-07 -0.1602583
8811   SMIM19       8_37 0.013404866  8.230773 3.210875e-07 -0.9418962
4215    THAP1       8_37 0.009696744  5.048550 1.424665e-07  0.2765875
7909    HOOK3       8_37 0.037378181 18.357303 1.996859e-06  1.9222889
3375   RNF170       8_37 0.037378181 18.357303 1.996859e-06  1.9222889
     num_eqtl
726         2
1883        1
916         1
7961        1
8811        1
4215        2
7909        1
3375        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "LRP2"
[1] "2_103"
      genename region_tag  susie_pip       mu2          PVE           z
985       LRP2      2_103 0.02217809  7.636701 4.928902e-07  0.79845416
7041      BBS5      2_103 0.02342284  8.175811 5.573022e-07  0.88589081
11395   KLHL41      2_103 0.01745463  5.275211 2.679605e-07 -0.32742036
4985   FASTKD1      2_103 0.02567410  9.082462 6.786083e-07  0.94743244
4984      PPIG      2_103 0.02959246 10.487462 9.031746e-07 -1.40458148
6343   CCDC173      2_103 0.02842244 10.088118 8.344337e-07 -1.44045674
10808   KLHL23      2_103 0.04614336 14.899351 2.000769e-06  1.90247786
5602  PHOSPHO2      2_103 0.01753032  5.317839 2.712973e-07  0.29104367
4982       SSB      2_103 0.03091274 10.919763 9.823607e-07  1.22773041
4981    METTL5      2_103 0.01683652  4.920086 2.410712e-07  0.11571328
5601      UBR3      2_103 0.01683593  4.919741 2.410458e-07  0.07450539
      num_eqtl
985          1
7041         1
11395        1
4985         1
4984         2
6343         2
10808        2
5602         1
4982         1
4981         1
5601         1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "CETP"
[1] "16_31"
          genename region_tag   susie_pip        mu2          PVE
11561 RP11-461O7.1      16_31 0.003204156   5.972640 5.569297e-08
1124         GNAO1      16_31 0.003204823   6.140440 5.726956e-08
6695          AMFR      16_31 0.003883669   7.473990 8.447243e-08
7710        NUDT21      16_31 0.003243357   6.413318 6.053378e-08
3681          BBS2      16_31 0.022262951  23.691814 1.534975e-06
1122           MT3      16_31 0.002931993   5.273953 4.500072e-08
8094          MT1E      16_31 0.003038882   5.705955 5.046178e-08
10727         MT1M      16_31 0.004316483  12.028226 1.510956e-07
10725         MT1A      16_31 0.004544415  11.127910 1.471675e-07
10386         MT1F      16_31 0.121676003  38.641857 1.368306e-05
9805          MT1X      16_31 0.002802285   5.055912 4.123179e-08
1740         NUP93      16_31 0.021078005  24.521710 1.504183e-06
438        HERPUD1      16_31 0.006119693  24.441227 4.352842e-07
1120          CETP      16_31 0.056359403 121.048764 1.985396e-05
5240         NLRC5      16_31 0.088907377 159.686144 4.131667e-05
5239         CPNE2      16_31 0.002979777   5.481558 4.753441e-08
8472       FAM192A      16_31 0.003111837   6.218458 5.631444e-08
6698        RSPRY1      16_31 0.004338276  11.198711 1.413857e-07
1745          PLLP      16_31 0.017878458  25.352215 1.319065e-06
81          CX3CL1      16_31 0.003038169   6.159428 5.445937e-08
1747         CCL17      16_31 0.004492805   8.998202 1.176505e-07
52         CIAPIN1      16_31 0.012172545  20.135497 7.132866e-07
1154          COQ9      16_31 0.004452740   9.338385 1.210095e-07
3685          DOK4      16_31 0.003676532   7.914669 8.468207e-08
4628      CCDC102A      16_31 0.002926457   5.388759 4.589351e-08
10722       ADGRG1      16_31 0.008452685  15.679673 3.857021e-07
6688         CES5A      16_31 0.002843469   5.460433 4.518517e-08
9366        ADGRG3      16_31 0.004909044  10.382723 1.483298e-07
5241        KATNB1      16_31 0.014466440  20.952899 8.821168e-07
5242         KIFC3      16_31 0.027079246  27.084949 2.134445e-06
7571        ZNF319      16_31 0.002825783   4.978056 4.093727e-08
1754          USB1      16_31 0.002938331   5.360702 4.583980e-08
1753         MMP15      16_31 0.008726601  16.009518 4.065778e-07
729         CFAP20      16_31 0.002875097   5.146633 4.306218e-08
730        CSNK2A2      16_31 0.002833587   5.007791 4.129553e-08
9278         GINS3      16_31 0.003615780   7.395250 7.781713e-08
1757         NDRG4      16_31 0.002839241   5.025067 4.152067e-08
3680         CNOT1      16_31 0.028066316  27.090515 2.212702e-06
1759       SLC38A7      16_31 0.005199281  10.880930 1.646378e-07
3684          GOT2      16_31 0.023688956  25.558053 1.761952e-06
               z num_eqtl
11561  0.1973122        1
1124  -0.5287206        1
6695  -0.1575098        1
7710  -0.6747743        2
3681  -1.9263988        2
1122   0.2341288        1
8094   0.5732896        1
10727  2.0216456        1
10725  1.5829980        2
10386 -2.7354541        1
9805  -0.4099722        1
1740   2.2770780        2
438    3.8389063        2
1120  10.0796427        1
5240  11.8602110        1
5239   0.2383750        1
8472  -0.7860456        1
6698  -1.8323801        1
1745  -2.6585007        2
81    -0.8286220        1
1747   0.7431888        1
52    -2.0356089        2
1154  -0.9549661        2
3685  -0.9956520        2
4628   0.4043649        2
10722 -1.5429173        3
6688  -0.6790309        2
9366  -1.0805254        1
5241  -1.8723683        2
5242  -2.2243116        1
7571   0.1401284        1
1754   0.3145636        1
1753  -1.5466217        1
729    0.2411647        2
730   -0.1322483        2
9278  -0.7182699        2
1757   0.1679672        1
3680  -2.4928488        2
1759   1.2166483        1
3684   2.3111934        2

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "PLTP"
[1] "20_28"
           genename region_tag   susie_pip       mu2          PVE
6007           JPH2      20_28 0.001852802  4.974997 2.682514e-08
4309          OSER1      20_28 0.002214811  6.655706 4.289939e-08
11031     OSER1-AS1      20_28 0.003014773 10.290390 9.028316e-08
10216         FITM2      20_28 0.001911355  7.639780 4.249545e-08
4310        SERINC3      20_28 0.003697268 10.983824 1.181829e-07
7974           PKIG      20_28 0.011661025 20.494334 6.954899e-07
10148           ADA      20_28 0.001900094  6.295141 3.480975e-08
12701 RP11-445H22.3      20_28 0.002347942  7.416846 5.067888e-08
3615         KCNK15      20_28 0.002246072  6.627410 4.331993e-08
7691          YWHAB      20_28 0.002604384  7.952601 6.027463e-08
292          TOMM34      20_28 0.001882193  5.177950 2.836236e-08
1617           STK4      20_28 0.002029729  5.817996 3.436621e-08
3588           SLPI      20_28 0.002117132  6.088002 3.750965e-08
3613          RBPJL      20_28 0.004630587 13.922251 1.876142e-07
3594          MATN4      20_28 0.002006962  5.528553 3.229022e-08
3591           SDC4      20_28 0.593701674 24.729865 4.272778e-05
10561          SYS1      20_28 0.001857654  4.937691 2.669372e-08
11528        DBNDD2      20_28 0.002261249  7.557779 4.973508e-08
3616        TP53TG5      20_28 0.002080417  7.348546 4.449099e-08
3589          WFDC3      20_28 0.002509208 12.679418 9.258835e-08
1683        DNTTIP1      20_28 0.006782956 16.294182 3.216414e-07
8697          UBE2C      20_28 0.002805178 10.120379 8.261853e-08
3587          SNX21      20_28 0.029736350 30.060443 2.601377e-06
1685          ACOT8      20_28 0.002380100  7.991865 5.535588e-08
7964         ZSWIM1      20_28 0.275222785 30.975062 2.480943e-05
1597           PLTP      20_28 0.987796601 61.569807 1.769928e-04
1598          PCIF1      20_28 0.001885312 21.324128 1.169970e-07
10331        ZNF335      20_28 0.001935285  5.281502 2.974560e-08
1600           MMP9      20_28 0.007202366 18.171321 3.808746e-07
3595          NCOA5      20_28 0.003370356 10.757165 1.055101e-07
1608           CD40      20_28 0.005659928 14.207615 2.340197e-07
                z num_eqtl
6007   0.34475118        1
4309  -0.72359138        2
11031  1.30139067        3
10216  1.70850449        1
4310   1.06666707        2
7974  -1.92973723        1
10148 -1.11873945        1
12701 -0.77170625        1
3615  -0.43953756        2
7691   0.92140948        1
292   -0.21559970        1
1617  -0.65248556        1
3588  -0.43426645        2
3613   1.21973824        1
3594  -0.72142554        1
3591  -3.92072709        1
10561 -0.53036749        1
11528  0.76276385        1
3616  -1.26808126        2
3589   0.89942952        1
1683   1.68660209        2
8697  -1.29063071        1
3587  -2.25095415        1
1685   0.21164457        2
7964  -0.64131988        1
1597  -5.73249075        1
1598   2.96018585        1
10331  0.03190689        1
1600   1.76632544        1
3595   1.06921473        1
1608  -1.05986939        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "VAPA"
[1] "18_7"
      genename region_tag   susie_pip       mu2          PVE            z
10773    RAB12       18_7 0.005669417  4.963550 8.189381e-08  0.123074043
8980    NDUFV2       18_7 0.014693904 14.314634 6.121217e-07  1.381942467
1703   ANKRD12       18_7 0.007509173  7.719828 1.687019e-07 -0.889300700
240     RALBP1       18_7 0.008844314  9.325868 2.400345e-07  1.171373949
7947     RAB31       18_7 0.005628537  4.892601 8.014116e-08 -0.002933481
1691      VAPA       18_7 0.006682102  6.575116 1.278606e-07  0.657289426
4446      NAPG       18_7 0.007219661  7.334089 1.540931e-07  0.841503954
      num_eqtl
10773        1
8980         2
1703         2
240          1
7947         2
1691         1
4446         2

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "KPNB1"
[1] "17_27"
          genename region_tag   susie_pip       mu2          PVE
8499         DCAKD      17_27 0.007295915  5.154351 1.094395e-07
12583   AC142472.6      17_27 0.011448028  9.536381 3.177127e-07
6678      ARHGAP27      17_27 0.009937412  8.187470 2.367791e-07
11062      PLEKHM1      17_27 0.007185413  4.929695 1.030842e-07
12113 RP11-798G7.6      17_27 0.007337732  5.328459 1.137847e-07
3310        KANSL1      17_27 0.007337732  5.328459 1.137847e-07
9773          MAPT      17_27 0.007952718  5.896543 1.364688e-07
8846       LRRC37A      17_27 0.008112452  5.901095 1.393173e-07
11381     LRRC37A2      17_27 0.013594627 10.712992 4.238365e-07
9663        ARL17A      17_27 0.009161622  7.315193 1.950377e-07
802            NSF      17_27 0.010877140 10.526122 3.331988e-07
2301          WNT3      17_27 0.014727755 13.095719 5.612886e-07
2310         GOSR2      17_27 0.019773773 13.779865 7.929664e-07
41           CDC27      17_27 0.007920754  8.440671 1.945646e-07
11884        ITGB3      17_27 0.009508899  9.519123 2.634192e-07
9041       EFCAB13      17_27 0.011965142 57.621477 2.006423e-06
5281        NPEPPS      17_27 0.010242051 15.882260 4.733905e-07
2309         KPNB1      17_27 0.020782622 89.848478 5.434147e-06
10511       TBKBP1      17_27 0.016936476 90.170965 4.444369e-06
                z num_eqtl
8499  -0.15093721        1
12583 -0.86874169        1
6678   1.16027409        2
11062  0.03569373        1
12113 -0.08580432        1
3310  -0.08580432        1
9773  -0.72635506        1
8846  -0.35529825        1
11381  2.39235673        1
9663   1.91935258        2
802   -2.06053407        1
2301  -1.55730420        1
2310   1.29775360        2
41    -1.62384444        1
11884 -1.58019328        2
9041   7.36590043        4
5281  -3.02425642        1
2309  -9.51317987        2
10511 -9.31233452        2

