Last updated: 2021-11-15

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has staged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version c9600a2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   code/automate_Rmd.R

Staged changes:
    New:        analysis/ukb-d-30780_irnt_Adipose_Visceral_Omentum_known.Rmd
    Modified:   code/automate_Rmd.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Overview

These are the results of a ctwas analysis of the UK Biobank trait LDL direct using Adipose_Visceral_Omentum gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30780_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Adipose_Visceral_Omentum eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 12810
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1254  879  741  489  607  727  644  458  473  519  787  751  243  420  418 
  16   17   18   19   20   21   22 
 587  800  198  989  370  144  312 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7874317

Load ctwas results

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
1.601932e-02 7.465574e-05 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
     gene       snp 
 9.810884 34.580704 
#report sample size
print(sample_size)
[1] 343621
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   12810 8696600
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.005858973 0.065338147 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.03372035 0.54983647

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
        genename region_tag susie_pip       mu2          PVE         z
2252       PRKD2      19_33 0.9990989  29.27528 8.511965e-05  5.316724
6227       CNIH4      1_114 0.9916593  36.75923 1.060838e-04  6.201835
7878        ACP6       1_73 0.9881237  22.14907 6.369233e-05  4.575774
1003       TPD52       8_57 0.9812117  21.94017 6.265027e-05 -4.557712
1163       GSK3B       3_74 0.9750098  43.57087 1.236305e-04  6.835676
3740    C10orf88      10_77 0.9675624  32.45930 9.139835e-05 -6.783901
1553        MZF1      19_39 0.9648108  28.16926 7.909298e-05 -4.742966
402        TUBG2      17_25 0.9570282  20.51179 5.712794e-05  4.434366
9315       KCNK3       2_16 0.9525992  23.25301 6.446287e-05 -4.821789
3305         FN1      2_127 0.9418621  21.45337 5.880349e-05 -4.446065
9946      ZNF575      19_30 0.9308837  26.19545 7.096457e-05 -5.954341
6406       USP53       4_77 0.9248454  24.58220 6.616225e-05 -4.856546
14455 AC007950.2      15_29 0.9135056  31.25232 8.308331e-05  5.555780
13062     ATP5J2       7_61 0.9089457  34.74097 9.189676e-05 -5.116980
1542         SCD      10_64 0.8945838  19.60935 5.105103e-05 -4.541468
3734        GPAM      10_70 0.8925750  21.37803 5.553063e-05  4.133221
3645       CCND2       12_4 0.8874327  19.93184 5.147580e-05 -4.065830
2080        CTSH      15_37 0.8853807  18.41185 4.744034e-05  3.805849
12483      FXYD7      19_24 0.8819526  19.45446 4.993267e-05 -3.872239
266       NPC1L1       7_32 0.8707786 100.50633 2.546956e-04 11.631021
1508     CWF19L1      10_64 0.8687056  29.13781 7.366309e-05  5.747567
756         EVI5       1_56 0.8564938  41.00879 1.022166e-04 -6.589915
6974        PELO       5_30 0.8524653  63.70825 1.580493e-04  8.522224
9463        POP7       7_62 0.8450469  35.57880 8.749683e-05  5.858772
7444       TMED4       7_32 0.8423169  38.14671 9.350890e-05  7.608826
8291        NOS3       7_93 0.8379598  19.38306 4.726783e-05  3.856590
2174       SARS2      19_26 0.8249021  21.80207 5.233841e-05  4.480159
5866       FURIN      15_42 0.8215001  20.23083 4.836617e-05 -4.391033
5626       PARP9       3_76 0.8120411  41.98828 9.922621e-05 -5.774700
3681        KDSR      18_35 0.8103019  19.33886 4.560347e-05 -3.912562
13192  LINC01184       5_78 0.8057176  19.17555 4.496256e-05 -3.918269
11839      FAM3D       3_40 0.8027527  18.66547 4.360548e-05 -3.889457
      num_eqtl
2252         2
6227         2
7878         4
1003         2
1163         1
3740         1
1553         2
402          2
9315         1
3305         1
9946         2
6406         1
14455        1
13062        2
1542         1
3734         1
3645         1
2080         4
12483        1
266          1
1508         1
756          2
6974         1
9463         1
7444         2
8291         2
2174         1
5866         1
5626         1
3681         3
13192        2
11839        1

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
     genename region_tag    susie_pip        mu2          PVE           z
5137    SRPK2       7_65 0.000000e+00 31995.3681 0.000000e+00  -2.6189650
4573  NECTIN2      19_31 0.000000e+00  1648.6094 0.000000e+00 -35.7740463
77      KMT2E       7_65 0.000000e+00  1172.7041 0.000000e+00   1.5487658
4575   TOMM40      19_31 0.000000e+00  1005.7112 0.000000e+00 -14.0286334
4576    APOC1      19_31 0.000000e+00   474.0764 0.000000e+00  -9.1150442
5564    ABCG5       2_27 2.715998e-03   431.7488 3.412565e-06 -20.2939818
3092 COL4A3BP       5_44 2.595991e-02   363.0208 2.742553e-05 -23.9950413
9013    PCSK9       1_34 4.996004e-15   354.0076 5.147017e-18  13.4587025
4574     APOE      19_31 0.000000e+00   303.2005 0.000000e+00   0.6519443
8722  GATAD2A      19_15 1.672333e-02   286.9939 1.396741e-05 -17.2984151
2340  ATP13A1      19_15 6.335397e-02   243.8491 4.495886e-05 -17.2714942
6037   GEMIN7      19_31 0.000000e+00   205.8472 0.000000e+00  13.2439035
7733    SPC24       19_9 0.000000e+00   205.4392 0.000000e+00 -10.5595998
3904     POLK       5_44 1.323527e-02   190.3275 7.330855e-06  17.5157647
4647    YIPF2       19_9 1.635359e-13   180.2447 8.578192e-17  11.7711942
5001    PSRC1       1_67 7.323688e-07   176.3153 3.757856e-10 -22.0965140
6446    TIMD4       5_92 8.255199e-02   156.5669 3.761386e-05 -13.8823626
1279     CETP      16_30 5.943840e-02   154.1376 2.666220e-05  13.3791897
3273    NRBP1       2_16 1.850969e-02   144.9038 7.805473e-06   8.1485391
4518   CDKN2D       19_9 0.000000e+00   144.0020 0.000000e+00 -10.2988017
     num_eqtl
5137        1
4573        1
77          1
4575        2
4576        1
5564        1
3092        1
9013        3
4574        1
8722        1
2340        1
6037        2
7733        1
3904        1
4647        2
5001        2
6446        1
1279        1
3273        1
4518        1

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
        genename region_tag susie_pip       mu2          PVE         z
266       NPC1L1       7_32 0.8707786 100.50633 2.546956e-04 11.631021
6974        PELO       5_30 0.8524653  63.70825 1.580493e-04  8.522224
3279       PPM1G       2_16 0.4415502 118.76322 1.526098e-04  5.730640
1163       GSK3B       3_74 0.9750098  43.57087 1.236305e-04  6.835676
6227       CNIH4      1_114 0.9916593  36.75923 1.060838e-04  6.201835
756         EVI5       1_56 0.8564938  41.00879 1.022166e-04 -6.589915
5626       PARP9       3_76 0.8120411  41.98828 9.922621e-05 -5.774700
10128       PLEC       8_94 0.7699725  41.76936 9.359516e-05 -6.601667
7444       TMED4       7_32 0.8423169  38.14671 9.350890e-05  7.608826
13062     ATP5J2       7_61 0.9089457  34.74097 9.189676e-05 -5.116980
3277       SNX17       2_16 0.2688332 117.41033 9.185643e-05  5.753118
3740    C10orf88      10_77 0.9675624  32.45930 9.139835e-05 -6.783901
9463        POP7       7_62 0.8450469  35.57880 8.749683e-05  5.858772
1276        PGS1      17_44 0.6298748  46.87376 8.592198e-05  7.140667
2252       PRKD2      19_33 0.9990989  29.27528 8.511965e-05  5.316724
643        SPHK2      19_33 0.6717137  42.78513 8.363680e-05 -8.660309
14455 AC007950.2      15_29 0.9135056  31.25232 8.308331e-05  5.555780
1553        MZF1      19_39 0.9648108  28.16926 7.909298e-05 -4.742966
1508     CWF19L1      10_64 0.8687056  29.13781 7.366309e-05  5.747567
9946      ZNF575      19_30 0.9308837  26.19545 7.096457e-05 -5.954341
      num_eqtl
266          1
6974         1
3279         1
1163         1
6227         2
756          2
5626         1
10128        2
7444         2
13062        2
3277         1
3740         1
9463         1
1276         1
2252         2
643          2
14455        1
1553         2
1508         1
9946         2

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
          genename region_tag    susie_pip        mu2          PVE
4573       NECTIN2      19_31 0.000000e+00 1648.60943 0.000000e+00
3092      COL4A3BP       5_44 2.595991e-02  363.02084 2.742553e-05
5001         PSRC1       1_67 7.323688e-07  176.31532 3.757856e-10
5564         ABCG5       2_27 2.715998e-03  431.74884 3.412565e-06
363           SARS       1_67 2.260060e-07  135.37304 8.903740e-11
3904          POLK       5_44 1.323527e-02  190.32752 7.330855e-06
8722       GATAD2A      19_15 1.672333e-02  286.99388 1.396741e-05
2340       ATP13A1      19_15 6.335397e-02  243.84907 4.495886e-05
14117 CTC-366B18.4       5_44 1.418545e-02  129.35359 5.340009e-06
14528       ZNF229      19_31 0.000000e+00  125.38401 0.000000e+00
4575        TOMM40      19_31 0.000000e+00 1005.71122 0.000000e+00
6446         TIMD4       5_92 8.255199e-02  156.56695 3.761386e-05
9013         PCSK9       1_34 4.996004e-15  354.00755 5.147017e-18
1279          CETP      16_30 5.943840e-02  154.13758 2.666220e-05
6037        GEMIN7      19_31 0.000000e+00  205.84724 0.000000e+00
11052     CEACAM19      19_31 0.000000e+00   64.75321 0.000000e+00
4647         YIPF2       19_9 1.635359e-13  180.24470 8.578192e-17
6096         SYPL2       1_67 1.177502e-07   58.30445 1.997945e-11
266         NPC1L1       7_32 8.707786e-01  100.50633 2.546956e-04
6035          NTN5      19_33 8.596474e-02   99.99560 2.501621e-05
              z num_eqtl
4573  -35.77405        1
3092  -23.99504        1
5001  -22.09651        2
5564  -20.29398        1
363   -17.77828        2
3904   17.51576        1
8722  -17.29842        1
2340  -17.27149        1
14117 -15.55068        1
14528  14.49981        1
4575  -14.02863        2
6446  -13.88236        1
9013   13.45870        3
1279   13.37919        1
6037   13.24390        2
11052  11.79782        2
4647   11.77119        2
6096   11.72818        3
266    11.63102        1
6035   11.50875        1

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.01678376
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
          genename region_tag    susie_pip        mu2          PVE
4573       NECTIN2      19_31 0.000000e+00 1648.60943 0.000000e+00
3092      COL4A3BP       5_44 2.595991e-02  363.02084 2.742553e-05
5001         PSRC1       1_67 7.323688e-07  176.31532 3.757856e-10
5564         ABCG5       2_27 2.715998e-03  431.74884 3.412565e-06
363           SARS       1_67 2.260060e-07  135.37304 8.903740e-11
3904          POLK       5_44 1.323527e-02  190.32752 7.330855e-06
8722       GATAD2A      19_15 1.672333e-02  286.99388 1.396741e-05
2340       ATP13A1      19_15 6.335397e-02  243.84907 4.495886e-05
14117 CTC-366B18.4       5_44 1.418545e-02  129.35359 5.340009e-06
14528       ZNF229      19_31 0.000000e+00  125.38401 0.000000e+00
4575        TOMM40      19_31 0.000000e+00 1005.71122 0.000000e+00
6446         TIMD4       5_92 8.255199e-02  156.56695 3.761386e-05
9013         PCSK9       1_34 4.996004e-15  354.00755 5.147017e-18
1279          CETP      16_30 5.943840e-02  154.13758 2.666220e-05
6037        GEMIN7      19_31 0.000000e+00  205.84724 0.000000e+00
11052     CEACAM19      19_31 0.000000e+00   64.75321 0.000000e+00
4647         YIPF2       19_9 1.635359e-13  180.24470 8.578192e-17
6096         SYPL2       1_67 1.177502e-07   58.30445 1.997945e-11
266         NPC1L1       7_32 8.707786e-01  100.50633 2.546956e-04
6035          NTN5      19_33 8.596474e-02   99.99560 2.501621e-05
              z num_eqtl
4573  -35.77405        1
3092  -23.99504        1
5001  -22.09651        2
5564  -20.29398        1
363   -17.77828        2
3904   17.51576        1
8722  -17.29842        1
2340  -17.27149        1
14117 -15.55068        1
14528  14.49981        1
4575  -14.02863        2
6446  -13.88236        1
9013   13.45870        3
1279   13.37919        1
6037   13.24390        2
11052  11.79782        2
4647   11.77119        2
6096   11.72818        3
266    11.63102        1
6035   11.50875        1

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]
report_cols_region <- report_cols[!(report_cols %in% c("num_eqtl"))]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols_region])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 19_31"
      genename region_tag susie_pip         mu2 PVE           z
7553    ZNF233      19_31         0  131.643247   0 -10.0229697
7554    ZNF235      19_31         0   35.913626   0  -6.2627967
633     ZNF112      19_31         0   47.819226   0   4.8629559
13922   ZNF285      19_31         0   10.133291   0  -1.3318721
14528   ZNF229      19_31         0  125.384012   0  14.4998133
8710    ZNF180      19_31         0   43.730327   0   4.0279244
905        PVR      19_31         0   31.813106   0  -3.0943045
11052 CEACAM19      19_31         0   64.753213   0  11.7978210
11128     BCAM      19_31         0   96.429711   0   4.6421318
4573   NECTIN2      19_31         0 1648.609427   0 -35.7740463
4575    TOMM40      19_31         0 1005.711219   0 -14.0286334
4574      APOE      19_31         0  303.200452   0   0.6519443
4576     APOC1      19_31         0  474.076449   0  -9.1150442
12884    APOC2      19_31         0   18.135579   0  -2.2896080
2176    CLPTM1      19_31         0   50.178070   0   2.5751726
9234    ZNF296      19_31         0   94.996588   0   5.4593536
122      MARK4      19_31         0   21.181957   0  -2.2463768
6037    GEMIN7      19_31         0  205.847243   0  13.2439035
2178   PPP1R37      19_31         0   42.423234   0  -5.9455792
11348  BLOC1S3      19_31         0   11.973214   0   2.7250151
2189      KLC3      19_31         0   13.524015   0  -3.6648287
2184     ERCC2      19_31         0   13.966069   0   1.5340117
2182  PPP1R13L      19_31         0   22.778963   0  -3.0806361
3573    CD3EAP      19_31         0   11.426032   0   2.5646694
227      ERCC1      19_31         0    7.409485   0  -1.6350316
4228      FOSB      19_31         0   16.099633   0  -2.3658041
12327    PPM1N      19_31         0   24.361748   0  -2.6089113
4231      RTN2      19_31         0    6.949994   0  -2.0700710
4233      VASP      19_31         0   33.645255   0  -2.7026884
4229      OPA3      19_31         0    6.808430   0   1.5059074

[1] "Region: 5_44"
          genename region_tag  susie_pip        mu2          PVE
9360          ENC1       5_44 0.01016091   4.668557 1.380497e-07
8214          NSA2       5_44 0.01518137   9.160767 4.047279e-07
8215          GFM2       5_44 0.01176127   5.882642 2.013478e-07
11871      FAM169A       5_44 0.01070872   5.096627 1.588330e-07
9983         GCNT4       5_44 0.01353265   8.945941 3.523133e-07
3904          POLK       5_44 0.01323527 190.327516 7.330855e-06
3092      COL4A3BP       5_44 0.02595991 363.020845 2.742553e-05
14117 CTC-366B18.4       5_44 0.01418545 129.353591 5.340009e-06
11338      ANKDD1B       5_44 0.01037025  15.483522 4.672822e-07
3905          SV2C       5_44 0.13940412  33.030361 1.340014e-05
13441   AC113404.1       5_44 0.01580063  11.797146 5.424649e-07
6425        IQGAP2       5_44 0.01829098  11.787918 6.274720e-07
                z
9360   -0.4000089
8214   -1.5373676
8215    0.5648206
11871   0.1096504
9983   -1.7429762
3904   17.5157647
3092  -23.9950413
14117 -15.5506781
11338   2.9537749
3905    4.2165904
13441   2.3250769
6425   -2.1788866

[1] "Region: 1_67"
          genename region_tag    susie_pip        mu2          PVE
12627 RP11-356N1.2       1_67 1.304537e-07   6.851387 2.601090e-12
1223      SLC25A24       1_67 6.417211e-07  14.911375 2.784738e-11
7839        HENMT1       1_67 3.871372e-07  15.825908 1.783010e-11
3416        STXBP3       1_67 1.554058e-07  15.012036 6.789333e-12
3900         CLCC1       1_67 1.398833e-07   5.489588 2.234734e-12
11677        TAF13       1_67 1.508761e-07   9.939408 4.364165e-12
12440     TMEM167B       1_67 1.528715e-07   5.494436 2.444387e-12
3419      KIAA1324       1_67 2.480353e-07  19.360714 1.397511e-11
363           SARS       1_67 2.260060e-07 135.373041 8.903740e-11
6104        CELSR2       1_67 5.286519e-07 113.723036 1.749599e-10
5001         PSRC1       1_67 7.323688e-07 176.315318 3.757856e-10
5003         SORT1       1_67 1.746323e-07   5.800528 2.947897e-12
6096         SYPL2       1_67 1.177502e-07  58.304452 1.997945e-11
7843       ATXN7L2       1_67 4.472802e-07  10.700754 1.392882e-11
10463       AMIGO1       1_67 5.210579e-07  25.569247 3.877254e-11
687          GNAI3       1_67 4.317367e-07  49.524698 6.222446e-11
4996         GSTM1       1_67 2.166034e-03  59.592966 3.756475e-07
8954         GSTM4       1_67 2.557416e-07  15.286858 1.137732e-11
12282        GSTM2       1_67 2.681935e-07  23.418731 1.827814e-11
4998         GSTM5       1_67 1.515841e-07   7.772201 3.428609e-12
4999         GSTM3       1_67 2.121061e-07   6.780908 4.185634e-12
                 z
12627  -1.23494808
1223   -0.09485475
7839   -1.85374050
3416    2.98447183
3900   -0.52733642
11677  -1.55914526
12440   1.84229721
3419    4.94390244
363   -17.77828114
6104    5.65177064
5001  -22.09651395
5003   -0.45551677
6096   11.72818164
7843    0.17069498
10463  -3.96308159
687     7.97926365
4996    7.68447989
8954    2.22512920
12282   4.14108479
4998    1.58897772
4999   -3.43690762

[1] "Region: 2_27"
        genename region_tag    susie_pip        mu2          PVE
14565  LINC01126       2_27 0.0419225031  24.029336 2.931631e-06
3379       THADA       2_27 0.0013108049   5.680737 2.167020e-08
12512 C1GALT1C1L       2_27 0.0009562864  10.212103 2.841996e-08
6962     PLEKHH2       2_27 0.0080093432  24.276118 5.658437e-07
5556    DYNC2LI1       2_27 0.0015444811   9.199794 4.135052e-08
6249       ABCG8       2_27 0.7227631910  33.272060 6.998356e-05
5564       ABCG5       2_27 0.0027159977 431.748837 3.412565e-06
5570      LRPPRC       2_27 0.0012135925   9.102509 3.214803e-08
                z
14565   0.5696005
3379    0.1649722
12512   1.1627524
6962   -2.4287605
5556    0.1268456
6249    6.5141780
5564  -20.2939818
5570    0.5202811

[1] "Region: 19_15"
      genename region_tag  susie_pip        mu2          PVE            z
4615      LSM4      19_15 0.01667072   4.694035 2.277304e-07  -0.04485155
4611     SSBP4      19_15 0.04472249  12.632132 1.644080e-06  -1.36527088
4613    PGPEP1      19_15 0.01736268   5.000955 2.526911e-07  -0.17636082
4612     GDF15      19_15 0.02138838   7.185379 4.472474e-07   0.99468054
9847    LRRC25      19_15 0.01979227   6.132966 3.532534e-07  -0.76178608
2317    ISYNA1      19_15 0.07195848  17.654436 3.697057e-06   2.08351436
2318       ELL      19_15 0.05479083  15.108314 2.409041e-06   1.88929817
2332      KXD1      19_15 0.02162117   6.834563 4.300413e-07   0.45146333
12491    UBA52      19_15 0.01654971   4.763213 2.294092e-07   0.37012117
88    C19orf60      19_15 0.02317689   7.193408 4.851880e-07   0.11838519
2328   TMEM59L      19_15 0.03598812  11.965986 1.253222e-06   1.52323891
89       CRLF1      19_15 0.02599402   8.840885 6.687897e-07   1.24791128
8721    KLHL26      19_15 0.03606686  14.048594 1.474557e-06   2.15688437
2319     CRTC1      19_15 0.02581776   9.191383 6.905890e-07  -1.32083615
2320      COMP      19_15 0.02046306   6.485941 3.862459e-07   0.49443686
54        UPF1      19_15 0.03548194  13.660618 1.410581e-06   2.05330389
2322      COPE      19_15 0.01655592   4.742140 2.284799e-07  -0.43225989
510     HOMER3      19_15 0.09140093  17.998846 4.787575e-06   1.24493998
669      SUGP2      19_15 0.01868862   7.556890 4.109988e-07   1.34264890
2325     ARMC6      19_15 0.01681132   5.095694 2.493018e-07  -0.03517232
10413 SLC25A42      19_15 0.07575909  16.842634 3.713343e-06  -1.25354593
667   TMEM161A      19_15 0.01962503   5.972855 3.411242e-07  -0.13086869
13442   BORCS8      19_15 0.01640666  18.220128 8.699454e-07   3.87529133
12348    MEF2B      19_15 0.10888140  39.939631 1.265546e-05   5.62947886
666     RFXANK      19_15 0.07331963  22.740741 4.852273e-06  -3.39933452
11158   HAPLN4      19_15 0.01796278  20.022195 1.046660e-06   3.94830824
12347   TM6SF2      19_15 0.06121640  86.712813 1.544797e-05  -9.76402244
8722   GATAD2A      19_15 0.01672333 286.993885 1.396741e-05 -17.29841508
10112    TSSK6      19_15 0.02250480  12.208485 7.995713e-07   1.60453456
13280   YJEFN3      19_15 0.02147848  24.176651 1.511193e-06  -4.43456926
7572     CILP2      19_15 0.02118831  12.028170 7.416793e-07   1.67751329
2337      PBX4      19_15 0.23177850  33.073358 2.230857e-05   4.57934973
1369      GMIP      19_15 0.02201833   9.801210 6.280357e-07  -1.69505042
10481   ZNF101      19_15 0.05858381  14.449604 2.463507e-06   2.48239944
2340   ATP13A1      19_15 0.06335397 243.849070 4.495886e-05 -17.27149418
2335     ZNF14      19_15 0.08605150  30.847238 7.724938e-06   4.88424969

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip         mu2          PVE
15512     rs2495502       1_34 1.0000000   416.42536 1.211874e-03
31756      rs611917       1_67 1.0000000  1058.30049 3.079848e-03
71921     rs1042034       2_13 1.0000000   264.89530 7.708938e-04
71927      rs934197       2_13 1.0000000   412.90030 1.201615e-03
323276  rs115740542       6_20 1.0000000   179.13955 5.213289e-04
368681   rs12208357      6_103 1.0000000   287.92952 8.379276e-04
406538  rs763798411       7_65 1.0000000 43351.79029 1.261616e-01
759365  rs113408695      17_39 1.0000000   164.75187 4.794581e-04
792327   rs73013176       19_9 1.0000000   240.21500 6.990696e-04
792365  rs137992968       19_9 1.0000000   238.72707 6.947395e-04
795162    rs3794991      19_15 1.0000000   504.94944 1.469495e-03
800369   rs62117204      19_31 1.0000000   828.59034 2.411350e-03
800387  rs111794050      19_31 1.0000000   819.59983 2.385186e-03
800420     rs814573      19_31 1.0000000  2401.71797 6.989439e-03
800422  rs113345881      19_31 1.0000000   837.18307 2.436356e-03
800425   rs12721109      19_31 1.0000000  1445.06140 4.205393e-03
810553   rs34507316      20_13 1.0000000    99.65543 2.900155e-04
324009     rs454182       6_22 1.0000000   158.84336 4.622633e-04
759391    rs8070232      17_39 1.0000000   204.28712 5.945129e-04
71872    rs11679386       2_12 1.0000000   167.47528 4.873837e-04
504011  rs115478735       9_70 1.0000000   346.78056 1.009195e-03
72007     rs1848922       2_13 1.0000000   243.53464 7.087304e-04
71930      rs548145       2_13 1.0000000   719.56009 2.094052e-03
495296    rs2437818       9_53 1.0000000    83.04996 2.416906e-04
406549    rs4997569       7_65 1.0000000 43377.63905 1.262369e-01
758449    rs1801689      17_39 1.0000000    88.53077 2.576408e-04
443350    rs4738679       8_45 1.0000000   119.07886 3.465413e-04
428056    rs7012814       8_12 1.0000000   101.31613 2.948485e-04
59253      rs822928      1_121 1.0000000   120.31527 3.501395e-04
79368    rs72800939       2_28 1.0000000    62.30751 1.813263e-04
15523    rs10888896       1_34 1.0000000   152.61491 4.441373e-04
587705    rs4937122      11_77 0.9999997    81.20242 2.363138e-04
8327     rs79598313       1_18 0.9999996    51.93049 1.511272e-04
441955  rs140753685       8_42 0.9999996    62.21001 1.810424e-04
55628     rs2807848      1_112 0.9999990    62.05114 1.805800e-04
733330   rs12149380      16_38 0.9999964   137.61950 4.004965e-04
795193  rs113619686      19_15 0.9999928    76.87070 2.237062e-04
462210    rs6470359       8_83 0.9999910   336.50472 9.792815e-04
15482    rs11580527       1_34 0.9999890    93.13585 2.710394e-04
462213   rs13252684       8_83 0.9999875   279.41529 8.131395e-04
15530      rs471705       1_34 0.9999864   227.23788 6.612948e-04
567431     rs174553      11_34 0.9999805   150.50141 4.379781e-04
810552    rs6075251      20_13 0.9999803    72.10892 2.098460e-04
323255   rs72834643       6_20 0.9999754    53.57379 1.559057e-04
350118    rs9496567       6_67 0.9999685    42.81962 1.246090e-04
1052986  rs73045960      19_32 0.9999520   129.64546 3.772739e-04
59203     rs6586405      1_121 0.9999511    54.53416 1.586966e-04
319547   rs11376017       6_13 0.9999431    74.12906 2.157168e-04
792444     rs322144      19_10 0.9998977    73.02669 2.124993e-04
704146    rs2070895      15_26 0.9998361    64.58694 1.879290e-04
368865   rs56393506      6_104 0.9998318   136.28359 3.965435e-04
792391    rs4804149      19_10 0.9997902    50.41207 1.466776e-04
368829  rs117733303      6_104 0.9997137    99.51179 2.895146e-04
733373   rs57186116      16_38 0.9996703    76.02905 2.211855e-04
540937   rs17875416      10_71 0.9995198    41.76312 1.214800e-04
495269    rs2297400       9_53 0.9992742    44.40749 1.291401e-04
608591    rs7397189      12_36 0.9991893    37.53755 1.091526e-04
281255    rs7701166       5_44 0.9990396    40.57905 1.179791e-04
1052324  rs62115559      19_30 0.9989979   214.59150 6.238747e-04
794802    rs2302209      19_14 0.9987956    46.91823 1.363762e-04
382062   rs56130071       7_19 0.9983525   106.66626 3.099069e-04
462201    rs2980875       8_83 0.9978210   613.06254 1.780237e-03
31824    rs41313290       1_67 0.9978157    44.72350 1.298693e-04
431682    rs1495743       8_21 0.9975279    44.75903 1.299350e-04
792348  rs147985405       19_9 0.9971798  2880.68797 8.359687e-03
584637   rs75542613      11_70 0.9971573    38.87458 1.128105e-04
738825    rs2255451      16_48 0.9971191    42.76111 1.240842e-04
584632    rs3135506      11_70 0.9967147   162.35784 4.709388e-04
815506   rs76981217      20_24 0.9959836    37.33675 1.082204e-04
625175     rs653178      12_67 0.9956669   111.26015 3.223844e-04
1051896  rs55840997      19_30 0.9947002    71.64502 2.073951e-04
443318   rs56386732       8_45 0.9935777    36.37333 1.051732e-04
79245    rs13430143       2_27 0.9934546   105.89810 3.061657e-04
664684    rs3934835      13_62 0.9925982    63.62177 1.837805e-04
325231   rs28780090       6_24 0.9910717    54.23840 1.564344e-04
31090     rs1730862       1_66 0.9904827    31.42552 9.058363e-05
140546     rs709149        3_9 0.9898370    38.54520 1.110336e-04
815457    rs6029132      20_24 0.9887883    43.08875 1.239902e-04
147556    rs9834932       3_24 0.9862678    72.92535 2.093118e-04
612957  rs148481241      12_45 0.9861123    29.63099 8.503405e-05
325254   rs62407548       6_24 0.9858753    72.43641 2.078257e-04
593614   rs11048034       12_9 0.9824846    42.78517 1.223318e-04
666492    rs2332328       14_3 0.9778872    49.29997 1.402994e-04
281196   rs10062361       5_44 0.9765936   231.78846 6.587581e-04
603678    rs2638250      12_25 0.9724866    29.22661 8.271463e-05
79248     rs4076834       2_27 0.9703966   490.24454 1.384466e-03
477621    rs1556516       9_16 0.9687335    80.99319 2.283353e-04
628129    rs1169300      12_74 0.9663765    74.81160 2.103951e-04
222691    rs1458038       4_54 0.9663424    56.95198 1.601622e-04
324446    rs3130253       6_23 0.9652028    29.99204 8.424515e-05
323094   rs75080831       6_19 0.9640699    63.66311 1.786145e-04
1052407 rs185920692      19_30 0.9636959    58.17640 1.631575e-04
324417   rs28986304       6_23 0.9623004    47.32673 1.325371e-04
245213  rs114756490      4_100 0.9615821    28.19237 7.889296e-05
629264   rs11057830      12_76 0.9572866    28.19944 7.856024e-05
815510   rs73124945      20_24 0.9440501    33.67087 9.250597e-05
824147   rs62219001       21_2 0.9439210    28.38197 7.796478e-05
469757    rs7024888        9_3 0.9430358    28.19331 7.737391e-05
733371    rs9652628      16_38 0.9355348   139.51408 3.798379e-04
638151    rs1012130      13_10 0.9337754    49.93406 1.356937e-04
1012842   rs2908806       17_7 0.9288374    39.64833 1.071729e-04
749264  rs117859452      17_17 0.9246138    28.50999 7.671456e-05
368675    rs9456502      6_103 0.9223760    35.19508 9.447356e-05
508961   rs10905277       10_8 0.9115563    30.35722 8.053151e-05
554351    rs7943121      11_13 0.9093865    32.89274 8.705001e-05
792432     rs322125      19_10 0.9005713   123.40519 3.234237e-04
15513     rs1887552       1_34 0.9003838   460.58783 1.206870e-03
31755      rs614174       1_67 0.8995990   620.26288 1.623847e-03
389431  rs141379002       7_33 0.8995917    28.13509 7.365701e-05
71924    rs78610189       2_13 0.8979165    64.49599 1.685345e-04
568261    rs6591179      11_36 0.8948508    28.78390 7.495844e-05
495289    rs2777788       9_53 0.8948326    68.72333 1.789642e-04
623268    rs1196760      12_63 0.8867763    28.36202 7.319333e-05
194316    rs5855544      3_121 0.8851707    26.18777 6.745991e-05
124265    rs7569317      2_120 0.8844178    46.81963 1.205052e-04
196103   rs36205397        4_4 0.8838346    42.96871 1.105207e-04
819645   rs10641149      20_32 0.8823761    29.72784 7.633740e-05
729673     rs821840      16_30 0.8811021   179.08060 4.591928e-04
580901  rs201912654      11_59 0.8773061    42.31775 1.080424e-04
352854   rs12199109       6_73 0.8767410    27.85584 7.107352e-05
1052479  rs12981080      19_32 0.8678001    63.26139 1.597639e-04
485607   rs11144506       9_35 0.8677570    29.31721 7.403569e-05
502519   rs13289095       9_66 0.8676225    47.71374 1.204743e-04
281219    rs3843482       5_44 0.8623902   448.48013 1.125556e-03
359057    rs9321207       6_86 0.8613011    33.21406 8.325250e-05
810533   rs78348000      20_13 0.8594311    32.64757 8.165489e-05
759376    rs9303012      17_39 0.8506970   204.62334 5.065827e-04
587708   rs74612335      11_77 0.8436282    78.84034 1.935619e-04
934939  rs542985909       7_61 0.8429711    41.53143 1.018849e-04
638143    rs1799955      13_10 0.8371824    83.39094 2.031698e-04
40355     rs1795240       1_84 0.8357339    28.18533 6.855062e-05
806198   rs74273659       20_5 0.8343665    27.61683 6.705805e-05
831388    rs2835302      21_16 0.8333008    28.06221 6.805249e-05
733311   rs12708919      16_38 0.8325730   161.84423 3.921388e-04
815475    rs6102034      20_24 0.8303202   105.66307 2.553225e-04
71724     rs6531234       2_12 0.8241415    43.91344 1.053221e-04
814251   rs11167269      20_21 0.8229157    63.58430 1.522739e-04
536255   rs10882161      10_59 0.8206680    31.78043 7.590102e-05
832525  rs149577713      21_19 0.8205595    34.87742 8.328653e-05
815651   rs11086801      20_25 0.8155315   118.99192 2.824090e-04
428067   rs13265179       8_12 0.8102350    39.21164 9.245838e-05
                 z
15512    -6.292225
31756    30.975273
71921   -16.573036
71927   -33.060888
323276   12.532321
368681  -12.282337
406538   -3.272149
759365  -12.768796
792327   16.232742
792365   10.752566
795162   21.492060
800369   44.672230
800387   33.599649
800420  -55.537887
800422   34.318568
800425   46.325818
810553    6.814661
324009   -4.779053
759391    8.091491
71872   -11.909428
504011  -19.011790
72007   -25.412292
71930   -33.086010
495296   -6.333973
406549    2.984117
758449   -9.396430
443350   11.699924
428056  -10.906064
59253   -12.369141
79368     7.845728
15523   -11.893801
587705  -12.147947
8327     -7.024638
441955   -7.799241
55628     7.882775
733330    4.164582
795193   -0.593903
462210   -9.646876
15482    11.167216
462213  -11.964411
15530   -16.262997
567431   12.656944
810552    2.329832
323255    6.048695
350118    6.340216
1052986  12.817911
59203    -8.960936
319547    8.507919
792444   -3.946578
704146   -7.734663
368865  -14.088321
792391   -6.519414
368829  -10.097959
733373   -7.714555
540937    6.266313
495269   -6.605676
608591    5.770964
281255    2.484790
1052324  14.946045
794802   -6.636049
382062  -10.978916
462201   22.102229
31824     5.646803
431682    6.515969
792348   48.935175
584637    6.534400
738825    6.362828
584632  -12.372986
815506   -7.692477
625175  -11.050062
1051896   8.331826
443318    7.012272
79245     3.344504
664684   -7.943873
325231   -6.871357
31090     5.284644
140546    6.781974
815457    6.762459
147556    8.481579
612957   -5.095452
325254   -8.257335
593614   -6.133690
666492   -7.035042
281196  -20.320600
603678    5.037754
79248    20.108567
477621    8.992146
628129   -8.685477
222691    7.417851
324446   -5.641451
323094    7.906709
1052407   7.096889
324417   -7.382502
245213   -4.988910
629264   -4.929635
815510    7.775426
824147    4.948445
469757    5.055827
733371  -11.950504
638151    2.781022
1012842   6.026359
749264    3.851670
368675   -5.963991
508961   -5.125802
554351   -5.557494
792432    7.470403
15513     9.868570
31755    -7.395089
389431   -4.896981
71924     8.385467
568261   -4.893333
495289    5.737015
623268    4.866700
194316    4.593724
124265   -7.900653
196103   -6.159378
819645   -5.075761
729673   13.475251
580901    6.305597
352854   -4.857045
1052479   9.714563
485607   -5.042667
502519    6.643823
281219  -25.034352
359057   -5.401634
810533   -5.220624
759376   -2.259115
587708  -11.904831
934939    5.295309
638143    6.693636
40355     4.846186
806198   -4.646762
831388    4.653743
733311  -11.302762
815475   11.189979
71724     7.170830
814251    7.795037
536255    5.475649
832525   -3.316824
815651  -10.975177
428067    7.414877