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "ALDH2"
[1] "12_67"
          genename region_tag   susie_pip       mu2          PVE
5112          TCHP      12_67 0.024551426 13.970132 9.981540e-07
5111          GIT2      12_67 0.028408805 15.795647 1.305902e-06
8639      C12orf76      12_67 0.010065551  6.904105 2.022392e-07
3515         IFT81      12_67 0.014681787 12.233365 5.226912e-07
10093       ANAPC7      12_67 0.009610337  6.533553 1.827294e-07
2531         ARPC3      12_67 0.011906193  8.239795 2.855023e-07
10684      FAM216A      12_67 0.009063171  5.613735 1.480650e-07
2532          GPN3      12_67 0.011364178  8.543498 2.825492e-07
2533         VPS29      12_67 0.011444432  8.620619 2.871131e-07
10683        TCTN1      12_67 0.027201544 17.021122 1.347417e-06
3517         HVCN1      12_67 0.008921524  5.669699 1.472039e-07
9717        PPP1CC      12_67 0.008699185  5.274093 1.335201e-07
10375      FAM109A      12_67 0.008732629  5.860945 1.489474e-07
2536         SH2B3      12_67 0.071501763 57.685407 1.200337e-05
10680        ATXN2      12_67 0.042796306 18.570768 2.312898e-06
2541         ALDH2      12_67 0.020766191 32.769841 1.980393e-06
11290 MAPKAPK5-AS1      12_67 0.020066937 31.847532 1.859847e-06
10370      TMEM116      12_67 0.038333402 32.410717 3.615649e-06
1191         ERP29      12_67 0.038333402 32.410717 3.615649e-06
2544         NAA25      12_67 0.041829146 33.498264 4.077759e-06
8505        HECTD4      12_67 0.039386207 33.640810 3.855946e-06
9084        PTPN11      12_67 0.011489634 10.378259 3.470172e-07
               z num_eqtl
5112  -1.4944146        2
5111  -1.8046506        2
8639  -1.0008849        1
3515  -2.3268452        2
10093 -1.0505294        1
2531   1.1143107        1
10684 -0.6987263        1
2532  -1.4783205        1
2533   1.4871406        1
10683  2.1771229        1
3517  -0.8757995        1
9717   0.7231339        1
10375  0.8704329        1
2536  -7.8354247        1
10680 -0.7777805        1
2541  -6.4436064        1
11290  6.3728846        1
10370  5.8049447        1
1191  -5.8049447        1
2544   5.8544343        1
8505  -5.7749393        2
9084   2.2253869        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "APOA1"
[1] "11_70"
     genename region_tag   susie_pip        mu2          PVE            z
4868    BUD13      11_70 0.005760699  36.876902 6.182297e-07   4.11527976
3154    APOA1      11_70 0.004278331   6.652390 8.282709e-08   1.11150616
7898 PAFAH1B2      11_70 0.005499480   7.725576 1.236439e-07  -0.01722766
6005    SIDT2      11_70 0.004139980   5.468270 6.588226e-08   0.50104522
6006    TAGLN      11_70 0.004614639  18.478031 2.481497e-07  -1.55444774
6785    PCSK7      11_70 0.012766000  16.431533 6.104544e-07   0.97935688
7745   RNF214      11_70 0.004787354   6.579102 9.166055e-08  -0.52468931
2466   CEP164      11_70 0.004664222   5.763477 7.823193e-08  -0.30209785
9720    BACE1      11_70 0.004495693  21.121393 2.763373e-07  -4.13706265
4881    FXYD2      11_70 0.004684096   6.128819 8.354547e-08  -0.37435241
2465    APOA5      11_70 0.032499003 145.137431 1.372681e-05 -11.35991043
     num_eqtl
4868        1
3154        2
7898        2
6005        1
6006        1
6785        1
7745        1
2466        2
9720        1
4881        2
2465        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "STARD3"
[1] "17_23"
           genename region_tag   susie_pip       mu2          PVE
12452          EPOP      17_23 0.008828798  4.964151 1.275460e-07
12620         PSMB3      17_23 0.027491186 16.148740 1.291970e-06
12575       PIP4K2B      17_23 0.013522666  9.153051 3.602040e-07
12450         CWC25      17_23 0.015484658 10.486090 4.725367e-07
16            LASP1      17_23 0.041860534 20.319049 2.475303e-06
12051     LINC00672      17_23 0.283902976 40.138551 3.316286e-05
6848         PLXDC1      17_23 0.010327090  6.503367 1.954504e-07
2297         FBXL20      17_23 0.019490995 12.752867 7.233728e-07
3731           MED1      17_23 0.013638291  9.236893 3.666116e-07
4202         STARD3      17_23 0.008991146  5.143031 1.345719e-07
8601           TCAP      17_23 0.012254194  8.184631 2.918799e-07
5343           PNMT      17_23 0.013071583  8.819499 3.354999e-07
5341          ERBB2      17_23 0.011726386  7.751891 2.645405e-07
6849          PGAP3      17_23 0.017422902 11.647436 5.905697e-07
5342           GRB7      17_23 0.009220048  5.389875 1.446213e-07
6850          IKZF3      17_23 0.145210688 32.923351 1.391307e-05
8390         ORMDL3      17_23 0.027480145 16.144734 1.291131e-06
12065 RP11-387H17.4      17_23 0.009107332  5.269052 1.396510e-07
7860          GSDMA      17_23 0.029113792 16.716128 1.416298e-06
2299           CSF3      17_23 0.086516718 27.605103 6.950399e-06
3800          NR1D1      17_23 0.011905826  7.901065 2.737572e-07
9964           MSL1      17_23 0.011174564  7.278216 2.366878e-07
2300       RAPGEFL1      17_23 0.013131803  8.864586 3.387686e-07
8318          WIPF2      17_23 0.008763262  4.891010 1.247339e-07
1306           CDC6      17_23 0.010894501  7.028750 2.228465e-07
5344         IGFBP4      17_23 0.010563096  6.725286 2.067389e-07
4201           TNS4      17_23 0.008765883  4.893945 1.248461e-07
12085  RP5-1028K7.2      17_23 0.034839186 18.495303 1.875209e-06
3799           CCR7      17_23 0.009538106  5.722828 1.588522e-07
793         SMARCE1      17_23 0.009140545  5.304816 1.411116e-07
10827        KRT222      17_23 0.008795849  4.927446 1.261304e-07
                z num_eqtl
12452 -0.10662081        2
12620  1.72896001        2
12575 -1.00157125        1
12450  1.08708711        3
16     2.06384703        1
12051  3.53577816        2
6848  -0.56588683        1
2297   1.93901635        1
3731  -1.49493107        2
4202  -0.38811898        2
8601   1.04770013        1
5343  -1.18909299        2
5341  -1.13724896        2
6849  -2.14338495        2
5342   0.49199960        3
6850   3.46618563        1
8390   2.64808902        2
12065  0.05180697        2
7860   2.77074527        2
2299  -3.20456334        1
3800   0.81175389        1
9964   0.98720359        1
2300   0.89662465        1
8318  -0.18843428        2
1306   0.50375876        2
5344  -0.57588470        1
4201   0.02859681        1
12085  1.93533443        1
3799  -0.44220762        1
793   -0.32396665        2
10827  0.11407193        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "PPARG"
[1] "3_9"
      genename region_tag   susie_pip       mu2          PVE          z
10251     ATG7        3_9 0.005863072 11.279321 1.924547e-07  1.4232154
5615    TAMM41        3_9 0.004285657  9.651761 1.203772e-07  1.3225877
6517     TIMP4        3_9 0.005068659  8.137228 1.200300e-07  0.2250754
4231     PPARG        3_9 0.002950426 10.891923 9.352110e-08 -2.5953663
6362     TSEN2        3_9 0.033836996 29.748883 2.929428e-06  4.4713068
856      MKRN2        3_9 0.005642229 14.942806 2.453597e-07 -3.4863426
11068  MKRN2OS        3_9 0.039627647 28.911089 3.334134e-06 -4.7387006
4230      RAF1        3_9 0.002819330  5.486407 4.501469e-08  0.8372135
5632     CAND2        3_9 0.021913744 27.707542 1.766993e-06 -3.2762482
5633     RPL32        3_9 0.003803163  7.956967 8.806692e-08 -0.8436264
      num_eqtl
10251        2
5615         3
6517         1
4231         1
6362         1
856          2
11068        2
4230         1
5632         1
5633         2

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "LPIN3"
[1] "20_25"
      genename region_tag   susie_pip      mu2          PVE         z
10499     TOP1      20_25 0.012372927 20.23536 7.286243e-07 -3.533405
3599     PLCG1      20_25 0.046442227 22.49403 3.040189e-06  2.065730
8628      ZHX3      20_25 0.007581188 12.81247 2.826770e-07 -2.767903
4307     LPIN3      20_25 0.011921879 47.36111 1.643187e-06  6.600722
9463   EMILIN3      20_25 0.027281344 95.64737 7.593799e-06  9.450280
3598      CHD6      20_25 0.010044191 11.65434 3.406613e-07 -2.247872
      num_eqtl
10499        2
3599         2
8628         1
4307         2
9463         2
3598         1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "SORT1"
[1] "1_67"
      genename region_tag   susie_pip         mu2          PVE           z
4434      VAV3       1_67 0.065099832   24.320182 4.607517e-06  -2.1042470
1073  SLC25A24       1_67 0.008611429    6.469190 1.621233e-07   0.9234769
6966   FAM102B       1_67 0.007746337    6.075857 1.369696e-07  -1.1378586
3009    STXBP3       1_67 0.017008399   18.337108 9.076420e-07   2.9982594
3438     GPSM2       1_67 0.008080202    9.107535 2.141625e-07  -1.9348222
3437     CLCC1       1_67 0.008069139   11.438836 2.686144e-07   2.5660415
10286    TAF13       1_67 0.010760437    9.452750 2.960114e-07  -1.5591453
10955 TMEM167B       1_67 0.013756111   11.324506 4.533517e-07  -1.5270485
315       SARS       1_67 0.014473303   94.891762 3.996837e-06   9.5234950
4435     PSRC1       1_67 0.024647145 1673.274100 1.200201e-04 -41.6873361
5436     PSMA5       1_67 0.007880027 1212.644656 2.780876e-05 -35.4138115
5431     SYPL2       1_67 0.016433368  198.526066 9.494332e-06 -14.1478749
6970   ATXN7L2       1_67 0.009823180  367.075403 1.049368e-05 -19.2427445
8615  CYB561D1       1_67 0.063213063  127.989209 2.354510e-05  10.6827516
9259    AMIGO1       1_67 0.018715231   27.987319 1.524322e-06  -3.9630816
6445     GPR61       1_67 0.007845449   23.052571 5.263292e-07   4.2425343
587      GNAI3       1_67 0.054241321   31.679097 5.000614e-06  -3.8408490
7977     GSTM4       1_67 0.014374335   30.871560 1.291417e-06   4.7825961
10821    GSTM2       1_67 0.008660380   14.362332 3.619780e-07   2.9726102
4430     GSTM1       1_67 0.018905914   29.235760 1.608542e-06   4.2590068
4433     GSTM3       1_67 0.007854604   20.899567 4.777293e-07  -3.9546683
4432     GSTM5       1_67 0.014116282   14.798554 6.079389e-07   2.3798227
12715    SORT1       1_67 0.987301191 1681.661467 4.831795e-03 -41.7934744
      num_eqtl
4434         1
1073         2
6966         1
3009         1
3438         1
3437         2
10286        1
10955        1
315          1
4435         1
5436         2
5431         2
6970         2
8615         3
9259         1
6445         1
587          1
7977         3
10821        2
4430         1
4433         3
4432         5
12715        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "FADS2"
[1] "11_34"
           genename region_tag   susie_pip        mu2          PVE
9982        FAM111B      11_34 0.004473671   5.029481 6.547983e-08
7662        FAM111A      11_34 0.006610236   8.672723 1.668371e-07
2444           DTX4      11_34 0.004504280   5.112576 6.701707e-08
10267         MPEG1      11_34 0.004535836   5.241120 6.918337e-08
7684          PATL1      11_34 0.062436117  30.278853 5.501684e-06
7687           STX3      11_34 0.004422795   4.937794 6.355506e-08
7688         MRPL16      11_34 0.006813281   8.877090 1.760140e-07
5997          MS4A2      11_34 0.008397351  10.906049 2.665202e-07
2453         MS4A6A      11_34 0.005002286   6.032979 8.782550e-08
10924        MS4A4E      11_34 0.005747724   7.597092 1.270760e-07
7697          MS4A7      11_34 0.004397638   4.910668 6.284639e-08
7698         MS4A14      11_34 0.025928734  21.804577 1.645316e-06
2455         CCDC86      11_34 0.005785125   7.386093 1.243506e-07
2456         PRPF19      11_34 0.008960933  12.093005 3.153609e-07
2457        TMEM109      11_34 0.010241876  13.173172 3.926360e-07
2480        SLC15A3      11_34 0.004713723   6.044231 8.291353e-08
2481            CD5      11_34 0.004532367   5.291874 6.979992e-08
7874         VPS37C      11_34 0.005273098   6.314732 9.690387e-08
7875           VWCE      11_34 0.004740535   5.867788 8.095098e-08
6902       CYB561A3      11_34 0.005995808  10.249129 1.788360e-07
5990        TMEM138      11_34 0.005995808  10.249129 1.788360e-07
9789        TMEM216      11_34 0.004401847   4.951549 6.343023e-08
5996          CPSF7      11_34 0.005172782   9.944039 1.496950e-07
11817 RP11-286N22.8      11_34 0.004941196   5.969003 8.583297e-08
6903        PPP1R32      11_34 0.005377305   6.576369 1.029132e-07
11812 RP11-794G24.1      11_34 0.011355935  12.517096 4.136631e-07
3676   DKFZP434K028      11_34 0.004413466   5.958618 7.653244e-08
4508        TMEM258      11_34 0.034858621  66.046365 6.700071e-06
7955           FEN1      11_34 0.006376688 145.198765 2.694501e-06
4507          FADS2      11_34 0.006376688 145.198765 2.694501e-06
5991          FADS1      11_34 0.999536200 160.579227 4.670982e-04
11004         FADS3      11_34 0.009838644  21.356696 6.114904e-07
7876          BEST1      11_34 0.004701537  18.832400 2.576712e-07
5994         INCENP      11_34 0.004408432   5.798857 7.439553e-08
6904         ASRGL1      11_34 0.004535271   5.204785 6.869519e-08
1196          GANAB      11_34 0.007548814  72.351397 1.589447e-06
                 z num_eqtl
9982  -0.130372989        1
7662   0.788300174        2
2444   0.272926929        2
10267  0.288859011        1
7684   3.303999343        2
7687   0.001285218        2
7688   0.989371951        2
5997  -1.135206653        1
2453   0.544252801        1
10924  0.848247159        1
7697  -0.132073393        2
7698  -1.857701655        3
2455  -0.651729299        3
2456   1.430603519        2
2457   1.421831985        1
2480   0.821410772        1
2481   0.346138465        1
7874   0.024014132        1
7875  -0.638825054        2
6902  -1.782804562        1
5990  -1.782804562        1
9789  -0.251085346        2
5996  -2.061044578        1
11817 -0.427047808        1
6903  -0.382653253        1
11812  0.447753087        1
3676   1.073921044        1
4508  -6.946921109        2
7955  12.072635202        1
4507  12.072635202        1
5991  12.825882927        2
11004  3.289416818        1
7876  -3.744804132        1
5994  -0.969291005        2
6904  -0.250084386        1
1196  -8.204723304        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "CD36"
[1] "7_51"
        genename region_tag  susie_pip      mu2          PVE          z
11275 AC003988.1       7_51 0.01031357 5.223114 1.567685e-07 -0.1655722
4557        CD36       7_51 0.01019033 5.105037 1.513936e-07 -0.2565559
830       SEMA3C       7_51 0.01303533 7.524757 2.854531e-07 -0.8034967
      num_eqtl
11275        1
4557         1
830          2

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "CYP27A1"
[1] "2_129"
           genename region_tag   susie_pip       mu2          PVE
3881           VIL1      2_129 0.763699944 27.026402 6.006636e-05
9895          RUFY4      2_129 0.011442676  9.066223 3.019078e-07
9189          CXCR2      2_129 0.018287052 12.276389 6.533330e-07
7090          CXCR1      2_129 0.008884523  6.046207 1.563282e-07
7091          ARPC2      2_129 0.031841608 17.311693 1.604186e-06
3882           AAMP      2_129 0.038309380 18.542799 2.067287e-06
3883           PNKD      2_129 0.054373381 22.024557 3.485089e-06
4655         TMBIM1      2_129 0.040696625 19.094782 2.261483e-06
243         SLC11A1      2_129 0.008170071  5.223184 1.241885e-07
4649          USP37      2_129 0.035570735 20.587521 2.131166e-06
5618          CNOT9      2_129 0.018681776 17.677950 9.611039e-07
2934          PLCD4      2_129 0.021724924 18.250786 1.153879e-06
813           BCS1L      2_129 0.008337444  6.052047 1.468438e-07
2936         ZNF142      2_129 0.008267565  5.945377 1.430465e-07
7095          STK36      2_129 0.011916534 15.777607 5.471563e-07
4656        CYP27A1      2_129 0.008274146  8.427972 2.029395e-07
12345 RP11-459I19.1      2_129 0.011464801 15.500748 5.171773e-07
12356   RP11-33O4.1      2_129 0.008713959  6.549260 1.660841e-07
9840          NHEJ1      2_129 0.025684066 17.265619 1.290524e-06
10864       SLC23A3      2_129 0.009736132  6.643068 1.882242e-07
5617        FAM134A      2_129 0.023177900 14.752830 9.951069e-07
2941         CNPPD1      2_129 0.010657232  7.798462 2.418654e-07
2943          ABCB6      2_129 0.026426528 17.136106 1.317870e-06
10508         ATG9A      2_129 0.012610803  9.734087 3.572385e-07
7101         ANKZF1      2_129 0.013436809 10.384134 4.060567e-07
7104          GLB1L      2_129 0.008407253  5.452794 1.334116e-07
3880         TUBA4A      2_129 0.009769496  6.887493 1.958184e-07
4654         DNAJB2      2_129 0.008698513  5.839548 1.478239e-07
3580          DNPEP      2_129 0.025658967 16.697455 1.246837e-06
8699            DES      2_129 0.034829083 19.722359 1.999039e-06
758            SPEG      2_129 0.008027319  5.098423 1.191041e-07
5620          GMPPA      2_129 0.010075513  7.327313 2.148484e-07
3579           CHPF      2_129 0.008411898  5.622050 1.376287e-07
3582          OBSL1      2_129 0.013937549 10.874333 4.410719e-07
                z num_eqtl
3881   4.72553123        1
9895   1.02099255        2
9189  -1.47518963        1
7090   0.56376400        1
7091  -1.94043222        1
3882  -1.90836173        1
3883  -2.20803733        1
4655  -1.92761030        2
243    0.05100451        1
4649  -3.97558895        3
5618   3.65097314        1
2934  -3.71953627        1
813   -0.95838574        1
2936   0.93284395        1
7095   3.44963509        2
4656   1.82913381        2
12345  3.40999367        1
12356 -0.93933690        1
9840   1.96641989        2
10864  0.30848047        1
5617  -1.33896546        1
2941  -0.77901195        2
2943   1.84732093        1
10508 -1.13410218        1
7101  -1.21232145        2
7104  -0.12917630        1
3880  -0.56762321        1
4654  -0.48915334        1
3580   1.83086497        2
8699   2.01667108        1
758    0.08326323        1
5620  -0.73851578        1
3579   0.41418410        1
3582  -1.30597047        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "NPC1"
[1] "18_12"
           genename region_tag  susie_pip       mu2          PVE
4477        CABLES1      18_12 0.01032410  5.056290 1.519163e-07
4476        TMEM241      18_12 0.02805115 14.903677 1.216646e-06
1708          RIOK3      18_12 0.02100112 12.044525 7.361265e-07
5304        C18orf8      18_12 0.02842276 15.034173 1.243558e-06
5306           NPC1      18_12 0.06410504 23.134063 4.315831e-06
454           LAMA3      18_12 0.01015168  4.890870 1.444922e-07
7914         TTC39C      18_12 0.03939709 18.272028 2.094938e-06
6311          CABYR      18_12 0.01015293  4.892076 1.445455e-07
12078 RP11-799B12.4      18_12 0.01019975  4.937265 1.465535e-07
                z num_eqtl
4477  -0.14555775        1
4476  -1.84256728        2
1708  -1.34902775        1
5304   1.67075330        2
5306  -2.39576123        1
454    0.01316175        2
7914   1.78195458        3
6311  -0.02760888        1
12078  0.06691488        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "ABCG8"
[1] "2_27"
        genename region_tag    susie_pip        mu2          PVE
5563       ABCG8       2_27 9.999667e-01 313.616602 9.126513e-04
12661  LINC01126       2_27 1.311448e-05  17.794481 6.791362e-10
2977       THADA       2_27 1.774105e-06   8.185093 4.225938e-11
6208     PLEKHH2       2_27 6.426620e-06  16.108349 3.012687e-10
11022 C1GALT1C1L       2_27 3.979730e-06  24.312863 2.815853e-10
4930    DYNC2LI1       2_27 8.642848e-07   8.220899 2.067743e-11
4943      LRPPRC       2_27 2.558980e-06  12.554554 9.349503e-11
                 z num_eqtl
5563  -20.29398177        1
12661   0.91913800        1
2977   -2.34643541        2
6208   -2.96266114        2
11022   3.06095256        2
4930   -0.02538894        1
4943   -0.91853212        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "NCEH1"
[1] "3_106"
       genename region_tag  susie_pip      mu2          PVE          z
11015 LINC02068      3_106 0.01304671 7.915898 3.005533e-07  0.8738216
5661      NCEH1      3_106 0.01190421 7.014947 2.430218e-07 -0.6532732
      num_eqtl
11015        2
5661         1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "STAR"
[1] "8_34"
           genename region_tag   susie_pip       mu2          PVE
5843          PROSC       8_34 0.016235811 12.429322 5.872753e-07
4029          ASH2L       8_34 0.059082233 25.237307 4.339305e-06
5842           STAR       8_34 0.069925808 26.930315 5.480235e-06
8727           LSM1       8_34 0.007540176  4.892712 1.073622e-07
5850           NSD3       8_34 0.007540845  4.893583 1.073908e-07
12297 RP11-350N15.5       8_34 0.007637312  5.018305 1.115367e-07
7411          LETM2       8_34 0.008060424  5.547421 1.301276e-07
900           FGFR1       8_34 0.011970997  9.431667 3.285784e-07
5846          TACC1       8_34 0.007567141  4.927741 1.085176e-07
8068        PLEKHA2       8_34 0.020595205 14.773190 8.854432e-07
8067          TM2D2       8_34 0.011055904  8.650104 2.783146e-07
7965          ADAM9       8_34 0.236223769 39.581651 2.721058e-05
                z num_eqtl
5843  -1.18549708        1
4029  -2.41270520        1
5842  -2.50033778        1
8727   0.14152273        1
5850  -0.06923734        2
12297  0.26974556        2
7411  -0.48761003        2
900   -0.93406568        1
5846  -0.11708259        2
8068   1.82472982        1
8067   0.85605170        2
7965   3.23657677        2

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "FADS1"
[1] "11_34"
           genename region_tag   susie_pip        mu2          PVE
9982        FAM111B      11_34 0.004473671   5.029481 6.547983e-08
7662        FAM111A      11_34 0.006610236   8.672723 1.668371e-07
2444           DTX4      11_34 0.004504280   5.112576 6.701707e-08
10267         MPEG1      11_34 0.004535836   5.241120 6.918337e-08
7684          PATL1      11_34 0.062436117  30.278853 5.501684e-06
7687           STX3      11_34 0.004422795   4.937794 6.355506e-08
7688         MRPL16      11_34 0.006813281   8.877090 1.760140e-07
5997          MS4A2      11_34 0.008397351  10.906049 2.665202e-07
2453         MS4A6A      11_34 0.005002286   6.032979 8.782550e-08
10924        MS4A4E      11_34 0.005747724   7.597092 1.270760e-07
7697          MS4A7      11_34 0.004397638   4.910668 6.284639e-08
7698         MS4A14      11_34 0.025928734  21.804577 1.645316e-06
2455         CCDC86      11_34 0.005785125   7.386093 1.243506e-07
2456         PRPF19      11_34 0.008960933  12.093005 3.153609e-07
2457        TMEM109      11_34 0.010241876  13.173172 3.926360e-07
2480        SLC15A3      11_34 0.004713723   6.044231 8.291353e-08
2481            CD5      11_34 0.004532367   5.291874 6.979992e-08
7874         VPS37C      11_34 0.005273098   6.314732 9.690387e-08
7875           VWCE      11_34 0.004740535   5.867788 8.095098e-08
6902       CYB561A3      11_34 0.005995808  10.249129 1.788360e-07
5990        TMEM138      11_34 0.005995808  10.249129 1.788360e-07
9789        TMEM216      11_34 0.004401847   4.951549 6.343023e-08
5996          CPSF7      11_34 0.005172782   9.944039 1.496950e-07
11817 RP11-286N22.8      11_34 0.004941196   5.969003 8.583297e-08
6903        PPP1R32      11_34 0.005377305   6.576369 1.029132e-07
11812 RP11-794G24.1      11_34 0.011355935  12.517096 4.136631e-07
3676   DKFZP434K028      11_34 0.004413466   5.958618 7.653244e-08
4508        TMEM258      11_34 0.034858621  66.046365 6.700071e-06
7955           FEN1      11_34 0.006376688 145.198765 2.694501e-06
4507          FADS2      11_34 0.006376688 145.198765 2.694501e-06
5991          FADS1      11_34 0.999536200 160.579227 4.670982e-04
11004         FADS3      11_34 0.009838644  21.356696 6.114904e-07
7876          BEST1      11_34 0.004701537  18.832400 2.576712e-07
5994         INCENP      11_34 0.004408432   5.798857 7.439553e-08
6904         ASRGL1      11_34 0.004535271   5.204785 6.869519e-08
1196          GANAB      11_34 0.007548814  72.351397 1.589447e-06
                 z num_eqtl
9982  -0.130372989        1
7662   0.788300174        2
2444   0.272926929        2
10267  0.288859011        1
7684   3.303999343        2
7687   0.001285218        2
7688   0.989371951        2
5997  -1.135206653        1
2453   0.544252801        1
10924  0.848247159        1
7697  -0.132073393        2
7698  -1.857701655        3
2455  -0.651729299        3
2456   1.430603519        2
2457   1.421831985        1
2480   0.821410772        1
2481   0.346138465        1
7874   0.024014132        1
7875  -0.638825054        2
6902  -1.782804562        1
5990  -1.782804562        1
9789  -0.251085346        2
5996  -2.061044578        1
11817 -0.427047808        1
6903  -0.382653253        1
11812  0.447753087        1
3676   1.073921044        1
4508  -6.946921109        2
7955  12.072635202        1
4507  12.072635202        1
5991  12.825882927        2
11004  3.289416818        1
7876  -3.744804132        1
5994  -0.969291005        2
6904  -0.250084386        1
1196  -8.204723304        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "VDAC2"
[1] "10_49"
            genename region_tag   susie_pip       mu2          PVE
8458           AGAP5      10_49 0.018576665 12.246864 6.620838e-07
3503            PLAU      10_49 0.026684463 15.821873 1.228674e-06
9575           AP3M1      10_49 0.008829801  4.932942 1.267585e-07
6446             ADK      10_49 0.008846789  4.951812 1.274882e-07
7476           VDAC2      10_49 0.080939322 26.897009 6.335543e-06
7477          COMTD1      10_49 0.080366331 26.825123 6.273879e-06
11089     ZNF503-AS1      10_49 0.008951822  5.067678 1.320203e-07
12363 RP11-399K21.14      10_49 0.016952769 11.345662 5.597457e-07
5936        C10orf11      10_49 0.150380842 33.256677 1.455431e-05
               z num_eqtl
8458  -1.3182844        1
3503  -1.6531888        1
9575  -0.1414585        1
6446   0.1263619        2
7476   2.9474923        1
7477   2.9437974        1
11089  0.3935661        1
12363 -1.4701044        2
5936   2.9550655        2