SNPs with largest effect sizes

#plot PIP vs effect size
#plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag    susie_pip       mu2          PVE
406549   rs4997569       7_65 1.000000e+00 43377.639 1.262369e-01
406538 rs763798411       7_65 1.000000e+00 43351.790 1.261616e-01
406541  rs10274607       7_65 6.802521e-01 43319.992 8.575877e-02
406556   rs6952534       7_65 2.342571e-14 43252.602 2.948664e-15
406544  rs13230660       7_65 1.002215e-03 43221.242 1.260603e-04
406555   rs4730069       7_65 0.000000e+00 43215.053 0.000000e+00
406548  rs10242713       7_65 0.000000e+00 43056.211 0.000000e+00
406551  rs10249965       7_65 0.000000e+00 42710.840 0.000000e+00
406563   rs1013016       7_65 0.000000e+00 40942.368 0.000000e+00
406588   rs8180737       7_65 0.000000e+00 38855.382 0.000000e+00
406581  rs17778396       7_65 0.000000e+00 38845.290 0.000000e+00
406582   rs2237621       7_65 0.000000e+00 38827.992 0.000000e+00
406553  rs71562637       7_65 0.000000e+00 38821.414 0.000000e+00
406615  rs10224564       7_65 0.000000e+00 38757.015 0.000000e+00
406600  rs10255779       7_65 0.000000e+00 38737.326 0.000000e+00
406617  rs78132606       7_65 0.000000e+00 38551.882 0.000000e+00
406620   rs4610671       7_65 0.000000e+00 38502.672 0.000000e+00
406622  rs12669532       7_65 0.000000e+00 36904.190 0.000000e+00
406579   rs2237618       7_65 0.000000e+00 36299.602 0.000000e+00
406624 rs118089279       7_65 0.000000e+00 35939.694 0.000000e+00
406611  rs73188303       7_65 0.000000e+00 35911.991 0.000000e+00
406621 rs560364150       7_65 0.000000e+00 28478.718 0.000000e+00
406607  rs10261738       7_65 0.000000e+00 23270.989 0.000000e+00
406562 rs368909701       7_65 0.000000e+00 17856.440 0.000000e+00
406561   rs2299297       7_65 0.000000e+00 14073.543 0.000000e+00
406547   rs6961668       7_65 0.000000e+00 12909.744 0.000000e+00
406605  rs56384866       7_65 0.000000e+00 11575.319 0.000000e+00
406629 rs147367948       7_65 0.000000e+00  9745.532 0.000000e+00
406533 rs145194740       7_65 0.000000e+00  9337.336 0.000000e+00
406529  rs11762333       7_65 0.000000e+00  9166.538 0.000000e+00
406610  rs34356406       7_65 0.000000e+00  8327.804 0.000000e+00
406603 rs143717474       7_65 0.000000e+00  6391.370 0.000000e+00
406606   rs2385557       7_65 0.000000e+00  6358.588 0.000000e+00
406614  rs10224539       7_65 0.000000e+00  6275.067 0.000000e+00
406530  rs12333765       7_65 0.000000e+00  6270.293 0.000000e+00
406525  rs60551932       7_65 0.000000e+00  6160.036 0.000000e+00
406574  rs67180946       7_65 0.000000e+00  6144.313 0.000000e+00
406594  rs55898317       7_65 0.000000e+00  6133.827 0.000000e+00
406602  rs67162771       7_65 0.000000e+00  6132.567 0.000000e+00
406598   rs7780006       7_65 0.000000e+00  6125.448 0.000000e+00
406599  rs17640711       7_65 0.000000e+00  6125.349 0.000000e+00
406589   rs7808226       7_65 0.000000e+00  6125.172 0.000000e+00
406597  rs67154126       7_65 0.000000e+00  6124.252 0.000000e+00
406590   rs7782673       7_65 0.000000e+00  6123.122 0.000000e+00
406587  rs67529088       7_65 0.000000e+00  6121.526 0.000000e+00
406583  rs67505443       7_65 0.000000e+00  6120.131 0.000000e+00
406580   rs7776832       7_65 0.000000e+00  6117.622 0.000000e+00
406584 rs112675813       7_65 0.000000e+00  6103.565 0.000000e+00
406536   rs2106500       7_65 0.000000e+00  6068.738 0.000000e+00
406540   rs6976394       7_65 0.000000e+00  6055.628 0.000000e+00
                 z
406549  2.98411662
406538 -3.27214912
406541  2.86695815
406556  2.88842403
406544  2.94796276
406555  2.86587353
406548  2.81239831
406551  2.84973811
406563 -2.39885238
406588  2.83284539
406581  2.79800123
406582  2.80296048
406553  2.66359357
406615  2.79119041
406600  2.81357915
406617  2.77280824
406620  2.72497424
406622  2.77025728
406579  2.46632548
406624  2.66672085
406611  2.42170311
406621  1.86945819
406607  2.66651092
406562  0.77788834
406561 -0.79635059
406547  3.23185861
406605  1.88257817
406629 -0.13863917
406533 -0.26515806
406529 -0.05367528
406610  2.10990687
406603 -1.55752731
406606 -1.59367067
406614  1.51838531
406530  2.64663965
406525  2.57501100
406574 -1.56995763
406594 -1.54112280
406602 -1.51684679
406598 -1.48700886
406599 -1.49652454
406589 -1.53349729
406597 -1.50258409
406590 -1.54265604
406587 -1.56434174
406583 -1.59189384
406580 -1.56236222
406584 -1.55422350
406536  1.77217605
406540  1.69154398

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip        mu2          PVE
406549    rs4997569       7_65 1.0000000 43377.6391 0.1262368687
406538  rs763798411       7_65 1.0000000 43351.7903 0.1261616440
406541   rs10274607       7_65 0.6802521 43319.9925 0.0857587692
792348  rs147985405       19_9 0.9971798  2880.6880 0.0083596866
800420     rs814573      19_31 1.0000000  2401.7180 0.0069894389
800425   rs12721109      19_31 1.0000000  1445.0614 0.0042053932
31756      rs611917       1_67 1.0000000  1058.3005 0.0030798481
800422  rs113345881      19_31 1.0000000   837.1831 0.0024363559
800369   rs62117204      19_31 1.0000000   828.5903 0.0024113495
800387  rs111794050      19_31 1.0000000   819.5998 0.0023851855
71930      rs548145       2_13 1.0000000   719.5601 0.0020940516
462201    rs2980875       8_83 0.9978210   613.0625 0.0017802365
31755      rs614174       1_67 0.8995990   620.2629 0.0016238469
795162    rs3794991      19_15 1.0000000   504.9494 0.0014694953
79248     rs4076834       2_27 0.9703966   490.2445 0.0013844661
15512     rs2495502       1_34 1.0000000   416.4254 0.0012118740
15513     rs1887552       1_34 0.9003838   460.5878 0.0012068699
71927      rs934197       2_13 1.0000000   412.9003 0.0012016154
281219    rs3843482       5_44 0.8623902   448.4801 0.0011255565
504011  rs115478735       9_70 1.0000000   346.7806 0.0010091949
462210    rs6470359       8_83 0.9999910   336.5047 0.0009792815
792338    rs8102273       19_9 0.5843999   568.5845 0.0009669977
31757      rs658435       1_67 0.4936838   615.6500 0.0008845106
368681   rs12208357      6_103 1.0000000   287.9295 0.0008379276
792353   rs34008246       19_9 0.6951331   412.8440 0.0008351686
462213   rs13252684       8_83 0.9999875   279.4153 0.0008131395
71921     rs1042034       2_13 1.0000000   264.8953 0.0007708938
72007     rs1848922       2_13 1.0000000   243.5346 0.0007087304
792327   rs73013176       19_9 1.0000000   240.2150 0.0006990696
792365  rs137992968       19_9 1.0000000   238.7271 0.0006947395
792335   rs68010235       19_9 0.4155999   559.9146 0.0006772009
15530      rs471705       1_34 0.9999864   227.2379 0.0006612948
281196   rs10062361       5_44 0.9765936   231.7885 0.0006587581
1052324  rs62115559      19_30 0.9989979   214.5915 0.0006238747
759391    rs8070232      17_39 1.0000000   204.2871 0.0005945129
870392    rs1260326       2_16 0.6552363   302.3539 0.0005765458
368695    rs3818678      6_103 0.7781102   239.3214 0.0005419297
323276  rs115740542       6_20 1.0000000   179.1396 0.0005213289
759376    rs9303012      17_39 0.8506970   204.6233 0.0005065827
71872    rs11679386       2_12 1.0000000   167.4753 0.0004873837
759365  rs113408695      17_39 1.0000000   164.7519 0.0004794581
584632    rs3135506      11_70 0.9967147   162.3578 0.0004709388
324009     rs454182       6_22 1.0000000   158.8434 0.0004622633
729673     rs821840      16_30 0.8811021   179.0806 0.0004591928
15523    rs10888896       1_34 1.0000000   152.6149 0.0004441373
567431     rs174553      11_34 0.9999805   150.5014 0.0004379781
733330   rs12149380      16_38 0.9999964   137.6195 0.0004004965
368865   rs56393506      6_104 0.9998318   136.2836 0.0003965435
733311   rs12708919      16_38 0.8325730   161.8442 0.0003921388
305797   rs12657266       5_92 0.7275630   179.5833 0.0003802391
                 z
406549    2.984117
406538   -3.272149
406541    2.866958
792348   48.935175
800420  -55.537887
800425   46.325818
31756    30.975273
800422   34.318568
800369   44.672230
800387   33.599649
71930   -33.086010
462201   22.102229
31755    -7.395089
795162   21.492060
79248    20.108567
15512    -6.292225
15513     9.868570
71927   -33.060888
281219  -25.034352
504011  -19.011790
462210   -9.646876
792338   14.167679
31757    -7.357780
368681  -12.282337
792353  -12.967795
462213  -11.964411
71921   -16.573036
72007   -25.412292
792327   16.232742
792365   10.752566
792335   13.918807
15530   -16.262997
281196  -20.320600
1052324  14.946045
759391    8.091491
870392   14.553497
368695    9.947776
323276   12.532321
759376   -2.259115
71872   -11.909428
759365  -12.768796
584632  -12.372986
324009   -4.779053
729673   13.475251
15523   -11.893801
567431   12.656944
733330    4.164582
368865  -14.088321
733311  -11.302762
305797  -13.894754

SNPs with largest z scores

#histogram of (abs) SNP z scores
hist(abs(ctwas_snp_res$z))

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag    susie_pip       mu2          PVE
800420    rs814573      19_31 1.000000e+00 2401.7180 6.989439e-03
792348 rs147985405       19_9 9.971798e-01 2880.6880 8.359687e-03
792343  rs73015020       19_9 2.288662e-03 2868.9692 1.910855e-05
792341 rs138175288       19_9 3.507913e-04 2865.3735 2.925165e-06
792342 rs138294113       19_9 7.700365e-05 2862.4189 6.414530e-07
792344  rs77140532       19_9 7.785806e-05 2862.3416 6.485528e-07
792345 rs112552009       19_9 1.061088e-05 2858.5604 8.827117e-08
792346  rs10412048       19_9 1.527069e-05 2859.1319 1.270613e-07
792340  rs55997232       19_9 4.638042e-10 2839.1379 3.832141e-12
800425  rs12721109      19_31 1.000000e+00 1445.0614 4.205393e-03
800369  rs62117204      19_31 1.000000e+00  828.5903 2.411350e-03
800356   rs1551891      19_31 0.000000e+00  478.6955 0.000000e+00
792349  rs17248769       19_9 0.000000e+00 2057.4990 0.000000e+00
792350   rs2228671       19_9 0.000000e+00 2046.0949 0.000000e+00
792339   rs9305020       19_9 0.000000e+00 1822.1218 0.000000e+00
800416    rs405509      19_31 0.000000e+00  965.6516 0.000000e+00
800422 rs113345881      19_31 1.000000e+00  837.1831 2.436356e-03
800340  rs62120566      19_31 0.000000e+00 1406.6368 0.000000e+00
800387 rs111794050      19_31 1.000000e+00  819.5998 2.385186e-03
71930     rs548145       2_13 1.000000e+00  719.5601 2.094052e-03
800393   rs4802238      19_31 0.000000e+00  981.5570 0.000000e+00
71927     rs934197       2_13 1.000000e+00  412.9003 1.201615e-03
800334 rs188099946      19_31 0.000000e+00 1347.8800 0.000000e+00
800404   rs2972559      19_31 0.000000e+00 1351.9306 0.000000e+00
800328 rs201314191      19_31 0.000000e+00 1248.2640 0.000000e+00
800395  rs56394238      19_31 0.000000e+00  985.1874 0.000000e+00
800372   rs2965169      19_31 0.000000e+00  326.4180 0.000000e+00
800396   rs3021439      19_31 0.000000e+00  867.5409 0.000000e+00
31756     rs611917       1_67 1.000000e+00 1058.3005 3.079848e-03
71957   rs12997242       2_13 2.130296e-12  374.1321 2.319451e-15
800403  rs12162222      19_31 0.000000e+00 1153.4375 0.000000e+00
71931     rs478588       2_13 2.309486e-11  665.7481 4.474511e-14
800333  rs62119327      19_31 0.000000e+00 1096.5732 0.000000e+00
71932   rs56350433       2_13 5.185852e-13  349.7071 5.277701e-16
71937   rs56079819       2_13 5.178080e-13  348.9293 5.258072e-16
71941    rs2337383       2_13 5.274670e-13  341.8990 5.248237e-16
71942   rs56090741       2_13 5.268008e-13  341.3666 5.233446e-16
71946    rs7568899       2_13 5.443423e-13  332.4222 5.266020e-16
71947   rs62135036       2_13 5.456746e-13  332.1847 5.275136e-16
71953   rs11687710       2_13 5.409007e-13  331.3858 5.216410e-16
71958     rs532300       2_13 1.007194e-12  611.6368 1.792781e-15
71959     rs558130       2_13 1.007194e-12  611.6365 1.792780e-15
71960     rs533211       2_13 1.007194e-12  611.6365 1.792780e-15
71981     rs574461       2_13 1.034950e-12  611.2060 1.840887e-15
71983     rs494465       2_13 1.029066e-12  611.0355 1.829911e-15
71961     rs528113       2_13 1.001754e-12  611.3482 1.782256e-15
71966    rs1652418       2_13 1.000089e-12  611.0141 1.778321e-15
71968     rs563696       2_13 9.962031e-13  610.8926 1.771059e-15
71956     rs312979       2_13 9.752199e-13  610.8510 1.733637e-15
71970     rs479545       2_13 9.823253e-13  610.5373 1.745371e-15
               z
800420 -55.53789
792348  48.93517
792343  48.79563
792341  48.78069
792342  48.75193
792344  48.73799
792345  48.70516
792346  48.70123
792340  48.52431
800425  46.32582
800369  44.67223
800356  42.26680
792349  40.84249
792350  40.70262
792339  34.84073
800416  34.63979
800422  34.31857
800340  33.73539
800387  33.59965
71930  -33.08601
800393 -33.07569
71927  -33.06089
800334  33.04407
800404 -32.28660
800328  32.06858
800395 -31.55187
800372  31.38057
800396 -31.04506
31756   30.97527
71957  -30.81528
800403 -30.49671
71931  -30.48811
800333  30.41868
71932  -30.23229
71937  -30.19307
71941  -29.88780
71942  -29.86248
71946  -29.70268
71947  -29.69428
71953  -29.63286
71958  -29.56783
71959  -29.56783
71960  -29.56783
71981  -29.56585
71983  -29.56317
71961  -29.56210
71966  -29.55946
71968  -29.55712
71956  -29.55544
71970  -29.55270

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 32
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    print(plotEnrich(GO_enrichment[[db]]))
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                                                            Term
1                               alditol phosphate metabolic process (GO:0052646)
2 negative regulation of transforming growth factor beta production (GO:0071635)
  Overlap Adjusted.P.value     Genes
1     2/5       0.01270895 GPAM;ACP6
2    2/10       0.02845289 FN1;FURIN
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
TMED4 gene(s) from the input list not found in DisGeNET CURATEDEVI5 gene(s) from the input list not found in DisGeNET CURATEDMZF1 gene(s) from the input list not found in DisGeNET CURATEDUSP53 gene(s) from the input list not found in DisGeNET CURATEDACP6 gene(s) from the input list not found in DisGeNET CURATEDATP5J2 gene(s) from the input list not found in DisGeNET CURATEDCNIH4 gene(s) from the input list not found in DisGeNET CURATEDPELO gene(s) from the input list not found in DisGeNET CURATEDPARP9 gene(s) from the input list not found in DisGeNET CURATEDZNF575 gene(s) from the input list not found in DisGeNET CURATEDC10orf88 gene(s) from the input list not found in DisGeNET CURATEDNPC1L1 gene(s) from the input list not found in DisGeNET CURATEDLINC01184 gene(s) from the input list not found in DisGeNET CURATEDTUBG2 gene(s) from the input list not found in DisGeNET CURATEDPOP7 gene(s) from the input list not found in DisGeNET CURATEDAC007950.2 gene(s) from the input list not found in DisGeNET CURATEDFXYD7 gene(s) from the input list not found in DisGeNET CURATED
                           Description        FDR Ratio  BgRatio
21                           Carcinoma 0.02116266  3/15 164/9703
47                Diabetic Nephropathy 0.02116266  2/15  44/9703
53          Nodular glomerulosclerosis 0.02116266  2/15  41/9703
56                        Cardiomegaly 0.02116266  3/15  82/9703
68              Pulmonary Hypertension 0.02116266  2/15  40/9703
69          Hypertension, Renovascular 0.02116266  1/15   1/9703
86            Animal Mammary Neoplasms 0.02116266  3/15 142/9703
87     Mammary Neoplasms, Experimental 0.02116266  3/15 155/9703
117               Ureteral obstruction 0.02116266  2/15  24/9703
130 Premature ventricular contractions 0.02116266  1/15   1/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!

NULL

Sensitivity, specificity and precision for silver standard genes

library("readxl")

known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

unrelated_genes <- ctwas_gene_res$genename[!(ctwas_gene_res$genename %in% known_annotations)]

#number of genes in known annotations
print(length(known_annotations))
[1] 69
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 48
#assign ctwas, TWAS, and bystander genes
ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh]
novel_genes <- ctwas_genes[!(ctwas_genes %in% twas_genes)]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.616471
#number of ctwas genes
length(ctwas_genes)
[1] 32
#number of TWAS genes
length(twas_genes)
[1] 215
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
       genename region_tag susie_pip      mu2          PVE         z
7878       ACP6       1_73 0.9881237 22.14907 6.369233e-05  4.575774
3305        FN1      2_127 0.9418621 21.45337 5.880349e-05 -4.446065
11839     FAM3D       3_40 0.8027527 18.66547 4.360548e-05 -3.889457
13192 LINC01184       5_78 0.8057176 19.17555 4.496256e-05 -3.918269
8291       NOS3       7_93 0.8379598 19.38306 4.726783e-05  3.856590
1003      TPD52       8_57 0.9812117 21.94017 6.265027e-05 -4.557712
1542        SCD      10_64 0.8945838 19.60935 5.105103e-05 -4.541468
3734       GPAM      10_70 0.8925750 21.37803 5.553063e-05  4.133221
3645      CCND2       12_4 0.8874327 19.93184 5.147580e-05 -4.065830
2080       CTSH      15_37 0.8853807 18.41185 4.744034e-05  3.805849
5866      FURIN      15_42 0.8215001 20.23083 4.836617e-05 -4.391033
402       TUBG2      17_25 0.9570282 20.51179 5.712794e-05  4.434366
3681       KDSR      18_35 0.8103019 19.33886 4.560347e-05 -3.912562
12483     FXYD7      19_24 0.8819526 19.45446 4.993267e-05 -3.872239
2174      SARS2      19_26 0.8249021 21.80207 5.233841e-05  4.480159
      num_eqtl
7878         4
3305         1
11839        1
13192        2
8291         2
1003         2
1542         1
3734         1
3645         1
2080         4
5866         1
402          2
3681         3
12483        1
2174         1
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
     ctwas       TWAS 
0.01449275 0.18840580 
#specificity
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9975709 0.9841718 
#precision / PPV
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
     ctwas       TWAS 
0.03125000 0.06046512 
#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1))

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=2)

Sensitivity, specificity and precision for silver standard genes - bystanders only

This section first uses imputed silver standard genes to identify bystander genes within 1Mb. The bystander gene list is then subset to only genes with imputed expression in this analysis. Then, the ctwas and TWAS gene lists from this analysis are subset to only genes that are in the (subset) silver standard and bystander genes. These gene lists are then used to compute sensitivity, specificity and precision for ctwas and TWAS.

library(biomaRt)
library(GenomicRanges)
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':

    anyDuplicated, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter,
    Find, get, grep, grepl, intersect, is.unsorted, lapply, Map,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, Position, rank, rbind, Reduce, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min
Loading required package: S4Vectors

Attaching package: 'S4Vectors'
The following object is masked from 'package:base':

    expand.grid
Loading required package: IRanges
Loading required package: GenomeInfoDb
ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
G_list <- G_list[G_list$hgnc_symbol!="",]
G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
G_list$start <- G_list$start_position
G_list$end <- G_list$end_position
G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)

#remove genes without imputed expression from gene lists
known_annotations <- known_annotations[known_annotations %in% ctwas_gene_res$genename]

known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
half_window <- 1000000
known_annotations_positions$start <- known_annotations_positions$start_position - half_window
known_annotations_positions$end <- known_annotations_positions$end_position + half_window
known_annotations_positions$start[known_annotations_positions$start<1] <- 1
known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)

bystanders <- findOverlaps(known_annotations_granges,G_list_granges)
bystanders <- unique(subjectHits(bystanders))
bystanders <- G_list$hgnc_symbol[bystanders]
bystanders <- unique(bystanders[!(bystanders %in% known_annotations)])
unrelated_genes <- bystanders

#save gene lists
save(known_annotations, file=paste0(results_dir, "/known_annotations.Rd"))
save(unrelated_genes, file=paste0(results_dir, "/bystanders.Rd"))


load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))


#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 48
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 710
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.616471
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 2
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 51
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
     ctwas       TWAS 
0.02083333 0.27083333 
#specificity / (1 - False Positive Rate)
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9985915 0.9464789 
#precision / PPV / (1 - False Discovery Rate)
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
   ctwas     TWAS 
0.500000 0.254902 
#store sensitivity and specificity calculations for plots
sensitivity_plot <- sensitivity
specificity_plot <- specificity

#precision / PPV by PIP bin
pip_range <- c(0.2, 0.4, 0.6, 0.8, 1)
precision_range <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes in PIP bin
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower & ctwas_gene_res_subset$susie_pip<pip_upper]
  
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste(c(0, pip_range[-length(pip_range)]), pip_range,sep=" - ")

barplot(precision_range, ylim=c(0,1), main="Precision by PIP Range", xlab="PIP Range", ylab="Precision")
abline(h=0.2, lty=2)
abline(h=0.4, lty=2)
abline(h=0.6, lty=2)
abline(h=0.8, lty=2)
barplot(precision_range, add=T, col="darkgrey")

#precision / PPV by PIP threshold
#pip_range <- c(0.2, 0.4, 0.6, 0.8, 1)
pip_range <- c(0.5, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
number_detected <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes using PIP threshold
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower]
  
  number_detected[i] <- length(ctwas_genes)
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste0(">= ", c(0, pip_range[-length(pip_range)]))

precision_range <- precision_range*100

precision_range <- c(precision_range, precision["TWAS"]*100)
names(precision_range)[4] <- "TWAS Bonferroni"
number_detected <- c(number_detected, length(twas_genes))

barplot(precision_range, ylim=c(0,100), main="Precision for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

#false discovery rate by PIP threshold

barplot(100-precision_range, ylim=c(0,100), main="False Discovery Rate for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% Bystanders in Detected Genes")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(100-precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

PIP Manhattan Plot

library(tibble)
library(tidyverse)
── Attaching packages ────────────────────────────────── tidyverse 1.3.0 ──
✔ tidyr   1.1.0     ✔ dplyr   1.0.7
✔ readr   1.4.0     ✔ stringr 1.4.0
✔ purrr   0.3.4     ✔ forcats 0.4.0
── Conflicts ───────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::collapse()        masks IRanges::collapse()
✖ dplyr::combine()         masks BiocGenerics::combine()
✖ dplyr::desc()            masks IRanges::desc()
✖ tidyr::expand()          masks S4Vectors::expand()
✖ tidyr::extract()         masks disgenet2r::extract()
✖ dplyr::filter()          masks stats::filter()
✖ dplyr::first()           masks S4Vectors::first()
✖ dplyr::lag()             masks stats::lag()
✖ BiocGenerics::Position() masks ggplot2::Position(), base::Position()
✖ purrr::reduce()          masks GenomicRanges::reduce(), IRanges::reduce()
✖ dplyr::rename()          masks S4Vectors::rename()
✖ dplyr::select()          masks biomaRt::select()
✖ dplyr::slice()           masks IRanges::slice()
full.gene.pip.summary <- data.frame(gene_name = ctwas_gene_res$genename, 
                                    gene_pip = ctwas_gene_res$susie_pip, 
                                    gene_id = ctwas_gene_res$id, 
                                    chr = as.integer(ctwas_gene_res$chrom),
                                    start = ctwas_gene_res$pos / 1e3,
                                    is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full.gene.pip.summary$is_highlight <- full.gene.pip.summary$gene_pip > 0.80

don <- full.gene.pip.summary %>% 
  
  # Compute chromosome size
  group_by(chr) %>% 
  summarise(chr_len=max(start)) %>% 
  
  # Calculate cumulative position of each chromosome
  mutate(tot=cumsum(chr_len)-chr_len) %>%
  dplyr::select(-chr_len) %>%
  
  # Add this info to the initial dataset
  left_join(full.gene.pip.summary, ., by=c("chr"="chr")) %>%
  
  # Add a cumulative position of each SNP
  arrange(chr, start) %>%
  mutate( BPcum=start+tot)

axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )

x_axis_labels <- axisdf$chr
x_axis_labels[seq(1,21,2)] <- ""

ggplot(don, aes(x=BPcum, y=gene_pip)) +
  
  # Show all points
  ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=2) +
  scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
  
  # custom X axis:
  # scale_x_continuous(label = axisdf$chr, 
  #                    breaks= axisdf$center,
  #                    guide = guide_axis(n.dodge = 2)) +
  scale_x_continuous(label = x_axis_labels,
                     breaks = axisdf$center) +
  
  scale_y_continuous(expand = c(0, 0), limits = c(0,1.25), breaks=(1:5)*0.2, minor_breaks=(1:10)*0.1) + # remove space between plot area and x axis
  
  # Add highlighted points
  ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="orange", size=2) +
  
  # Add label using ggrepel to avoid overlapping
  ggrepel::geom_label_repel(data=subset(don, is_highlight==T), 
                            aes(label=gene_name), 
                            size=4,
                            min.segment.length = 0, 
                            label.size = NA,
                            fill = alpha(c("white"),0)) +
  
  # Custom the theme:
  theme_bw() +
  theme( 
    text = element_text(size = 14),
    legend.position="none",
    panel.border = element_blank(),
    panel.grid.major.x = element_blank(),
    panel.grid.minor.x = element_blank()
  ) +
  xlab("Chromosome") + 
  ylab("cTWAS PIP")

Locus Plots - 1_67

library(ctwas)

Attaching package: 'ctwas'
The following object is masked _by_ '.GlobalEnv':

    z_snp
locus_plot <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS"){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
  a$ifcausal <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}

locus_plot("1_67", label="TWAS")

Locus Plots - 5_45 - Thin

locus_plot("5_45", label="TWAS")

Locus Plots - 5_45 - Re-run

#locus_plot("5_45", label="TWAS", rerun_ctwas = T)

Locus Plots - 8_12

locus_plot4 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS"){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
  a$ifcausal <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  #legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  #legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}

#locus_plot4("8_12", label="cTWAS")
locus_plot5 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", focus){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[which(a$genename==focus)]
  a$ifcausal <- as.numeric(a$id==focus)