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "LIPC"
[1] "15_26"
     genename region_tag   susie_pip       mu2          PVE          z
7547     LIPC      15_26 0.004680373 41.827281 5.697186e-07 -5.9117767
4905   ADAM10      15_26 0.005389507  7.037328 1.103766e-07  0.8412995
4889     SLTM      15_26 0.004643243  5.487403 7.414956e-08 -0.7158866
6536   RNF111      15_26 0.004428083  4.975819 6.412104e-08 -0.2997052
8386  LDHAL6B      15_26 0.004475923  5.075357 6.611036e-08 -0.4439394
     num_eqtl
7547        2
4905        2
4889        1
6536        1
8386        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "SOAT2"
[1] "12_33"
            genename region_tag  susie_pip       mu2          PVE
7834            KRT1      12_33 0.01346060  6.908483 2.706246e-07
8189           KRT78      12_33 0.01112877  5.163405 1.672260e-07
2519           KRT18      12_33 0.01610739  9.004353 4.220832e-07
8188            KRT8      12_33 0.03818378 17.190068 1.910191e-06
544            EIF4B      12_33 0.01103557  4.993670 1.603743e-07
2521            TNS2      12_33 0.01395140  7.347316 2.983093e-07
7838          SPRYD3      12_33 0.02003675 10.432033 6.082981e-07
7839          IGFBP6      12_33 0.01109662  5.046586 1.629703e-07
7840           SOAT2      12_33 0.02416931 12.458540 8.762977e-07
11843 RP11-1136G11.8      12_33 0.01104268  5.025887 1.615130e-07
5138          ZNF740      12_33 0.07370299 22.925885 4.917354e-06
5133            CSAD      12_33 0.02184813 11.197921 7.119869e-07
5131           ITGB7      12_33 0.01091073  4.892336 1.553426e-07
9332           MFSD5      12_33 0.03955257 15.879703 1.827836e-06
4595           ESPL1      12_33 0.01870917 10.577800 5.759308e-07
10724          PRR13      12_33 0.15465803 18.801868 8.462405e-06
5124          TARBP2      12_33 0.02387096 13.310904 9.246935e-07
4579          ATP5G2      12_33 0.01309335  9.341404 3.559453e-07
203         CALCOCO1      12_33 0.02525959 13.337260 9.804224e-07
11586       FLJ12825      12_33 0.01295854  6.590990 2.485576e-07
3549           SMUG1      12_33 0.01198160  5.829366 2.032622e-07
11649  RP11-834C11.4      12_33 0.01144393  5.279919 1.758421e-07
1308            CBX5      12_33 0.01253510  6.268348 2.286657e-07
                 z num_eqtl
7834  -0.570714701        1
8189  -0.349999201        1
2519   1.038536540        1
8188   2.113112572        1
544   -0.221941333        1
2521  -0.962272505        2
7838   1.338767531        1
7839  -0.512279235        1
7840  -1.851220053        1
11843  0.012887459        1
5138   2.546520305        2
5133  -1.178701229        1
5131   0.219057094        2
9332   1.273981567        2
4595   1.636840591        3
10724 -3.775263261        1
5124  -3.023920328        1
4579   2.116508926        2
203   -1.413276345        1
11586 -0.529012775        2
3549   0.396812394        1
11649 -0.009489289        1
1308   0.652766171        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "CYP7A1"
[1] "8_45"
      genename region_tag   susie_pip      mu2          PVE         z
10938   UBXN2B       8_45 0.009100805 25.96038 6.875608e-07 -3.437080
7859    CYP7A1       8_45 0.005477161 73.34546 1.169093e-06 -7.392476
      num_eqtl
10938        3
7859         1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "TNKS"
[1] "8_12"
           genename region_tag   susie_pip      mu2          PVE         z
11738 RP11-115J16.2       8_12 0.004472655 39.34125 5.120753e-07  7.146749
8531           TNKS       8_12 0.984399158 73.76708 2.113266e-04 11.026034
      num_eqtl
11738        1
8531         2

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "ADH1B"
[1] "4_66"
           genename region_tag   susie_pip       mu2          PVE
7980         TSPAN5       4_66 0.014674407 11.179397 4.774185e-07
6091          EIF4E       4_66 0.009482212  6.919558 1.909450e-07
7222         METAP1       4_66 0.007832039  5.097756 1.161914e-07
12374 RP11-571L19.8       4_66 0.008322181  5.636996 1.365228e-07
8496           ADH6       4_66 0.009968595  7.562593 2.193941e-07
10115         ADH1B       4_66 0.014780501 11.319478 4.868956e-07
11584         ADH1C       4_66 0.143197702 32.307606 1.346360e-05
10057          ADH7       4_66 0.009291555 10.533608 2.848301e-07
5055           MTTP       4_66 0.010983181  8.019871 2.563397e-07
5686        TRMT10A       4_66 0.011475866  9.119569 3.045651e-07
               z num_eqtl
7980  -1.2321573        2
6091   0.9082871        1
7222  -0.1831346        1
12374 -0.4759060        3
8496   0.7334699        2
10115 -1.1153042        1
11584 -3.1932254        3
10057  1.9684512        2
5055  -0.7972018        1
5686  -1.1240076        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "LPA"
[1] "6_104"
        genename region_tag    susie_pip       mu2          PVE          z
10435        LPA      6_104 5.130003e-06 64.969050 9.699390e-10  8.1196160
3449         PLG      6_104 6.083324e-06 17.973715 3.181992e-10  2.4097623
11043 RP1-81D8.3      6_104 6.907513e-01 51.497870 1.035217e-04 -7.2217829
5799     SLC22A3      6_104 1.427439e-06 33.716653 1.400627e-10 -6.5929784
1074      MAP3K4      6_104 7.636543e-07  6.705596 1.490234e-11  0.7795492
      num_eqtl
10435        1
3449         1
11043        2
5799         1
1074         1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "VDAC1"
[1] "5_80"
          genename region_tag  susie_pip       mu2          PVE
11643 RP11-215P8.4       5_80 0.01208028  6.379661 2.242822e-07
7311         SEPT8       5_80 0.02248021 12.495947 8.175039e-07
7312       SHROOM1       5_80 0.01402345  7.846346 3.202157e-07
7313          GDF9       5_80 0.01038665  4.895420 1.479741e-07
760           AFF4       5_80 0.01525774  8.676374 3.852555e-07
6400       ZCCHC10       5_80 0.01051868  5.019498 1.536533e-07
8217         HSPA4       5_80 0.01038586  4.894673 1.479402e-07
2763       C5orf15       5_80 0.01110367  5.551218 1.793804e-07
10837        VDAC1       5_80 0.04021829 18.256995 2.136846e-06
978           TCF7       5_80 0.02805202 14.684092 1.198758e-06
2759          SKP1       5_80 0.01871745 10.689171 5.822519e-07
2761        PPP2CA       5_80 0.02118079 11.908353 7.340306e-07
102          CDKL3       5_80 0.01301332  7.111095 2.693052e-07
3214         UBE2B       5_80 0.01301332  7.111095 2.693052e-07
11352   CDKN2AIPNL       5_80 0.01907718 10.876819 6.038602e-07
11660    LINC01843       5_80 0.01097258  5.434537 1.735369e-07
7340         CAMLG       5_80 0.01039039  4.898965 1.481346e-07
9275       C5orf24       5_80 0.01048438  4.987424 1.521737e-07
4283         PCBD2       5_80 0.01389182  7.753574 3.134594e-07
681          PITX1       5_80 0.01175911  6.114825 2.092564e-07
                z num_eqtl
11643  0.60776683        1
7311   1.30260276        1
7312   0.89963346        2
7313   0.03182872        1
760    1.02990725        1
6400  -0.15509357        1
8217  -0.07597330        2
2763   0.41873673        1
10837  1.82176093        1
978    1.55983246        1
2759  -1.31317545        1
2761   1.40300081        2
102    0.87889673        1
3214   0.87889673        1
11352 -1.07306079        2
11660  0.36441021        1
7340   0.10493598        1
9275  -0.20162988        1
4283   0.78727304        1
681    0.52096477        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "FADS3"
[1] "11_34"
           genename region_tag   susie_pip        mu2          PVE
9982        FAM111B      11_34 0.004473671   5.029481 6.547983e-08
7662        FAM111A      11_34 0.006610236   8.672723 1.668371e-07
2444           DTX4      11_34 0.004504280   5.112576 6.701707e-08
10267         MPEG1      11_34 0.004535836   5.241120 6.918337e-08
7684          PATL1      11_34 0.062436117  30.278853 5.501684e-06
7687           STX3      11_34 0.004422795   4.937794 6.355506e-08
7688         MRPL16      11_34 0.006813281   8.877090 1.760140e-07
5997          MS4A2      11_34 0.008397351  10.906049 2.665202e-07
2453         MS4A6A      11_34 0.005002286   6.032979 8.782550e-08
10924        MS4A4E      11_34 0.005747724   7.597092 1.270760e-07
7697          MS4A7      11_34 0.004397638   4.910668 6.284639e-08
7698         MS4A14      11_34 0.025928734  21.804577 1.645316e-06
2455         CCDC86      11_34 0.005785125   7.386093 1.243506e-07
2456         PRPF19      11_34 0.008960933  12.093005 3.153609e-07
2457        TMEM109      11_34 0.010241876  13.173172 3.926360e-07
2480        SLC15A3      11_34 0.004713723   6.044231 8.291353e-08
2481            CD5      11_34 0.004532367   5.291874 6.979992e-08
7874         VPS37C      11_34 0.005273098   6.314732 9.690387e-08
7875           VWCE      11_34 0.004740535   5.867788 8.095098e-08
6902       CYB561A3      11_34 0.005995808  10.249129 1.788360e-07
5990        TMEM138      11_34 0.005995808  10.249129 1.788360e-07
9789        TMEM216      11_34 0.004401847   4.951549 6.343023e-08
5996          CPSF7      11_34 0.005172782   9.944039 1.496950e-07
11817 RP11-286N22.8      11_34 0.004941196   5.969003 8.583297e-08
6903        PPP1R32      11_34 0.005377305   6.576369 1.029132e-07
11812 RP11-794G24.1      11_34 0.011355935  12.517096 4.136631e-07
3676   DKFZP434K028      11_34 0.004413466   5.958618 7.653244e-08
4508        TMEM258      11_34 0.034858621  66.046365 6.700071e-06
7955           FEN1      11_34 0.006376688 145.198765 2.694501e-06
4507          FADS2      11_34 0.006376688 145.198765 2.694501e-06
5991          FADS1      11_34 0.999536200 160.579227 4.670982e-04
11004         FADS3      11_34 0.009838644  21.356696 6.114904e-07
7876          BEST1      11_34 0.004701537  18.832400 2.576712e-07
5994         INCENP      11_34 0.004408432   5.798857 7.439553e-08
6904         ASRGL1      11_34 0.004535271   5.204785 6.869519e-08
1196          GANAB      11_34 0.007548814  72.351397 1.589447e-06
                 z num_eqtl
9982  -0.130372989        1
7662   0.788300174        2
2444   0.272926929        2
10267  0.288859011        1
7684   3.303999343        2
7687   0.001285218        2
7688   0.989371951        2
5997  -1.135206653        1
2453   0.544252801        1
10924  0.848247159        1
7697  -0.132073393        2
7698  -1.857701655        3
2455  -0.651729299        3
2456   1.430603519        2
2457   1.421831985        1
2480   0.821410772        1
2481   0.346138465        1
7874   0.024014132        1
7875  -0.638825054        2
6902  -1.782804562        1
5990  -1.782804562        1
9789  -0.251085346        2
5996  -2.061044578        1
11817 -0.427047808        1
6903  -0.382653253        1
11812  0.447753087        1
3676   1.073921044        1
4508  -6.946921109        2
7955  12.072635202        1
4507  12.072635202        1
5991  12.825882927        2
11004  3.289416818        1
7876  -3.744804132        1
5994  -0.969291005        2
6904  -0.250084386        1
1196  -8.204723304        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "APOC2"
[1] "19_32"
      genename region_tag susie_pip        mu2 PVE           z num_eqtl
6721    ZNF233      19_32         0 115.540308   0  -9.2725820        2
6722    ZNF235      19_32         0 106.459190   0  -9.2122953        1
538     ZNF112      19_32         0 147.061017   0  10.3860543        1
12133   ZNF285      19_32         0  14.844074   0   0.9962471        2
12637   ZNF229      19_32         0  91.589291   0  10.9591492        2
7760    ZNF180      19_32         0  28.966742   0  -3.9159702        3
781        PVR      19_32         0 295.701702   0 -10.0782525        2
9745  CEACAM19      19_32         0  64.977515   0   9.4554813        2
9810      BCAM      19_32         0 109.853221   0   4.6421318        1
4048   NECTIN2      19_32         0 109.049177   0   6.2443536        2
4050    TOMM40      19_32         0  25.471829   0  -1.4020544        1
4049      APOE      19_32         0  47.814697   0  -2.0092826        1
11300    APOC2      19_32         0  57.109667   0  -9.1630690        2
8231    ZNF296      19_32         0 111.900459   0   5.4593536        1
5377    GEMIN7      19_32         0 193.978064   0  10.9432287        2
104      MARK4      19_32         0  24.156056   0  -2.2463768        1
1930   PPP1R37      19_32         0 125.326110   0 -12.8921201        2
109   TRAPPC6A      19_32         0  30.419699   0   1.8816459        1
9989   BLOC1S3      19_32         0  11.134819   0   2.3014119        1
12704  EXOC3L2      19_32         0  25.621613   0  -1.3436507        1
1933       CKM      19_32         0  15.790117   0  -1.5738464        1
1937     ERCC2      19_32         0  11.393491   0   2.3297330        2
3143    CD3EAP      19_32         0  27.197891   0  -3.0806361        1
3738      FOSB      19_32         0  18.939030   0  -2.3658041        1
196      ERCC1      19_32         0  14.630613   0  -0.2091619        1
10862    PPM1N      19_32         0  31.392476   0   5.4808308        1
3741      RTN2      19_32         0  31.851486   0   5.5300783        1
3742      VASP      19_32         0  12.782928   0   1.8957985        1
3739      OPA3      19_32         0  13.745582   0  -0.4654901        2
1942      KLC3      19_32         0  10.261197   0   1.7718715        1
10863 CEACAM16      19_32         0   7.492021   0   1.8740580        1
12131    APOC4      19_32         0  49.134556   0   8.0662459        2
10965   IGSF23      19_32         0  12.715131   0   1.9670520        1
8908      GPR4      19_32         0  66.214998   0  -3.5802828        1
3740    SNRPD2      19_32         0  10.032421   0   1.0366923        1
189      QPCTL      19_32         0  24.612260   0  -2.0303487        2
1949      DMPK      19_32         0  20.547022   0  -1.8090245        1
9659      DMWD      19_32         0  19.622427   0  -1.7547946        1
3743     SYMPK      19_32         0   4.904062   0  -0.0525717        1
8809     MYPOP      19_32         0  21.246603   0   1.8490001        1
1963    CCDC61      19_32         0  21.113500   0   1.8414612        2
3628     HIF3A      19_32         0  20.433740   0  -1.8024680        2
190      PPP5C      19_32         0  13.448632   0   1.3374649        1
8073     CCDC8      19_32         0   7.392266   0   0.7230949        2
9281    PNMAL1      19_32         0  20.657761   0  -1.8154111        4
10682   PNMAL2      19_32         0   5.246629   0  -0.2727077        1
11190   PPP5D1      19_32         0   6.392915   0  -0.5603345        1
6726     CALM3      19_32         0  54.624374   0   3.2242313        2
#run APOE locus again using full SNPs
# focus <- "APOE"
# region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]
# 
# locus_plot(region_tag, label="TWAS", rerun_ctwas = T)
# 
# mtext(text=region_tag)
# 
# print(focus)
# print(region_tag)
# print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])

Locus Plots - False positives

This section produces locus plots for all bystander genes with PIP>0.8 (false positives). The highlighted gene at each region is the false positive gene.

false_positives <- ctwas_gene_res$genename[ctwas_gene_res$genename %in% unrelated_genes & ctwas_gene_res$susie_pip>0.8]

for (i in 1:length(false_positives)){
  focus <- false_positives[i]
  region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]

  locus_plot3(region_tag, focus=focus)
  mtext(text=region_tag)

  print(focus)
  print(region_tag)
  print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
  
  #genes at this locus that are in known annotations
  ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag][ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag] %in% known_annotations]
}

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "USP1"
[1] "1_39"
     genename region_tag   susie_pip        mu2          PVE          z
6956    TM2D1       1_39 0.056959707  23.071148 3.824347e-06  2.1432487
4316    KANK4       1_39 0.008972516   5.075472 1.325290e-07  0.5123038
6957     USP1       1_39 0.894444325 253.879959 6.608487e-04 16.2582110
4317  ANGPTL3       1_39 0.114994538 249.654254 8.354808e-05 16.1322287
3024    DOCK7       1_39 0.010009135  24.336915 7.088958e-07  4.4594815
3733    ATG4C       1_39 0.024969688  81.344478 5.911007e-06 -8.6477262
     num_eqtl
6956        1
4316        1
6957        1
4317        1
3024        1
3733        1

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
[1] "DDX56"
[1] "7_32"
        genename region_tag   susie_pip       mu2          PVE           z
7330      STK17A       7_32 0.006414090  5.405182 1.008941e-07   0.5439997
2177        COA1       7_32 0.011779535  9.889774 3.390274e-07  -0.7042755
2178       BLVRA       7_32 0.006315331  5.151026 9.466951e-08   0.4660052
541       MRPS24       7_32 0.007219831  6.241177 1.311336e-07   0.3827818
2179       URGCP       7_32 0.007395391  6.536478 1.406777e-07  -0.6697027
927       UBE2D4       7_32 0.009713232  9.447748 2.670622e-07   1.1906995
11147 AC004951.6       7_32 0.009988303  8.243453 2.396190e-07   0.2209151
4706        DBNL       7_32 0.008351048  6.910010 1.679345e-07   0.1009981
3488        POLM       7_32 0.006250639  5.193249 9.446782e-08   0.5460441
2183       AEBP1       7_32 0.022616023 20.450642 1.345995e-06  -2.6280619
2184       POLD2       7_32 0.014036368 13.082079 5.343820e-07  -1.4227083
2185        MYL7       7_32 0.007671582  6.668056 1.488691e-07   0.4396483
2186         GCK       7_32 0.006292970  5.111982 9.361928e-08  -0.2515709
500       CAMK2B       7_32 0.011448736  9.069547 3.021784e-07  -1.5162371
233       NPC1L1       7_32 0.963951568 89.799732 2.519130e-04 -10.7619311
4704       DDX56       7_32 0.974637816 58.705019 1.665094e-04   9.4462712
6619       TMED4       7_32 0.011779695 45.305762 1.553130e-06   7.5475920
2101        OGDH       7_32 0.008233040 19.553123 4.684860e-07   0.1499623
      num_eqtl
7330         1
2177         2
2178         1
541          1
2179         2
927          1
11147        1
4706         2
3488         3
2183         1
2184         2
2185         1
2186         1
500          2
233          1
4704         2
6619         2
2101         2

Genes with many eQTL

#distribution of number of eQTL for all imputed genes (after dropping ambiguous variants)
table(ctwas_gene_res$num_eqtl)

   1    2    3    4    5 
7237 3251  389   20    5 
#all genes with 4+ eQTL
ctwas_gene_res[ctwas_gene_res$num_eqtl>3,]
      chrom                 id       pos type region_tag1 region_tag2
9872      3 ENSG00000188086.13  46740510 gene           3          33
9154      3 ENSG00000180376.16  56557027 gene           3          39
5031      4 ENSG00000138744.14  75919602 gene           4          51
7252      4 ENSG00000164111.14 121685788 gene           4          78
11216     6  ENSG00000231852.6  32037872 gene           6          26
9089      6 ENSG00000179344.16  32668036 gene           6          26
3487      7 ENSG00000122674.11   5882180 gene           7           9
10043     7 ENSG00000196247.11  64665954 gene           7          44
2211      9 ENSG00000107099.15    211762 gene           9           1
4764      9 ENSG00000136866.13 113056669 gene           9          58
4473     10 ENSG00000134463.14  11740178 gene          10          10
3820     14 ENSG00000126790.11  59473099 gene          14          27
11861    14  ENSG00000258572.1  95515864 gene          14          49
9432     16 ENSG00000183549.10  20409006 gene          16          19
5259     16 ENSG00000140995.16  89919436 gene          16          54
7826     17 ENSG00000167723.14   3557863 gene          17           3
9041     17 ENSG00000178852.15  47322830 gene          17          27
9330     17 ENSG00000182534.13  76686803 gene          17          43
8584     17 ENSG00000173818.16  80415678 gene          17          45
9281     19 ENSG00000182013.17  46471505 gene          19          32
11086    20  ENSG00000225978.3  63102057 gene          20          37
1478     22 ENSG00000100299.17  50625049 gene          22          24
4432      1 ENSG00000134201.10 109704237 gene           1          67
9631     11  ENSG00000185522.8    559466 gene          11           1
3791     13 ENSG00000126231.13 113146308 gene          13          62
      cs_index   susie_pip       mu2 region_tag          PVE
9872         0 0.009863521  5.773608       3_33 1.657294e-07
9154         0 0.013519448  6.218520       3_39 2.446619e-07
5031         0 0.009321968  5.941198       4_51 1.611766e-07
7252         0 0.019523387 13.423365       4_78 7.626703e-07
11216        0 0.009027205 26.703609       6_26 7.015257e-07
9089         0 0.003276226 24.319509       6_26 2.318723e-07
3487         0 0.017259447 18.888890        7_9 9.487540e-07
10043        0 0.005324793  6.312502       7_44 9.781930e-08
2211         0 0.014732313  7.493704        9_1 3.212830e-07
4764         0 0.022576649  9.775593       9_58 6.422778e-07
4473         0 0.142022523 34.074317      10_10 1.408331e-05
3820         0 0.014622780  5.068625      14_27 2.156952e-07
11861        0 0.009144977  5.139739      14_49 1.367867e-07
9432         0 0.011139180  5.648715      16_19 1.831147e-07
5259         0 0.064534531 20.326723      16_54 3.817507e-06
7826         0 0.011933100  8.059574       17_3 2.798889e-07
9041         0 0.011965142 57.621477      17_27 2.006423e-06
9330         0 0.008853452  5.284860      17_43 1.361653e-07
8584         0 0.011760702  4.906819      17_45 1.679398e-07
9281         0 0.000000000 20.657761      19_32 0.000000e+00
11086        0 0.014281821  7.966535      20_37 3.311108e-07
1478         0 0.010575096  5.389966      22_24 1.658787e-07
4432         0 0.014116282 14.798554       1_67 6.079389e-07
9631         0 0.011363631  5.542449       11_1 1.832901e-07
3791         0 0.016664063 13.265298      13_62 6.433069e-07
            genename      gene_type           z num_eqtl
9872          PRSS45 protein_coding  0.44793194        4
9154          CCDC66 protein_coding -0.92699620        4
5031            NAAA protein_coding -0.45129769        4
7252           ANXA5 protein_coding -1.37617072        5
11216        CYP21A2 protein_coding  3.53603409        4
9089        HLA-DQB1 protein_coding  5.01066331        4
3487            CCZ1 protein_coding  1.62284981        5
10043         ZNF107 protein_coding -0.52202720        4
2211           DOCK8 protein_coding -0.79491899        5
4764           ZFP37 protein_coding -1.16499741        4
4473          ECHDC3 protein_coding  3.24989823        5
3820         L3HYPDH protein_coding -0.25254601        4
11861 RP11-1070N10.3        lincRNA  0.25358234        4
9432           ACSM5 protein_coding -0.21729721        4
5259            DEF8 protein_coding  1.97803190        4
7826           TRPV3 protein_coding  0.89399610        4
9041         EFCAB13 protein_coding  7.36590043        4
9330           MXRA7 protein_coding -0.27986200        4
8584           ENDOV protein_coding  0.06847957        4
9281          PNMAL1 protein_coding -1.81541107        4
11086          HAR1A        lincRNA  0.85044108        4
1478            ARSA protein_coding  0.08026791        4
4432           GSTM5 protein_coding  2.37982269        5
9631          LMNTD2 protein_coding  0.63337315        4
3791            PROZ protein_coding  2.48358935        4
#distribution of number of eQTL for genes with PIP>0.8
table(ctwas_gene_res$num_eqtl[ctwas_gene_res$susie_pip>0.8])/sum(ctwas_gene_res$susie_pip>0.8)

         1          2          3 
0.57575758 0.33333333 0.09090909 
#genes with 2+ eQTL and PIP>0.8
ctwas_gene_res[ctwas_gene_res$num_eqtl>1 & ctwas_gene_res$susie_pip>0.8,]
      chrom                 id       pos type region_tag1 region_tag2
6996      1 ENSG00000162836.11 147646379 gene           1          73
5544      1 ENSG00000143771.11 224356827 gene           1         114
3721      2 ENSG00000125629.14 118088372 gene           2          69
3562      2 ENSG00000123612.15 157625480 gene           2          94
6220      5 ENSG00000152684.10  52787392 gene           5          31
10657     6 ENSG00000204599.14  30324306 gene           6          24
4704      7 ENSG00000136271.10  44575121 gene           7          32
1114      7 ENSG00000087087.18 100875204 gene           7          62
8531      8 ENSG00000173273.15   9315699 gene           8          12
6391      9 ENSG00000155158.20  15280189 gene           9          13
3300     10 ENSG00000119965.12 122945179 gene          10          77
5991     11 ENSG00000149485.18  61829161 gene          11          34
12008    16  ENSG00000261701.6  72063820 gene          16          38
1999     19 ENSG00000105287.12  46713856 gene          19          33
      cs_index susie_pip       mu2 region_tag          PVE genename
6996         1 0.9686707  25.67817       1_73 7.238700e-05     ACP6
5544         1 0.9996225  48.38269      1_114 1.407493e-04    CNIH4
3721         1 0.9997835  62.50606       2_69 1.818647e-04   INSIG2
3562         1 0.9388258  26.34290       2_94 7.197288e-05   ACVR1C
6220         1 0.9671689  72.14660       5_31 2.030666e-04     PELO
10657        1 0.9986852  72.25254       6_24 2.099916e-04   TRIM39
4704         2 0.9746378  58.70502       7_32 1.665094e-04    DDX56
1114         2 0.9266916  33.00835       7_62 8.901832e-05     SRRT
8531         1 0.9843992  73.76708       8_12 2.113266e-04     TNKS
6391         0 0.9259989  23.04988       9_13 6.211543e-05   TTC39B
3300         1 0.8796486  35.77485      10_77 9.158142e-05 C10orf88
5991         1 0.9995362 160.57923      11_34 4.670982e-04    FADS1
12008        1 1.0000000 209.84524      16_38 6.106880e-04      HPR
1999         2 0.9960497  32.48400      19_33 9.416095e-05    PRKD2
           gene_type          z num_eqtl
6996  protein_coding   4.648193        2
5544  protein_coding   6.721857        2
3721  protein_coding  -9.364196        3
3562  protein_coding  -4.737778        2
6220  protein_coding   8.426917        2
10657 protein_coding   8.848422        3
4704  protein_coding   9.446271        2
1114  protein_coding   5.547715        2
8531  protein_coding  11.026034        2
6391  protein_coding  -4.287139        3
3300  protein_coding  -6.634448        2
5991  protein_coding  12.825883        2
12008 protein_coding -17.240252        2
1999  protein_coding   5.289849        2

cTWAS genes in GO terms enriched for silver standard genes

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

# #GO enrichment analysis for silver standard genes
# dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
# genes <- known_annotations
# GO_enrichment <- enrichr(genes, dbs)
# 
# for (db in dbs){
#   print(db)
#   df <- GO_enrichment[[db]]
#   df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
#   plotEnrich(GO_enrichment[[db]])
#   print(df)
# }
# 
# GO_known_annotations <- do.call(rbind, GO_enrichment)
# GO_known_annotations <- GO_known_annotations[GO_known_annotations$Adjusted.P.value<0.05,]
# 
# #GO enrichment analysis for cTWAS genes
# 
# genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
# GO_enrichment <- enrichr(genes, dbs)
# 
# GO_ctwas_genes <- do.call(rbind, GO_enrichment)
# 
# #optionally subset to only significant GO terms
# #GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Adjusted.P.value<0.05,]
# 
# #identify cTWAS genes in silver standard enriched GO terms
# GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Term %in% GO_known_annotations$Term,]
# 
# overlap_genes <- lapply(GO_ctwas_genes$Genes, function(x){unlist(strsplit(x, ";"))})
# overlap_genes <- -sort(-table(unlist(overlap_genes)))
# 
# #ctwas genes in silver standard enriched GO terms, not already in silver standard
# overlap_genes[!(names(overlap_genes) %in% known_annotations)]
# 
# save(overlap_genes, file=paste0(results_dir, "/overlap_genes_SORT1.Rd"))
load(paste0(results_dir, "/overlap_genes_SORT1.Rd"))

overlap_genes <- overlap_genes[!(names(overlap_genes) %in% known_annotations)]
overlap_genes