  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 0.7 ,c("Focal Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}

locus_plot5("19_33", focus="PRKD2")

Locus Plots - Exploring known annotations

This section produces locus plots for all silver standard genes with known annotations. The highlighted gene at each region is the silver standard gene. Note that if no genes in a region have PIP>0.8, then only the result using thinned SNPs is displayed.

locus_plot3 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", focus){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[which(a$genename==focus)]
  a$ifcausal <- as.numeric(a$id==focus)

  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}
load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))

for (i in 1:length(known_annotations)){
  focus <- known_annotations[i]
  region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]

  locus_plot3(region_tag, focus=focus)
  mtext(text=region_tag)

  print(focus)
  print(region_tag)
  print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
}

[1] "ITIH4"
[1] "3_36"
      genename region_tag  susie_pip       mu2          PVE          z
190      NISCH       3_36 0.03078967  4.881423 4.373929e-07 -0.1143171
191      STAB1       3_36 0.38131140 17.731609 1.967652e-05  3.6621156
271       CHDH       3_36 0.03913369  7.198463 8.198056e-07  1.0082090
274     GLT8D1       3_36 0.04176897  7.458057 9.065668e-07  1.0942021
432      PARP3       3_36 0.03937152  7.067687 8.098038e-07  0.9533837
567      ITIH4       3_36 0.03220946  5.275288 4.944814e-07  1.0884470
568      ITIH1       3_36 0.21275162 22.172092 1.372777e-05 -3.2168754
573     IL17RB       3_36 0.03206673  5.210367 4.862317e-07  0.3500674
3157   SELENOK       3_36 0.03637105  6.509894 6.890490e-07  0.8957058
3158     ACTR8       3_36 0.03248376  5.307413 5.017293e-07  0.4283727
3223      RRP9       3_36 0.03937152  7.067687 8.098038e-07 -0.9533837
3232     DNAH1       3_36 0.02977494  4.693951 4.067333e-07 -0.2468006
3235     TNNC1       3_36 0.23830009 16.004750 1.109924e-05 -3.4428582
3239      NEK4       3_36 0.13563711 18.074034 7.134342e-06 -2.9773988
7777     RPL29       3_36 0.03231116  5.322646 5.004959e-07 -0.4392119
8103       TKT       3_36 0.04149599  7.336503 8.859629e-07 -0.6487825
8104     PRKCD       3_36 0.03372818  5.776812 5.670240e-07 -0.6434864
8105      RFT1       3_36 0.04983891  8.990987 1.304056e-06  0.8853186
8106    SFMBT1       3_36 0.05637825 10.072860 1.652664e-06 -0.9994935
8107      GNL3       3_36 0.07557941 12.753739 2.805184e-06 -2.5465869
8108     PBRM1       3_36 0.04119380  6.692885 8.023530e-07 -0.8048656
8150     POC1A       3_36 0.03064018  4.950297 4.414107e-07 -0.5058147
8151     PPM1M       3_36 0.04909498  8.744020 1.249305e-06 -1.4513993
8881    GLYCTK       3_36 0.03206923  5.135283 4.792622e-07 -0.5091229
8885    NT5DC2       3_36 0.03423998  6.605134 6.581661e-07  0.6567418
8886     SMIM4       3_36 0.03056677  4.863176 4.326033e-07 -0.3777767
10396    GPR62       3_36 0.03234785  5.290531 4.980409e-07 -0.4602688
12296  TMEM110       3_36 0.02995753  4.670413 4.071755e-07  0.3872171
13015     TLR9       3_36 0.11763360 14.715004 5.037465e-06 -1.5730124
13145     ACY1       3_36 0.03185565  5.228488 4.847110e-07 -0.5115172
13232  ABHD14A       3_36 0.04702784  9.192806 1.258124e-06  1.3240881
14229    DCP1A       3_36 0.03738241  6.666728 7.252710e-07  0.7749500
      num_eqtl
190          1
191          1
271          1
274          1
432          1
567          2
568          1
573          2
3157         1
3158         2
3223         1
3232         1
3235         2
3239         1
7777         1
8103         1
8104         1
8105         1
8106         1
8107         1
8108         1
8150         1
8151         2
8881         2
8885         2
8886         1
10396        1
12296        2
13015        1
13145        1
13232        1
14229        1

[1] "GHR"
[1] "5_28"
           genename region_tag  susie_pip       mu2          PVE
3076            GHR       5_28 0.04637573  6.886801 9.294555e-07
3077         HMGCS1       5_28 0.07352349 11.172363 2.390515e-06
3080            NNT       5_28 0.04783145  7.172752 9.984347e-07
6898          FBXO4       5_28 0.04744249  7.097210 9.798857e-07
6899        TMEM267       5_28 0.03702731  4.808710 5.181686e-07
6900          CCL28       5_28 0.03809372  5.070344 5.620967e-07
9447          PAIP1       5_28 0.04016977  5.559686 6.499350e-07
9452         ZNF131       5_28 0.04088829  5.723331 6.810329e-07
10031         NIM1K       5_28 0.06032355  9.325966 1.637197e-06
11904       CCDC152       5_28 0.04818282  7.240529 1.015273e-06
12198       C5orf51       5_28 0.04290202  6.167086 7.699775e-07
13307       SELENOP       5_28 0.04089217  5.724207 6.812017e-07
14165 CTD-2035E11.4       5_28 0.05716960  8.826580 1.468513e-06
               z num_eqtl
3076  -0.9403419        2
3077  -1.5237127        1
3080  -0.9709429        2
6898  -1.2044106        1
6899   0.2515965        1
6900   0.4194805        1
9447   0.5925832        1
9452  -0.8998649        1
10031  1.4417117        1
11904 -1.3377996        2
12198  0.4012229        1
13307  0.8925146        1
14165 -1.0977611        1

[1] "EPHX2"
[1] "8_27"
      genename region_tag  susie_pip       mu2          PVE           z
268      STMN4       8_27 0.03643381  4.663586 4.944757e-07  0.18785714
2106    TRIM35       8_27 0.07631826 11.525446 2.559803e-06  1.38523367
3825       CLU       8_27 0.03803226  5.059225 5.599593e-07  0.40112191
3829    ADRA1A       8_27 0.03593858  4.537536 4.745711e-07 -0.06231638
3832     EPHX2       8_27 0.03757033  4.946598 5.408438e-07 -0.28231248
4976      ELP3       8_27 0.12821406 16.438729 6.133724e-06  2.14839507
6548    CCDC25       8_27 0.03864665  5.206956 5.856203e-07 -0.43534994
8860       PBK       8_27 0.03968918  5.452426 6.297703e-07  0.48335074
8861    SCARA5       8_27 0.03896406  5.282375 5.989820e-07  0.38275862
9319     ESCO2       8_27 0.03639814  4.654562 4.930356e-07 -0.18809073
11361    NUGGC       8_27 0.20839300 21.183850 1.284720e-05 -2.49551570
      num_eqtl
268          1
2106         2
3825         2
3829         1
3832         2
4976         2
6548         1
8860         1
8861         1
9319         1
11361        1

[1] "ABCA1"
[1] "9_52"
      genename region_tag  susie_pip       mu2          PVE          z
5358 NIPSNAP3A       9_52 0.04605158  8.047124 1.078464e-06  1.0390715
5364      SMC2       9_52 0.03454539  5.395051 5.423829e-07 -0.5519492
8325 NIPSNAP3B       9_52 0.06039336 10.561843 1.856305e-06  1.2257096
8326     ABCA1       9_52 0.30873469 26.431397 2.374793e-05 -3.0910125
     num_eqtl
5358        2
5364        2
8325        3
8326        1

[1] "LPL"
[1] "8_21"
            genename region_tag  susie_pip       mu2          PVE
2161           ASAH1       8_21 0.02487708  4.609640 3.337235e-07
6547      CSGALNACT1       8_21 0.24958462 24.106797 1.750966e-05
7232            NAT2       8_21 0.03635848 25.328368 2.679990e-06
9326            NAT1       8_21 0.03264974  6.625381 6.295219e-07
13374 RP11-1080G15.1       8_21 0.02809254  5.764858 4.713026e-07
2144          INTS10       8_21 0.03392676  7.018632 6.929712e-07
9840             LPL       8_21 0.07252143 14.647971 3.091463e-06
               z num_eqtl
2161  -0.2610289        1
6547  -2.6909853        2
7232  -4.7711082        1
9326   0.3941094        1
13374 -0.6440697        1
2144  -0.5466864        1
9840  -1.8179375        1

[1] "DHCR7"
[1] "11_40"
          genename region_tag  susie_pip       mu2          PVE
2787         FOLR1      11_40 0.03975218  4.542209 5.254706e-07
2789         FOLR3      11_40 0.06139167  8.568171 1.530798e-06
5474        IL18BP      11_40 0.03977323  4.547092 5.263139e-07
5475         NUMA1      11_40 0.05124637  6.890387 1.027607e-06
5482        RNF121      11_40 0.16722341 18.085384 8.801265e-06
7437       FAM86C1      11_40 0.04345734  5.364843 6.784853e-07
7766          CLPB      11_40 0.05923111  8.234797 1.419460e-06
8374         FOLR2      11_40 0.06869721  9.616499 1.922544e-06
8375        INPPL1      11_40 0.06783789  9.498964 1.875292e-06
9532       NADSYN1      11_40 0.04028011  4.663916 5.467158e-07
9533         DHCR7      11_40 0.04433609  5.549826 7.160727e-07
10750       LRTOMT      11_40 0.04593677  5.877717 7.857592e-07
12074    KRTAP5-10      11_40 0.04909424  6.492897 9.276612e-07
12386      ZNF705E      11_40 0.04176754  4.998575 6.075827e-07
12645    LINC01537      11_40 0.05405387  7.385054 1.161718e-06
13156     KRTAP5-7      11_40 0.16191175 17.770090 8.373139e-06
13416 RP11-849H4.2      11_40 0.04115642  4.862519 5.823972e-07
13446     KRTAP5-9      11_40 0.04256256  5.172676 6.407127e-07
                z num_eqtl
2787   0.02189389        1
2789  -1.02010138        2
5474  -0.10595077        2
5475   0.84278892        2
5482   2.10926722        2
7437  -0.55734863        1
7766   1.03637029        1
8374  -1.19777355        2
8375  -1.31200488        1
9532   0.26353734        2
9533  -0.65130261        1
10750 -0.65197454        1
12074  0.91565982        1
12386  0.30405380        1
12645 -0.88109681        1
13156  2.13324635        1
13416 -0.32070634        1
13446  0.61486760        3

[1] "LIPA"
[1] "10_57"
       genename region_tag  susie_pip       mu2          PVE          z
2550       LIPA      10_57 0.04031256  7.675012 9.004089e-07 -0.9174128
3731      IFIT3      10_57 0.04023636  7.657545 8.966615e-07  0.8109877
3733      IFIT2      10_57 0.03080308  5.197860 4.659497e-07  0.4143150
5588     KIF20B      10_57 0.02890865  4.614789 3.882397e-07  0.0836273
6982      IFIT5      10_57 0.04324667  8.323610 1.047574e-06  0.9830768
6983   SLC16A12      10_57 0.08706291 14.841367 3.760342e-06 -1.7113595
6984      PANK1      10_57 0.06542503 12.164611 2.316127e-06 -1.6398223
10952     IFIT1      10_57 0.03772732  7.063845 7.755636e-07  0.8329755
11983    IFIT1B      10_57 0.03311754  5.863954 5.651567e-07 -0.6164140
12792 LINC00865      10_57 0.05223558 10.071314 1.530992e-06  1.3703904
14572 LINC01374      10_57 0.04182393  8.014704 9.755122e-07 -1.0512219
      num_eqtl
2550         1
3731         1
3733         1
5588         2
6982         3
6983         3
6984         1
10952        1
11983        1
12792        2
14572        1

[1] "APOB"
[1] "2_13"
     genename region_tag    susie_pip      mu2          PVE        z
1205     APOB       2_13 4.269285e-11 67.70494 8.411933e-15 5.997104
     num_eqtl
1205        2

[1] "APOE"
[1] "19_31"
      genename region_tag susie_pip         mu2 PVE           z num_eqtl
122      MARK4      19_31         0   21.181957   0  -2.2463768        1
227      ERCC1      19_31         0    7.409485   0  -1.6350316        2
633     ZNF112      19_31         0   47.819226   0   4.8629559        1
905        PVR      19_31         0   31.813106   0  -3.0943045        1
2176    CLPTM1      19_31         0   50.178070   0   2.5751726        1
2178   PPP1R37      19_31         0   42.423234   0  -5.9455792        1
2182  PPP1R13L      19_31         0   22.778963   0  -3.0806361        1
2184     ERCC2      19_31         0   13.966069   0   1.5340117        1
2189      KLC3      19_31         0   13.524015   0  -3.6648287        2
3573    CD3EAP      19_31         0   11.426032   0   2.5646694        1
4228      FOSB      19_31         0   16.099633   0  -2.3658041        1
4229      OPA3      19_31         0    6.808430   0   1.5059074        2
4231      RTN2      19_31         0    6.949994   0  -2.0700710        1
4233      VASP      19_31         0   33.645255   0  -2.7026884        1
4573   NECTIN2      19_31         0 1648.609427   0 -35.7740463        1
4574      APOE      19_31         0  303.200452   0   0.6519443        1
4575    TOMM40      19_31         0 1005.711219   0 -14.0286334        2
4576     APOC1      19_31         0  474.076449   0  -9.1150442        1
6037    GEMIN7      19_31         0  205.847243   0  13.2439035        2
7553    ZNF233      19_31         0  131.643247   0 -10.0229697        2
7554    ZNF235      19_31         0   35.913626   0  -6.2627967        2
8710    ZNF180      19_31         0   43.730327   0   4.0279244        1
9234    ZNF296      19_31         0   94.996588   0   5.4593536        1
11052 CEACAM19      19_31         0   64.753213   0  11.7978210        2
11128     BCAM      19_31         0   96.429711   0   4.6421318        1
11348  BLOC1S3      19_31         0   11.973214   0   2.7250151        2
12327    PPM1N      19_31         0   24.361748   0  -2.6089113        1
12884    APOC2      19_31         0   18.135579   0  -2.2896080        1
13922   ZNF285      19_31         0   10.133291   0  -1.3318721        3
14528   ZNF229      19_31         0  125.384012   0  14.4998133        1

[1] "NPC1L1"
[1] "7_32"
        genename region_tag  susie_pip        mu2          PVE          z
18         HECW1       7_32 0.02781865   5.801245 4.696536e-07 -0.3769605
266       NPC1L1       7_32 0.87077857 100.506326 2.546956e-04 11.6310213
590       CAMK2B       7_32 0.03205752   6.435120 6.003533e-07 -1.3113038
636       MRPS24       7_32 0.02688409   5.636475 4.409843e-07  0.3827818
1072      UBE2D4       7_32 0.02674845   5.737501 4.466237e-07  0.6290952
2371        OGDH       7_32 0.02806812  11.531669 9.419456e-07 -2.5518108
2452        COA1       7_32 0.06263166  12.220524 2.227430e-06 -1.0972085
2453       BLVRA       7_32 0.02525596   5.282089 3.882306e-07  0.6112755
2458       AEBP1       7_32 0.02852512   6.670093 5.537065e-07 -0.9567966
2461         GCK       7_32 0.03992584   9.537524 1.108179e-06  1.2747958
2463        YKT6       7_32 0.02913308   7.784609 6.599994e-07  1.6794862
3955        POLM       7_32 0.02600385   5.343151 4.043481e-07 -0.4204156
5303       DDX56       7_32 0.04246638   9.385524 1.159909e-06 -0.7865840
5305        DBNL       7_32 0.02968824   6.061190 5.236760e-07  0.1683551
7444       TMED4       7_32 0.84231695  38.146713 9.350890e-05  7.6088259
8238      STK17A       7_32 0.02906015   6.122062 5.177450e-07  0.4764271
12678 AC004951.6       7_32 0.03572632   7.307602 7.597723e-07  0.2209151
12901  LINC00957       7_32 0.02576194   5.348360 4.009770e-07 -0.4692011
      num_eqtl
18           1
266          1
590          1
636          1
1072         1
2371         2
2452         2
2453         2
2458         2
2461         2
2463         1
3955         2
5303         1
5305         2
7444         2
8238         2
12678        1
12901        1

[1] "PCSK9"
[1] "1_34"
      genename region_tag    susie_pip        mu2          PVE          z
106      TTC22       1_34 0.000000e+00   9.290286 0.000000e+00 -0.1753778
596      YIPF1       1_34 0.000000e+00   5.881413 0.000000e+00 -0.5588436
597       NDC1       1_34 0.000000e+00  33.452327 0.000000e+00 -2.4643141
1144    HSPB11       1_34 0.000000e+00   5.853377 0.000000e+00  0.2303441
3409   TCEANC2       1_34 0.000000e+00   4.855985 0.000000e+00  0.1189682
6094    TMEM61       1_34 2.220446e-16  81.742852 5.282145e-20 -6.5190877
7340     SSBP3       1_34 0.000000e+00   4.644200 0.000000e+00 -0.6008954
7791    ACOT11       1_34 0.000000e+00   9.373849 0.000000e+00 -0.9430103
7792   FAM151A       1_34 0.000000e+00  19.564553 0.000000e+00  2.0257851
7793     PARS2       1_34 0.000000e+00   6.796833 0.000000e+00 -0.6202883
7794     USP24       1_34 6.195444e-11 114.940287 2.072359e-14  2.6580171
9013     PCSK9       1_34 4.996004e-15 354.007553 5.147017e-18 13.4587025
10774    MROH7       1_34 1.554312e-15  57.653621 2.607865e-19  3.8593115
12240     DIO1       1_34 0.000000e+00  30.330326 0.000000e+00 -2.2818792
12445   CYB5RL       1_34 0.000000e+00  13.194047 0.000000e+00  1.2190244
13135     TTC4       1_34 0.000000e+00   4.721135 0.000000e+00  0.4475698
      num_eqtl
106          1
596          2
597          1
1144         1
3409         2
6094         1
7340         1
7791         1
7792         1
7793         2
7794         1
9013         3
10774        2
12240        2
12445        3
13135        1

[1] "SOAT1"
[1] "1_89"
           genename region_tag  susie_pip       mu2          PVE
575           SOAT1       1_89 0.06102989  8.212966 1.458690e-06
3408         FAM20B       1_89 0.04661231  5.712560 7.749108e-07
3866           LHX4       1_89 0.05247722  6.810253 1.040050e-06
5233         CEP350       1_89 0.07793805 10.497274 2.380929e-06
6141           ABL2       1_89 0.04240151  4.837480 5.969263e-07
6145        FAM163A       1_89 0.04122992  4.578801 5.493949e-07
7005            MR1       1_89 0.04346623  5.066548 6.408914e-07
7871          TDRD5       1_89 0.04363641  5.102648 6.479850e-07
7872           IER5       1_89 0.07567044 10.220549 2.250717e-06
9111       TOR1AIP2       1_89 0.05166999  6.666511 1.002438e-06
11015         TOR3A       1_89 0.04280450  4.924837 6.134816e-07
12728         ACBD6       1_89 0.21232028 20.145153 1.244751e-05
13674 RP11-533E19.5       1_89 0.07793805 10.497274 2.380929e-06
               z num_eqtl
575    1.0093956        2
3408   0.5840899        1
3866   0.7900365        3
5233   1.4557823        1
6141  -0.3650471        2
6145   0.1072614        2
7005  -0.4010016        1
7871  -0.3743691        2
7872   1.2579383        1
9111   0.7882446        1
11015  0.2842174        2
12728 -2.4944034        1
13674  1.4557823        1

[1] "MYLIP"
[1] "6_13"
          genename region_tag  susie_pip       mu2          PVE          z
143          MYLIP       6_13 0.05835638 10.968363 1.862732e-06  1.1219050
145         JARID2       6_13 0.03076400  5.440489 4.870809e-07 -0.6250412
462         DTNBP1       6_13 0.37017726 26.951056 2.903393e-05  3.0116911
2994         RBM24       6_13 0.04274513  8.173616 1.016766e-06  0.9044930
4152         ATXN1       6_13 0.06452223 12.052057 2.263033e-06 -1.4308658
5431          GMPR       6_13 0.05867866  9.963612 1.701443e-06  0.2015303
14103 RP11-560J1.2       6_13 0.04059601  7.552062 8.922144e-07  0.8390515
14156 RP1-151F17.2       6_13 0.05675147 10.834632 1.789417e-06 -1.2947856
      num_eqtl
143          1
145          1
462          3
2994         1
4152         2
5431         1
14103        2
14156        3

[1] "OSBPL5"
[1] "11_3"
        genename region_tag  susie_pip       mu2          PVE           z
81        ZNF195       11_3 0.02172229  6.205832 3.923069e-07  0.62769811
299       OSBPL5       11_3 0.02380442  7.035523 4.873874e-07 -0.76274979
658      TSPAN32       11_3 0.04340867 12.705350 1.605031e-06  1.47312051
1071      TOLLIP       11_3 0.02778176  8.429244 6.815045e-07 -0.97661273
2814        CARS       11_3 0.01887035  4.952995 2.719995e-07  0.43596830
2815    SLC22A18       11_3 0.12759108 22.468275 8.342771e-06 -2.34987486
2816        CD81       11_3 0.01885128  4.914636 2.696203e-07  0.20617703
2818    C11orf21       11_3 0.02404786  7.071441 4.948854e-07 -0.69609976
3576        CTSD       11_3 0.03140041  9.548858 8.725837e-07  1.09935339
4549      CDKN1C       11_3 0.03181921  9.749616 9.028119e-07 -1.13636208
4623        LSP1       11_3 0.05197020 14.479178 2.189871e-06 -1.89370692
4624       TNNT3       11_3 0.07007280 17.473738 3.563326e-06  2.14046358
8700        ART5       11_3 0.02656282  8.061675 6.231889e-07  0.94563803
9740       BRSK2       11_3 0.01800633  4.557829 2.388380e-07 -0.11596505
10321         TH       11_3 0.01882728  4.872775 2.669834e-07 -0.05052331
10455     PHLDA2       11_3 0.34357189 31.415580 3.141109e-05 -3.38048160
10520       MOB2       11_3 0.09410867 19.498553 5.340136e-06  2.26264017
10700      ASCL2       11_3 0.02878914  8.908793 7.463936e-07  1.10077476
10800      DUSP8       11_3 0.06775535 16.573967 3.268063e-06 -2.14473420
12209   KRTAP5-1       11_3 0.04899992 13.591768 1.938169e-06  1.85100113
12719  LINC01150       11_3 0.09508990 19.353209 5.355594e-06 -1.99663571
13154    IFITM10       11_3 0.03081421  9.644677 8.648864e-07 -1.25156464
13435 SLC22A18AS       11_3 0.01843434  4.754973 2.550915e-07 -0.25675540
14632      PRR33       11_3 0.02723999  9.561388 7.579633e-07 -1.74750284
2824       NUP98       11_3 0.02401654  7.152473 4.999043e-07  0.86950651
4548     CHRNA10       11_3 0.01881363  4.942951 2.706320e-07 -0.32964221
4774      TRIM21       11_3 0.01822990  4.656413 2.470336e-07 -0.17964264
6673       PGAP2       11_3 0.02401654  7.152473 4.999043e-07  0.86950651
8702        RRM1       11_3 0.02907398  8.899029 7.529522e-07  1.09666210
8703      OR51E2       11_3 0.13545115 23.020609 9.074440e-06  2.38819625
8704      TRIM68       11_3 0.02115946  6.020173 3.707097e-07  0.59859506
10006       RHOG       11_3 0.01949822  5.272998 2.992078e-07  0.41748273
10378     OR51E1       11_3 0.05180652 14.203185 2.141364e-06 -1.60358931
      num_eqtl
81           2
299          1
658          1
1071         1
2814         2
2815         5
2816         1
2818         2
3576         1
4549         1
4623         1
4624         2
8700         3
9740         2
10321        1
10455        3
10520        2
10700        2
10800        1
12209        1
12719        1
13154        2
13435        1
14632        1
2824         1
4548         1
4774         2
6673         1
8702         3
8703         1
8704         1
10006        1
10378        2

[1] "SCARB1"
[1] "12_76"
     genename region_tag  susie_pip      mu2          PVE          z
907    SCARB1      12_76 0.03209546 5.803494 5.420675e-07 -0.2308064
1138     AACS      12_76 0.02745900 4.627128 3.697571e-07  0.1677513
5735 TMEM132B      12_76 0.02842419 4.917243 4.067523e-07 -0.2384026
6809    DHX37      12_76 0.02784678 5.018175 4.066690e-07  0.5898098
6810      UBC      12_76 0.04156297 8.249029 9.977683e-07  0.9059691
     num_eqtl
907         2
1138        1
5735        1
6809        1
6810        1

[1] "ABCB11"
[1] "2_102"
     genename region_tag  susie_pip       mu2          PVE           z
920    ABCB11      2_102 0.04881810 16.883731 2.398665e-06 -3.29039301
6930    SPC25      2_102 0.03471167  5.097828 5.149689e-07  0.06087347
6931    G6PC2      2_102 0.03918795  5.985848 6.826506e-07  0.13649188
7922  NOSTRIN      2_102 0.12718614 16.697971 6.180503e-06 -1.84344148
7925    XIRP2      2_102 0.14515983 18.481837 7.807498e-06  2.15634557
9457    CERS6      2_102 0.04539467  7.440774 9.829770e-07  0.64830473
     num_eqtl
920         1
6930        2
6931        2
7922        3
7925        1
9457        1

[1] "CETP"
[1] "16_30"
            genename region_tag  susie_pip        mu2          PVE
65           CIAPIN1      16_30 0.09922573  16.140439 4.660795e-06
509          HERPUD1      16_30 0.03063699  15.012321 1.338487e-06
1279            CETP      16_30 0.05943840 154.137583 2.666220e-05
1282           GNAO1      16_30 0.05474511   9.648534 1.537188e-06
1283          OGFOD1      16_30 0.08482868  13.663370 3.373035e-06
1973           NUP93      16_30 0.03389513   7.189412 7.091710e-07
1978            PLLP      16_30 0.04701067   9.012393 1.232982e-06
1980           CCL22      16_30 0.06277198  12.196698 2.228068e-06
1982           CCL17      16_30 0.04600774   7.987632 1.069472e-06
1985          POLR2C      16_30 0.03705200   6.247704 6.736781e-07
4167            BBS2      16_30 0.07635818  12.164451 2.703139e-06
4168            MT1G      16_30 0.14023188  19.459716 7.941519e-06
4169            MT2A      16_30 0.24484833  30.619487 2.181802e-05
4172            DOK4      16_30 0.03696066   6.776722 7.289197e-07
5217        CCDC102A      16_30 0.03349517   5.741979 5.597113e-07
5890           CPNE2      16_30 0.04209355   7.052151 8.638880e-07
5891           NLRC5      16_30 0.03327940   5.302069 5.135009e-07
7520            AMFR      16_30 0.11866301  20.567751 7.102684e-06
7523          RSPRY1      16_30 0.03943038   8.605903 9.875242e-07
8653          NUDT21      16_30 0.03507034   5.933260 6.055551e-07
9517         FAM192A      16_30 0.05319274  10.172081 1.574644e-06
11123           MT1X      16_30 0.03004306   4.703990 4.112737e-07
12162         ADGRG1      16_30 0.04666851   8.607849 1.169065e-06
12166           MT1H      16_30 0.03215687   5.107977 4.780167e-07
12167           MT1A      16_30 0.08160174  15.578063 3.699416e-06
12169           MT1M      16_30 0.03030993   6.059852 5.345241e-07
13200   RP11-461O7.1      16_30 0.03142816   4.977037 4.552083e-07
13709 RP11-249C24.10      16_30 0.03024031   4.917166 4.327343e-07
                z num_eqtl
65    -2.01566091        2
509    3.41395172        2
1279  13.37918969        1
1282   1.22086252        1
1283   1.52977829        2
1973  -1.50724713        1
1978  -1.32251235        1
1980   1.77535072        1
1982   0.74318880        1
1985  -0.55079469        1
4167  -1.14371909        2
4168  -2.39948454        1
4169   4.18897030        1
4172  -0.99412325        1
5217   0.70399476        2
5890   0.17965015        2
5891   0.01238369        2
7520   3.00562598        1
7523   1.63931756        2
8653  -0.68237249        2
9517   1.39362846        2
11123 -0.40997217        1
12162 -1.00646342        1
12166  0.07381601        1
12167  2.49797425        1
12169  1.32616620        1
13200 -0.33504951        3
13709  0.67428781        1

[1] "APOH"
[1] "17_39"
            genename region_tag    susie_pip       mu2          PVE
1435            APOH      17_39 0.0050262325 23.798293 3.481037e-07
7102           PRKCA      17_39 0.0006180851  5.807792 1.044671e-08
7103          CEP112      17_39 0.0008831047  8.704009 2.236927e-08
836            WIPI1      17_39 0.0005764356  6.078915 1.019758e-08
977           CACNG4      17_39 0.0005517705  5.003426 8.034266e-09
2678         PRKAR1A      17_39 0.0045070039 21.583225 2.830900e-07
2680          FAM20A      17_39 0.0028406145 20.079995 1.659955e-07
4672           NOL11      17_39 0.0008673373  8.681743 2.191368e-08
5935            ARSG      17_39 0.0014552540 12.688817 5.373784e-08
5936           ABCA8      17_39 0.0017649595 28.383000 1.457852e-07
7105           ABCA9      17_39 0.0005295935 15.338567 2.364002e-08
7106           ABCA6      17_39 0.0005266745  8.386623 1.285434e-08
7107          ABCA10      17_39 0.0005550710 23.200002 3.747631e-08
7108           ABCA5      17_39 0.0006844813 15.178302 3.023466e-08
9363            BPTF      17_39 0.0007310785  5.183708 1.102871e-08
10548          KPNA2      17_39 0.1397716491 21.747100 8.845874e-06
11065       C17orf58      17_39 0.0006187252 10.488692 1.888597e-08
11505           AMZ2      17_39 0.0005452568  4.645326 7.371191e-09
11577         PSMD12      17_39 0.0010089192 10.554701 3.099007e-08
11776           HELZ      17_39 0.0672606883 41.848455 8.191455e-06
13833     AC145343.2      17_39 0.0027352555  9.652425 7.683421e-08
13895   RP1-193H18.2      17_39 0.0007087302  6.834048 1.409546e-08
13939  RP11-147L13.8      17_39 0.0014059132  7.986356 3.267589e-08
14493 RP11-147L13.13      17_39 0.0039316765 10.995623 1.258108e-07
14547 RP11-147L13.11      17_39 0.0009064142  6.759620 1.783074e-08
14549 RP11-147L13.14      17_39 0.0074289240 16.261207 3.515596e-07
                z num_eqtl
1435  -1.91701270        1
7102  -0.44948704        2
7103   0.71069618        2
836   -1.02541152        1
977    0.39545302        2
2678  -2.21221961        2
2680   2.24457257        1
4672   1.13410595        2
5935   1.55860994        1
5936   2.07648383        1
7105  -0.18212085        2
7106   0.06426505        1
7107   0.38591370        2
7108   2.96447847        3
9363  -0.84879222        1
10548 -3.23637841        1
11065  0.76361857        1
11505  0.26588473        3
11577  1.15596036        1
11776  3.16694426        1
13833  1.76097265        1
13895  0.21633277        1
13939  1.44231609        2
14493  1.90531419        1
14547  0.98729755        1
14549  2.29627994        4

[1] "TSPO"
[1] "22_18"
       genename region_tag  susie_pip      mu2          PVE           z
1661    POLDIP3      22_18 0.04272540 7.762313 9.651560e-07  0.87032032
1665     CYB5R3      22_18 0.04271872 7.760854 9.648238e-07  0.94437171
1670    PACSIN2      22_18 0.05024041 9.261013 1.354042e-06  1.05059827
1671      TTLL1      22_18 0.03100660 4.809102 4.339488e-07 -0.44754491
1679       MCAT      22_18 0.03017729 4.559980 4.004640e-07  0.01048418
1684       TSPO      22_18 0.03068906 4.714494 4.210552e-07 -0.20946571
1686     TTLL12      22_18 0.05191953 9.565722 1.445336e-06 -1.17273602
4425     A4GALT      22_18 0.03507573 5.943305 6.066735e-07 -0.64748120
10672    SERHL2      22_18 0.03106248 4.825641 4.362259e-07 -0.24263854
11369     RRP7A      22_18 0.03023230 4.576710 4.026659e-07  0.06985354
12726 LINC01315      22_18 0.03412597 5.690631 5.651525e-07  0.74913358
13083   ARFGAP3      22_18 0.03655423 6.323474 6.726880e-07 -0.54526660
      num_eqtl
1661         1
1665         3
1670         1
1671         1
1679         1
1684         1
1686         2
4425         3
10672        3
11369        8
12726        1
13083        2