   GAS6  INSIG2  TTC39B   INHBB    ACP6     HPR   PRKD2  CYP2A6  ACVR1C 
     14      12      10       8       5       4       4       3       2 
   KDSR   CNIH4 CSNK1G3 SPTY2D1 
      2       1       1       1 
overlap_genes <- names(overlap_genes)
#ctwas_gene_res[ctwas_gene_res$genename %in% overlap_genes, report_cols,]

Results for Paper

out_table <- ctwas_gene_res

report_cols <- report_cols[!(report_cols %in% c("mu2", "PVE"))]
report_cols <- c(report_cols,"silver","GO_overlap_silver", "bystander")

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

out_table$silver <- F
out_table$silver[out_table$genename %in% known_annotations] <- T

#create extended bystanders list (all silver standard, not just imputed silver standard)
library(biomaRt)
library(GenomicRanges)

# ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
# G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
# G_list <- G_list[G_list$hgnc_symbol!="",]
# G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
# G_list$start <- G_list$start_position
# G_list$end <- G_list$end_position
# G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)
# 
# known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
# half_window <- 1000000
# known_annotations_positions$start <- known_annotations_positions$start_position - half_window
# known_annotations_positions$end <- known_annotations_positions$end_position + half_window
# known_annotations_positions$start[known_annotations_positions$start<1] <- 1
# known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)
# 
# bystanders_extended <- findOverlaps(known_annotations_granges,G_list_granges)
# bystanders_extended <- unique(subjectHits(bystanders_extended))
# bystanders_extended <- G_list$hgnc_symbol[bystanders_extended]
# bystanders_extended <- unique(bystanders_extended[!(bystanders_extended %in% known_annotations)])
# 
# save(bystanders_extended, file=paste0(results_dir, "/bystanders_extended_SORT1.Rd"))

load(paste0(results_dir, "/bystanders_extended_SORT1.Rd"))

#add extended bystanders list to output
out_table$bystander <- F
out_table$bystander[out_table$genename %in% bystanders_extended] <- T

#reload GO overlaps with silver standard
load(paste0(results_dir, "/overlap_genes_SORT1.Rd"))

out_table$GO_overlap_silver <- NA
out_table$GO_overlap_silver[out_table$susie_pip>0.8] <- 0

for (i in names(overlap_genes)){
  out_table$GO_overlap_silver[out_table$genename==i] <- overlap_genes[i]
}

cTWAS identifies high-confidence liver genes associated with LDL cholesterol

full.gene.pip.summary <- data.frame(gene_name = ctwas_gene_res$genename, 
                                    gene_pip = ctwas_gene_res$susie_pip, 
                                    gene_id = ctwas_gene_res$id, 
                                    chr = as.integer(ctwas_gene_res$chrom),
                                    start = ctwas_gene_res$pos / 1e3,
                                    is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full.gene.pip.summary$is_highlight <- full.gene.pip.summary$gene_pip > 0.80

don <- full.gene.pip.summary %>% 
  
  # Compute chromosome size
  group_by(chr) %>% 
  summarise(chr_len=max(start)) %>% 
  
  # Calculate cumulative position of each chromosome
  mutate(tot=cumsum(chr_len)-chr_len) %>%
  dplyr::select(-chr_len) %>%
  
  # Add this info to the initial dataset
  left_join(full.gene.pip.summary, ., by=c("chr"="chr")) %>%
  
  # Add a cumulative position of each SNP
  arrange(chr, start) %>%
  mutate( BPcum=start+tot)

axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )

x_axis_labels <- axisdf$chr
x_axis_labels[seq(1,21,2)] <- ""

ggplot(don, aes(x=BPcum, y=gene_pip)) +
  
  # Show all points
  ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=2) +
  scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
  
  # custom X axis:
  # scale_x_continuous(label = axisdf$chr, 
  #                    breaks= axisdf$center,
  #                    guide = guide_axis(n.dodge = 2)) +
  scale_x_continuous(label = x_axis_labels,
                     breaks = axisdf$center) +
  
  scale_y_continuous(expand = c(0, 0), limits = c(0,1.25), breaks=(1:5)*0.2, minor_breaks=(1:10)*0.1) + # remove space between plot area and x axis
  
  # Add highlighted points
  ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="orange", size=2) +
  
  # Add label using ggrepel to avoid overlapping
  ggrepel::geom_label_repel(data=subset(don, is_highlight==T), 
                            aes(label=gene_name), 
                            size=4,
                            min.segment.length = 0, 
                            label.size = NA,
                            fill = alpha(c("white"),0)) +
  
  # Custom the theme:
  theme_bw() +
  theme( 
    text = element_text(size = 14),
    legend.position="none",
    panel.border = element_blank(),
    panel.grid.major.x = element_blank(),
    panel.grid.minor.x = element_blank()
  ) +
  xlab("Chromosome") + 
  ylab("cTWAS PIP")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#number of SNPs at PIP>0.8 threshold
sum(out_table$susie_pip>0.8)
[1] 33
#number of SNPs at PIP>0.5 threshold
sum(out_table$susie_pip>0.5)
[1] 59
#genes with PIP>0.8
head(out_table[order(-out_table$susie_pip),report_cols], sum(out_table$susie_pip>0.8))
         genename region_tag susie_pip          z num_eqtl silver
12008         HPR      16_38 1.0000000 -17.240252        2  FALSE
5563        ABCG8       2_27 0.9999667 -20.293982        1   TRUE
3721       INSIG2       2_69 0.9997835  -9.364196        3  FALSE
12687 RP4-781K5.7      1_121 0.9997323 -15.108415        1  FALSE
5544        CNIH4      1_114 0.9996225   6.721857        2  FALSE
5991        FADS1      11_34 0.9995362  12.825883        2   TRUE
10657      TRIM39       6_24 0.9986852   8.848422        3  FALSE
1999        PRKD2      19_33 0.9960497   5.289849        2  FALSE
7410        ABCA1       9_53 0.9953955   7.982017        1   TRUE
9390         GAS6      13_62 0.9881812  -8.923688        1  FALSE
1597         PLTP      20_28 0.9877966  -5.732491        1   TRUE
12715       SORT1       1_67 0.9873012 -41.793474        1   TRUE
8531         TNKS       8_12 0.9843992  11.026034        2   TRUE
7040        INHBB       2_70 0.9822550  -8.518936        1  FALSE
2092          SP4       7_19 0.9770594  10.693191        1  FALSE
4704        DDX56       7_32 0.9746378   9.446271        2  FALSE
6093      CSNK1G3       5_75 0.9746220   9.116291        1  FALSE
6996         ACP6       1_73 0.9686707   4.648193        2  FALSE
6220         PELO       5_31 0.9671689   8.426917        2  FALSE
8865         FUT2      19_33 0.9654285 -11.927107        1  FALSE
233        NPC1L1       7_32 0.9639516 -10.761931        1   TRUE
11790      CYP2A6      19_28 0.9618743   5.407028        1  FALSE
3247         KDSR      18_35 0.9552673  -4.526287        1  FALSE
3562       ACVR1C       2_94 0.9388258  -4.737778        2  FALSE
6778         PKN3       9_66 0.9359865  -6.620563        1  FALSE
1114         SRRT       7_62 0.9266916   5.547715        2  FALSE
6391       TTC39B       9_13 0.9259989  -4.287139        3  FALSE
6957         USP1       1_39 0.8944443  16.258211        1  FALSE
3300     C10orf88      10_77 0.8796486  -6.634448        2  FALSE
9062      KLHDC7A       1_13 0.8184864   4.124187        1  FALSE
9072      SPTY2D1      11_13 0.8096215  -5.557123        1  FALSE
8931      CRACR2B       11_1 0.8018274  -3.989585        1  FALSE
8418         POP7       7_62 0.8015962  -5.845258        1  FALSE
      GO_overlap_silver bystander
12008                 4     FALSE
5563                 16     FALSE
3721                 12     FALSE
12687                 0     FALSE
5544                  1     FALSE
5991                 11     FALSE
10657                 0     FALSE
1999                  4     FALSE
7410                 38     FALSE
9390                 14     FALSE
1597                 20     FALSE
12715                 9     FALSE
8531                  0     FALSE
7040                  8     FALSE
2092                  0     FALSE
4704                  0      TRUE
6093                  1     FALSE
6996                  5     FALSE
6220                  0     FALSE
8865                  0     FALSE
233                  11     FALSE
11790                 3     FALSE
3247                  2     FALSE
3562                  2     FALSE
6778                  0     FALSE
1114                  0     FALSE
6391                 10     FALSE
6957                  0      TRUE
3300                  0     FALSE
9062                  0     FALSE
9072                  1     FALSE
8931                  0     FALSE
8418                  0     FALSE
head(out_table[order(-out_table$susie_pip),report_cols[-(7:8)]], sum(out_table$susie_pip>0.8))
         genename region_tag susie_pip          z num_eqtl silver
12008         HPR      16_38 1.0000000 -17.240252        2  FALSE
5563        ABCG8       2_27 0.9999667 -20.293982        1   TRUE
3721       INSIG2       2_69 0.9997835  -9.364196        3  FALSE
12687 RP4-781K5.7      1_121 0.9997323 -15.108415        1  FALSE
5544        CNIH4      1_114 0.9996225   6.721857        2  FALSE
5991        FADS1      11_34 0.9995362  12.825883        2   TRUE
10657      TRIM39       6_24 0.9986852   8.848422        3  FALSE
1999        PRKD2      19_33 0.9960497   5.289849        2  FALSE
7410        ABCA1       9_53 0.9953955   7.982017        1   TRUE
9390         GAS6      13_62 0.9881812  -8.923688        1  FALSE
1597         PLTP      20_28 0.9877966  -5.732491        1   TRUE
12715       SORT1       1_67 0.9873012 -41.793474        1   TRUE
8531         TNKS       8_12 0.9843992  11.026034        2   TRUE
7040        INHBB       2_70 0.9822550  -8.518936        1  FALSE
2092          SP4       7_19 0.9770594  10.693191        1  FALSE
4704        DDX56       7_32 0.9746378   9.446271        2  FALSE
6093      CSNK1G3       5_75 0.9746220   9.116291        1  FALSE
6996         ACP6       1_73 0.9686707   4.648193        2  FALSE
6220         PELO       5_31 0.9671689   8.426917        2  FALSE
8865         FUT2      19_33 0.9654285 -11.927107        1  FALSE
233        NPC1L1       7_32 0.9639516 -10.761931        1   TRUE
11790      CYP2A6      19_28 0.9618743   5.407028        1  FALSE
3247         KDSR      18_35 0.9552673  -4.526287        1  FALSE
3562       ACVR1C       2_94 0.9388258  -4.737778        2  FALSE
6778         PKN3       9_66 0.9359865  -6.620563        1  FALSE
1114         SRRT       7_62 0.9266916   5.547715        2  FALSE
6391       TTC39B       9_13 0.9259989  -4.287139        3  FALSE
6957         USP1       1_39 0.8944443  16.258211        1  FALSE
3300     C10orf88      10_77 0.8796486  -6.634448        2  FALSE
9062      KLHDC7A       1_13 0.8184864   4.124187        1  FALSE
9072      SPTY2D1      11_13 0.8096215  -5.557123        1  FALSE
8931      CRACR2B       11_1 0.8018274  -3.989585        1  FALSE
8418         POP7       7_62 0.8015962  -5.845258        1  FALSE
head(out_table[order(-out_table$susie_pip),report_cols[c(1,7:8)]], sum(out_table$susie_pip>0.8))
         genename GO_overlap_silver bystander
12008         HPR                 4     FALSE
5563        ABCG8                16     FALSE
3721       INSIG2                12     FALSE
12687 RP4-781K5.7                 0     FALSE
5544        CNIH4                 1     FALSE
5991        FADS1                11     FALSE
10657      TRIM39                 0     FALSE
1999        PRKD2                 4     FALSE
7410        ABCA1                38     FALSE
9390         GAS6                14     FALSE
1597         PLTP                20     FALSE
12715       SORT1                 9     FALSE
8531         TNKS                 0     FALSE
7040        INHBB                 8     FALSE
2092          SP4                 0     FALSE
4704        DDX56                 0      TRUE
6093      CSNK1G3                 1     FALSE
6996         ACP6                 5     FALSE
6220         PELO                 0     FALSE
8865         FUT2                 0     FALSE
233        NPC1L1                11     FALSE
11790      CYP2A6                 3     FALSE
3247         KDSR                 2     FALSE
3562       ACVR1C                 2     FALSE
6778         PKN3                 0     FALSE
1114         SRRT                 0     FALSE
6391       TTC39B                10     FALSE
6957         USP1                 0      TRUE
3300     C10orf88                 0     FALSE
9062      KLHDC7A                 0     FALSE
9072      SPTY2D1                 1     FALSE
8931      CRACR2B                 0     FALSE
8418         POP7                 0     FALSE

cTWAS avoids false positives when multiple genes are in a region

TNKS is a silver standard (assumed true positive gene) that is correctly detected. The bystander gene RP11-115J16.2 is significant using TWAS but has low PIP using cTWAS.

#TNKS gene
locus_plot4("8_12", label="cTWAS")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
out_table[out_table$region_tag=="8_12",report_cols[-(7:8)]]
           genename region_tag   susie_pip         z num_eqtl silver
11738 RP11-115J16.2       8_12 0.004472655  7.146749        1  FALSE
8531           TNKS       8_12 0.984399158 11.026034        2   TRUE
out_table[out_table$region_tag=="8_12",report_cols[c(1,7:8)]]
           genename GO_overlap_silver bystander
11738 RP11-115J16.2                NA     FALSE
8531           TNKS                 0     FALSE

FADS1 is a silver standard gene (assumed true positive gene) that is correctly detected. There are 5 significant TWAS genes at this locus, including FADS2, another silver standard gene. FADS2 is not detected due to its high LD with FADS1. The remaining 3 bystander genes at this locus have low PIP using cTWAS.

#FADS1 gene
locus_plot3("11_34", focus="FADS1")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
out_table[out_table$region_tag=="11_34",report_cols[-(7:8)]]
           genename region_tag   susie_pip            z num_eqtl silver
9982        FAM111B      11_34 0.004473671 -0.130372989        1  FALSE
7662        FAM111A      11_34 0.006610236  0.788300174        2  FALSE
2444           DTX4      11_34 0.004504280  0.272926929        2  FALSE
10267         MPEG1      11_34 0.004535836  0.288859011        1  FALSE
7684          PATL1      11_34 0.062436117  3.303999343        2  FALSE
7687           STX3      11_34 0.004422795  0.001285218        2  FALSE
7688         MRPL16      11_34 0.006813281  0.989371951        2  FALSE
5997          MS4A2      11_34 0.008397351 -1.135206653        1  FALSE
2453         MS4A6A      11_34 0.005002286  0.544252801        1  FALSE
10924        MS4A4E      11_34 0.005747724  0.848247159        1  FALSE
7697          MS4A7      11_34 0.004397638 -0.132073393        2  FALSE
7698         MS4A14      11_34 0.025928734 -1.857701655        3  FALSE
2455         CCDC86      11_34 0.005785125 -0.651729299        3  FALSE
2456         PRPF19      11_34 0.008960933  1.430603519        2  FALSE
2457        TMEM109      11_34 0.010241876  1.421831985        1  FALSE
2480        SLC15A3      11_34 0.004713723  0.821410772        1  FALSE
2481            CD5      11_34 0.004532367  0.346138465        1  FALSE
7874         VPS37C      11_34 0.005273098  0.024014132        1  FALSE
7875           VWCE      11_34 0.004740535 -0.638825054        2  FALSE
6902       CYB561A3      11_34 0.005995808 -1.782804562        1  FALSE
5990        TMEM138      11_34 0.005995808 -1.782804562        1  FALSE
9789        TMEM216      11_34 0.004401847 -0.251085346        2  FALSE
5996          CPSF7      11_34 0.005172782 -2.061044578        1  FALSE
11817 RP11-286N22.8      11_34 0.004941196 -0.427047808        1  FALSE
6903        PPP1R32      11_34 0.005377305 -0.382653253        1  FALSE
11812 RP11-794G24.1      11_34 0.011355935  0.447753087        1  FALSE
3676   DKFZP434K028      11_34 0.004413466  1.073921044        1  FALSE
4508        TMEM258      11_34 0.034858621 -6.946921109        2  FALSE
7955           FEN1      11_34 0.006376688 12.072635202        1  FALSE
4507          FADS2      11_34 0.006376688 12.072635202        1   TRUE
5991          FADS1      11_34 0.999536200 12.825882927        2   TRUE
11004         FADS3      11_34 0.009838644  3.289416818        1   TRUE
7876          BEST1      11_34 0.004701537 -3.744804132        1  FALSE
5994         INCENP      11_34 0.004408432 -0.969291005        2  FALSE
6904         ASRGL1      11_34 0.004535271 -0.250084386        1  FALSE
1196          GANAB      11_34 0.007548814 -8.204723304        1  FALSE
out_table[out_table$region_tag=="11_34",report_cols[c(1,7:8)]]
           genename GO_overlap_silver bystander
9982        FAM111B                NA     FALSE
7662        FAM111A                NA     FALSE
2444           DTX4                NA     FALSE
10267         MPEG1                NA     FALSE
7684          PATL1                NA     FALSE
7687           STX3                NA     FALSE
7688         MRPL16                NA     FALSE
5997          MS4A2                NA     FALSE
2453         MS4A6A                NA     FALSE
10924        MS4A4E                NA     FALSE
7697          MS4A7                NA     FALSE
7698         MS4A14                NA     FALSE
2455         CCDC86                NA      TRUE
2456         PRPF19                NA      TRUE
2457        TMEM109                NA      TRUE
2480        SLC15A3                NA      TRUE
2481            CD5                NA      TRUE
7874         VPS37C                NA      TRUE
7875           VWCE                NA      TRUE
6902       CYB561A3                NA      TRUE
5990        TMEM138                NA      TRUE
9789        TMEM216                NA      TRUE
5996          CPSF7                NA      TRUE
11817 RP11-286N22.8                NA     FALSE
6903        PPP1R32                NA      TRUE
11812 RP11-794G24.1                NA     FALSE
3676   DKFZP434K028                NA     FALSE
4508        TMEM258                NA      TRUE
7955           FEN1                NA      TRUE
4507          FADS2                NA     FALSE
5991          FADS1                11     FALSE
11004         FADS3                NA     FALSE
7876          BEST1                NA      TRUE
5994         INCENP                NA      TRUE
6904         ASRGL1                NA      TRUE
1196          GANAB                NA      TRUE
#number of significant TWAS genes at this locus
sum(abs(out_table$z[out_table$region_tag=="11_34"])>sig_thresh)
[1] 5

cTWAS avoids false positives when SNPs in a region are (considerably) more significant

POLK is a gene that is significant using TWAS but not detected using TWAS. cTWAS places a high posterior probability on SNPs are this locus. OpenTargets suggets that the causal gene at this locus is HMGCR (note: different GWAS, similar population), which is not imputed in our dataset. cTWAS selected the variants at this locus because the causal gene is not imputed. Note that MR-JTI claims POLK is causal using their method, and their paper includes a discussion of its potential relevance to LDL.

locus_plot("5_45", label="TWAS")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#locus_plot("5_45", label="TWAS", rerun_ctwas = T)

out_table[out_table$region_tag=="5_45",report_cols[-(7:8)]]
          genename region_tag   susie_pip           z num_eqtl silver
8340          ENC1       5_45 0.001035337  -0.4000089        1  FALSE
7307          GFM2       5_45 0.001320858  -0.4062418        2  FALSE
7306          NSA2       5_45 0.002589266  -2.0511430        3  FALSE
10458      FAM169A       5_45 0.001100229  -0.9826944        2  FALSE
3441          POLK       5_45 0.004086732  17.5157647        1  FALSE
12287 CTC-366B18.4       5_45 0.049947636 -10.7732063        2  FALSE
9978       ANKDD1B       5_45 0.004085134  15.0669830        2  FALSE
6186          POC5       5_45 0.004045610  -7.0119331        1  FALSE
11757   AC113404.1       5_45 0.001796895   2.3250769        1  FALSE
5717        IQGAP2       5_45 0.005523966   2.5652287        2  FALSE
7281         F2RL2       5_45 0.001225391   0.5923159        1  FALSE
9219           F2R       5_45 0.002030873  -1.2065901        2  FALSE
7287         F2RL1       5_45 0.011051116   2.2468261        3  FALSE
5718         CRHBP       5_45 0.001234901  -0.6287222        2  FALSE
7288         AGGF1       5_45 0.001164389  -0.5067707        2  FALSE
4314         ZBED3       5_45 0.005668933  -1.8752115        1  FALSE
2729         PDE8B       5_45 0.001128430   0.4406481        3  FALSE
7289         WDR41       5_45 0.001113305  -0.4097230        1  FALSE
4313         AP3B1       5_45 0.004175976   1.7055957        1  FALSE
out_table[out_table$region_tag=="5_45",report_cols[c(1,7:8)]]
          genename GO_overlap_silver bystander
8340          ENC1                NA      TRUE
7307          GFM2                NA      TRUE
7306          NSA2                NA      TRUE
10458      FAM169A                NA      TRUE
3441          POLK                NA      TRUE
12287 CTC-366B18.4                NA     FALSE
9978       ANKDD1B                NA      TRUE
6186          POC5                NA      TRUE
11757   AC113404.1                NA     FALSE
5717        IQGAP2                NA     FALSE
7281         F2RL2                NA     FALSE
9219           F2R                NA     FALSE
7287         F2RL1                NA     FALSE
5718         CRHBP                NA     FALSE
7288         AGGF1                NA     FALSE
4314         ZBED3                NA     FALSE
2729         PDE8B                NA     FALSE
7289         WDR41                NA     FALSE
4313         AP3B1                NA     FALSE

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

load(paste0(results_dir, "/known_annotations_SORT1.Rd"))
load(paste0(results_dir, "/bystanders_SORT1.Rd"))

#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
    ctwas      TWAS 
0.1489362 0.4255319 
#specificity / (1 - False Positive Rate)
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9964974 0.9159370 
#precision / PPV / (1 - False Discovery Rate)
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
    ctwas      TWAS 
0.7777778 0.2941176 
#store sensitivity and specificity calculations for plots
sensitivity_plot <- sensitivity
specificity_plot <- specificity

#precision / PPV by PIP threshold
pip_range <- c(0.5, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
number_detected <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes using PIP threshold
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower]
  
  number_detected[i] <- length(ctwas_genes)
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste0(">= ", c(0, pip_range[-length(pip_range)]))

precision_range <- precision_range*100

precision_range <- c(precision_range, precision["TWAS"]*100)
names(precision_range)[4] <- "TWAS Bonferroni"
number_detected <- c(number_detected, length(twas_genes))

barplot(precision_range, ylim=c(0,100), main="Precision for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

#false discovery rate by PIP threshold

barplot(100-precision_range, ylim=c(0,100), main="False Discovery Rate for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% Bystanders in Detected Genes")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(100-precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

For all 69 silver standard genes, sequentially bin each gene using the following criteria: 1) gene not imputed; 2) gene detected by cTWAS at PIP>0.8; 3) gene insignificant by TWAS; 4) gene nearby a detected silver standard gene; 5) gene nearby a detected bystander gene; 6) gene nearby a detected SNP; 7) inconclusive.

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

#categorize silver standard genes by case
silver_standard_case <- c()
uncertain_regions <- matrix(NA, 0, 2)

for (i in 1:length(known_annotations)){
  current_gene <- known_annotations[i]
  
  if (current_gene %in% ctwas_gene_res$genename) {
    if (ctwas_gene_res$susie_pip[ctwas_gene_res$genename == current_gene] > 0.8){
      silver_standard_case <- c(silver_standard_case, "Detected (PIP > 0.8)")
    } else {
      if (abs(ctwas_gene_res$z[ctwas_gene_res$genename == current_gene]) < sig_thresh){
        silver_standard_case <- c(silver_standard_case, "Insignificant z-score")
      } else {
        current_region <- ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]
        current_gene_res <- ctwas_gene_res[ctwas_gene_res$region_tag==current_region,]
        current_snp_res <- ctwas_snp_res[ctwas_snp_res$region_tag==current_region,]
        
        if (any(current_gene_res$susie_pip>0.8)){
          if (any(current_gene_res$genename[current_gene_res$susie_pip>0.8] %in% known_annotations)){
            silver_standard_case <- c(silver_standard_case, "Nearby Silver Standard Gene")
          } else {
            silver_standard_case <- c(silver_standard_case, "Nearby Bystander Gene")
          }
        } else {
          #if (any(current_snp_res$susie_pip>0.8)){
          if (sum(current_snp_res$susie_pip)>0.8){
            silver_standard_case <- c(silver_standard_case, "Nearby SNP(s)")
          } else {
            silver_standard_case <- c(silver_standard_case, "Inconclusive")
            
            uncertain_regions <- rbind(uncertain_regions, c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
            
            print(c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
          }
        }
      }
    }
  } else {
    silver_standard_case <- c(silver_standard_case, "Not Imputed")
  }
}
names(silver_standard_case) <- known_annotations

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
      Insignificant z-score                 Not Imputed 
                         27                          22 
              Nearby SNP(s)        Detected (PIP > 0.8) 
                         11                           7 
      Nearby Bystander Gene Nearby Silver Standard Gene 
                          1                           1 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)
# for (i in 1:nrow(uncertain_regions)){
#   locus_plot3(uncertain_regions[i,2], focus=uncertain_regions[i,1])
# }

#pie chart of outcomes for silver standard genes
df <- data.frame(-sort(-table(silver_standard_case)))
names(df) <- c("Outcome", "Frequency")
#df <- df[df$Outcome!="Not Imputed",] #exclude genes not imputed
df$Outcome <- droplevels(df$Outcome) #exclude genes not imputed

bp<- ggplot(df, aes(x=Outcome, y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity", position=position_dodge()) + 
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) + theme(legend.position = "none")
bp

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
pie <- ggplot(df, aes(x="", y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity")
pie <- pie + coord_polar("y", start=0) + theme_minimal() + theme(axis.title.y=element_blank())
pie

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
locus_plot3(focus="KPNB1", region_tag="17_27")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
locus_plot3(focus="LPIN3", region_tag="20_25")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
locus_plot3(focus="LIPC", region_tag="15_26")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12

Some cTWAS genes share biological characteristics with silver standard genes

Perform GO enrichment analysis using silver standard genes. Identify detected cTWAS genes not already in silver standard that are also members of these GO terms.