[1] "PLTP"
[1] "20_28"
           genename region_tag  susie_pip       mu2          PVE
331          TOMM34      20_28 0.02481039  4.632292 3.344643e-07
659           WISP2      20_28 0.02554106  4.880421 3.627576e-07
668            CTSA      20_28 0.02713247  5.303569 4.187722e-07
1819           PLTP      20_28 0.51802364 27.464476 4.140389e-05
1820          PCIF1      20_28 0.02724406 13.178628 1.044870e-06
1822           MMP9      20_28 0.07689545 14.964249 3.348697e-06
1829           CD40      20_28 0.53728780 24.754708 3.870661e-05
1838        PABPC1L      20_28 0.20136324 23.464998 1.375058e-05
1839           STK4      20_28 0.03212233  6.873413 6.425394e-07
1905          WFDC2      20_28 0.03080279  6.609210 5.924611e-07
1909          EPPIN      20_28 0.02467687  6.033980 4.333256e-07
1911        DNTTIP1      20_28 0.09544508 15.604311 4.334295e-06
1913          TNNC2      20_28 0.20951928 22.699362 1.384070e-05
1914          ACOT8      20_28 0.03647958  7.508643 7.971344e-07
4063          SNX21      20_28 0.11539576 16.180927 5.433924e-06
4064           SLPI      20_28 0.02470584  4.562105 3.280086e-07
4065          WFDC3      20_28 0.07364804 12.835048 2.750926e-06
4066          TTPAL      20_28 0.11088838 17.963297 5.796855e-06
4068          KCNS1      20_28 0.02701985  5.391787 4.239708e-07
4069        SLC12A5      20_28 0.05284935 17.826927 2.741804e-06
4070           SDC4      20_28 0.02470493  4.572097 3.287149e-07
4078        GDAP1L1      20_28 0.02467118  4.542028 3.261068e-07
4091          RBPJL      20_28 0.02483779  4.608584 3.331201e-07
4092         KCNK15      20_28 0.02503904  4.698052 3.423385e-07
4093        TP53TG5      20_28 0.02919453  6.731988 5.719592e-07
4096         NEURL2      20_28 0.04180188 20.590643 2.504875e-06
4868          OSER1      20_28 0.02721626  5.399054 4.276282e-07
4869        SERINC3      20_28 0.03783059  8.417942 9.267643e-07
6737        SPATA25      20_28 0.07316128 23.893709 5.087274e-06
8634          YWHAB      20_28 0.02506559  4.667626 3.404820e-07
8940         ZSWIM1      20_28 0.05111071 18.204181 2.707717e-06
8942         WFDC13      20_28 0.02519754  5.756900 4.221503e-07
8951           PKIG      20_28 0.02483475  4.591864 3.318709e-07
9786          UBE2C      20_28 0.04396268  9.792529 1.252851e-06
11519           ADA      20_28 0.04137678  9.311068 1.121183e-06
11596         FITM2      20_28 0.02574309  4.930671 3.693915e-07
11731        ZNF335      20_28 0.02650416  5.222738 4.028400e-07
11985          SYS1      20_28 0.02597216  5.097085 3.852567e-07
12521     OSER1-AS1      20_28 0.05721387 12.261832 2.041630e-06
13124         WFDC6      20_28 0.02467687  6.033980 4.333256e-07
13155        DBNDD2      20_28 0.05334355 11.224347 1.742462e-06
14621 RP11-445H22.3      20_28 0.03341477  7.344932 7.142439e-07
                z num_eqtl
331   -0.10989698        2
659   -0.25665541        1
668   -0.87509434        1
1819  -5.19351264        2
1820   2.96018585        1
1822   1.76632544        1
1829   3.80524431        3
1838   2.49186414        2
1839  -0.65248556        1
1905   0.93772036        2
1909  -1.16673693        1
1911   1.88090870        3
1913   2.24481047        1
1914   0.45272938        2
4063   0.29970270        1
4064  -0.14754425        2
4065   1.25068638        2
4066  -1.97291211        1
4068  -0.43139755        1
4069   3.01382135        2
4070  -0.04183070        2
4078   0.08808787        1
4091  -0.10166334        1
4092  -0.28027366        2
4093  -1.20929244        2
4096  -4.49707434        3
4868  -0.47113166        2
4869   1.03407932        2
6737  -4.27365922        2
8634  -0.29810641        2
8940  -3.71131870        2
8942  -0.87450731        1
8951   0.14985723        2
9786   1.29063071        1
11519  1.17385615        2
11596  0.27590329        1
11731  0.27617099        2
11985 -0.53036749        1
12521  1.42674981        3
13124 -1.16673693        1
13155 -1.23084720        1
14621 -0.88261946        2

[1] "VAPA"
[1] "18_7"
           genename region_tag  susie_pip       mu2          PVE
276          RALBP1       18_7 0.10132328 10.269646 3.028203e-06
1922           VAPA       18_7 0.06182001  5.632259 1.013286e-06
1933        ANKRD12       18_7 0.05511023  4.564061 7.319880e-07
4468          TWSG1       18_7 0.05502157  4.549116 7.284172e-07
5012           NAPG       18_7 0.08839413  8.979952 2.310031e-06
7156         PPP4R1       18_7 0.10019956 10.163953 2.963799e-06
7157         APCDD1       18_7 0.07762432  7.759002 1.752766e-06
8919          RAB31       18_7 0.05501833  4.548567 7.282866e-07
8926          MTCL1       18_7 0.05521551  4.581783 7.362341e-07
10117        NDUFV2       18_7 0.11580052 11.539087 3.888681e-06
12224         RAB12       18_7 0.11166661 11.192787 3.637323e-06
13810    PPP4R1-AS1       18_7 0.28509356 20.449505 1.696643e-05
13831 RP11-888D10.3       18_7 0.05589681  4.695668 7.638441e-07
13841 RP11-419J16.1       18_7 0.06361627  5.899058 1.092122e-06
                z num_eqtl
276    1.38108389        1
1922  -0.59893979        1
1933   0.08112039        2
4468  -0.13930090        3
5012   1.20163310        2
7156  -1.65261189        1
7157   0.94933238        1
8919   0.07211509        3
8926   0.11132967        2
10117  1.33400717        2
12224 -1.39994460        1
13810  2.89522789        2
13831  0.23529202        2
13841  0.60218674        1

[1] "LIPG"
[1] "18_27"
      genename region_tag  susie_pip       mu2          PVE          z
1931      LIPG      18_27 0.02114715  5.853059 3.602094e-07 -0.2867060
4979      CTIF      18_27 0.04900208 13.565962 1.934574e-06 -1.5876520
8699     MYO5B      18_27 0.04950871 14.539844 2.094892e-06 -2.0042595
8701     ACAA2      18_27 0.08869210 20.489718 5.288606e-06  2.5182740
13842    RPL17      18_27 0.01829560  4.757610 2.533121e-07 -0.7607734
      num_eqtl
1931         1
4979         1
8699         2
8701         1
13842        2

[1] "KPNB1"
[1] "17_27"
          genename region_tag  susie_pip       mu2          PVE
50           CDC27      17_27 0.05018854  7.074295 1.033256e-06
923          TBX21      17_27 0.04831602  6.984934 9.821409e-07
925            NSF      17_27 0.05300045  6.401019 9.872996e-07
2606          WNT3      17_27 0.06245700  9.312947 1.692733e-06
2614         KPNB1      17_27 0.05466416 11.677231 1.857646e-06
2615         GOSR2      17_27 0.06961473  7.445343 1.508364e-06
3753        KANSL1      17_27 0.05509458  5.573146 8.935721e-07
3755         CRHR1      17_27 0.08931397  9.855139 2.561548e-06
5319          NMT1      17_27 0.16659417 16.266207 7.886175e-06
5929        NPEPPS      17_27 0.12235886 64.455364 2.295170e-05
7505      ARHGAP27      17_27 0.07891299  8.610851 1.977493e-06
7725         PLCD3      17_27 0.04793259  4.543611 6.338002e-07
9547         DCAKD      17_27 0.04829679  4.601205 6.467108e-07
9960       LRRC37A      17_27 0.06132540  6.366040 1.136135e-06
10192      EFCAB13      17_27 0.06641369 40.099387 7.750249e-06
10444        ACBD4      17_27 0.04907158  4.738049 6.766279e-07
10776      SPATA32      17_27 0.05532556  6.085539 9.798174e-07
10959       ARL17A      17_27 0.04793456  4.705544 6.564155e-07
11081       HEXIM1      17_27 0.07316136  8.470758 1.803534e-06
11086         MAPT      17_27 0.06147514  8.277266 1.480835e-06
11784         MYL4      17_27 0.19997712 18.318392 1.066075e-05
11928       TBKBP1      17_27 0.05344599 57.739319 8.980636e-06
12558      PLEKHM1      17_27 0.04816174  4.575226 6.412613e-07
12692       ARL17B      17_27 0.05149821  5.152057 7.721347e-07
12991     LRRC37A2      17_27 0.09644636 10.703548 3.004235e-06
13604        ITGB3      17_27 0.05066297  6.141907 9.055538e-07
13896 RP11-798G7.6      17_27 0.06132540  6.366040 1.136135e-06
                z num_eqtl
50     1.62384444        1
923   -1.92274600        1
925   -1.64992252        1
2606  -1.51263182        3
2614   2.98994131        1
2615   0.60171896        1
3753   0.14021081        2
3755   2.30200199        1
5319   2.03531470        2
5929  -8.27442112        3
7505  -1.83235871        2
7725  -0.01048238        2
9547   0.12894272        3
9960   0.52435342        1
10192  6.66298655        4
10444  0.06107748        2
10776 -0.84205877        1
10959  1.10880657        3
11081 -0.91072220        1
11086 -1.02110963        1
11784 -2.30641908        2
11928 -8.11699724        1
12558  0.03569373        1
12692 -1.04068857        2
12991  2.39831149        2
13604  1.24015919        2
13896 -0.52435342        1

[1] "ALDH2"
[1] "12_67"
          genename region_tag  susie_pip       mu2          PVE          z
1340      MAPKAPK5      12_67 0.03445796  6.877885 6.897072e-07  1.3275064
1360         ERP29      12_67 0.10500695 31.020890 9.479656e-06 -5.8049447
2870         ARPC3      12_67 0.03557198  6.658277 6.892713e-07  1.1143107
2871          GPN3      12_67 0.06639348 10.739925 2.075138e-06  0.5188468
2872         VPS29      12_67 0.06547541 10.634277 2.026313e-06 -0.5087618
2878        ACAD10      12_67 0.03111972  7.385556 6.688662e-07  1.5620324
2879         ALDH2      12_67 0.05536642 31.785981 5.121562e-06 -6.4436064
2882         NAA25      12_67 0.21786490 35.041892 2.221750e-05  5.4351344
3983         IFT81      12_67 0.10304539 15.418844 4.623818e-06 -1.8515363
5742          GIT2      12_67 0.02876130  4.583006 3.836006e-07 -0.1845083
5743          TCHP      12_67 0.11724314 19.165124 6.539121e-06  2.7798610
9554        HECTD4      12_67 0.04177246 29.027556 3.528750e-06 -6.3703196
9716      C12orf76      12_67 0.02890954  4.640939 3.904518e-07  0.2001312
11016       PPP1CC      12_67 0.02886434  4.986526 4.188708e-07  0.7231339
11471       ANAPC7      12_67 0.02911355  5.457609 4.624001e-07 -1.0674363
11521        PPTC7      12_67 0.03851480  8.394721 9.409232e-07 -1.4985220
11777      TMEM116      12_67 0.05791765 17.393075 2.931620e-06  4.2018408
11782      FAM109A      12_67 0.02986795  5.568807 4.840473e-07 -0.8704329
12105        ATXN2      12_67 0.27346353 28.767728 2.289419e-05  4.1148453
12108        TCTN1      12_67 0.07006290 13.542405 2.761240e-06  2.1771229
12109      FAM216A      12_67 0.02905458  5.275373 4.460547e-07 -0.8712340
12871 MAPKAPK5-AS1      12_67 0.05805255 31.861894 5.382861e-06  6.4104295
13545  RP3-473L9.4      12_67 0.03317766  8.420852 8.130591e-07 -1.9604827
      num_eqtl
1340         1
1360         1
2870         1
2871         1
2872         1
2878         1
2879         1
2882         2
3983         2
5742         2
5743         1
9554         2
9716         2
11016        1
11471        3
11521        1
11777        3
11782        1
12105        2
12108        1
12109        2
12871        1
13545        1

[1] "APOA1"
[1] "11_70"
      genename region_tag  susie_pip       mu2          PVE           z
2754      ZPR1      11_70 0.02300735 88.630710 5.934321e-06 -9.39015626
2792    CEP164      11_70 0.01564838  6.331356 2.883276e-07 -0.76051268
3583     APOA1      11_70 0.01438377  6.599292 2.762425e-07  1.25989673
5491     BUD13      11_70 0.01676924  5.639521 2.752175e-07  1.10679518
5506     FXYD2      11_70 0.01567292  6.342876 2.893054e-07  0.72703920
6730     SIDT2      11_70 0.01889305  9.892234 5.438971e-07  1.78912447
6732     TAGLN      11_70 0.01376665 14.160537 5.673201e-07  0.94033244
7630      SIK3      11_70 0.01726799 15.991642 8.036283e-07 -4.71780675
7634     PCSK7      11_70 0.02348708 20.240512 1.383474e-06  1.21256221
8691    RNF214      11_70 0.01459332  5.910837 2.510286e-07  0.73686934
8863  PAFAH1B2      11_70 0.01376155 11.360313 4.549650e-07  0.59673452
10005  DSCAML1      11_70 0.01764011  7.185564 3.688777e-07  0.54678155
11019    BACE1      11_70 0.01353272  5.522103 2.174753e-07 -0.09221856
      num_eqtl
2754         2
2792         2
3583         1
5491         1
5506         1
6730         1
6732         2
7630         2
7634         1
8691         1
8863         3
10005        1
11019        1

[1] "NPC2"
[1] "14_34"
           genename region_tag   susie_pip       mu2          PVE
1114          PSEN1      14_34 0.038548258 19.309657 2.166205e-06
1789          PAPLN      14_34 0.009536150  5.180343 1.437646e-07
3685          DCAF4      14_34 0.012694425  9.138270 3.375960e-07
3686          PROX2      14_34 0.010719520 10.536923 3.287074e-07
3687           FCF1      14_34 0.009742823  5.146890 1.459318e-07
3689          BBOF1      14_34 0.088677330 16.049645 4.141888e-06
3690           NEK9      14_34 0.024316542 18.183629 1.286775e-06
3692          IFT43      14_34 0.013046719  7.881792 2.992586e-07
3693           NPC2      14_34 0.034798880 14.957709 1.514784e-06
3694          DNAL1      14_34 0.010410740  5.506799 1.668404e-07
3695          ACOT2      14_34 0.012007051  7.128056 2.490736e-07
3696          LTBP2      14_34 0.011847203  6.556734 2.260600e-07
3697          AREL1      14_34 0.009742823  5.146890 1.459318e-07
3698           MLH3      14_34 0.018085186 10.601518 5.579706e-07
3699          TTLL5      14_34 0.009947135  5.346808 1.547793e-07
3700         FLVCR2      14_34 0.009193231  4.635208 1.240103e-07
3701          ABCD4      14_34 0.009188970  4.688445 1.253765e-07
3705          RBM25      14_34 0.061533116 21.126165 3.783118e-06
3709         EIF2B2      14_34 0.022722819 17.362555 1.148143e-06
3711           COQ6      14_34 0.010586292  6.435245 1.982573e-07
3712         ZNF410      14_34 0.010095972  5.840310 1.715949e-07
4968           NUMB      14_34 0.009472144  5.003573 1.379269e-07
5804          PTGR2      14_34 0.009908638  5.587656 1.611254e-07
7237        FAM161B      14_34 0.468061813 23.288644 3.172252e-05
7244           BATF      14_34 0.015635605  9.521921 4.332710e-07
8437         ZFYVE1      14_34 0.010504354 11.835607 3.618097e-07
9199          RIOX1      14_34 0.009341533  4.822103 1.310916e-07
9978          PNMA1      14_34 0.011081173  5.870650 1.893181e-07
10036         ACOT4      14_34 0.014657271 11.266101 4.805594e-07
10649      SYNDIG1L      14_34 0.010924767  6.434782 2.045815e-07
10764         ACOT1      14_34 0.010839259  6.394410 2.017067e-07
11107        ENTPD5      14_34 0.133703549 25.727066 1.001045e-05
11109        HEATR4      14_34 0.009175434  4.863457 1.298650e-07
12193         LIN52      14_34 0.010280732  5.933109 1.775116e-07
12194          DPF3      14_34 0.025944166 11.672279 8.812835e-07
13588 RP11-270M14.5      14_34 0.011160145  6.288869 2.042503e-07
13598   RP3-449M8.6      14_34 0.011011554  6.817193 2.184613e-07
13627     LINC01220      14_34 0.010079869  5.545563 1.626750e-07
14005   RP3-449M8.9      14_34 0.009639068  5.134116 1.440194e-07
                z num_eqtl
1114   3.87525094        3
1789   0.07441007        2
3685   1.97132622        2
3686   2.58946400        2
3687  -0.41600000        1
3689  -3.80184690        2
3690  -3.22969877        1
3692   0.91864269        1
3693   1.24405347        1
3694  -0.75378449        1
3695  -1.08912101        3
3696   0.25350957        1
3697   0.41600000        1
3698  -1.24835484        1
3699  -0.42323972        1
3700  -0.17583158        3
3701   0.18152469        2
3705   4.27380978        1
3709  -2.95569593        1
3711  -0.54992070        2
3712  -1.37775403        2
4968  -0.15384046        1
5804  -1.58536168        6
7237  -4.43442574        2
7244  -1.11897993        1
8437   2.58136162        1
9199  -0.25456352        1
9978   0.78703034        2
10036  1.46876989        2
10649  0.91820626        1
10764 -1.12091919        2
11107 -3.42239554        3
11109  0.29630206        1
12193 -0.08542499        2
12194  1.71707462        1
13588  0.53073305        1
13598 -0.79146280        2
13627  0.68162560        3
14005 -0.31553630        2

[1] "LRP1"
[1] "12_35"
      genename region_tag  susie_pip       mu2          PVE           z
327    HSD17B6      12_35 0.10245295 13.291665 3.963001e-06 -1.86267660
634         CS      12_35 0.04070144  4.676264 5.538971e-07  0.15757464
696       DGKA      12_35 0.19335964 19.430601 1.093383e-05  2.66109583
697      ERBB3      12_35 0.04262929  5.103471 6.331317e-07 -0.35490155
994      RBMS2      12_35 0.05082732  6.730623 9.955723e-07 -0.75825498
995      BAZ2A      12_35 0.15809040 17.453600 8.029912e-06 -2.21535156
1472      MYL6      12_35 0.04840968  6.279218 8.846227e-07  0.85420270
2851     IL23A      12_35 0.05739391  7.858180 1.312527e-06 -1.08015794
2852     ATP5B      12_35 0.06927712  9.611332 1.937732e-06  1.24795230
2902     RAB5B      12_35 0.04212359  4.993278 6.121127e-07 -0.37817770
4011    ORMDL2      12_35 0.06195060  8.568886 1.544864e-06 -1.33072035
4013      CDK2      12_35 0.05427890  7.339946 1.159429e-06 -1.02781608
4014      LRP1      12_35 0.05573169  7.585126 1.230227e-06 -0.65116085
4017     IKZF4      12_35 0.04218559  5.006854 6.146803e-07  0.31972932
5161   DNAJC14      12_35 0.07638906 10.525622 2.339910e-06  1.46751571
5165      GLS2      12_35 0.04009485  4.537720 5.294764e-07  0.02781582
5166     ITGA7      12_35 0.04152427  4.860982 5.874168e-07 -0.15973006
5168      RDH5      12_35 0.04201175  4.968729 6.074861e-07  0.30366641
5170   BLOC1S1      12_35 0.08191856 11.181272 2.665593e-06 -1.31729931
5177    COQ10A      12_35 0.04022294  4.567144 5.346121e-07  0.13655237
5179      PAN2      12_35 0.05739391  7.858180 1.312527e-06 -1.08015794
5182    ZC3H10      12_35 0.08590267 11.627753 2.906851e-06 -1.49702244
5751      SUOX      12_35 0.07462098 10.306254 2.238114e-06 -1.23521491
5753   SLC39A5      12_35 0.05557223  7.558555 1.222410e-06  0.91079453
5755     RDH16      12_35 0.04604580  5.815975 7.793505e-07 -0.50207842
5760   SMARCC2      12_35 0.17014865 18.171427 8.997831e-06 -2.27459226
8622      TAC3      12_35 0.05585396  7.605509 1.236239e-06  0.91962521
8623     MYO1A      12_35 0.09262135 12.337424 3.325492e-06  1.46063080
8625     NEMP1      12_35 0.34921415 25.523134 2.593858e-05 -3.00425167
8626      NAB2      12_35 0.04013910  4.547896 5.312495e-07 -0.03950645
8627     STAT6      12_35 0.04192899  4.950530 6.040688e-07 -0.51566090
9190    SDR9C7      12_35 0.04011794  4.543031 5.304013e-07 -0.08256908
9192   METTL7B      12_35 0.04009395  4.537512 5.294402e-07  0.07617023
9201      PYM1      12_35 0.20058116 19.794563 1.155464e-05  2.68424809
9218     STAT2      12_35 0.05860880  8.052897 1.373521e-06  1.10856128
9941    SPRYD4      12_35 0.06956518  9.650116 1.953641e-06  1.21757705
10939     PMEL      12_35 0.07195132  9.965354 2.086660e-06 -1.29364873
11463    MYL6B      12_35 0.06214227  8.597650 1.554845e-06 -0.96606967
11475     NACA      12_35 0.04040968  4.609880 5.421198e-07  0.09273658
11738    PRIM1      12_35 0.10245295 13.291665 3.963001e-06 -1.86267660
12160    SARNP      12_35 0.06195060  8.568886 1.544864e-06 -1.33072035
12707    RPL41      12_35 0.09112843 12.184106 3.231230e-06  1.77190320
      num_eqtl
327          1
634          2
696          1
697          1
994          2
995          2
1472         2
2851         1
2852         1
2902         2
4011         1
4013         2
4014         1
4017         1
5161         1
5165         1
5166         2
5168         1
5170         1
5177         2
5179         1
5182         1
5751         2
5753         2
5755         1
5760         1
8622         2
8623         1
8625         1
8626         1
8627         2
9190         1
9192         1
9201         1
9218         2
9941         1
10939        1
11463        1
11475        2
11738        1
12160        1
12707        1

[1] "VAPB"
[1] "20_34"
       genename region_tag  susie_pip       mu2          PVE           z
1293    PHACTR3      20_34 0.08206706 11.395589 2.721610e-06 -1.37646482
1847     NELFCD      20_34 0.19278192 19.598283 1.099524e-05  2.23141397
1848       CTSZ      20_34 0.14469874 16.792485 7.071312e-06 -2.01922879
4072       VAPB      20_34 0.07271816 10.261817 2.171638e-06 -1.27071052
4081     ZNF831      20_34 0.11589627 14.661367 4.944976e-06  1.78634651
4082       EDN3      20_34 0.03926000  4.540936 5.188192e-07  0.05748016
4084     RAB22A      20_34 0.17291136 18.526480 9.322593e-06  2.14716383
4087      STX16      20_34 0.04098274  4.937123 5.888371e-07 -0.36261482
11868   APCDD1L      20_34 0.03931868  4.554710 5.211706e-07  0.04943793
12433    NPEPL1      20_34 0.05470873  7.610456 1.211679e-06 -0.88725727
13968 LINC01711      20_34 0.04500529  5.801931 7.599001e-07  0.59947598
      num_eqtl
1293         4
1847         1
1848         1
4072         2
4081         1
4082         1
4084         2
4087         1
11868        1
12433        2
13968        2

[1] "APOC1"
[1] "19_31"
      genename region_tag susie_pip         mu2 PVE           z num_eqtl
122      MARK4      19_31         0   21.181957   0  -2.2463768        1
227      ERCC1      19_31         0    7.409485   0  -1.6350316        2
633     ZNF112      19_31         0   47.819226   0   4.8629559        1
905        PVR      19_31         0   31.813106   0  -3.0943045        1
2176    CLPTM1      19_31         0   50.178070   0   2.5751726        1
2178   PPP1R37      19_31         0   42.423234   0  -5.9455792        1
2182  PPP1R13L      19_31         0   22.778963   0  -3.0806361        1
2184     ERCC2      19_31         0   13.966069   0   1.5340117        1
2189      KLC3      19_31         0   13.524015   0  -3.6648287        2
3573    CD3EAP      19_31         0   11.426032   0   2.5646694        1
4228      FOSB      19_31         0   16.099633   0  -2.3658041        1
4229      OPA3      19_31         0    6.808430   0   1.5059074        2
4231      RTN2      19_31         0    6.949994   0  -2.0700710        1
4233      VASP      19_31         0   33.645255   0  -2.7026884        1
4573   NECTIN2      19_31         0 1648.609427   0 -35.7740463        1
4574      APOE      19_31         0  303.200452   0   0.6519443        1
4575    TOMM40      19_31         0 1005.711219   0 -14.0286334        2
4576     APOC1      19_31         0  474.076449   0  -9.1150442        1
6037    GEMIN7      19_31         0  205.847243   0  13.2439035        2
7553    ZNF233      19_31         0  131.643247   0 -10.0229697        2
7554    ZNF235      19_31         0   35.913626   0  -6.2627967        2
8710    ZNF180      19_31         0   43.730327   0   4.0279244        1
9234    ZNF296      19_31         0   94.996588   0   5.4593536        1
11052 CEACAM19      19_31         0   64.753213   0  11.7978210        2
11128     BCAM      19_31         0   96.429711   0   4.6421318        1
11348  BLOC1S3      19_31         0   11.973214   0   2.7250151        2
12327    PPM1N      19_31         0   24.361748   0  -2.6089113        1
12884    APOC2      19_31         0   18.135579   0  -2.2896080        1
13922   ZNF285      19_31         0   10.133291   0  -1.3318721        3
14528   ZNF229      19_31         0  125.384012   0  14.4998133        1

[1] "STARD3"
[1] "17_23"
           genename region_tag  susie_pip       mu2          PVE
20            LASP1      17_23 0.14026268 16.661085 6.800889e-06
166           MED24      17_23 0.18951003 19.598572 1.080879e-05
916         SMARCE1      17_23 0.03912442  4.678936 5.327400e-07
1491           CDC6      17_23 0.04366715  5.692872 7.234468e-07
2599         FBXL20      17_23 0.07122397 10.237690 2.122015e-06
2601           CSF3      17_23 0.19249013 19.752683 1.106509e-05
2602          PSMD3      17_23 0.04087970  5.083799 6.048064e-07
2603          CASC3      17_23 0.09350636 12.794541 3.481659e-06
2604       RAPGEFL1      17_23 0.38334795 26.913524 3.002507e-05
4219           MED1      17_23 0.05984642  8.614591 1.500352e-06
4220          RPL23      17_23 0.09354986 12.798371 3.484321e-06
4296           THRA      17_23 0.04764936  6.500058 9.013523e-07
4297           CCR7      17_23 0.03923221  4.704319 5.371058e-07
4298          NR1D1      17_23 0.05238866  7.378293 1.124899e-06
4744           TNS4      17_23 0.03853960  4.540085 5.092037e-07
4745         STARD3      17_23 0.06829874  9.845865 1.956982e-06
5996          ERBB2      17_23 0.08745198 12.163390 3.095598e-06
5997           GRB7      17_23 0.10432611 13.830809 4.199145e-06
5999           PNMT      17_23 0.05187085  7.286366 1.099904e-06
6000          STAC2      17_23 0.08102298 11.445212 2.698686e-06
7701         PLXDC1      17_23 0.04547836  6.068514 8.031699e-07
8822          GSDMA      17_23 0.10336428 13.742597 4.133896e-06
9338          WIPF2      17_23 0.03854211  4.540687 5.093043e-07
9426         ORMDL3      17_23 0.17502618 18.815370 9.583763e-06
9670           TCAP      17_23 0.03869805  4.577905 5.155564e-07
11318          MSL1      17_23 0.03975430  4.826299 5.583657e-07
12288        KRT222      17_23 0.03856605  4.546413 5.102634e-07
13814     LINC00672      17_23 0.04620311  6.214764 8.356340e-07
13832 RP11-387H17.4      17_23 0.04412739  5.789914 7.435337e-07
13854  RP5-1028K7.2      17_23 0.12930768 15.878962 5.975396e-06
13868   RP1-56K13.5      17_23 0.07906870 11.216124 2.580879e-06
14308         CWC25      17_23 0.04333639  5.622656 7.091115e-07
14309          EPOP      17_23 0.06467995  9.337893 1.757676e-06
14384         MLLT6      17_23 0.08736469 12.153812 3.090073e-06
14448       PIP4K2B      17_23 0.05487454  7.808423 1.246966e-06
14507         PSMB3      17_23 0.10686912 14.059314 4.372569e-06
14511         CISD3      17_23 0.04565073  6.103455 8.108560e-07
                z num_eqtl
20     2.06384703        1
166    2.97033303        1
916    0.08854994        1
1491   0.38875522        2
2599   1.81331217        1
2601  -3.14227041        1
2602  -0.25796073        1
2603  -2.04139093        4
2604   3.35561544        2
4219  -1.58604287        2
4220   1.76434090        1
4296  -1.82594797        2
4297  -0.21456658        1
4298   0.81175389        1
4744   0.02859681        1
4745   1.78242300        1
5996  -2.17233398        2
5997   2.00767975        1
5999  -1.66201018        2
6000  -1.45577160        1
7701  -0.56588683        1
8822   2.79497424        2
9338  -0.15638007        1
9426   3.04520803        1
9670  -0.23425048        2
11318  0.61992771        2
12288  0.11407193        1
13814  0.71355912        1
13832  1.45916671        4
13854  1.89232102        1
13868  1.58167868        1
14308  0.49000658        1
14309 -1.22710237        1
14384 -1.60128295        1
14448 -1.00157125        1
14507  1.72807936        4
14511 -0.60454978        1

[1] "PPARG"
[1] "3_9"
      genename region_tag  susie_pip       mu2          PVE           z
991      MKRN2        3_9 0.05454102 15.491809 2.458928e-06 -3.97044447
1318    TMEM40        3_9 0.01598354  6.023704 2.801927e-07  1.39961663
4778     PPARG        3_9 0.01477102  8.518491 3.661792e-07 -2.40991704
6318    TAMM41        3_9 0.02492225  9.872800 7.160573e-07  1.52001314
6339     CAND2        3_9 0.01463955  5.203331 2.216816e-07 -1.21597175
6340     RPL32        3_9 0.01860029  6.650316 3.599832e-07 -0.73455854
7146     TSEN2        3_9 0.01458549  4.610365 1.956937e-07 -0.09737789
7326    SLC6A1        3_9 0.01845216  6.708771 3.602553e-07  0.72153302
7330     TIMP4        3_9 0.02931687 11.942525 1.018906e-06  1.87806557
7331      SYN2        3_9 0.01636296  6.782790 3.229910e-07  2.13905306
11633     ATG7        3_9 0.02822226 10.153580 8.339333e-07 -1.26026609
12570  MKRN2OS        3_9 0.01552657  5.493510 2.482251e-07 -0.75774371
      num_eqtl
991          3
1318         1
4778         2
6318         2
6339         3
6340         2
7146         2
7326         2
7330         2
7331         1
11633        2
12570        1

[1] "LPIN3"
[1] "20_25"
      genename region_tag  susie_pip      mu2          PVE         z
4076     PLCG1      20_25 0.02436878 11.92753 8.458717e-07 -2.920830
4864     LPIN3      20_25 0.02620015 45.32804 3.456138e-06  7.012083
9703      ZHX3      20_25 0.02652460 11.82503 9.127911e-07  2.767903
10715  EMILIN3      20_25 0.02430993 20.95056 1.482176e-06  4.410633
11916     TOP1      20_25 0.02402170 11.21537 7.840386e-07 -2.826082
      num_eqtl
4076         1
4864         1
9703         1
10715        3
11916        1

[1] "SORT1"
[1] "1_67"
          genename region_tag    susie_pip        mu2          PVE
363           SARS       1_67 2.260060e-07 135.373041 8.903740e-11
687          GNAI3       1_67 4.317367e-07  49.524698 6.222446e-11
1223      SLC25A24       1_67 6.417211e-07  14.911375 2.784738e-11
3416        STXBP3       1_67 1.554058e-07  15.012036 6.789333e-12
3419      KIAA1324       1_67 2.480353e-07  19.360714 1.397511e-11
3900         CLCC1       1_67 1.398833e-07   5.489588 2.234734e-12
4996         GSTM1       1_67 2.166034e-03  59.592966 3.756475e-07
4998         GSTM5       1_67 1.515841e-07   7.772201 3.428609e-12
4999         GSTM3       1_67 2.121061e-07   6.780908 4.185634e-12
5001         PSRC1       1_67 7.323688e-07 176.315318 3.757856e-10
5003         SORT1       1_67 1.746323e-07   5.800528 2.947897e-12
6096         SYPL2       1_67 1.177502e-07  58.304452 1.997945e-11
6104        CELSR2       1_67 5.286519e-07 113.723036 1.749599e-10
7839        HENMT1       1_67 3.871372e-07  15.825908 1.783010e-11
7843       ATXN7L2       1_67 4.472802e-07  10.700754 1.392882e-11
8954         GSTM4       1_67 2.557416e-07  15.286858 1.137732e-11
10463       AMIGO1       1_67 5.210579e-07  25.569247 3.877254e-11
11677        TAF13       1_67 1.508761e-07   9.939408 4.364165e-12
12282        GSTM2       1_67 2.681935e-07  23.418731 1.827814e-11
12440     TMEM167B       1_67 1.528715e-07   5.494436 2.444387e-12
12627 RP11-356N1.2       1_67 1.304537e-07   6.851387 2.601090e-12
                 z num_eqtl
363   -17.77828114        2
687     7.97926365        1
1223   -0.09485475        2
3416    2.98447183        1
3419    4.94390244        1
3900   -0.52733642        3
4996    7.68447989        4
4998    1.58897772        4
4999   -3.43690762        3
5001  -22.09651395        2
5003   -0.45551677        1
6096   11.72818164        3
6104    5.65177064        2
7839   -1.85374050        1
7843    0.17069498        2
8954    2.22512920        5
10463  -3.96308159        1
11677  -1.55914526        1
12282   4.14108479        2
12440   1.84229721        2
12627  -1.23494808        2

[1] "FADS2"
[1] "11_34"
           genename region_tag  susie_pip       mu2          PVE
214            SYT7      11_34 0.02957653  6.140324 5.285167e-07
2767           DTX4      11_34 0.07661538 15.209328 3.391145e-06
2780         CCDC86      11_34 0.03698217  8.457224 9.102077e-07
2781         PRPF19      11_34 0.04830671 10.674871 1.500688e-06
2782        TMEM109      11_34 0.04703556 10.427372 1.427321e-06
2808        SLC15A3      11_34 0.02701115  5.602543 4.404012e-07
5072          DAGLA      11_34 0.02576174  6.607148 4.953470e-07
5077          FADS2      11_34 0.04839042 48.606847 6.845058e-06
5078        TMEM258      11_34 0.04757906 43.646261 6.043426e-06
5079           TCN1      11_34 0.04129509  8.874129 1.066460e-06
6711        TMEM138      11_34 0.03232386  8.817461 8.294439e-07
6712          FADS1      11_34 0.25990394 81.437461 6.159669e-05
6716         INCENP      11_34 0.02539261  5.487253 4.054923e-07
6717            ZP1      11_34 0.09692062 16.143421 4.553361e-06
6720          CPSF7      11_34 0.02774480  5.557581 4.487327e-07
6721          MS4A2      11_34 0.04531472  9.717689 1.281512e-06
7768       CYB561A3      11_34 0.03232386  8.817461 8.294439e-07
7770         ASRGL1      11_34 0.05115776 10.362157 1.542702e-06
8606        FAM111A      11_34 0.02724854  5.251164 4.164081e-07
8628          PATL1      11_34 0.22934575 24.764852 1.652901e-05
8630           STX3      11_34 0.07589893 14.426088 3.186431e-06
8639         MS4A6E      11_34 0.02613818  4.847693 3.687489e-07
8640          MS4A7      11_34 0.04209350  9.229870 1.130657e-06
8641         MS4A14      11_34 0.02819519  5.733358 4.704401e-07
8838           VWCE      11_34 0.02522415  4.607382 3.382137e-07
8839        RAB3IL1      11_34 0.02754594  5.305591 4.253159e-07
10622        PTGDR2      11_34 0.02616381  4.897209 3.728806e-07
11103       TMEM216      11_34 0.02532492  4.634968 3.415978e-07
11653         MPEG1      11_34 0.02583994  4.867720 3.660475e-07
12120       LRRC10B      11_34 0.02507501  4.605025 3.360419e-07
12403        MS4A4E      11_34 0.04678077 10.054666 1.368848e-06
12488         FADS3      11_34 0.02794435 30.157170 2.452476e-06
12724          PGA3      11_34 0.03549351  7.093703 7.327271e-07
13286 RP11-855O10.2      11_34 0.02514013  4.807881 3.517560e-07
13443    AP001257.1      11_34 0.02508306  4.541950 3.315456e-07
13448    AP000442.4      11_34 0.02506955  4.538164 3.310907e-07
13507 RP11-794G24.1      11_34 0.05924703 10.995449 1.895832e-06
13513 RP11-286N22.8      11_34 0.02520318  4.613831 3.384055e-07
13516          PGA5      11_34 0.03140549  6.201678 5.668068e-07
                 z num_eqtl
214   -0.577860995        1
2767  -1.742131948        1
2780   1.274058697        2
2781   1.446293747        1
2782   1.421831985        1
2808   0.821410772        1
5072  -1.422119392        2
5077  -6.671545473        1
5078  -6.520941409        2
5079   0.916393926        1
6711  -1.782804562        1
6712   9.150337934        1
6716  -1.053905396        3
6717   1.565447050        1
6720  -0.647252767        2
6721  -1.135206653        1
7768  -1.782804562        1
7770  -1.126706101        2
8606   0.321876718        1
8628   3.252550732        2
8630   2.406885497        4
8639   0.035807230        1
8640  -1.016881909        2
8641  -0.602717982        1
8838  -0.158063055        1
8839  -0.464622365        1
10622 -0.262494092        3
11103 -0.145271506        2
11653  0.278217067        2
12120 -0.263629874        1
12403  1.240983470        1
12488 -5.433117266        1
12724  0.119664297        1
13286  0.547874538        1
13443  0.003034195        2
13448  0.095873681        1
13507  0.447753087        1
13513 -0.175548731        1
13516 -0.047803015        1

[1] "ABCG5"
[1] "2_27"
        genename region_tag    susie_pip        mu2          PVE
3379       THADA       2_27 0.0013108049   5.680737 2.167020e-08
5556    DYNC2LI1       2_27 0.0015444811   9.199794 4.135052e-08
5564       ABCG5       2_27 0.0027159977 431.748837 3.412565e-06
5570      LRPPRC       2_27 0.0012135925   9.102509 3.214803e-08
6249       ABCG8       2_27 0.7227631910  33.272060 6.998356e-05
6962     PLEKHH2       2_27 0.0080093432  24.276118 5.658437e-07
12512 C1GALT1C1L       2_27 0.0009562864  10.212103 2.841996e-08
14565  LINC01126       2_27 0.0419225031  24.029336 2.931631e-06
                z num_eqtl
3379    0.1649722        1
5556    0.1268456        2
5564  -20.2939818        1
5570    0.5202811        2
6249    6.5141780        2
6962   -2.4287605        1
12512   1.1627524        2
14565   0.5696005        2

[1] "NPC1"
[1] "18_12"
           genename region_tag  susie_pip       mu2          PVE
532           LAMA3      18_12 0.03933004  4.785918 5.477848e-07
1937          RIOK3      18_12 0.04325590  5.664108 7.130126e-07
5044           HRH4      18_12 0.03836259  4.556283 5.086732e-07
5045        TMEM241      18_12 0.24648928 22.293057 1.599145e-05
5046        CABLES1      18_12 0.03893975  4.693958 5.319277e-07
5953        OSBPL1A      18_12 0.05030804  7.061316 1.033816e-06
5955        C18orf8      18_12 0.05367072  7.661220 1.196618e-06
5957           NPC1      18_12 0.15372082 17.606458 7.876350e-06
7081        ANKRD29      18_12 0.03938399  4.798583 5.499879e-07
8880         TTC39C      18_12 0.12281981 15.444176 5.520183e-06
11877        ZNF521      18_12 0.03941480  4.805782 5.512438e-07
13823     LINC01894      18_12 0.08709567 12.183427 3.088064e-06
13844 RP11-799B12.4      18_12 0.03830067  4.541392 5.061925e-07
13845 RP11-403A21.1      18_12 0.03828723  4.538156 5.056543e-07
                z num_eqtl
532    0.25172785        2
1937   0.54170720        1
5044   0.04864756        1
5045  -2.74310618        2
5046  -0.14555775        1
5953   0.81580519        1
5955  -1.25897534        3
5957  -2.34727248        2
7081   0.48150608        1
8880   1.73747867        1
11877 -0.24788310        1
13823 -1.49397339        1
13844 -0.06019807        1
13845 -0.01769671        2

[1] "ABCG8"
[1] "2_27"
        genename region_tag    susie_pip        mu2          PVE
3379       THADA       2_27 0.0013108049   5.680737 2.167020e-08
5556    DYNC2LI1       2_27 0.0015444811   9.199794 4.135052e-08
5564       ABCG5       2_27 0.0027159977 431.748837 3.412565e-06
5570      LRPPRC       2_27 0.0012135925   9.102509 3.214803e-08
6249       ABCG8       2_27 0.7227631910  33.272060 6.998356e-05
6962     PLEKHH2       2_27 0.0080093432  24.276118 5.658437e-07
12512 C1GALT1C1L       2_27 0.0009562864  10.212103 2.841996e-08
14565  LINC01126       2_27 0.0419225031  24.029336 2.931631e-06
                z num_eqtl
3379    0.1649722        1
5556    0.1268456        2
5564  -20.2939818        1
5570    0.5202811        2
6249    6.5141780        2
6962   -2.4287605        1
12512   1.1627524        2
14565   0.5696005        2

[1] "NCEH1"
[1] "3_106"
     genename region_tag  susie_pip      mu2          PVE          z
6366    NCEH1      3_106 0.03418969 6.281943 6.250424e-07 -0.6532732
     num_eqtl
6366        1

[1] "FADS1"
[1] "11_34"
           genename region_tag  susie_pip       mu2          PVE
214            SYT7      11_34 0.02957653  6.140324 5.285167e-07
2767           DTX4      11_34 0.07661538 15.209328 3.391145e-06
2780         CCDC86      11_34 0.03698217  8.457224 9.102077e-07
2781         PRPF19      11_34 0.04830671 10.674871 1.500688e-06
2782        TMEM109      11_34 0.04703556 10.427372 1.427321e-06
2808        SLC15A3      11_34 0.02701115  5.602543 4.404012e-07
5072          DAGLA      11_34 0.02576174  6.607148 4.953470e-07
5077          FADS2      11_34 0.04839042 48.606847 6.845058e-06
5078        TMEM258      11_34 0.04757906 43.646261 6.043426e-06
5079           TCN1      11_34 0.04129509  8.874129 1.066460e-06
6711        TMEM138      11_34 0.03232386  8.817461 8.294439e-07
6712          FADS1      11_34 0.25990394 81.437461 6.159669e-05
6716         INCENP      11_34 0.02539261  5.487253 4.054923e-07
6717            ZP1      11_34 0.09692062 16.143421 4.553361e-06
6720          CPSF7      11_34 0.02774480  5.557581 4.487327e-07
6721          MS4A2      11_34 0.04531472  9.717689 1.281512e-06
7768       CYB561A3      11_34 0.03232386  8.817461 8.294439e-07
7770         ASRGL1      11_34 0.05115776 10.362157 1.542702e-06
8606        FAM111A      11_34 0.02724854  5.251164 4.164081e-07
8628          PATL1      11_34 0.22934575 24.764852 1.652901e-05
8630           STX3      11_34 0.07589893 14.426088 3.186431e-06
8639         MS4A6E      11_34 0.02613818  4.847693 3.687489e-07
8640          MS4A7      11_34 0.04209350  9.229870 1.130657e-06
8641         MS4A14      11_34 0.02819519  5.733358 4.704401e-07
8838           VWCE      11_34 0.02522415  4.607382 3.382137e-07
8839        RAB3IL1      11_34 0.02754594  5.305591 4.253159e-07
10622        PTGDR2      11_34 0.02616381  4.897209 3.728806e-07
11103       TMEM216      11_34 0.02532492  4.634968 3.415978e-07
11653         MPEG1      11_34 0.02583994  4.867720 3.660475e-07
12120       LRRC10B      11_34 0.02507501  4.605025 3.360419e-07
12403        MS4A4E      11_34 0.04678077 10.054666 1.368848e-06
12488         FADS3      11_34 0.02794435 30.157170 2.452476e-06
12724          PGA3      11_34 0.03549351  7.093703 7.327271e-07
13286 RP11-855O10.2      11_34 0.02514013  4.807881 3.517560e-07
13443    AP001257.1      11_34 0.02508306  4.541950 3.315456e-07
13448    AP000442.4      11_34 0.02506955  4.538164 3.310907e-07
13507 RP11-794G24.1      11_34 0.05924703 10.995449 1.895832e-06
13513 RP11-286N22.8      11_34 0.02520318  4.613831 3.384055e-07
13516          PGA5      11_34 0.03140549  6.201678 5.668068e-07
                 z num_eqtl
214   -0.577860995        1
2767  -1.742131948        1
2780   1.274058697        2
2781   1.446293747        1
2782   1.421831985        1
2808   0.821410772        1
5072  -1.422119392        2
5077  -6.671545473        1
5078  -6.520941409        2
5079   0.916393926        1
6711  -1.782804562        1
6712   9.150337934        1
6716  -1.053905396        3
6717   1.565447050        1
6720  -0.647252767        2
6721  -1.135206653        1
7768  -1.782804562        1
7770  -1.126706101        2
8606   0.321876718        1
8628   3.252550732        2
8630   2.406885497        4
8639   0.035807230        1
8640  -1.016881909        2
8641  -0.602717982        1
8838  -0.158063055        1
8839  -0.464622365        1
10622 -0.262494092        3
11103 -0.145271506        2
11653  0.278217067        2
12120 -0.263629874        1
12403  1.240983470        1
12488 -5.433117266        1
12724  0.119664297        1
13286  0.547874538        1
13443  0.003034195        2
13448  0.095873681        1
13507  0.447753087        1
13513 -0.175548731        1
13516 -0.047803015        1

[1] "LRPAP1"
[1] "4_4"
        genename region_tag  susie_pip       mu2          PVE           z
1285       NOP14        4_4 0.02217729  5.130826 3.311434e-07  0.39075231
2737      MFSD10        4_4 0.02779628  7.620120 6.164087e-07 -1.19491915
2740       HGFAC        4_4 0.15983693 37.087867 1.725160e-05 -4.89478532
4187        GRK4        4_4 0.02566832  6.099009 4.555929e-07  0.06592133
7542       RGS12        4_4 0.03833834 11.015237 1.228987e-06  1.63953686
8112      LRPAP1        4_4 0.23448150 23.425953 1.598550e-05 -1.53625589
9889        DOK7        4_4 0.02563728  7.314250 5.457102e-07  1.22504669
11328    MSANTD1        4_4 0.03698215 14.269602 1.535763e-06  2.72889398
11611        HTT        4_4 0.02581281  7.201700 5.409918e-07 -1.25772954
13319 AC141928.1        4_4 0.03227388  8.662645 8.136207e-07 -1.09477345
      num_eqtl
1285         1
2737         1
2740         1
4187         2
7542         1
8112         2
9889         1
11328        1
11611        1
13319        2

[1] "VDAC2"
[1] "10_49"
            genename region_tag  susie_pip       mu2          PVE
3973            PLAU      10_49 0.03829918  4.551808 5.073337e-07
6646        C10orf11      10_49 0.28892682 23.944115 2.013293e-05
7242             ADK      10_49 0.04202978  5.409321 6.616375e-07
7291           SAMD8      10_49 0.04066367  5.104322 6.040390e-07
8399           VDAC2      10_49 0.04893666  6.816082 9.707097e-07
8400          COMTD1      10_49 0.28667425 23.861852 1.990734e-05
8403          ZNF503      10_49 0.04021982  5.003042 5.855912e-07
8569           NDST2      10_49 0.03972994  4.890005 5.653892e-07
9499           AGAP5      10_49 0.06710370  9.750357 1.904089e-06
9990          SEC24C      10_49 0.05511812  7.918997 1.270237e-06
11540          FUT11      10_49 0.05597011  8.061447 1.313075e-06
12393         ZSWIM8      10_49 0.04536091  6.114036 8.071050e-07
12595     ZNF503-AS1      10_49 0.03904664  4.730019 5.374855e-07
14134 RP11-574K11.29      10_49 0.05065803  7.136327 1.052067e-06
14200 RP11-399K21.14      10_49 0.09343564 12.856674 3.495920e-06
                z num_eqtl
3973   0.01717948        1
6646   2.83036765        2
7242  -0.52221619        2
7291   0.38624927        1
8399   0.77120615        1
8400   2.94379743        1
8403  -0.08773738        1
8569   0.33102963        1
9499  -1.31828442        1
9990  -1.07824995        1
11540  1.14727402        2
12393  0.82505158        1
12595  0.39356612        1
14134  0.91321378        2
14200 -1.52846728        1

[1] "LIPC"
[1] "15_26"
         genename region_tag  susie_pip       mu2          PVE          z
4479       MINDY2      15_26 0.02182881  7.634644 4.849971e-07  0.9669014
5513         SLTM      15_26 0.01737449  5.539484 2.800926e-07 -0.7278100
5531       ADAM10      15_26 0.01864221  6.224955 3.377179e-07  0.8403684
7354       RNF111      15_26 0.01582669  4.661543 2.147040e-07 -0.2997052
7355       FAM81A      15_26 0.01576415  4.619803 2.119407e-07  0.1345993
7356        MYO1E      15_26 0.01677466  5.143764 2.511047e-07 -0.3257632
8475         LIPC      15_26 0.02726663 10.206871 8.099242e-07  1.2378553
9418      LDHAL6B      15_26 0.01683910  5.443578 2.667618e-07 -0.6263826
14474 RP11-59H7.4      15_26 0.09080818 20.211605 5.341289e-06  2.3147450
      num_eqtl
4479         1
5513         2
5531         2
7354         1
7355         1
7356         1
8475         2
9418         2
14474        1

[1] "SOAT2"
[1] "12_33"
            genename region_tag  susie_pip       mu2          PVE
234         CALCOCO1      12_33 0.04349865  6.673368 8.447752e-07
641            EIF4B      12_33 0.03347448  4.583688 4.465285e-07
2858            TNS2      12_33 0.07727981 12.547864 2.821994e-06
4016            NFE2      12_33 0.06737257 11.065282 2.169531e-06
4018           SMUG1      12_33 0.03527512  5.056525 5.190880e-07
5160          ATP5G2      12_33 0.03577473  6.652201 6.925673e-07
5164           AMHR2      12_33 0.25172464 16.030328 1.174325e-05
5180           ESPL1      12_33 0.06202395 10.614144 1.915864e-06
5757           GPR84      12_33 0.05354162  8.820092 1.374311e-06
5758            NPFF      12_33 0.07880492 14.637800 3.356985e-06
5764           ITGB7      12_33 0.03364714  4.616770 4.520710e-07
5766            CSAD      12_33 0.03702400  5.606838 6.041177e-07
5770          ZNF740      12_33 0.19488822 20.418379 1.158050e-05
8797            KRT1      12_33 0.03474626  4.869346 4.923783e-07
8801          SPRYD3      12_33 0.06068610  9.740314 1.720214e-06
8802          IGFBP6      12_33 0.07009177 11.271009 2.299059e-06
8803           SOAT2      12_33 0.06721434 10.962576 2.144346e-06
9188           KRT78      12_33 0.03414282  4.794059 4.763466e-07
9203            KRT4      12_33 0.03369753  4.651609 4.561646e-07
10380          HOXC9      12_33 0.04370225  6.853768 8.716729e-07
10382         HOXC10      12_33 0.03509146  4.993854 5.099852e-07
10554          MFSD5      12_33 0.06453160  9.670646 1.816135e-06
10926            SP1      12_33 0.18436401 15.159719 8.133690e-06
12164          PRR13      12_33 0.12776503 13.611359 5.060970e-06
13225       FLJ12825      12_33 0.05515857  9.122885 1.464420e-06
13257  RP11-834C11.6      12_33 0.14057561 17.621976 7.209163e-06
13308  RP11-834C11.4      12_33 0.03440711  4.777294 4.783552e-07
13550 RP11-1136G11.8      12_33 0.03342918  4.568659 4.444622e-07
13690    AC012531.25      12_33 0.03334476  4.540033 4.405619e-07
14610 RP11-834C11.15      12_33 0.22717448 22.325178 1.475961e-05
                 z num_eqtl
234    0.483458204        2
641   -0.139976993        3
2858  -1.824491131        1
4016   1.367961353        1
4018   0.396812394        1
5160   1.707705351        2
5164   3.566058337        1
5180   1.676240323        2
5757   1.184293991        1
5758  -2.568783738        1
5764   0.259908099        1
5766  -0.784742392        2
5770   2.396845990        1
8797  -0.201578746        1
8801   1.338767531        1
8802  -1.546273167        1
8803  -1.761993813        2
9188   0.349999201        1
9203  -0.189880079        1
10380 -0.736846459        1
10382  0.359797101        1
10554  0.686952711        2
10926  3.442597770        1
12164 -3.243337845        2
13225  1.259235906        2
13257 -2.158192780        2
13308 -0.009489289        1
13550 -0.012887459        1
13690  0.150041534        1
14610 -2.584553303        1

[1] "ADH1B"
[1] "4_66"
           genename region_tag  susie_pip       mu2          PVE
6393        TRMT10A       4_66 0.03831161  8.287718 9.240291e-07
6833          EIF4E       4_66 0.03271670  6.978369 6.644215e-07
8127         METAP1       4_66 0.02643780  5.071062 3.901617e-07
8960         TSPAN5       4_66 0.02538005  4.686672 3.461604e-07
9543           ADH6       4_66 0.05522000 11.916541 1.914992e-06
11172         ADH1A       4_66 0.04366401  9.141939 1.161669e-06
11492         ADH1B       4_66 0.02648798  5.203736 4.011293e-07
11700          ADH5       4_66 0.03624318  7.913779 8.347001e-07
11747          ADH4       4_66 0.02946235  5.879762 5.041357e-07
13222         ADH1C       4_66 0.02499946  4.538485 3.301885e-07
14211 RP11-571L19.8       4_66 0.02500054  4.541411 3.304156e-07
                z num_eqtl
6393  -1.02976981        2
6833   0.96532383        1
8127   0.51219875        2
8960  -0.16756785        3
9543   1.59860575        4
11172  1.04693291        1
11492  0.53981364        1
11700 -0.97711679        2
11747 -0.42497620        3
13222 -0.29740734        2
14211  0.08894637        2

[1] "LCAT"
[1] "16_36"
          genename region_tag  susie_pip       mu2          PVE
415           CDH1      16_36 0.32934649 15.629291 1.498003e-05
631           CDH3      16_36 0.05366482  7.479259 1.168069e-06
771           CBFB      16_36 0.03801916  4.700029 5.200240e-07
892         NFATC3      16_36 0.03773443  4.657802 5.114923e-07
1366         CMTM1      16_36 0.08019688 11.885486 2.773925e-06
1970         ELMO3      16_36 0.03830333  4.743522 5.287589e-07
1972         NUTF2      16_36 0.03741858  4.563092 4.968975e-07
1974      TSNAXIP1      16_36 0.03742694  4.574752 4.982785e-07
1983          CTCF      16_36 0.03746705  4.589078 5.003746e-07
1984           ACD      16_36 0.03820572  4.743496 5.274087e-07
1986        PARD6A      16_36 0.03747537  4.611482 5.029290e-07
1999      SLC7A6OS      16_36 0.03760938  4.661131 5.101616e-07
2000        SLC7A6      16_36 0.04190161  5.429104 6.620323e-07
2002         ESRP2      16_36 0.04850498  6.789740 9.584286e-07
4059       SLC12A4      16_36 0.03737264  4.561188 4.960804e-07
4060         ENKD1      16_36 0.11653953 14.775721 5.011206e-06
4166        LRRC29      16_36 0.03904619  4.925418 5.596829e-07
4170      C16orf70      16_36 0.03857856  4.809904 5.400111e-07
4835         PRMT7      16_36 0.03779811  4.639705 5.103649e-07
5215      DYNC1LI2      16_36 0.05363617  8.593124 1.341310e-06
5216         FHOD1      16_36 0.07186625 10.415130 2.178261e-06
5218        SLC9A5      16_36 0.07534119 10.851155 2.379188e-06
5896         CMTM3      16_36 0.24362752 21.509367 1.525016e-05
5917       RANBP10      16_36 0.04064040  5.286087 6.251909e-07
5918         GFOD2      16_36 0.06026701  9.339783 1.638086e-06
7526          NAE1      16_36 0.03833035  5.110422 5.700590e-07
7535        LRRC36      16_36 0.04022773  5.262811 6.161176e-07
7536         TPPP3      16_36 0.06056629  9.186315 1.619171e-06
7537      ATP6V0D1      16_36 0.06616756  9.779278 1.883095e-06
7539      C16orf86      16_36 0.03731997  4.546847 4.938238e-07
7543         PSKH1      16_36 0.03834535  4.752767 5.303707e-07
8577         BEAN1      16_36 0.04201038  5.738676 7.015984e-07
8578           TK2      16_36 0.06873114 10.343067 2.068822e-06
8585        FAM96B      16_36 0.03750457  4.624201 5.047093e-07
8692         DPEP2      16_36 0.03841614  4.768859 5.331489e-07
8946        KCTD19      16_36 0.04022773  5.262811 6.161176e-07
9525          CES3      16_36 0.06233782  9.319662 1.690721e-06
9527          CES2      16_36 0.03975666  5.190658 6.005547e-07
9528          PDP2      16_36 0.03875205  4.962469 5.596453e-07
10219      EXOC3L1      16_36 0.04297924  5.749451 7.191268e-07
10284         CDH5      16_36 0.03948882  5.063300 5.818730e-07
10836        ZFP90      16_36 0.04585809  8.050219 1.074345e-06
11205        NRN1L      16_36 0.03866181  5.211611 5.863737e-07
11386    KIAA0895L      16_36 0.08341617 12.110367 2.939868e-06
12151       PSMB10      16_36 0.03732024  4.542329 4.933366e-07
12154         E2F4      16_36 0.04327874  5.812062 7.320236e-07
12285         LCAT      16_36 0.03823580  4.730365 5.263628e-07
12453         CKLF      16_36 0.03935060  5.046591 5.779228e-07
12954       B3GNT9      16_36 0.07239502 10.970949 2.311390e-06
13207 RP11-61A14.4      16_36 0.05978971  9.478025 1.649167e-06
13208    LINC00920      16_36 0.05145331  7.298213 1.092824e-06
14399 RP11-615I2.6      16_36 0.08545334 13.070581 3.250456e-06
                z num_eqtl
415    3.46949237        1
631    0.31798262        1
771   -0.35723698        2
892   -0.17593790        2
1366   1.78488529        1
1970  -0.09066466        1
1972  -0.03458739        1
1974  -0.06706963        1
1983   0.24004806        1
1984  -0.33605088        2
1986   0.16803524        2
1999  -0.25795348        1
2000   0.02829446        2
2002   0.64884778        1
4059  -0.03325997        2
4060  -1.74717720        2
4166   0.35721061        1
4170  -0.25979672        2
4835  -0.01811452        3
5215  -1.39184631        2
5216   1.44081757        2
5218   1.48414415        2
5896   2.42221238        2
5917   0.28271111        1
5918   1.35972957        1
7526  -0.70397357        1
7535   0.55097659        1
7536   1.17619053        2
7537  -1.29668047        2
7539  -0.15163395        1
7543  -0.12841385        1
8577   0.63744636        1
8578   1.57732510        2
8585   0.43336957        1
8692   0.06611923        1
8946   0.55097659        1
9525   1.18841547        2
9527  -0.60733274        2
9528  -0.53643489        1
10219  0.62177486        1
10284  0.30408751        1
10836 -2.15487379        1
11205  0.73226207        2
11386 -1.69106241        1
12151 -0.08491409        1
12154 -0.63903874        2
12285  0.12182289        1
12453  0.59799566        1
12954  1.45681505        1
13207 -1.31594410        1
13208  0.85653011        1
14399 -1.99233870        1

[1] "VDAC1"
[1] "5_80"
        genename region_tag  susie_pip       mu2          PVE            z
120        CDKL3       5_80 0.05798467  6.503553 1.097448e-06  0.878896726
446        JADE2       5_80 0.04703135  4.562061 6.244086e-07  0.063763443
795        PITX1       5_80 0.05177186  5.451476 8.213498e-07  0.520964770
882         AFF4       5_80 0.04721203  4.597538 6.316817e-07  0.180429451
1126        TCF7       5_80 0.04738579  4.631533 6.386945e-07  0.084800679
3128        SKP1       5_80 0.07560118  8.978670 1.975427e-06 -1.240801827
3129      PPP2CA       5_80 0.08958157 10.572858 2.756331e-06  1.401022662
3131     C5orf15       5_80 0.08258649  9.807745 2.357211e-06  1.212487670
3136     TXNDC15       5_80 0.06336692  7.329617 1.351650e-06 -0.887073744
3140       H2AFY       5_80 0.06735333  7.898565 1.548202e-06 -0.959323725
4832       PCBD2       5_80 0.06655898  7.787849 1.508497e-06  0.941614894
8219     SHROOM1       5_80 0.08706960 10.304931 2.611151e-06  1.407744336
8220        GDF9       5_80 0.10909160 12.437970 3.948764e-06 -1.684248040
8221       UQCRQ       5_80 0.10909160 12.437970 3.948764e-06 -1.684248040
8250       CAMLG       5_80 0.04697266  4.550508 6.220502e-07  0.093330125
9221       HSPA4       5_80 0.04704663  4.565067 6.250230e-07  0.004356676
10482    C5orf24       5_80 0.05619043  6.211477 1.015728e-06  0.651805137
12299      VDAC1       5_80 0.09584043 11.210296 3.126700e-06  1.349083916
12956 CDKN2AIPNL       5_80 0.09617976 11.243705 3.147121e-06 -1.312402346
13324  LINC01843       5_80 0.05712330  6.364454 1.058022e-06  0.735872611
      num_eqtl
120          1
446          2
795          1
882          1
1126         1
3128         1
3129         2
3131         2
3136         1
3140         1
4832         2
8219         1
8220         1
8221         1
8250         2
9221         2
10482        1
12299        2
12956        2
13324        1