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

#GO enrichment analysis for silver standard genes
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- known_annotations
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
# for (db in dbs){
#   print(db)
#   df <- GO_enrichment[[db]]
#   df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
#   plotEnrich(GO_enrichment[[db]])
#   print(df)
# }

GO_known_annotations <- do.call(rbind, GO_enrichment)
GO_known_annotations <- GO_known_annotations[GO_known_annotations$Adjusted.P.value<0.05,]

#GO enrichment analysis for cTWAS genes

genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
GO_ctwas_genes <- do.call(rbind, GO_enrichment)

#identify cTWAS genes in silver standard enriched GO terms
GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Term %in% GO_known_annotations$Term,]

GO_ctwas_genes_byterms <- as.data.frame(matrix(NA, 0, 2))

for (i in 1:nrow(GO_ctwas_genes)){
  for (j in unlist(strsplit(GO_ctwas_genes$Genes[i], split=";"))){
    GO_ctwas_genes_byterms<- rbind(GO_ctwas_genes_byterms, c(j, GO_ctwas_genes$Term[i]))
  }
  colnames(GO_ctwas_genes_byterms) <- c("Gene", "GO_term")
}
Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "ABCG8"): invalid factor
level, NA generated
GO_ctwas_genes_byterms <- GO_ctwas_genes_byterms[order(GO_ctwas_genes_byterms$Gene),]
GO_ctwas_genes_byterms <- GO_ctwas_genes_byterms[!(GO_ctwas_genes_byterms$Gene %in% known_annotations),]

#detected cTWAS genes (not on silver standard) that overlap with GO terms enriched for silver standard genes

GO_ctwas_genes_byterms
    Gene                      GO_term
2   <NA> lipid transport (GO:0006869)
3   <NA> lipid transport (GO:0006869)
4   <NA> lipid transport (GO:0006869)
6   <NA>                         <NA>
7   <NA>                         <NA>
8   <NA>                         <NA>
9   <NA>                         <NA>
11  <NA>                         <NA>
12  <NA>                         <NA>
13  <NA>                         <NA>
15  <NA>                         <NA>
16  <NA>                         <NA>
18  <NA>                         <NA>
19  <NA>                         <NA>
21  <NA>                         <NA>
22  <NA>                         <NA>
24  <NA>                         <NA>
25  <NA>                         <NA>
26  <NA>                         <NA>
27  <NA>                         <NA>
29  <NA>                         <NA>
30  <NA>                         <NA>
31  <NA>                         <NA>
33  <NA>                         <NA>
34  <NA>                         <NA>
35  <NA>                         <NA>
36  <NA>                         <NA>
37  <NA>                         <NA>
39  <NA>                         <NA>
40  <NA>                         <NA>
41  <NA>                         <NA>
42  <NA>                         <NA>
43  <NA>                         <NA>
44  <NA>                         <NA>
46  <NA>                         <NA>
47  <NA>                         <NA>
48  <NA>                         <NA>
50  <NA>                         <NA>
51  <NA>                         <NA>
52  <NA>                         <NA>
53  <NA>                         <NA>
54  <NA>                         <NA>
56  <NA>                         <NA>
57  <NA>                         <NA>
58  <NA>                         <NA>
59  <NA>                         <NA>
60  <NA>                         <NA>
61  <NA>                         <NA>
62  <NA>                         <NA>
64  <NA>                         <NA>
65  <NA>                         <NA>
66  <NA>                         <NA>
67  <NA>                         <NA>
70  <NA>                         <NA>
74  <NA>                         <NA>
78  <NA>                         <NA>
79  <NA>                         <NA>
80  <NA>                         <NA>
81  <NA>                         <NA>
82  <NA>                         <NA>
83  <NA>                         <NA>
84  <NA>                         <NA>
85  <NA>                         <NA>
86  <NA>                         <NA>
87  <NA>                         <NA>
88  <NA>                         <NA>
89  <NA>                         <NA>
90  <NA>                         <NA>
91  <NA>                         <NA>
92  <NA>                         <NA>
94  <NA>                         <NA>
95  <NA>                         <NA>
96  <NA>                         <NA>
97  <NA>                         <NA>
98  <NA>                         <NA>
100 <NA>                         <NA>
102 <NA>                         <NA>
103 <NA>                         <NA>
104 <NA>                         <NA>
105 <NA>                         <NA>
106 <NA>                         <NA>
108 <NA>                         <NA>
109 <NA>                         <NA>
111 <NA>                         <NA>
112 <NA>                         <NA>
113 <NA>                         <NA>
114 <NA>                         <NA>
115 <NA>                         <NA>
116 <NA>                         <NA>
117 <NA>                         <NA>
118 <NA>                         <NA>
119 <NA>                         <NA>
121 <NA>                         <NA>
122 <NA>                         <NA>
123 <NA>                         <NA>
124 <NA>                         <NA>
125 <NA>                         <NA>
126 <NA>                         <NA>
127 <NA>                         <NA>
128 <NA>                         <NA>
129 <NA>                         <NA>
131 <NA>                         <NA>
132 <NA>                         <NA>
134 <NA>                         <NA>
135 <NA>                         <NA>
136 <NA>                         <NA>
137 <NA>                         <NA>
138 <NA>                         <NA>
139 <NA>                         <NA>
140 <NA>                         <NA>
142 <NA>                         <NA>
144 <NA>                         <NA>
145 <NA>                         <NA>
146 <NA>                         <NA>
147 <NA>                         <NA>
148 <NA>                         <NA>
149 <NA>                         <NA>
150 <NA>                         <NA>
151 <NA>                         <NA>
153 <NA>                         <NA>
154 <NA>                         <NA>
156 <NA>                         <NA>
157 <NA>                         <NA>
159 <NA>                         <NA>
161 <NA>                         <NA>
162 <NA>                         <NA>
164 <NA>                         <NA>
165 <NA>                         <NA>
166 <NA>                         <NA>
167 <NA>                         <NA>
168 <NA>                         <NA>
169 <NA>                         <NA>
171 <NA>                         <NA>
172 <NA>                         <NA>

cTWAS detects some genes that are not significant using a stringent TWAS threshold

TTC39B is a member of the Dyslipidaemia term in the disease_GLAD4U. This gene was not included in our silver standard. This gene is not significant using TWAS but is detected by cTWAS.

locus_plot3(focus="TTC39B", region_tag="9_13")

Version Author Date
e6dc4d4 wesleycrouse 2021-11-12
out_table[out_table$region_tag=="9_13",report_cols[-(7:8)]]
     genename region_tag   susie_pip          z num_eqtl silver
7397    FREM1       9_13 0.008139599 -0.7657943        1  FALSE
6391   TTC39B       9_13 0.925998942 -4.2871392        3  FALSE
7406    PSIP1       9_13 0.006964747 -0.1267424        1  FALSE
7407  CCDC171       9_13 0.014092852  1.2312339        3  FALSE
out_table[out_table$region_tag=="9_13",report_cols[c(1,7:8)]]
     genename GO_overlap_silver bystander
7397    FREM1                NA     FALSE
6391   TTC39B                10     FALSE
7406    PSIP1                NA     FALSE
7407  CCDC171                NA     FALSE

cTWAS distinguishes SORT1 and PSRC1

locus_plot3(focus="SORT1", region_tag="1_67")

out_table[out_table$region_tag=="1_67",report_cols[-(7:8)]]
      genename region_tag   susie_pip           z num_eqtl silver
4434      VAV3       1_67 0.065099832  -2.1042470        1  FALSE
1073  SLC25A24       1_67 0.008611429   0.9234769        2  FALSE
6966   FAM102B       1_67 0.007746337  -1.1378586        1  FALSE
3009    STXBP3       1_67 0.017008399   2.9982594        1  FALSE
3438     GPSM2       1_67 0.008080202  -1.9348222        1  FALSE
3437     CLCC1       1_67 0.008069139   2.5660415        2  FALSE
10286    TAF13       1_67 0.010760437  -1.5591453        1  FALSE
10955 TMEM167B       1_67 0.013756111  -1.5270485        1  FALSE
315       SARS       1_67 0.014473303   9.5234950        1  FALSE
4435     PSRC1       1_67 0.024647145 -41.6873361        1  FALSE
5436     PSMA5       1_67 0.007880027 -35.4138115        2  FALSE
5431     SYPL2       1_67 0.016433368 -14.1478749        2  FALSE
6970   ATXN7L2       1_67 0.009823180 -19.2427445        2  FALSE
8615  CYB561D1       1_67 0.063213063  10.6827516        3  FALSE
9259    AMIGO1       1_67 0.018715231  -3.9630816        1  FALSE
6445     GPR61       1_67 0.007845449   4.2425343        1  FALSE
587      GNAI3       1_67 0.054241321  -3.8408490        1  FALSE
7977     GSTM4       1_67 0.014374335   4.7825961        3  FALSE
10821    GSTM2       1_67 0.008660380   2.9726102        2  FALSE
4430     GSTM1       1_67 0.018905914   4.2590068        1  FALSE
4433     GSTM3       1_67 0.007854604  -3.9546683        3  FALSE
4432     GSTM5       1_67 0.014116282   2.3798227        5  FALSE
12715    SORT1       1_67 0.987301191 -41.7934744        1   TRUE
out_table[out_table$region_tag=="1_67",report_cols[c(1,7:8)]]
      genename GO_overlap_silver bystander
4434      VAV3                NA     FALSE
1073  SLC25A24                NA     FALSE
6966   FAM102B                NA      TRUE
3009    STXBP3                NA      TRUE
3438     GPSM2                NA      TRUE
3437     CLCC1                NA      TRUE
10286    TAF13                NA      TRUE
10955 TMEM167B                NA      TRUE
315       SARS                NA     FALSE
4435     PSRC1                NA      TRUE
5436     PSMA5                NA      TRUE
5431     SYPL2                NA      TRUE
6970   ATXN7L2                NA      TRUE
8615  CYB561D1                NA      TRUE
9259    AMIGO1                NA      TRUE
6445     GPR61                NA      TRUE
587      GNAI3                NA      TRUE
7977     GSTM4                NA      TRUE
10821    GSTM2                NA      TRUE
4430     GSTM1                NA      TRUE
4433     GSTM3                NA      TRUE
4432     GSTM5                NA      TRUE
12715    SORT1                 9     FALSE

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] ctwas_0.1.31         forcats_0.4.0        stringr_1.4.0       
 [4] dplyr_1.0.7          purrr_0.3.4          readr_1.4.0         
 [7] tidyr_1.1.0          tidyverse_1.3.0      tibble_3.1.2        
[10] GenomicRanges_1.36.0 GenomeInfoDb_1.20.0  IRanges_2.18.1      
[13] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
[16] readxl_1.3.1         WebGestaltR_0.4.4    disgenet2r_0.99.2   
[19] enrichR_3.0          cowplot_1.0.0        ggplot2_3.3.3       

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_1.4-1       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.3.1               rstudioapi_0.10        farver_2.1.0          
 [10] ggrepel_0.8.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_0.5.0            lubridate_1.7.4        xml2_1.3.2            
 [16] logging_0.10-108       codetools_0.2-16       doParallel_1.0.16     
 [19] cachem_1.0.5           knitr_1.23             jsonlite_1.6          
 [22] workflowr_1.6.2        apcluster_1.4.8        Cairo_1.5-12.2        
 [25] broom_0.7.9            dbplyr_1.4.2           compiler_3.6.1        
 [28] httr_1.4.1             backports_1.1.4        assertthat_0.2.1      
 [31] Matrix_1.2-18          fastmap_1.1.0          cli_3.0.1             
 [34] later_0.8.0            htmltools_0.3.6        prettyunits_1.0.2     
 [37] tools_3.6.1            igraph_1.2.4.1         gtable_0.3.0          
 [40] glue_1.4.2             GenomeInfoDbData_1.2.1 reshape2_1.4.3        
 [43] doRNG_1.8.2            Rcpp_1.0.6             Biobase_2.44.0        
 [46] cellranger_1.1.0       vctrs_0.3.8            svglite_1.2.2         
 [49] iterators_1.0.13       xfun_0.8               rvest_0.3.5           
 [52] lifecycle_1.0.0        rngtools_1.5           XML_3.98-1.20         
 [55] zlibbioc_1.30.0        scales_1.1.0           hms_1.1.0             
 [58] promises_1.0.1         yaml_2.2.0             curl_3.3              
 [61] memoise_2.0.0          ggrastr_0.2.3          gdtools_0.1.9         
 [64] stringi_1.4.3          RSQLite_2.2.7          foreach_1.5.1         
 [67] rlang_0.4.11           pkgconfig_2.0.3        bitops_1.0-6          
 [70] evaluate_0.14          lattice_0.20-38        labeling_0.3          
 [73] bit_4.0.4              tidyselect_1.1.0       plyr_1.8.4            
 [76] magrittr_2.0.1         R6_2.5.0               generics_0.0.2        
 [79] DBI_1.1.1              pgenlibr_0.3.1         pillar_1.6.1          
 [82] haven_2.3.1            whisker_0.3-2          withr_2.4.1           
 [85] RCurl_1.98-1.1         modelr_0.1.8           crayon_1.4.1          
 [88] utf8_1.2.1             rmarkdown_1.13         progress_1.2.2        
 [91] grid_3.6.1             data.table_1.14.0      blob_1.2.1            
 [94] git2r_0.26.1           reprex_0.3.0           digest_0.6.20         
 [97] httpuv_1.5.1           munsell_0.5.0          beeswarm_0.2.3        
[100] vipor_0.4.5