[1] "FADS3"
[1] "11_34"
           genename region_tag  susie_pip       mu2          PVE
214            SYT7      11_34 0.02957653  6.140324 5.285167e-07
2767           DTX4      11_34 0.07661538 15.209328 3.391145e-06
2780         CCDC86      11_34 0.03698217  8.457224 9.102077e-07
2781         PRPF19      11_34 0.04830671 10.674871 1.500688e-06
2782        TMEM109      11_34 0.04703556 10.427372 1.427321e-06
2808        SLC15A3      11_34 0.02701115  5.602543 4.404012e-07
5072          DAGLA      11_34 0.02576174  6.607148 4.953470e-07
5077          FADS2      11_34 0.04839042 48.606847 6.845058e-06
5078        TMEM258      11_34 0.04757906 43.646261 6.043426e-06
5079           TCN1      11_34 0.04129509  8.874129 1.066460e-06
6711        TMEM138      11_34 0.03232386  8.817461 8.294439e-07
6712          FADS1      11_34 0.25990394 81.437461 6.159669e-05
6716         INCENP      11_34 0.02539261  5.487253 4.054923e-07
6717            ZP1      11_34 0.09692062 16.143421 4.553361e-06
6720          CPSF7      11_34 0.02774480  5.557581 4.487327e-07
6721          MS4A2      11_34 0.04531472  9.717689 1.281512e-06
7768       CYB561A3      11_34 0.03232386  8.817461 8.294439e-07
7770         ASRGL1      11_34 0.05115776 10.362157 1.542702e-06
8606        FAM111A      11_34 0.02724854  5.251164 4.164081e-07
8628          PATL1      11_34 0.22934575 24.764852 1.652901e-05
8630           STX3      11_34 0.07589893 14.426088 3.186431e-06
8639         MS4A6E      11_34 0.02613818  4.847693 3.687489e-07
8640          MS4A7      11_34 0.04209350  9.229870 1.130657e-06
8641         MS4A14      11_34 0.02819519  5.733358 4.704401e-07
8838           VWCE      11_34 0.02522415  4.607382 3.382137e-07
8839        RAB3IL1      11_34 0.02754594  5.305591 4.253159e-07
10622        PTGDR2      11_34 0.02616381  4.897209 3.728806e-07
11103       TMEM216      11_34 0.02532492  4.634968 3.415978e-07
11653         MPEG1      11_34 0.02583994  4.867720 3.660475e-07
12120       LRRC10B      11_34 0.02507501  4.605025 3.360419e-07
12403        MS4A4E      11_34 0.04678077 10.054666 1.368848e-06
12488         FADS3      11_34 0.02794435 30.157170 2.452476e-06
12724          PGA3      11_34 0.03549351  7.093703 7.327271e-07
13286 RP11-855O10.2      11_34 0.02514013  4.807881 3.517560e-07
13443    AP001257.1      11_34 0.02508306  4.541950 3.315456e-07
13448    AP000442.4      11_34 0.02506955  4.538164 3.310907e-07
13507 RP11-794G24.1      11_34 0.05924703 10.995449 1.895832e-06
13513 RP11-286N22.8      11_34 0.02520318  4.613831 3.384055e-07
13516          PGA5      11_34 0.03140549  6.201678 5.668068e-07
                 z num_eqtl
214   -0.577860995        1
2767  -1.742131948        1
2780   1.274058697        2
2781   1.446293747        1
2782   1.421831985        1
2808   0.821410772        1
5072  -1.422119392        2
5077  -6.671545473        1
5078  -6.520941409        2
5079   0.916393926        1
6711  -1.782804562        1
6712   9.150337934        1
6716  -1.053905396        3
6717   1.565447050        1
6720  -0.647252767        2
6721  -1.135206653        1
7768  -1.782804562        1
7770  -1.126706101        2
8606   0.321876718        1
8628   3.252550732        2
8630   2.406885497        4
8639   0.035807230        1
8640  -1.016881909        2
8641  -0.602717982        1
8838  -0.158063055        1
8839  -0.464622365        1
10622 -0.262494092        3
11103 -0.145271506        2
11653  0.278217067        2
12120 -0.263629874        1
12403  1.240983470        1
12488 -5.433117266        1
12724  0.119664297        1
13286  0.547874538        1
13443  0.003034195        2
13448  0.095873681        1
13507  0.447753087        1
13513 -0.175548731        1
13516 -0.047803015        1

[1] "APOC2"
[1] "19_31"
      genename region_tag susie_pip         mu2 PVE           z num_eqtl
122      MARK4      19_31         0   21.181957   0  -2.2463768        1
227      ERCC1      19_31         0    7.409485   0  -1.6350316        2
633     ZNF112      19_31         0   47.819226   0   4.8629559        1
905        PVR      19_31         0   31.813106   0  -3.0943045        1
2176    CLPTM1      19_31         0   50.178070   0   2.5751726        1
2178   PPP1R37      19_31         0   42.423234   0  -5.9455792        1
2182  PPP1R13L      19_31         0   22.778963   0  -3.0806361        1
2184     ERCC2      19_31         0   13.966069   0   1.5340117        1
2189      KLC3      19_31         0   13.524015   0  -3.6648287        2
3573    CD3EAP      19_31         0   11.426032   0   2.5646694        1
4228      FOSB      19_31         0   16.099633   0  -2.3658041        1
4229      OPA3      19_31         0    6.808430   0   1.5059074        2
4231      RTN2      19_31         0    6.949994   0  -2.0700710        1
4233      VASP      19_31         0   33.645255   0  -2.7026884        1
4573   NECTIN2      19_31         0 1648.609427   0 -35.7740463        1
4574      APOE      19_31         0  303.200452   0   0.6519443        1
4575    TOMM40      19_31         0 1005.711219   0 -14.0286334        2
4576     APOC1      19_31         0  474.076449   0  -9.1150442        1
6037    GEMIN7      19_31         0  205.847243   0  13.2439035        2
7553    ZNF233      19_31         0  131.643247   0 -10.0229697        2
7554    ZNF235      19_31         0   35.913626   0  -6.2627967        2
8710    ZNF180      19_31         0   43.730327   0   4.0279244        1
9234    ZNF296      19_31         0   94.996588   0   5.4593536        1
11052 CEACAM19      19_31         0   64.753213   0  11.7978210        2
11128     BCAM      19_31         0   96.429711   0   4.6421318        1
11348  BLOC1S3      19_31         0   11.973214   0   2.7250151        2
12327    PPM1N      19_31         0   24.361748   0  -2.6089113        1
12884    APOC2      19_31         0   18.135579   0  -2.2896080        1
13922   ZNF285      19_31         0   10.133291   0  -1.3318721        3
14528   ZNF229      19_31         0  125.384012   0  14.4998133        1
#run APOE locus again using full SNPs
# focus <- "APOE"
# region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]
# 
# locus_plot(region_tag, label="TWAS", rerun_ctwas = T)
# 
# mtext(text=region_tag)
# 
# print(focus)
# print(region_tag)
# print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])

Locus Plots - False positives

This section produces locus plots for all bystander genes with PIP>0.8 (false positives). The highlighted gene at each region is the false positive gene.

false_positives <- ctwas_gene_res$genename[ctwas_gene_res$genename %in% unrelated_genes & ctwas_gene_res$susie_pip>0.8]

for (i in 1:length(false_positives)){
  focus <- false_positives[i]
  region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]

  locus_plot3(region_tag, focus=focus)
  mtext(text=region_tag)

  print(focus)
  print(region_tag)
  print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
  
  #genes at this locus that are in known annotations
  ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag][ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag] %in% known_annotations]
}

[1] "TMED4"
[1] "7_32"
        genename region_tag  susie_pip        mu2          PVE          z
18         HECW1       7_32 0.02781865   5.801245 4.696536e-07 -0.3769605
266       NPC1L1       7_32 0.87077857 100.506326 2.546956e-04 11.6310213
590       CAMK2B       7_32 0.03205752   6.435120 6.003533e-07 -1.3113038
636       MRPS24       7_32 0.02688409   5.636475 4.409843e-07  0.3827818
1072      UBE2D4       7_32 0.02674845   5.737501 4.466237e-07  0.6290952
2371        OGDH       7_32 0.02806812  11.531669 9.419456e-07 -2.5518108
2452        COA1       7_32 0.06263166  12.220524 2.227430e-06 -1.0972085
2453       BLVRA       7_32 0.02525596   5.282089 3.882306e-07  0.6112755
2458       AEBP1       7_32 0.02852512   6.670093 5.537065e-07 -0.9567966
2461         GCK       7_32 0.03992584   9.537524 1.108179e-06  1.2747958
2463        YKT6       7_32 0.02913308   7.784609 6.599994e-07  1.6794862
3955        POLM       7_32 0.02600385   5.343151 4.043481e-07 -0.4204156
5303       DDX56       7_32 0.04246638   9.385524 1.159909e-06 -0.7865840
5305        DBNL       7_32 0.02968824   6.061190 5.236760e-07  0.1683551
7444       TMED4       7_32 0.84231695  38.146713 9.350890e-05  7.6088259
8238      STK17A       7_32 0.02906015   6.122062 5.177450e-07  0.4764271
12678 AC004951.6       7_32 0.03572632   7.307602 7.597723e-07  0.2209151
12901  LINC00957       7_32 0.02576194   5.348360 4.009770e-07 -0.4692011
      num_eqtl
18           1
266          1
590          1
636          1
1072         1
2371         2
2452         2
2453         2
2458         2
2461         2
2463         1
3955         2
5303         1
5305         2
7444         2
8238         2
12678        1
12901        1

Genes with many eQTL

#distribution of number of eQTL for all imputed genes (after dropping ambiguous variants)
table(ctwas_gene_res$num_eqtl)

   1    2    3    4    5    6    7    8 
7354 4158 1043  201   42    8    1    3 
#all genes with 4+ eQTL
ctwas_gene_res[ctwas_gene_res$num_eqtl>3,]
      chrom                 id       pos type region_tag1 region_tag2
3413      1 ENSG00000116237.15   6222890 gene           1           6
9113      1  ENSG00000169914.5  19882290 gene           1          13
7465      1  ENSG00000158825.5  20588925 gene           1          14
1405      1 ENSG00000090686.15  21782050 gene           1          15
11993     1 ENSG00000204138.12  28349072 gene           1          19
11765     1 ENSG00000198198.15  43384246 gene           1          27
3569      1 ENSG00000117834.12  48212526 gene           1          30
13038     1  ENSG00000240563.1  62194851 gene           1          39
3462      1 ENSG00000116791.13  74701793 gene           1          47
3500      1 ENSG00000117133.10  84383981 gene           1          52
4996      1 ENSG00000134184.12 109571336 gene           1          67
4998      1 ENSG00000134201.10 109709124 gene           1          67
8954      1 ENSG00000168765.16 109636098 gene           1          67
7249      1 ENSG00000156171.14 111139496 gene           1          68
12758     1  ENSG00000231246.1 112176665 gene           1          70
6106      1 ENSG00000143149.12 165652366 gene           1          81
13133     1  ENSG00000243709.1 225909765 gene           1         115
6214      1  ENSG00000143653.9 246720005 gene           1         130
3577      2 ENSG00000118004.17   3594750 gene           2           2
3652      2 ENSG00000119185.12   9408522 gene           2           6
1206      2 ENSG00000084676.15  24488675 gene           2          15
12875     2  ENSG00000234690.6  47336895 gene           2          30
5557      2 ENSG00000138039.14  48735152 gene           2          31
3385      2  ENSG00000116031.8  70833920 gene           2          47
4101      2 ENSG00000124356.15  73828835 gene           2          48
6262      2 ENSG00000144026.11  95171674 gene           2          57
3376      2 ENSG00000115947.13 148018368 gene           2          88
10039     2 ENSG00000177483.11 237779632 gene           2         140
8908      2 ENSG00000168397.16 241634894 gene           2         144
10393     2 ENSG00000180902.17 241737769 gene           2         144
6308      3 ENSG00000144455.13   4368850 gene           3           4
8053      3 ENSG00000163702.18   9915771 gene           3           8
8848      3 ENSG00000168026.18  39106300 gene           3          28
8082      3 ENSG00000163820.14  45921260 gene           3          32
10172     3  ENSG00000178700.7  94060750 gene           3          59
11240     3 ENSG00000188313.12 146532105 gene           3          90
13048     3  ENSG00000240875.5 156751124 gene           3          97
3654      3  ENSG00000119227.7 196935912 gene           3         121
4360      4 ENSG00000127415.12    945299 gene           4           2
12217     4 ENSG00000206113.10   2416718 gene           4           3
4806      4 ENSG00000132406.11   4247307 gene           4           5
4106      4 ENSG00000124406.16  42648749 gene           4          34
11810     4 ENSG00000198515.13  47948298 gene           4          37
277       4 ENSG00000018189.12  70701678 gene           4          49
5660      4 ENSG00000138744.14  75936156 gene           4          51
11764     4 ENSG00000198189.10  87337331 gene           4          59
9543      4 ENSG00000172955.17  99213357 gene           4          66
5672      4 ENSG00000138777.19 105426268 gene           4          69
5676      4  ENSG00000138792.9 110367523 gene           4          72
13991     4  ENSG00000269893.6 118278629 gene           4          76
6784      4 ENSG00000150627.15 176065833 gene           4         114
6411      4 ENSG00000145476.15 186191475 gene           4         120
726       5 ENSG00000066230.10    434990 gene           5           1
13309     5  ENSG00000250786.1   9541581 gene           5           8
3113      5 ENSG00000113360.16  31526264 gene           5          22
7202      5 ENSG00000155542.11  56909472 gene           5          33
8299      5 ENSG00000164904.17 126537717 gene           5          77
12094     5 ENSG00000204677.10 178004394 gene           5         107
14146     6  ENSG00000272279.1   1528446 gene           6           2
12734     6  ENSG00000230438.6   2863329 gene           6           3
6464      6 ENSG00000145979.17  13295270 gene           6          12
12089     6 ENSG00000204632.11  29826724 gene           6          24
12062     6  ENSG00000204516.9  31494468 gene           6          25
12066     6 ENSG00000204525.16  31239091 gene           6          25
12067     6 ENSG00000204531.17  31174520 gene           6          25
12021     6  ENSG00000204301.6  32210996 gene           6          26
13169     6  ENSG00000244731.7  31973120 gene           6          26
1530      6 ENSG00000096433.10  33599327 gene           6          28
11865     6 ENSG00000198755.10  35468418 gene           6          28
2985      6 ENSG00000112130.16  37353428 gene           6          29
11419     6 ENSG00000196284.15  45377620 gene           6          34
5141      6 ENSG00000135297.15  73453764 gene           6          51
9574      6  ENSG00000173214.5 111256558 gene           6          74
11308     6 ENSG00000188820.12 116460362 gene           6          77
14566     6  ENSG00000279968.1 138773501 gene           6          92
12854     6  ENSG00000234147.1 140688240 gene           6          93
12735     7  ENSG00000230487.7   1562574 gene           7           3
3940      7 ENSG00000122512.14   6009342 gene           7           9
3954      7 ENSG00000122674.11   5887685 gene           7           9
2427      7 ENSG00000106392.10   7122680 gene           7           9
2402      7 ENSG00000106125.14  30761823 gene           7          24
11733     7 ENSG00000198039.11  64863974 gene           7          44
12290     7  ENSG00000213462.4  65006275 gene           7          44
4395      7 ENSG00000127947.15  77532312 gene           7          49
2358      7 ENSG00000105854.12  95433958 gene           7          58
9222      7 ENSG00000170615.14 103421569 gene           7          63
11130     7 ENSG00000187260.15 151394339 gene           7          94
13747     7  ENSG00000261455.1 152463544 gene           7          94
4332      7 ENSG00000126870.15 158856009 gene           7          99
398       8  ENSG00000036448.9   2044443 gene           8           4
2157      8 ENSG00000104728.15   1824475 gene           8           4
14180     8  ENSG00000272505.1  10421949 gene           8          13
7034      8 ENSG00000153317.14 130442939 gene           8          85
2495      9 ENSG00000107099.15    205428 gene           9           2
14591     9  ENSG00000281769.1   1044481 gene           9           2
6582      9 ENSG00000147853.16   4720017 gene           9           5
11655     9  ENSG00000197646.7   5500129 gene           9           6
11323     9 ENSG00000188921.13  21019896 gene           9          16
2473      9 ENSG00000106733.20  75064122 gene           9          35
12911     9  ENSG00000235641.4  91159887 gene           9          46
3677      9 ENSG00000119509.12 100097520 gene           9          50
2484      9 ENSG00000106853.18 111461149 gene           9          56
9580      9 ENSG00000173258.12 111525084 gene           9          56
3671      9  ENSG00000119431.9 113137846 gene           9          58
6610      9 ENSG00000148288.11 133156531 gene           9          70
9799      9 ENSG00000175164.13 133252254 gene           9          70
12562    10  ENSG00000225383.7  10794743 gene          10          10
11503    10 ENSG00000196693.14  42638488 gene          10          29
3925     10 ENSG00000122375.11  86611799 gene          10          56
12549    10  ENSG00000224914.3  87222627 gene          10          56
6651     10 ENSG00000148690.11  93696291 gene          10          60
3745     10 ENSG00000120008.15 120850879 gene          10          75
2568     10 ENSG00000107902.13 124462247 gene          10          78
9191     10  ENSG00000170430.9 129467281 gene          10          81
6872     10 ENSG00000151640.12 132186469 gene          10          83
11249    10 ENSG00000188385.11 132105155 gene          10          83
6021     11 ENSG00000142102.15    288845 gene          11           1
9995     11 ENSG00000177042.14    688091 gene          11           1
10871    11 ENSG00000185201.16    306862 gene          11           1
13458    11  ENSG00000255328.1    326718 gene          11           1
14045    11  ENSG00000270972.1    324170 gene          11           1
2815     11 ENSG00000110628.13   2899534 gene          11           3
3850     11 ENSG00000121236.20   5590335 gene          11           4
9268     11  ENSG00000170955.9   6320135 gene          11           5
8544     11 ENSG00000166405.14   8166592 gene          11           6
3878     11  ENSG00000121691.4  34438684 gene          11          23
6677     11 ENSG00000149089.12  34915273 gene          11          23
6841     11 ENSG00000151348.13  44066439 gene          11          27
8630     11 ENSG00000166900.15  59754175 gene          11          34
7781     11 ENSG00000162341.16  69004604 gene          11          38
5502     11 ENSG00000137713.15 111765903 gene          11          66
6697     11 ENSG00000149292.16 113289048 gene          11          67
805      12 ENSG00000069493.14   9664279 gene          12           9
13678    12  ENSG00000260423.1   9319927 gene          12           9
12782    12  ENSG00000231887.6  10937478 gene          12          10
42       12 ENSG00000004700.15  21494403 gene          12          16
14420    12  ENSG00000275764.1  27036797 gene          12          18
6831     12 ENSG00000151233.10  42126028 gene          12          27
5183     12 ENSG00000135502.17  57610139 gene          12          36
4355     12  ENSG00000127337.6  69358729 gene          12          42
5269     12 ENSG00000136051.13 105084034 gene          12          63
8957     12 ENSG00000168778.11 123656482 gene          12          75
367      13 ENSG00000032742.17  20519749 gene          13           2
10376    13 ENSG00000180776.15  21458983 gene          13           2
5747     13 ENSG00000139505.11  25285678 gene          13           6
4177     13 ENSG00000125257.13  95301151 gene          13          47
1949     13 ENSG00000102595.19  96029375 gene          13          48
4174     13 ENSG00000125246.15  99606547 gene          13          50
6770     13 ENSG00000150403.17 113476508 gene          13          62
1458     14 ENSG00000092200.12  21272924 gene          14           2
7349     14 ENSG00000157379.13  24291558 gene          14           3
10451    14 ENSG00000181619.11  59444736 gene          14          27
5798     14 ENSG00000139998.14  64972366 gene          14          30
5804     14 ENSG00000140043.11  73832334 gene          14          34
176      14 ENSG00000009830.11  77317924 gene          14          36
8455     14 ENSG00000165934.12  92121369 gene          14          46
1574     14 ENSG00000099814.15 104846598 gene          14          55
13490    15  ENSG00000256061.7  55419003 gene          15          24
8976     15 ENSG00000168904.14  99251231 gene          15          48
13613    15  ENSG00000259363.5  99791048 gene          15          48
3403     16  ENSG00000116176.6   1223025 gene          16           2
5906     16 ENSG00000140988.15   1964282 gene          16           2
11647    16 ENSG00000197599.12   1436461 gene          16           2
598      16 ENSG00000059122.16   2911846 gene          16           3
12322    16  ENSG00000213853.9  10521110 gene          16          11
10714    16 ENSG00000183793.13  14889311 gene          16          15
6754     16 ENSG00000149922.10  30091070 gene          16          24
700      16 ENSG00000065457.10  75617776 gene          16          40
5903     16 ENSG00000140955.10  84184959 gene          16          48
7084     16 ENSG00000154099.17  84144311 gene          16          48
25       16 ENSG00000003249.13  90020025 gene          16          54
5909     16 ENSG00000140995.16  89928005 gene          16          54
5926     17 ENSG00000141252.19    535410 gene          17           1
4803     17 ENSG00000132383.11   1829845 gene          17           3
11614    17  ENSG00000197417.7   3608661 gene          17           3
4504     17 ENSG00000129204.16   5077692 gene          17           5
118      17 ENSG00000006744.18  12992612 gene          17          11
12772    17  ENSG00000231595.1  14193507 gene          17          13
4777     17 ENSG00000132141.13  34935404 gene          17          21
14514    17  ENSG00000278053.4  37621240 gene          17          22
2603     17 ENSG00000108349.16  40116287 gene          17          23
13832    17  ENSG00000264968.1  39919884 gene          17          23
14507    17  ENSG00000277791.4  38751868 gene          17          23
10192    17 ENSG00000178852.15  47297429 gene          17          27
5320     17 ENSG00000136449.13  50508193 gene          17          29
13796    17  ENSG00000263004.1  57078438 gene          17          33
14549    17  ENSG00000278740.1  68142356 gene          17          39
13871    17  ENSG00000266714.6  75590244 gene          17          42
8819     17 ENSG00000167895.14  78130526 gene          17          43
10553    17 ENSG00000182534.13  76681074 gene          17          43
10564    17 ENSG00000182612.10  81636259 gene          17          46
13793    17  ENSG00000262877.4  81389871 gene          17          46
1924     18  ENSG00000101577.9   2963481 gene          18           3
982      18  ENSG00000075643.5  36187019 gene          18          19
5958     18 ENSG00000141469.16  45723869 gene          18          25
13820    18  ENSG00000264247.1  74592401 gene          18          44
8581     18  ENSG00000166573.5  77250127 gene          18          46
4554     19 ENSG00000129946.10    419407 gene          19           1
6008     19  ENSG00000141934.9    285330 gene          19           1
10466    19  ENSG00000181781.9    429404 gene          19           1
10629    19  ENSG00000183186.7    331904 gene          19           1
691      19 ENSG00000065268.10    982793 gene          19           2
1575     19 ENSG00000099817.11   1086315 gene          19           2
9811     19 ENSG00000175221.14    863601 gene          19           2
4517     19 ENSG00000129354.11  10577400 gene          19           9
11006    19 ENSG00000186204.14  15671348 gene          19          13
2271     19 ENSG00000105383.14  51214320 gene          19          36
2292     19 ENSG00000105501.12  51610285 gene          19          36
7614     19 ENSG00000160336.14  53431544 gene          19          36
8795     19 ENSG00000167766.18  52615913 gene          19          36
9266     19 ENSG00000170949.17  53078878 gene          19          36
9267     19 ENSG00000170954.11  53087254 gene          19          36
11358    19  ENSG00000189190.9  52775408 gene          19          36
303      19 ENSG00000022556.15  54952230 gene          19          37
9255     19 ENSG00000170889.13  54199820 gene          19          37
1866     20 ENSG00000101224.17   3777779 gene          20           3
11760    20 ENSG00000198171.12   3195426 gene          20           3
9801     20 ENSG00000175170.14  25865211 gene          20          19
1293     20 ENSG00000087495.16  59577330 gene          20          34
613      20 ENSG00000060491.16  62787722 gene          20          37
1470     20 ENSG00000092758.15  62817114 gene          20          37
1856     20 ENSG00000101190.12  62846860 gene          20          37
1849     20  ENSG00000101161.7  63979203 gene          20          38
7484     21 ENSG00000159110.19  33229937 gene          21          14
12754    21  ENSG00000231106.2  36005333 gene          21          16
6009     21 ENSG00000141956.13  41794590 gene          21          20
10524    21 ENSG00000182240.15  41167887 gene          21          20
7583     21 ENSG00000160200.17  42950409 gene          21          21
10539    21 ENSG00000182362.13  46257739 gene          21          24
10960    22 ENSG00000185838.13  19852673 gene          22           3
1590     22 ENSG00000099940.11  20856819 gene          22           4
1603     22 ENSG00000099994.10  24179365 gene          22           7
11365    22 ENSG00000189269.12  23632630 gene          22           7
14207    22  ENSG00000272733.1  23583592 gene          22           7
1669     22 ENSG00000100263.13  29177609 gene          22          10
10892    22  ENSG00000185339.8  30598854 gene          22          10
1725     22  ENSG00000100418.7  41620695 gene          22          17
11369    22 ENSG00000189306.10  42490805 gene          22          18
12607    22  ENSG00000226328.6  45131964 gene          22          20
165      22 ENSG00000008735.13  50593164 gene          22          24
4748      1 ENSG00000131778.18 147239128 gene           1          73
7878      1 ENSG00000162836.11 147647471 gene           1          73
5604      2 ENSG00000138363.14 215075224 gene           2         127
5625      3  ENSG00000138495.6 119653997 gene           3          74
870       8 ENSG00000071894.16 144385464 gene           8          94
6580      8 ENSG00000147813.15 143578019 gene           8          94
2080     15 ENSG00000103811.15  78936890 gene          15          37
10494    15  ENSG00000182054.9  90102033 gene          15          42
8695     17 ENSG00000167280.16  79075173 gene          17          44
2344     19  ENSG00000105755.7  43524879 gene          19          30
12864    19 ENSG00000234465.10  43577136 gene          19          30
2282     19 ENSG00000105443.13  48447623 gene          19          33
2291     19 ENSG00000105499.13  48107142 gene          19          33
2227     19 ENSG00000105136.20  57487500 gene          19          39
6043     19 ENSG00000142396.10  58305163 gene          19          39
      cs_index    susie_pip       mu2 region_tag          PVE
3413         0 3.571893e-02  4.698777        1_6 4.884314e-07
9113         0 6.450283e-02  8.922900       1_13 1.674963e-06
7465         0 3.212455e-02  5.305480       1_14 4.960005e-07
1405         0 3.617667e-02  4.708355       1_15 4.956991e-07
11993        0 3.716398e-02  4.997286       1_19 5.404763e-07
11765        0 9.616695e-02 11.649462       1_27 3.260258e-06
3569         0 2.922805e-02  4.549534       1_30 3.869787e-07
13038        0 4.661585e-02 11.516620       1_39 1.562352e-06
3462         0 1.352907e-01 16.171475       1_47 6.367044e-06
3500         0 3.419791e-02  5.660007       1_52 5.632962e-07
4996         0 2.166034e-03 59.592966       1_67 3.756475e-07
4998         0 1.515841e-07  7.772201       1_67 3.428609e-12
8954         0 2.557416e-07 15.286858       1_67 1.137732e-11
7249         0 6.506628e-02 11.644158       1_68 2.204877e-06
12758        0 5.576449e-02  7.506332       1_70 1.218164e-06
6106         0 8.308141e-02 13.556515       1_81 3.277723e-06
13133        0 5.355526e-02  8.246114      1_115 1.285203e-06
6214         0 3.108501e-01 25.296859      1_130 2.288431e-05
3577         0 5.220674e-02  6.277464        2_2 9.537425e-07
3652         0 4.198544e-02  5.463184        2_6 6.675209e-07
1206         0 6.050737e-02  8.987663       2_15 1.582615e-06
12875        0 3.437102e-02  6.322592       2_30 6.324234e-07
5557         0 5.779600e-02  9.440139       2_31 1.587802e-06
3385         0 9.353280e-02 12.544505       2_47 3.414584e-06
4101         0 9.671327e-02  8.979941       2_48 2.527434e-06
6262         0 4.986015e-02  4.577584       2_57 6.642174e-07
3376         0 3.736830e-02  4.590825       2_88 4.992458e-07
10039        0 3.747327e-02  4.958316      2_140 5.407246e-07
8908         0 5.021127e-02 10.388322      2_144 1.517983e-06
10393        0 3.873274e-02  8.493331      2_144 9.573628e-07
6308         0 7.724756e-02  7.560402        3_4 1.699613e-06
8053         0 4.119068e-02  4.611351        3_8 5.527737e-07
8848         0 5.273458e-02  7.335916       3_28 1.125823e-06
8082         0 7.498464e-02 10.730551       3_32 2.341610e-06
10172        0 3.805262e-02  5.888783       3_59 6.521243e-07
11240        0 3.332503e-02  4.628616       3_90 4.488921e-07
13048        0 3.099578e-02  4.574740       3_97 4.126571e-07
3654         0 1.061043e-01 12.654876      3_121 3.907611e-06
4360         0 4.787865e-02  8.440241        4_2 1.176026e-06
12217        0 3.615073e-02  5.989552        4_3 6.301323e-07
4806         0 3.679902e-02  6.073889        4_5 6.504641e-07
4106         0 1.663900e-01 20.104220       4_34 9.734972e-06
11810        0 5.048286e-02 10.102755       4_37 1.484240e-06
277          0 3.921636e-02  6.190487       4_49 7.065003e-07
5660         0 5.640138e-02  4.765484       4_51 7.821986e-07
11764        0 4.001866e-02  7.010563       4_59 8.164615e-07
9543         0 5.522000e-02 11.916541       4_66 1.914992e-06
5672         0 3.768842e-02  4.537507       4_69 4.976746e-07
5676         0 8.728298e-02 11.894869       4_72 3.021409e-06
13991        0 3.772549e-02  5.489874       4_76 6.027227e-07
6784         0 4.431433e-02  4.831460      4_114 6.230787e-07
6411         0 7.352719e-02 11.310766      4_120 2.420250e-06
726          0 9.508082e-02 14.846214        5_1 4.107986e-06
13309        0 5.500417e-02  9.793529        5_8 1.567672e-06
3113         0 4.244554e-02  5.597349       5_22 6.914086e-07
7202         0 4.268566e-02  9.034766       5_33 1.122327e-06
8299         0 3.984632e-02  6.548742       5_77 7.593927e-07
12094        0 5.770870e-02  9.347444      5_107 1.569837e-06
14146        0 5.697306e-02 11.579462        6_2 1.919898e-06
12734        0 3.704631e-02  5.077711        6_3 5.474359e-07
6464         0 3.384942e-02  4.602670       6_12 4.533999e-07
12089        0 5.801859e-02 27.354965       6_24 4.618741e-06
12062        0 2.296484e-02 15.169715       6_25 1.013821e-06
12066        0 1.055608e-02  8.183072       6_25 2.513849e-07
12067        0 1.866790e-02 13.335546       6_25 7.244803e-07
12021        0 1.464235e-02  9.530104       6_26 4.060960e-07
13169        0 2.331231e-02 23.351422       6_26 1.584233e-06
1530         0 1.992128e-02 13.162595       6_28 7.630956e-07
11865        0 9.613128e-03  5.209942       6_28 1.457531e-07
2985         0 2.566007e-02  4.721226       6_29 3.525599e-07
11419        0 3.739757e-02  5.153960       6_34 5.609249e-07
5141         0 5.786827e-02  7.068613       6_51 1.190406e-06
9574         0 3.822488e-02  4.827104       6_74 5.369739e-07
11308        0 3.131158e-02  4.854373       6_77 4.423422e-07
14566        0 3.144396e-02  5.798241       6_92 5.305835e-07
12854        0 1.070579e-01 15.674794       6_93 4.883606e-06
12735        0 3.242476e-02  5.107422        7_3 4.819465e-07
3940         0 4.438760e-02  6.672328        7_9 8.619048e-07
3954         0 1.357319e-01 16.799950        7_9 6.636056e-06
2427         0 4.411054e-02  6.914719        7_9 8.876408e-07
2402         0 4.619241e-02  4.616531       7_24 6.205927e-07
11733        0 6.461196e-02  7.510453       7_44 1.412210e-06
12290        0 4.805674e-02  4.761151       7_44 6.658656e-07
4395         0 3.883926e-02  4.543065       7_49 5.134997e-07
2358         0 7.005848e-02 11.342704       7_58 2.312584e-06
9222         0 7.235521e-02 13.333498       7_63 2.807593e-06
11130        0 2.363993e-01 22.550257       7_94 1.551379e-05
13747        0 7.432929e-02 11.376058       7_94 2.460776e-06
4332         0 4.674683e-02  7.175186       7_99 9.761255e-07
398          0 1.690045e-01 18.080884        8_4 8.892796e-06
2157         0 1.024087e-01 13.263118        8_4 3.952781e-06
14180        0 2.552053e-02  4.699150       8_13 3.490031e-07
7034         0 4.429832e-02  8.299131       8_85 1.069893e-06
2495         0 4.576179e-02  4.768116        9_2 6.349947e-07
14591        0 9.370778e-02 11.456878        9_2 3.124368e-06
6582         0 2.697859e-02  5.233867        9_5 4.109248e-07
11655        0 1.589141e-01 20.243800        9_6 9.362132e-06
11323        0 2.571925e-02  4.579875       9_16 3.427932e-07
2473         0 2.869029e-02  6.872631       9_35 5.738234e-07
12911        0 3.357705e-02  4.627000       9_46 4.521290e-07
3677         0 5.310248e-02  5.145675       9_50 7.952019e-07
2484         0 1.043743e-01 14.101797       9_56 4.283398e-06
9580         0 3.645474e-02  5.025192       9_56 5.331225e-07
3671         0 4.015043e-02  5.196289       9_58 6.071609e-07
6610         0 4.048563e-02  9.636297       9_70 1.135354e-06
9799         0 2.066049e-01 19.373660       9_70 1.164857e-05
12562        0 8.243195e-02 10.999311      10_10 2.638647e-06
11503        0 4.038557e-02  5.845838      10_29 6.870579e-07
3925         0 4.184787e-02  6.233339      10_56 7.591270e-07
12549        0 4.370137e-02  6.745175      10_56 8.578445e-07
6651         0 8.106676e-02 14.782151      10_60 3.487392e-06
3745         0 3.317147e-02  5.974008      10_75 5.767011e-07
2568         0 1.204207e-01 13.865987      10_78 4.859283e-06
9191         0 6.658017e-02 12.239813      10_81 2.371592e-06
6872         0 6.536556e-02  7.800655      10_83 1.483885e-06
11249        0 9.767022e-02 11.570700      10_83 3.288835e-06
6021         0 5.114983e-02  6.576528       11_1 9.789514e-07
9995         0 1.462482e-01 16.485624       11_1 7.016430e-06
10871        0 4.232995e-02  4.825691       11_1 5.944669e-07
13458        0 7.511865e-02 10.155766       11_1 2.220142e-06
14045        0 5.000231e-02  6.366258       11_1 9.263916e-07
2815         0 1.275911e-01 22.468275       11_3 8.342771e-06
3850         0 9.812151e-02 18.410258       11_4 5.257078e-06
9268         0 4.307929e-02  6.187872       11_5 7.757648e-07
8544         0 3.942149e-02  6.221093       11_6 7.137071e-07
3878         0 3.618744e-02  4.544123      11_23 4.785511e-07
6677         0 3.663615e-02  4.657635      11_23 4.965873e-07
6841         0 1.113233e-01 12.326672      11_27 3.993486e-06
8630         0 7.589893e-02 14.426088      11_34 3.186431e-06
7781         0 3.434782e-02  5.711611      11_38 5.709237e-07
5502         0 1.391233e-01 18.791395      11_66 7.608149e-06
6697         0 3.555880e-02  8.998223      11_67 9.311597e-07
805          0 3.093193e-02  5.839595       12_9 5.256662e-07
13678        0 3.464077e-02  6.383405       12_9 6.435174e-07
12782        0 5.330310e-02  5.758098      12_10 8.932063e-07
42           0 1.202339e-01 12.413015      12_16 4.343346e-06
14420        0 6.174280e-02  9.207311      12_18 1.654396e-06
6831         0 4.431621e-02  4.698632      12_27 6.059745e-07
5183         0 5.069277e-02  9.099575      12_36 1.342417e-06
4355         0 3.866921e-02  4.845907      12_42 5.453316e-07
5269         0 2.921096e-02  7.003965      12_63 5.954017e-07
8957         0 1.711512e-02  6.491706      12_75 3.233398e-07
367          0 6.835979e-02  9.940197       13_2 1.977498e-06
10376        0 3.829058e-02  4.566453       13_2 5.088517e-07
5747         0 4.001410e-02  5.750651       13_6 6.696539e-07
4177         0 7.641115e-02 10.441282      13_47 2.321832e-06
1949         0 6.628056e-02 11.419335      13_48 2.202659e-06
4174         0 6.187219e-02  9.375656      13_50 1.688175e-06
6770         0 2.307350e-02  5.136943      13_62 3.449361e-07
1458         0 8.657405e-02 11.699268       14_2 2.947588e-06
7349         0 3.792453e-02  7.274864       14_3 8.029072e-07
10451        0 3.892066e-02  4.695170      14_27 5.318042e-07
5798         0 3.285318e-02  4.726146      14_30 4.518610e-07
5804         0 9.908638e-03  5.587656      14_34 1.611254e-07
176          0 3.954329e-02  4.577051      14_36 5.267189e-07
8455         0 5.692538e-02  6.055840      14_46 1.003230e-06
1574         0 3.522879e-02  5.156818      14_55 5.286885e-07
13490        0 8.676855e-02 11.196326      15_24 2.827211e-06
8976         0 5.566622e-02  9.150478      15_48 1.482367e-06
13613        0 1.472484e-01 18.340396      15_48 7.859223e-06
3403         0 1.072586e-01 13.215980       16_2 4.125263e-06
5906         0 1.086303e-01 13.336762       16_2 4.216206e-06
11647        0 1.247861e-01 14.659759       16_2 5.323695e-06
598          0 1.015547e-01 13.131818       16_3 3.881014e-06
12322        0 4.822354e-02  5.073198      16_11 7.119692e-07
10714        0 6.172069e-02 12.127005      16_15 2.178234e-06
6754         0 4.809545e-02  5.451828      16_24 7.630736e-07
700          0 4.912756e-02 11.898801      16_40 1.701174e-06
5903         0 2.945834e-02  4.587943      16_48 3.933206e-07
7084         0 3.622124e-02  6.515454      16_48 6.867968e-07
25           0 9.013551e-02 11.907939      16_54 3.123582e-06
5909         0 4.576984e-02  5.587496      16_54 7.442467e-07
5926         0 4.129487e-02  5.114393       17_1 6.146254e-07
4803         0 3.205855e-02  5.673672       17_3 5.293323e-07
11614        0 2.799809e-02  4.557619       17_3 3.713529e-07
4504         0 5.321119e-02  8.372542       17_5 1.296524e-06
118          0 3.922314e-02  7.854684      17_11 8.965848e-07
12772        0 3.798157e-02  6.560320      17_13 7.251340e-07
4777         0 3.922519e-02  4.782755      17_21 5.459634e-07
14514        0 3.691769e-02  5.488084      17_22 5.896246e-07
2603         0 9.350636e-02 12.794541      17_23 3.481659e-06
13832        0 4.412739e-02  5.789914      17_23 7.435337e-07
14507        0 1.068691e-01 14.059314      17_23 4.372569e-06
10192        0 6.641369e-02 40.099387      17_27 7.750249e-06
5320         0 4.943595e-02  5.003351      17_29 7.198204e-07
13796        0 3.838528e-02  5.854589      17_33 6.540056e-07
14549        0 7.428924e-03 16.261207      17_39 3.515596e-07
13871        0 4.631052e-02  7.634581      17_42 1.028928e-06
8819         0 1.389507e-01 14.796733      17_43 5.983383e-06
10553        0 4.805550e-02  4.804189      17_43 6.718673e-07
10564        0 5.415803e-02  4.627335      17_46 7.293132e-07
13793        0 5.415297e-02  4.626468      17_46 7.291085e-07
1924         0 3.636214e-02  4.540276       18_3 4.804543e-07
982          0 3.852646e-02  4.537815      18_19 5.087755e-07
5958         0 3.697720e-02  5.151675      18_25 5.543739e-07
13820        0 4.986956e-02  8.801642      18_44 1.277378e-06
8581         0 3.406076e-02  4.794787      18_46 4.752739e-07
4554         0 2.826108e-02  4.803472       19_1 3.950611e-07
6008         0 1.552501e-01 20.761335       19_1 9.380100e-06
10466        0 3.819289e-02  7.573575       19_1 8.417899e-07
10629        0 3.195237e-02  5.931255       19_1 5.515310e-07
691          0 9.368083e-02 12.261052       19_2 3.342710e-06
1575         0 5.440359e-02  7.177491       19_2 1.136372e-06
9811         0 4.568912e-02  5.560307       19_2 7.393190e-07
4517         0 0.000000e+00 35.096150       19_9 0.000000e+00
11006        0 2.490099e-02 17.408286      19_13 1.261516e-06
2271         0 2.737839e-02  7.750868      19_36 6.175592e-07
2292         0 2.268712e-01 27.750364      19_36 1.832181e-05
7614         0 2.401471e-02  6.548781      19_36 4.576760e-07
8795         0 1.934245e-02  4.568009      19_36 2.571335e-07
9266         0 1.982598e-02  4.793867      19_36 2.765928e-07
9267         0 2.265623e-02  6.015304      19_36 3.966116e-07
11358        0 1.953609e-02  4.659126      19_36 2.648880e-07
303          0 5.756479e-02  7.650768      19_37 1.281688e-06
9255         0 4.205182e-02  4.742482      19_37 5.803777e-07
1866         0 4.107530e-02  5.614445       20_3 6.711320e-07
11760        0 3.887296e-02  5.106145       20_3 5.776451e-07
9801         0 3.900183e-02  8.371330      20_19 9.501664e-07
1293         0 8.206706e-02 11.395589      20_34 2.721610e-06
613          0 4.430817e-02  7.712334      20_37 9.944660e-07
1470         0 3.174732e-02  4.640051      20_37 4.286967e-07
1856         0 3.692146e-02  6.029550      20_37 6.478643e-07
1849         0 2.918503e-02  8.682716      20_38 7.374559e-07
7484         0 2.712785e-02  4.537661      21_14 3.582347e-07
12754        0 5.823457e-02 12.142218      21_16 2.057781e-06
6009         0 1.412952e-01 16.909441      21_20 6.953075e-06
10524        0 3.787510e-02  4.556820      21_20 5.022686e-07
7583         0 6.104725e-02  8.587923      21_21 1.525719e-06
10539        0 7.196138e-02 12.613830      21_24 2.641598e-06
10960        0 4.392127e-02  6.742816       22_3 8.618596e-07
1590         0 3.159023e-02  6.234633       22_4 5.731707e-07
1603         0 3.041868e-02  4.556146       22_7 4.033279e-07
11365        0 3.790313e-02  6.580377       22_7 7.258488e-07
14207        0 4.643799e-02  8.455437       22_7 1.142694e-06
1669         0 9.393020e-02 15.060264      22_10 4.116785e-06
10892        0 1.331419e-01 18.382906      22_10 7.122775e-06
1725         0 3.440809e-02  5.524900      22_17 5.532295e-07
11369        0 3.023230e-02  4.576710      22_18 4.026659e-07
12607        0 5.000839e-02  7.681342      22_20 1.117893e-06
165          0 4.830204e-02  7.078608      22_24 9.950241e-07
4748         0 4.108938e-02  4.624003       1_73 5.529273e-07
7878         1 9.881237e-01 22.149072       1_73 6.369233e-05
5604         0 6.874174e-02 10.856071      2_127 2.171768e-06
5625         0 4.787277e-02  7.459278       3_74 1.039216e-06
870          0 3.297068e-02  7.096389       8_94 6.809036e-07
6580         0 2.756222e-02  4.584770       8_94 3.677495e-07
2080         0 8.853807e-01 18.411852      15_37 4.744034e-05
10494        0 2.938250e-02  6.327887      15_42 5.410878e-07
8695         0 3.677610e-02  7.495126      17_44 8.021673e-07
2344         0 5.559799e-03 13.149563      19_30 2.127604e-07
12864        0 6.358961e-03 16.880984      19_30 3.123951e-07
2282         0 1.347297e-01 23.140300      19_33 9.073035e-06
2291         0 3.195025e-02 12.400172      19_33 1.152981e-06
2227         0 2.716763e-02  5.360616      19_39 4.238252e-07
6043         0 7.555544e-02 14.415357      19_39 3.169651e-06
            genename      gene_type           z num_eqtl
3413            ICMT protein_coding  0.23914469        4
9113           OTUD3 protein_coding -1.09400811        4
7465             CDA protein_coding  0.40576159        4
1405           USP48 protein_coding -0.21715244        4
11993        PHACTR4 protein_coding  0.29462031        4
11765           SZT2 protein_coding  1.46463487        4
3569          SLC5A9 protein_coding  0.05675350        4
13038          L1TD1 protein_coding -1.87764508        4
3462            CRYZ protein_coding -1.95890620        5
3500            RPF1 protein_coding  0.56430924        4
4996           GSTM1 protein_coding  7.68447989        4
4998           GSTM5 protein_coding  1.58897772        4
8954           GSTM4 protein_coding  2.22512920        5
7249           DRAM2 protein_coding  1.46478831        4
12758    RP5-965F6.2        lincRNA  1.03915613        4
6106         ALDH9A1 protein_coding  1.61849594        5
13133         LEFTY1 protein_coding  0.98024965        4
6214          SCCPDH protein_coding -3.05173115        4
3577         COLEC11 protein_coding -0.76179567        4
3652        ITGB1BP1 protein_coding -0.46655683        4
1206           NCOA1 protein_coding  1.25372335        4
12875     AC073283.4        lincRNA  0.70137118        4
5557           LHCGR protein_coding -1.04901496        4
3385           CD207 protein_coding  2.24525108        4
4101          STAMBP protein_coding  1.18479267        4
6262          ZNF514 protein_coding -0.18391525        4
3376            ORC4 protein_coding -0.26848160        4
10039          RBM44 protein_coding  0.31302982        4
8908           ATG4B protein_coding -1.18643960        4
10393         D2HGDH protein_coding  1.20231955        5
6308           SUMF1 protein_coding -0.91619192        4
8053          IL17RC protein_coding -0.13578821        4
8848          TTC21A protein_coding -0.93368283        4
8082           FYCO1 protein_coding  1.39686147        4
10172          DHFR2 protein_coding -0.87865545        4
11240         PLSCR1 protein_coding -0.15509149        4
13048      LINC00886        lincRNA -0.09623607        5
3654            PIGZ protein_coding  1.66265760        4
4360            IDUA protein_coding -1.18870911        5
12217         CFAP99 protein_coding  0.77403046        4
4806         TMEM128 protein_coding -0.65997549        4
4106          ATP8A1 protein_coding  2.30909222        6
11810          CNGA1 protein_coding -1.33380890        4
277            RUFY3 protein_coding -0.73746209        4
5660            NAAA protein_coding -0.22963149        4
11764       HSD17B11 protein_coding  1.07506679        4
9543            ADH6 protein_coding  1.59860575        4
5672            PPA2 protein_coding  0.04308603        4
5676           ENPEP protein_coding  1.43569266        4
13991          SNHG8        lincRNA  0.65863851        4
6784           WDR17 protein_coding  0.29046758        4
6411          CYP4V2 protein_coding -1.38738353        5
726           SLC9A3 protein_coding  0.94659384        4
13309         SNHG18        lincRNA  1.21246390        6
3113          DROSHA protein_coding -0.52179117        4
7202           SETD9 protein_coding -0.97048381        4
8299         ALDH7A1 protein_coding -0.79317806        4
12094        FAM153C protein_coding  1.17868969        4
14146  RP11-157J24.2        lincRNA  1.35990316        4
12734     SERPINB9P1        lincRNA -0.41407488        5
6464          TBC1D7 protein_coding  0.14510476        4
12089          HLA-G protein_coding  6.48768317        5
12062           MICB protein_coding -3.21001507        5
12066          HLA-C protein_coding  3.21156302        5
12067         POU5F1 protein_coding -2.33674614        5
12021         NOTCH4 protein_coding  3.18977327        5
13169            C4A protein_coding  6.31558725        4
1530           ITPR3 protein_coding  2.09585918        4
11865         RPL10A protein_coding  0.98714858        4
2985            RNF8 protein_coding -0.05612723        4
11419         SUPT3H protein_coding -0.46653187        4
5141            MTO1 protein_coding -0.81194322        4
9574          MFSD4B protein_coding  0.07528524        4
11308         FAM26F protein_coding  0.09891516        4
14566          GVQW2 protein_coding -0.67587411        4
12854    RP3-460G2.2        lincRNA -2.08326137        5
12735      PSMG3-AS1        lincRNA -0.37804304        4
3940            PMS2 protein_coding -0.82815080        4
3954            CCZ1 protein_coding  1.87718926        6
2427         C1GALT1 protein_coding  0.77529679        4
2402          MINDY4 protein_coding  0.40895026        4
11733         ZNF273 protein_coding  0.93283738        4
12290         ERV3-1 protein_coding -0.37389717        4
4395          PTPN12 protein_coding -0.03837800        5
2358            PON2 protein_coding  1.44882776        4
9222         SLC26A5 protein_coding  1.50855727        4
11130          WDR86 protein_coding -2.56648509        5
13747      LINC01003        lincRNA -1.38089737        5
4332           WDR60 protein_coding  0.84819199        4
398            MYOM2 protein_coding  2.10625952        4
2157        ARHGEF10 protein_coding -1.59494029        4
14180   RP11-981G7.6        lincRNA  0.49607434        4
7034           ASAP1 protein_coding -1.00858281        4
2495           DOCK8 protein_coding -0.19360565        5
14591      LINC01230        lincRNA  1.40297541        4
6582             AK3 protein_coding -0.46439796        6
11655       PDCD1LG2 protein_coding -2.35139865        4
11323          HACD4 protein_coding  0.07471922        4
2473           NMRK1 protein_coding  0.85354981        5
12911      LINC00484        lincRNA -0.17038733        4
3677            INVS protein_coding  0.63203690        5
2484           PTGR1 protein_coding -1.70069589        6
9580          ZNF483 protein_coding -0.36481127        4
3671           HDHD3 protein_coding  0.40254637        6
6610           GBGT1 protein_coding -2.41325498        4
9799             ABO protein_coding  0.63958745        4
12562         SFTA1P        lincRNA -1.42999160        4
11503         ZNF33B protein_coding -0.64192537        4
3925            OPN4 protein_coding -0.32989832        4
12549      LINC00863        lincRNA  0.69241431        4
6651        FRA10AC1 protein_coding -1.70412703        5
3745           WDR11 protein_coding -0.57410882        4
2568            LHPP protein_coding -1.65688926        5
9191            MGMT protein_coding  1.45635325        4
6872          DPYSL4 protein_coding  0.95607904        4
11249        JAKMIP3 protein_coding -1.42449301        4
6021           PGGHG protein_coding  0.74012984        4
9995          TMEM80 protein_coding -2.21351849        5
10871         IFITM2 protein_coding -0.30424663        4
13458  RP11-326C3.12        lincRNA  1.27855864        5
14045  RP11-326C3.15        lincRNA  0.76601070        4
2815        SLC22A18 protein_coding -2.34987486        5
3850           TRIM6 protein_coding -2.61008937        4
9268         PRKCDBP protein_coding -0.64557619        4
8544            RIC3 protein_coding -0.70475882        4
3878             CAT protein_coding -0.05620694        4
6677            APIP protein_coding -0.22045168        4
6841            EXT2 protein_coding -1.53842625        5
8630            STX3 protein_coding  2.40688550        4
7781           TPCN2 protein_coding -0.58987315        4
5502         PPP2R1B protein_coding  2.67130581        4
6697           TTC12 protein_coding -1.28196799        4
805           CLEC2D protein_coding -1.13601425        4
13678  RP13-735L24.1        lincRNA  0.97735501        4
12782           PRH1 protein_coding -0.79691879        4
42             RECQL protein_coding -1.61682371        4
14420   RP11-582E3.6        lincRNA  1.51107079        4
6831          GXYLT1 protein_coding  0.04753781        4
5183        SLC26A10 protein_coding  0.84989496        4
4355          YEATS4 protein_coding  0.29281346        4
5269          WASHC4 protein_coding  1.71114301        4
8957           TCTN2 protein_coding  0.84925790        4
367            IFT88 protein_coding -1.32070275        5
10376        ZDHHC20 protein_coding -0.02606631        4
5747           MTMR6 protein_coding -0.54526219        4
4177           ABCC4 protein_coding -1.56296803        4
1949           UGGT2 protein_coding -1.39566168        4
4174           CLYBL protein_coding  1.11106275        4
6770           TMCO3 protein_coding  0.46750943        4
1458         RPGRIP1 protein_coding  1.42832063        4
7349           DHRS1 protein_coding -1.17957282        4
10451         GPR135 protein_coding -0.21104674        4
5798           RAB15 protein_coding  0.21354143        4
5804           PTGR2 protein_coding -1.58536168        6
176            POMT2 protein_coding -0.09855002        5
8455           CPSF2 protein_coding -0.90528028        4
1574         CEP170B protein_coding  0.52844732        4
13490         DYX1C1 protein_coding  1.49771123        4
8976          LRRC28 protein_coding  1.08124707        4
13613  CTD-2054N24.2        lincRNA  2.15174496        4
3403           TPSG1 protein_coding -1.63534232        4
5906            RPS2 protein_coding  1.61339652        4
11647        CCDC154 protein_coding -1.87354454        4
598          FLYWCH1 protein_coding  1.71642326        4
12322           EMP2 protein_coding  0.38091246        4
10714         NPIPA5 protein_coding  1.80257039        4
6754            TBX6 protein_coding -0.69623140        4
700            ADAT1 protein_coding -1.98147494        4
5903           ADAD2 protein_coding -0.29286768        4
7084          DNAAF1 protein_coding -0.75221023        4
25            DBNDD1 protein_coding -1.67073436        5
5909            DEF8 protein_coding -0.72630781        4
5926           VPS53 protein_coding -0.38672060        5
4803            RPA1 protein_coding  0.33413970        5
11614           SHPK protein_coding -0.01693189        4
4504            USP6 protein_coding -0.91937924        5
118            ELAC2 protein_coding  0.93137470        4
12772     AC005224.2        lincRNA  0.70925667        4
4777           CCT6B protein_coding -0.26096461        4
14514          DDX52 protein_coding  0.76601975        4
2603           CASC3 protein_coding -2.04139093        4
13832  RP11-387H17.4        lincRNA  1.45916671        4
14507          PSMB3 protein_coding  1.72807936        4
10192        EFCAB13 protein_coding  6.66298655        4
5320         MYCBPAP protein_coding -0.40956352        4
13796  RP11-166P13.3        lincRNA -0.56311482        6
14549 RP11-147L13.14        lincRNA  2.29627994        4
13871         MYO15B protein_coding  1.24433890        4
8819            TMC8 protein_coding  1.77178628        4
10553          MXRA7 protein_coding -0.26728373        5
10564        TSPAN10 protein_coding  0.14763829        4
13793  RP11-1055B8.4        lincRNA -0.17396917        4
1924           LPIN2 protein_coding  0.01517188        4
982            MOCOS protein_coding -0.02854379        5
5958         SLC14A1 protein_coding -0.38251841        4
13820      LINC00909        lincRNA -1.07611370        4
8581           GALR1 protein_coding  0.26397367        4
4554            SHC2 protein_coding  0.26825255        4
6008           PLPP2 protein_coding  2.29773776        7
10466         ODF3L2 protein_coding  0.94738763        4
10629         C2CD4C protein_coding  0.57742405        4
691            WDR18 protein_coding  1.63817769        4
1575          POLR2E protein_coding -1.12488490        4
9811           MED16 protein_coding  0.52282620        4
4517           AP1M2 protein_coding -7.10966827        4
11006        CYP4F12 protein_coding  3.32171653        4
2271            CD33 protein_coding  0.90318496        4
2292         SIGLEC5 protein_coding -2.86306920        5
7614          ZNF761 protein_coding -0.66123658        5
8795           ZNF83 protein_coding  0.04914805        8
9266          ZNF160 protein_coding  0.35509602        4
9267          ZNF415 protein_coding  0.72469869        4
11358         ZNF600 protein_coding -0.21631812        5
303            NLRP2 protein_coding  0.92115111        4
9255            RPS9 protein_coding  0.30576708        4
1866          CDC25B protein_coding -0.52160513        4
11760         DDRGK1 protein_coding -0.37714605        4
9801         FAM182B protein_coding  2.06060944        4
1293         PHACTR3 protein_coding -1.37646482        4
613             OGFR protein_coding  0.89039358        4
1470          COL9A3 protein_coding -0.17704675        4
1856           TCFL5 protein_coding -0.66649181        4
1849           PRPF6 protein_coding -0.25606411        5
7484          IFNAR2 protein_coding  0.06513928        5
12754      LINC01436        lincRNA -1.71692910        4
6009          PRDM15 protein_coding  1.84560558        4
10524          BACE2 protein_coding -0.08618446        4
7583             CBS protein_coding -1.03437537        5
10539           YBEY protein_coding  1.54872331        8
10960          GNB1L protein_coding  0.75083134        4
1590          SNAP29 protein_coding -0.81222751        4
1603           SUSD2 protein_coding  0.03724741        4
11365         DRICH1 protein_coding -0.75799079        4
14207     KB-208E9.1        lincRNA -1.05001724        4
1669          RHBDD3 protein_coding -1.77570834        4
10892           TCN2 protein_coding  2.21888777        4
1725           DESI1 protein_coding -0.88117629        4
11369          RRP7A protein_coding  0.06985354        8
12607      NUP50-AS1        lincRNA -0.99741756        5
165         MAPK8IP2 protein_coding  0.68270292        4
4748           CHD1L protein_coding -0.01353759        4
7878            ACP6 protein_coding  4.57577415        4
5604            ATIC protein_coding  1.07472975        4
5625           COX17 protein_coding  0.78106882        4
870            CPSF1 protein_coding  1.04287999        4
6580           NAPRT protein_coding -0.06551042        5
2080            CTSH protein_coding  3.80584896        4
10494           IDH2 protein_coding  0.76246218        4
8695          ENGASE protein_coding -0.76700796        4
2344           ETHE1 protein_coding -0.55179636        4
12864         PINLYP protein_coding  2.24265830        4
2282           CYTH2 protein_coding -2.45492372        4
2291         PLA2G4C protein_coding -1.61112643        4
2227          ZNF419 protein_coding  0.30955099        4
6043         ERVK3-1 protein_coding -1.44360091        4
#distribution of number of eQTL for genes with PIP>0.8
table(ctwas_gene_res$num_eqtl[ctwas_gene_res$susie_pip>0.8])/sum(ctwas_gene_res$susie_pip>0.8)

      1       2       3       4 
0.56250 0.34375 0.03125 0.06250 
#genes with 2+ eQTL and PIP>0.8
ctwas_gene_res[ctwas_gene_res$num_eqtl>1 & ctwas_gene_res$susie_pip>0.8,]
      chrom                 id       pos type region_tag1 region_tag2
756       1 ENSG00000067208.14  92792120 gene           1          56
7878      1 ENSG00000162836.11 147647471 gene           1          73
6227      1 ENSG00000143771.11 224356827 gene           1         114
13192     5  ENSG00000245937.7 128070567 gene           5          78
7444      7 ENSG00000158604.14  44581237 gene           7          32
13062     7  ENSG00000241468.7  99466102 gene           7          61
8291      7 ENSG00000164867.10 150990599 gene           7          93
1003      8 ENSG00000076554.15  80171625 gene           8          57
2080     15 ENSG00000103811.15  78936890 gene          15          37
402      17  ENSG00000037042.8  42652697 gene          17          25
3681     18 ENSG00000119537.15  63366845 gene          18          35
9946     19 ENSG00000176472.10  43533176 gene          19          30
2252     19 ENSG00000105287.12  46716923 gene          19          33
1553     19  ENSG00000099326.8  58572814 gene          19          39
      cs_index susie_pip      mu2 region_tag          PVE  genename
756          1 0.8564938 41.00879       1_56 1.022166e-04      EVI5
7878         1 0.9881237 22.14907       1_73 6.369233e-05      ACP6
6227         1 0.9916593 36.75923      1_114 1.060838e-04     CNIH4
13192        0 0.8057176 19.17555       5_78 4.496256e-05 LINC01184
7444         2 0.8423169 38.14671       7_32 9.350890e-05     TMED4
13062        1 0.9089457 34.74097       7_61 9.189676e-05    ATP5J2
8291         0 0.8379598 19.38306       7_93 4.726783e-05      NOS3
1003         1 0.9812117 21.94017       8_57 6.265027e-05     TPD52
2080         0 0.8853807 18.41185      15_37 4.744034e-05      CTSH
402          2 0.9570282 20.51179      17_25 5.712794e-05     TUBG2
3681         0 0.8103019 19.33886      18_35 4.560347e-05      KDSR
9946         4 0.9308837 26.19545      19_30 7.096457e-05    ZNF575
2252         2 0.9990989 29.27528      19_33 8.511965e-05     PRKD2
1553         2 0.9648108 28.16926      19_39 7.909298e-05      MZF1
           gene_type         z num_eqtl
756   protein_coding -6.589915        2
7878  protein_coding  4.575774        4
6227  protein_coding  6.201835        2
13192        lincRNA -3.918269        2
7444  protein_coding  7.608826        2
13062 protein_coding -5.116980        2
8291  protein_coding  3.856590        2
1003  protein_coding -4.557712        2
2080  protein_coding  3.805849        4
402   protein_coding  4.434366        2
3681  protein_coding -3.912562        3
9946  protein_coding -5.954341        2
2252  protein_coding  5.316724        2
1553  protein_coding -4.742966        2

cTWAS genes in GO terms enriched for silver standard genes

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

#GO enrichment analysis for silver standard genes
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- known_annotations
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
for (db in dbs){
  print(db)
  df <- GO_enrichment[[db]]
  df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
  plotEnrich(GO_enrichment[[db]])
  print(df)
}
[1] "GO_Biological_Process_2021"
                                                                                       Term
1                                                        cholesterol transport (GO:0030301)
2                                                      cholesterol homeostasis (GO:0042632)
3                                                           sterol homeostasis (GO:0055092)
4                                                           cholesterol efflux (GO:0033344)
5                                                             sterol transport (GO:0015918)
6                                                cholesterol metabolic process (GO:0008203)
7                                                     sterol metabolic process (GO:0016125)
8                            triglyceride-rich lipoprotein particle remodeling (GO:0034370)
9                                 high-density lipoprotein particle remodeling (GO:0034375)
10                                               reverse cholesterol transport (GO:0043691)
11                                         secondary alcohol metabolic process (GO:1902652)
12                                   regulation of lipoprotein lipase activity (GO:0051004)
13                                                      phospholipid transport (GO:0015914)
14                                                             lipid transport (GO:0006869)
15                                                    acylglycerol homeostasis (GO:0055090)
16                            very-low-density lipoprotein particle remodeling (GO:0034372)
17                                                    triglyceride homeostasis (GO:0070328)
18                                              triglyceride metabolic process (GO:0006641)
19                                                         phospholipid efflux (GO:0033700)
20                                                      chylomicron remodeling (GO:0034371)
21                                         regulation of cholesterol transport (GO:0032374)
22                                                        chylomicron assembly (GO:0034378)
23                                               chylomicron remnant clearance (GO:0034382)
24                                               lipoprotein metabolic process (GO:0042157)
25                                               diterpenoid metabolic process (GO:0016101)
26                            positive regulation of steroid metabolic process (GO:0045940)
27                                                  retinoid metabolic process (GO:0001523)
28                                                           lipid homeostasis (GO:0055088)
29                                      negative regulation of lipase activity (GO:0060192)
30                           positive regulation of cholesterol esterification (GO:0010873)
31                                           intestinal cholesterol absorption (GO:0030299)
32                                negative regulation of cholesterol transport (GO:0032375)
33                                                 intestinal lipid absorption (GO:0098856)
34                                              acylglycerol metabolic process (GO:0006639)
35                                    regulation of cholesterol esterification (GO:0010872)
36                                                    phospholipid homeostasis (GO:0055091)
37                              very-low-density lipoprotein particle assembly (GO:0034379)
38                              positive regulation of lipid metabolic process (GO:0045834)
39                                  high-density lipoprotein particle assembly (GO:0034380)
40                          negative regulation of lipoprotein lipase activity (GO:0051005)
41                       negative regulation of lipoprotein particle clearance (GO:0010985)
42              regulation of very-low-density lipoprotein particle remodeling (GO:0010901)
43                                         intracellular cholesterol transport (GO:0032367)
44                                positive regulation of cholesterol transport (GO:0032376)
45                             regulation of intestinal cholesterol absorption (GO:0030300)
46                          positive regulation of lipoprotein lipase activity (GO:0051006)
47                                              acylglycerol catabolic process (GO:0046464)
48                           positive regulation of lipid biosynthetic process (GO:0046889)
49                       positive regulation of triglyceride metabolic process (GO:0090208)
50                         positive regulation of triglyceride lipase activity (GO:0061365)
51                                       regulation of lipid catabolic process (GO:0050994)
52                                                   steroid metabolic process (GO:0008202)
53                              positive regulation of lipid catabolic process (GO:0050996)
54                                              triglyceride catabolic process (GO:0019433)
55                                             organophosphate ester transport (GO:0015748)
56                                       phosphatidylcholine metabolic process (GO:0046470)
57                                regulation of triglyceride catabolic process (GO:0010896)
58                                                fatty acid metabolic process (GO:0006631)
59                               regulation of fatty acid biosynthetic process (GO:0042304)
60                                              regulation of sterol transport (GO:0032371)
61              cellular response to low-density lipoprotein particle stimulus (GO:0071404)
62                                 low-density lipoprotein particle remodeling (GO:0034374)
63                  regulation of macrophage derived foam cell differentiation (GO:0010743)
64                                                 organic substance transport (GO:0071702)
65                                            regulation of cholesterol efflux (GO:0010874)
66                                               receptor-mediated endocytosis (GO:0006898)
67                                      secondary alcohol biosynthetic process (GO:1902653)
68                                           regulation of cholesterol storage (GO:0010885)
69                                                          cholesterol import (GO:0070508)
70                                                               sterol import (GO:0035376)
71                                    monocarboxylic acid biosynthetic process (GO:0072330)
72                                            cholesterol biosynthetic process (GO:0006695)
73                           positive regulation of cellular metabolic process (GO:0031325)
74                                                 sterol biosynthetic process (GO:0016126)
75                         positive regulation of fatty acid metabolic process (GO:0045923)
76                                 regulation of receptor-mediated endocytosis (GO:0048259)
77                                             fatty acid biosynthetic process (GO:0006633)
78                             regulation of Cdc42 protein signal transduction (GO:0032489)
79                       positive regulation of triglyceride catabolic process (GO:0010898)
80                                                  lipid biosynthetic process (GO:0008610)
81                                   positive regulation of cholesterol efflux (GO:0010875)
82                        negative regulation of receptor-mediated endocytosis (GO:0048261)
83                                                       lipoprotein transport (GO:0042953)
84                                       regulation of lipid metabolic process (GO:0019216)
85                                       monocarboxylic acid metabolic process (GO:0032787)
86                                                    lipoprotein localization (GO:0044872)
87                                                     lipid catabolic process (GO:0016042)
88                      positive regulation of fatty acid biosynthetic process (GO:0045723)
89                                              intracellular sterol transport (GO:0032366)
90                                                steroid biosynthetic process (GO:0006694)
91                                    regulation of lipid biosynthetic process (GO:0046890)
92                                               regulation of lipase activity (GO:0060191)
93                        positive regulation of cellular biosynthetic process (GO:0031328)
94                                        regulation of amyloid-beta clearance (GO:1900221)
95                                              phospholipid metabolic process (GO:0006644)
96                                   regulation of intestinal lipid absorption (GO:1904729)
97             positive regulation of protein catabolic process in the vacuole (GO:1904352)
98                                 positive regulation of biosynthetic process (GO:0009891)
99                                 regulation of cholesterol metabolic process (GO:0090181)
100                                                  foam cell differentiation (GO:0090077)
101                                 positive regulation of cholesterol storage (GO:0010886)
102                               macrophage derived foam cell differentiation (GO:0010742)
103                              organic hydroxy compound biosynthetic process (GO:1901617)
104                                    regulation of steroid metabolic process (GO:0019218)
105                               organonitrogen compound biosynthetic process (GO:1901566)
106                             negative regulation of lipid metabolic process (GO:0045833)
107                          regulation of lysosomal protein catabolic process (GO:1905165)
108                              positive regulation of amyloid-beta clearance (GO:1900223)
109                                           cellular lipid catabolic process (GO:0044242)
110                                                       chemical homeostasis (GO:0048878)
111                                              cholesterol catabolic process (GO:0006707)
112                                                   sterol catabolic process (GO:0016127)
113                                       steroid hormone biosynthetic process (GO:0120178)
114                   regulation of low-density lipoprotein particle clearance (GO:0010988)
115                                                bile acid metabolic process (GO:0008206)
116                                   phosphatidylcholine biosynthetic process (GO:0006656)
117                                                  alcohol catabolic process (GO:0046164)
118                                          organophosphate catabolic process (GO:0046434)
119                                       regulation of phospholipase activity (GO:0010517)
120                                  positive regulation of lipid localization (GO:1905954)
121                              positive regulation of phospholipid transport (GO:2001140)
122                                      glycerophospholipid metabolic process (GO:0006650)
123                                         organic hydroxy compound transport (GO:0015850)
124        negative regulation of macrophage derived foam cell differentiation (GO:0010745)
125                                     positive regulation of lipid transport (GO:0032370)
126                                   C21-steroid hormone biosynthetic process (GO:0006700)
127                                                      membrane organization (GO:0061024)
128                                         positive regulation of endocytosis (GO:0045807)
129                    positive regulation of multicellular organismal process (GO:0051240)
130                                   negative regulation of catabolic process (GO:0009895)
131                             negative regulation of lipid catabolic process (GO:0050995)
132                                          carbohydrate derivative transport (GO:1901264)
133        positive regulation of macrophage derived foam cell differentiation (GO:0010744)
134                                                          protein transport (GO:0015031)
135                                                       fatty acid transport (GO:0015908)
136                                       positive regulation of lipid storage (GO:0010884)
137                                      C21-steroid hormone metabolic process (GO:0008207)
138                                             phospholipid catabolic process (GO:0009395)
139                                         negative regulation of endocytosis (GO:0045806)
140                                    regulation of primary metabolic process (GO:0080090)
141                    negative regulation of multicellular organismal process (GO:0051241)
142                                             bile acid biosynthetic process (GO:0006699)
143  regulation of low-density lipoprotein particle receptor catabolic process (GO:0032803)
144                              regulation of Rho protein signal transduction (GO:0035023)
145                             regulation of small molecule metabolic process (GO:0062012)
146                          positive regulation of cellular catabolic process (GO:0031331)
147                                                       artery morphogenesis (GO:0048844)
148                     negative regulation of cellular component organization (GO:0051129)
149                                                       glycolipid transport (GO:0046836)
150                      positive regulation of lipoprotein particle clearance (GO:0010986)
151                                    positive regulation of sterol transport (GO:0032373)
152                                            long-chain fatty acid transport (GO:0015909)
153                                                        response to insulin (GO:0032868)
154                                  regulation of bile acid metabolic process (GO:1904251)
155                          positive regulation of receptor catabolic process (GO:2000646)
156                                           positive regulation of transport (GO:0051050)
157                      negative regulation of endothelial cell proliferation (GO:0001937)
158                          negative regulation of endothelial cell migration (GO:0010596)
159                          regulation of nitrogen compound metabolic process (GO:0051171)
160                              negative regulation of amyloid-beta clearance (GO:1900222)
161                          negative regulation of cellular metabolic process (GO:0031324)
162                                   glycerophospholipid biosynthetic process (GO:0046474)
163 negative regulation of production of molecular mediator of immune response (GO:0002701)
164                                unsaturated fatty acid biosynthetic process (GO:0006636)
165                                                            anion transport (GO:0006820)
166                       positive regulation of receptor-mediated endocytosis (GO:0048260)
167                                 negative regulation of cholesterol storage (GO:0010887)
168                               regulation of bile acid biosynthetic process (GO:0070857)
169                                           peptidyl-amino acid modification (GO:0018193)
170                low-density lipoprotein particle receptor catabolic process (GO:0032802)
171                low-density lipoprotein receptor particle metabolic process (GO:0032799)
172                                                          protein oxidation (GO:0018158)
173                               positive regulation by host of viral process (GO:0044794)
174                   positive regulation of triglyceride biosynthetic process (GO:0010867)
175                                                   receptor internalization (GO:0031623)
176                                                        response to glucose (GO:0009749)
177                     positive regulation of cellular component organization (GO:0051130)
178                     negative regulation of fatty acid biosynthetic process (GO:0045717)
179                                          negative regulation of hemostasis (GO:1900047)
180                                           peptidyl-methionine modification (GO:0018206)
181                                                          ethanol oxidation (GO:0006069)
182                            negative regulation of amyloid fibril formation (GO:1905907)
183                           negative regulation of protein metabolic process (GO:0051248)
184                                   unsaturated fatty acid metabolic process (GO:0033559)
185                                     alpha-linolenic acid metabolic process (GO:0036109)
186                                                     platelet degranulation (GO:0002576)
187                                   negative regulation of metabolic process (GO:0009892)
188                                     negative regulation of cell activation (GO:0050866)
189                                         negative regulation of coagulation (GO:0050819)
190                                                    cGMP-mediated signaling (GO:0019934)
191                                                      intestinal absorption (GO:0050892)
192                                                 receptor metabolic process (GO:0043112)
193                                                 regulation of phagocytosis (GO:0050764)
194                                     regulation of amyloid fibril formation (GO:1905906)
195                                 regulation of sequestering of triglyceride (GO:0010889)
196                            regulation of triglyceride biosynthetic process (GO:0010866)
197                                    post-translational protein modification (GO:0043687)
198                                                  regulation of endocytosis (GO:0030100)
199                                                   amyloid fibril formation (GO:1990000)
200                    positive regulation of small molecule metabolic process (GO:0062013)
201                                       cellular response to nutrient levels (GO:0031669)
202     negative regulation of cytokine production involved in immune response (GO:0002719)
203                        negative regulation of fatty acid metabolic process (GO:0045922)
204                             regulation of cholesterol biosynthetic process (GO:0045540)
205                                 regulation of steroid biosynthetic process (GO:0050810)
206                                   positive regulation of catabolic process (GO:0009896)
207                                amyloid precursor protein metabolic process (GO:0042982)
208                                  nitric oxide mediated signal transduction (GO:0007263)
209                      positive regulation of nitric-oxide synthase activity (GO:0051000)
210                                                  ethanol metabolic process (GO:0006067)
211                  positive regulation of cellular protein catabolic process (GO:1903364)
212                                                     response to fatty acid (GO:0070542)
213                                                           long-term memory (GO:0007616)
214                                       negative regulation of lipid storage (GO:0010888)
215                                            linoleic acid metabolic process (GO:0043651)
216                          negative regulation of lipid biosynthetic process (GO:0051055)
217                                                regulation of lipid storage (GO:0010883)
218                                regulation of interleukin-1 beta production (GO:0032651)
219                                    long-chain fatty acid metabolic process (GO:0001676)
220              regulation of cytokine production involved in immune response (GO:0002718)
221                                         cellular protein metabolic process (GO:0044267)
222                                    negative regulation of defense response (GO:0031348)
223                                       transport across blood-brain barrier (GO:0150104)
224                                                 receptor catabolic process (GO:0032801)
225                                                         response to hexose (GO:0009746)
226                                                       regulated exocytosis (GO:0045055)
227                                   regulation of endothelial cell migration (GO:0010594)
228                                   negative regulation of protein transport (GO:0051224)
229                                             positive regulation of binding (GO:0051099)
230                                            regulation of blood coagulation (GO:0030193)
231                              positive regulation of monooxygenase activity (GO:0032770)
232                                       negative regulation of wound healing (GO:0061045)
233                     negative regulation of macromolecule metabolic process (GO:0010605)
234                                 long-chain fatty acid biosynthetic process (GO:0042759)
235                                         regulation of developmental growth (GO:0048638)
236                                                   regulation of cell death (GO:0010941)
237                                                 regulation of angiogenesis (GO:0045765)
238                                        regulation of inflammatory response (GO:0050727)
239                                                   apoptotic cell clearance (GO:0043277)
240                              cellular response to peptide hormone stimulus (GO:0071375)
241             negative regulation of blood vessel endothelial cell migration (GO:0043537)
242                            phosphate-containing compound metabolic process (GO:0006796)
243                           negative regulation of epithelial cell migration (GO:0010633)
244                                          cellular response to amyloid-beta (GO:1904646)
245                                       cyclic-nucleotide-mediated signaling (GO:0019935)
246                                     regulation of receptor internalization (GO:0002090)
247                                                          response to lipid (GO:0033993)
248         regulation of vascular associated smooth muscle cell proliferation (GO:1904705)
249                          regulation of protein-containing complex assembly (GO:0043254)
250                                                              ion transport (GO:0006811)
251                       negative regulation of response to external stimulus (GO:0032102)
252                                              regulation of protein binding (GO:0043393)
253                                regulation of cellular component biogenesis (GO:0044087)
254                                   negative regulation of protein secretion (GO:0050709)
255                                   negative regulation of secretion by cell (GO:1903531)
256                               regulation of nitric-oxide synthase activity (GO:0050999)
257                                   negative regulation of blood coagulation (GO:0030195)
258                                     cellular response to organic substance (GO:0071310)
259                                      cellular response to insulin stimulus (GO:0032869)
260                                                   response to amyloid-beta (GO:1904645)
261              establishment of protein localization to extracellular region (GO:0035592)
262                                   regulation of cellular metabolic process (GO:0031323)
263                                    regulation of protein metabolic process (GO:0051246)
264                                positive regulation of cell differentiation (GO:0045597)
265                        negative regulation of cell projection organization (GO:0031345)
266                            positive regulation of fat cell differentiation (GO:0045600)
267                               negative regulation of BMP signaling pathway (GO:0030514)
268                       negative regulation of cellular biosynthetic process (GO:0031327)
269                                        positive regulation of phagocytosis (GO:0050766)
    Overlap Adjusted.P.value
1     28/51     3.291336e-55
2     29/71     1.134840e-52
3     29/72     1.264418e-52
4     16/24     1.003687e-32
5     15/21     2.203564e-31
6     20/77     5.273224e-31
7     19/70     7.882518e-30
8     12/13     1.520527e-27
9     13/18     2.514128e-27
10    12/17     5.731565e-25
11    15/49     2.711706e-24
12    12/21     2.245426e-23
13    15/59     5.665269e-23
14   17/109     2.748742e-22
15    12/25     3.145271e-22
16      9/9     2.283165e-21
17    12/31     7.414146e-21
18    13/55     1.935295e-19
19     9/12     4.196729e-19
20      8/9     5.374944e-18
21    10/25     1.639871e-17
22     8/10     2.436689e-17
23      7/7     1.679428e-16
24      7/9     5.763376e-15
25    11/64     8.362646e-15
26     7/13     2.508790e-13
27    11/92     5.133855e-13
28    10/64     5.133855e-13
29      6/9     3.296018e-12
30      6/9     3.296018e-12
31      6/9     3.296018e-12
32     6/11     1.693836e-11
33     6/11     1.693836e-11
34     8/41     3.013332e-11
35     6/12     3.013332e-11
36     6/12     3.013332e-11
37     6/12     3.013332e-11
38     7/25     4.654994e-11
39     6/13     5.294950e-11
40      5/6     5.459029e-11
41      5/6     5.459029e-11
42      5/6     5.459029e-11
43     6/15     1.393181e-10
44     7/33     3.496187e-10
45      5/8     4.627510e-10
46      5/8     4.627510e-10
47     7/35     5.017364e-10
48     7/35     5.017364e-10
49     6/19     6.556580e-10
50      5/9     9.553575e-10
51     6/21     1.253116e-09
52    9/104     1.493946e-09
53     6/22     1.653549e-09
54     6/23     2.189811e-09
55     6/25     3.733511e-09
56     8/77     3.733511e-09
57     5/12     5.225810e-09
58    9/124     6.552660e-09
59     6/29     9.279729e-09
60      4/5     9.798195e-09
61     5/14     1.207993e-08
62     5/14     1.207993e-08
63     6/31     1.339781e-08
64    9/136     1.355933e-08
65     6/33     1.942867e-08
66    9/143     2.054367e-08
67     6/34     2.282600e-08
68     5/16     2.390304e-08
69      4/6     2.513038e-08
70      4/6     2.513038e-08
71     7/63     2.556641e-08
72     6/35     2.556641e-08
73    8/105     3.517095e-08
74     6/38     4.196695e-08
75     5/18     4.228478e-08
76     6/39     4.816188e-08
77     7/71     5.609765e-08
78      4/8     1.033779e-07
79      4/8     1.033779e-07
80     7/80     1.258618e-07
81     5/23     1.517283e-07
82     5/26     2.906610e-07
83     4/10     2.936601e-07
84     7/92     3.199662e-07
85    8/143     3.471498e-07
86     4/11     4.442138e-07
87     5/29     4.906437e-07
88     4/13     9.252034e-07
89     4/13     9.252034e-07
90     6/65     9.598111e-07
91     5/35     1.249797e-06
92     4/14     1.249797e-06
93    8/180     1.884951e-06
94     4/16     2.212485e-06
95     6/76     2.336232e-06
96      3/5     3.664395e-06
97      3/5     3.664395e-06
98     5/44     3.827136e-06
99     4/21     6.819051e-06
100     3/6     6.952354e-06
101     3/6     6.952354e-06
102     3/6     6.952354e-06
103    5/50     6.991423e-06
104    4/23     9.554179e-06
105   7/158     1.040987e-05
106    4/24     1.121951e-05
107     3/7     1.146235e-05
108     3/7     1.146235e-05
109    4/27     1.788032e-05
110    5/65     2.452122e-05
111     3/9     2.639634e-05
112     3/9     2.639634e-05
113    4/31     3.060279e-05
114    3/10     3.695601e-05
115    4/33     3.856854e-05
116    4/33     3.856854e-05
117    3/11     4.775659e-05
118    3/11     4.775659e-05
119    3/11     4.775659e-05
120    3/11     4.775659e-05
121    3/11     4.775659e-05
122    5/80     6.182763e-05
123    4/40     7.973389e-05
124    3/13     7.973389e-05
125    3/13     7.973389e-05
126    3/15     1.252218e-04
127   7/242     1.420233e-04
128    4/48     1.598563e-04
129   8/345     1.704405e-04
130    4/49     1.709436e-04
131    3/18     2.111817e-04
132    3/18     2.111817e-04
133    3/18     2.111817e-04
134   8/369     2.646441e-04
135    3/20     2.892290e-04
136    3/21     3.341258e-04
137    3/24     4.974036e-04
138    3/24     4.974036e-04
139    3/25     5.597802e-04
140   5/130     5.616142e-04
141   6/214     6.166972e-04
142    3/27     6.934199e-04
143     2/5     7.406583e-04
144    4/73     7.449454e-04
145    3/28     7.586859e-04
146   5/141     7.898802e-04
147    3/30     9.228897e-04
148    4/80     1.034287e-03
149     2/6     1.049782e-03
150     2/6     1.049782e-03
151     2/6     1.049782e-03
152    3/32     1.085012e-03
153    4/84     1.208000e-03
154     2/7     1.428577e-03
155     2/7     1.428577e-03
156    4/91     1.611630e-03
157    3/37     1.625395e-03
158    3/38     1.749224e-03
159     2/8     1.841132e-03
160     2/8     1.841132e-03
161    3/39     1.855101e-03
162   5/177     2.046657e-03
163     2/9     2.304288e-03
164     2/9     2.304288e-03
165    3/43     2.420344e-03
166    3/44     2.575438e-03
167    2/10     2.756295e-03
168    2/10     2.756295e-03
169    2/10     2.756295e-03
170    2/10     2.756295e-03
171    2/10     2.756295e-03
172    2/11     3.303347e-03
173    2/11     3.303347e-03
174    2/11     3.303347e-03
175    3/49     3.337798e-03
176    3/49     3.337798e-03
177   4/114     3.341630e-03
178    2/12     3.781332e-03
179    2/12     3.781332e-03
180    2/12     3.781332e-03
181    2/12     3.781332e-03
182    2/12     3.781332e-03
183    3/52     3.822266e-03
184    3/54     4.245657e-03
185    2/13     4.386588e-03
186   4/125     4.489058e-03
187    3/56     4.645735e-03
188    2/14     4.945884e-03
189    2/14     4.945884e-03
190    2/14     4.945884e-03
191    2/14     4.945884e-03
192    3/58     4.985945e-03
193    3/58     4.985945e-03
194    2/15     5.548828e-03
195    2/15     5.548828e-03
196    2/15     5.548828e-03
197   6/345     5.596173e-03
198    3/61     5.626994e-03
199    3/63     6.147256e-03
200    2/16     6.200855e-03
201    3/66     6.840974e-03
202    2/17     6.840974e-03
203    2/17     6.840974e-03
204    2/17     6.840974e-03
205    2/17     6.840974e-03
206    3/67     7.093595e-03
207    2/18     7.532008e-03
208    2/18     7.532008e-03
209    2/18     7.532008e-03
210    2/19     8.241667e-03
211    2/19     8.241667e-03
212    2/19     8.241667e-03
213    2/19     8.241667e-03
214    2/20     9.094348e-03
215    2/21     9.982653e-03
216    2/22     1.085553e-02
217    2/22     1.085553e-02
218    3/83     1.230478e-02
219    3/83     1.230478e-02
220    2/24     1.273659e-02
221   6/417     1.291939e-02
222    3/85     1.298477e-02
223    3/86     1.336097e-02
224    2/25     1.350640e-02
225    2/25     1.350640e-02
226   4/180     1.399465e-02
227    3/89     1.440735e-02
228    2/26     1.440735e-02
229    3/90     1.479001e-02
230    2/27     1.539039e-02
231    2/28     1.646589e-02
232    2/29     1.757027e-02
233   4/194     1.771224e-02
234    2/30     1.862299e-02
235    2/31     1.977865e-02
236   3/102     2.036757e-02
237   4/203     2.042828e-02
238   4/206     2.141587e-02
239    2/33     2.198466e-02
240   3/106     2.228428e-02
241    2/34     2.311351e-02
242   4/212     2.328380e-02
243    2/35     2.415927e-02
244    2/35     2.415927e-02
245    2/36     2.531623e-02
246    2/36     2.531623e-02
247   3/114     2.646649e-02
248    2/37     2.648825e-02
249   3/116     2.742785e-02
250   3/116     2.742785e-02
251   3/118     2.842391e-02
252   3/118     2.842391e-02
253    2/39     2.842391e-02
254    2/39     2.842391e-02
255    2/39     2.842391e-02
256    2/39     2.842391e-02
257    2/40     2.973753e-02
258   3/123     3.119488e-02
259   3/129     3.533580e-02
260    2/44     3.533580e-02
261    2/46     3.834204e-02
262    2/47     3.980515e-02
263    2/48     4.128649e-02
264   4/258     4.183273e-02
265    2/49     4.262417e-02
266    2/51     4.583569e-02
267    2/52     4.720898e-02
268    2/52     4.720898e-02
269    2/53     4.877011e-02
                                                                                                                                                                       Genes
1         SCARB1;CETP;LCAT;LIPC;NPC1L1;LIPG;CD36;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;STARD3;ABCG5;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;APOC2;APOC1
2   SCARB1;CETP;MTTP;PCSK9;LPL;LCAT;ABCB11;CYP7A1;LIPC;LIPG;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;ABCG5;EPHX2;APOA2;APOA1;APOC3;APOA4;APOA5;SOAT1;NPC1;NPC2;SOAT2;APOC2;ANGPTL3
3   SCARB1;CETP;MTTP;PCSK9;LPL;LCAT;ABCB11;CYP7A1;LIPC;LIPG;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;ABCG5;EPHX2;APOA2;APOA1;APOC3;APOA4;APOA5;SOAT1;NPC1;NPC2;SOAT2;APOC2;ANGPTL3
4                                                                              ABCA1;ABCG8;SCARB1;ABCG5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;NPC2;SOAT2;APOC2;APOC1;APOE
5                                                                                    ABCG8;CETP;STARD3;ABCG5;OSBPL5;APOA2;APOA1;LCAT;NPC1;NPC1L1;NPC2;CD36;APOB;LDLRAP1;LDLR
6                                              ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;HMGCR;APOA5;CYP7A1;CYP27A1;SOAT1;SOAT2;NPC1L1;ANGPTL3;APOE;DHCR7;LDLRAP1;APOB
7                                                      ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;HMGCR;LIPA;CYP7A1;CYP27A1;SOAT1;SOAT2;ANGPTL3;APOE;DHCR7;LDLRAP1;APOB
8                                                                                                           CETP;LIPC;APOC2;APOA2;APOA1;APOC3;LCAT;LPL;APOA4;APOE;APOB;APOA5
9                                                                                                   CETP;SCARB1;APOA2;APOA1;APOC3;LCAT;APOA4;LIPC;APOC2;APOC1;LIPG;APOE;PLTP
10                                                                                                       ABCA1;CETP;SCARB1;LIPC;APOC2;LIPG;APOA2;APOA1;APOC3;LCAT;APOA4;APOE
11                                                                             ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;CYP27A1;SOAT1;SOAT2;ANGPTL3;APOE;LDLRAP1;APOB
12                                                                                                   LIPC;SORT1;APOC2;APOH;APOC1;ANGPTL3;APOA1;APOC3;LPL;APOA4;ANGPTL4;APOA5
13                                                                                    ABCA1;SCARB1;OSBPL5;MTTP;APOA2;APOA1;APOC3;APOA4;APOA5;NPC2;APOC2;APOC1;APOE;LDLR;PLTP
14                                                                        ABCA1;SCARB1;ABCG8;CETP;ABCG5;OSBPL5;MTTP;APOA1;APOA4;ABCB11;APOA5;NPC2;NPC1L1;CD36;APOE;LDLR;PLTP
15                                                                                                   CETP;SCARB1;LIPC;APOC2;ANGPTL3;LPL;APOA1;APOC3;APOA4;APOE;ANGPTL4;APOA5
16                                                                                                                           CETP;LIPC;APOC2;APOA1;LCAT;LPL;APOA4;APOE;APOA5
17                                                                                                   CETP;SCARB1;LIPC;APOC2;ANGPTL3;LPL;APOA1;APOC3;APOA4;APOE;ANGPTL4;APOA5
18                                                                                                      CETP;APOA2;LPL;APOC3;APOA5;LIPC;LIPI;APOH;LIPG;APOC1;APOE;APOB;LPIN3
19                                                                                                                      ABCA1;APOC2;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOA5
20                                                                                                                               APOC2;APOA2;APOA1;APOC3;LPL;APOA4;APOE;APOB
21                                                                                                                   CETP;LRP1;APOC2;LIPG;APOC1;APOA2;TSPO;APOA1;APOA4;APOA5
22                                                                                                                              APOC2;MTTP;APOA2;APOA1;APOC3;APOA4;APOE;APOB
23                                                                                                                                     LIPC;APOC2;APOC1;APOC3;APOE;APOB;LDLR
24                                                                                                                                  NPC1L1;MTTP;APOA2;APOA1;APOA4;APOE;APOA5
25                                                                                                               LRP1;ADH1B;APOC2;APOA2;APOA1;LPL;APOC3;APOA4;LRP2;APOE;APOB
26                                                                                                                                APOC1;APOA2;APOA1;APOA4;APOE;LDLRAP1;APOA5
27                                                                                                               LRP1;ADH1B;APOC2;APOA2;APOA1;LPL;APOC3;APOA4;LRP2;APOE;APOB
28                                                                                                               ABCA1;CETP;LIPG;ANGPTL3;APOA1;APOA4;PPARG;APOE;ABCB11;APOA5
29                                                                                                                                   SORT1;APOC1;ANGPTL3;APOA2;APOC3;ANGPTL4
30                                                                                                                                        APOC1;APOA2;APOA1;APOA4;APOE;APOA5
31                                                                                                                                        ABCG8;ABCG5;NPC1L1;SOAT2;CD36;LDLR
32                                                                                                                                       ABCG8;ABCG5;APOC2;APOC1;APOA2;APOC3
33                                                                                                                                        ABCG8;ABCG5;NPC1L1;SOAT2;CD36;LDLR
34                                                                                                                                CETP;APOH;APOC1;APOA2;LPL;APOC3;APOE;APOA5
35                                                                                                                                        APOC1;APOA2;APOA1;APOA4;APOE;APOA5
36                                                                                                                                      ABCA1;CETP;LIPG;ANGPTL3;APOA1;ABCB11
37                                                                                                                                         SOAT1;SOAT2;APOC1;MTTP;APOC3;APOB
38                                                                                                                                APOA2;ANGPTL3;APOA1;APOA4;PPARG;APOE;APOA5
39                                                                                                                                        ABCA1;APOA2;APOA1;APOA4;APOE;APOA5
40                                                                                                                                         SORT1;APOC1;ANGPTL3;APOC3;ANGPTL4
41                                                                                                                                            LRPAP1;APOC2;APOC1;APOC3;PCSK9
42                                                                                                                                             APOC2;APOA2;APOA1;APOC3;APOA5
43                                                                                                                                         ABCA1;NPC1;STAR;NPC2;LDLRAP1;LDLR
44                                                                                                                                      CETP;LRP1;LIPG;APOA1;PPARG;APOE;PLTP
45                                                                                                                                             ABCG8;ABCG5;APOA1;APOA4;APOA5
46                                                                                                                                              APOC2;APOH;APOA1;APOA4;APOA5
47                                                                                                                                      LIPC;LIPI;LIPG;APOA2;LPL;APOC3;APOA5
48                                                                                                                                  SCARB1;APOC2;APOA1;APOA4;APOE;LDLR;APOA5
49                                                                                                                                       SCARB1;APOC2;APOA1;APOA4;APOA5;LDLR
50                                                                                                                                              APOC2;APOH;APOA1;APOA4;APOA5
51                                                                                                                                    APOC1;APOA2;ANGPTL3;APOC3;ABCB11;APOA5
52                                                                                                                     CYP27A1;STARD3;NPC1;STAR;TSPO;LRP2;ABCB11;LIPA;CYP7A1
53                                                                                                                                     APOC2;APOA2;ANGPTL3;APOA1;APOA4;APOA5
54                                                                                                                                            LIPC;LIPI;LIPG;APOC3;LPL;APOA5
55                                                                                                                                         SCARB1;OSBPL5;NPC2;MTTP;LDLR;PLTP
56                                                                                                                              CETP;LIPC;APOA2;APOA1;LCAT;APOA4;APOA5;LPIN3
57                                                                                                                                             APOC2;APOA1;APOC3;APOA4;APOA5
58                                                                                                                        LIPC;LIPI;LIPG;ANGPTL3;LPL;PPARG;CD36;ABCB11;LPIN3
59                                                                                                                                       APOC2;APOC1;APOA1;APOC3;APOA4;APOA5
60                                                                                                                                                     LRP1;APOC1;TSPO;APOA4
61                                                                                                                                                 ABCA1;LPL;PPARG;CD36;LDLR
62                                                                                                                                                  CETP;LIPC;APOA2;APOB;LPA
63                                                                                                                                            ABCA1;CETP;LPL;PPARG;CD36;APOB
64                                                                                                                        ABCA1;ABCG8;CETP;ABCG5;APOA1;APOA4;LRP2;APOA5;PLTP
65                                                                                                                                           CETP;LRP1;APOA1;PPARG;APOE;PLTP
66                                                                                                                        SCARB1;LRP1;APOA1;CD36;LRP2;APOE;LDLRAP1;APOB;LDLR
67                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
68                                                                                                                                               ABCA1;SCARB1;LPL;PPARG;APOB
69                                                                                                                                                    SCARB1;APOA1;CD36;LDLR
70                                                                                                                                                    SCARB1;APOA1;CD36;LDLR
71                                                                                                                                  CYP27A1;LIPC;LIPI;LIPG;LPL;ABCB11;CYP7A1
72                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
73                                                                                                                            APOC1;APOA2;PCSK9;APOA1;APOA4;PPARG;APOE;APOA5
74                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
75                                                                                                                                             APOC2;APOA1;APOA4;PPARG;APOA5
76                                                                                                                                    LRPAP1;APOC2;APOC1;APOC3;LDLRAP1;APOA5
77                                                                                                                                      FADS3;LIPC;LIPI;EPHX2;LIPG;LPL;FADS1
78                                                                                                                                                    ABCA1;APOA1;APOC3;APOE
79                                                                                                                                                   APOC2;APOA1;APOA4;APOA5
80                                                                                                                                       LIPC;STAR;LIPI;LIPG;LPL;HMGCR;FADS1
81                                                                                                                                                LRP1;APOA1;PPARG;APOE;PLTP
82                                                                                                                                            LRPAP1;APOC2;APOC1;PCSK9;APOC3
83                                                                                                                                                      LRP1;PPARG;CD36;APOB
84                                                                                                                                  NPC2;APOC2;APOC1;APOC3;PPARG;HMGCR;DHCR7
85                                                                                                                            NPC1;ADH1B;ANGPTL3;LPL;PPARG;VDAC1;CD36;ABCB11
86                                                                                                                                                      LRP1;PPARG;CD36;APOB
87                                                                                                                                                  LIPC;LIPI;LIPG;LPL;APOA4
88                                                                                                                                                   APOC2;APOA1;APOA4;APOA5
89                                                                                                                                                      ABCA1;NPC1;STAR;NPC2
90                                                                                                                                    CYP27A1;STAR;HMGCR;DHCR7;ABCB11;CYP7A1
91                                                                                                                                               STAR;APOA1;APOA4;APOE;APOA5
92                                                                                                                                                    LIPC;APOA2;ANGPTL3;LPL
93                                                                                                                             SCARB1;STAR;APOC2;APOA1;APOA4;CD36;APOA5;LDLR
94                                                                                                                                                    LRPAP1;LRP1;HMGCR;APOE
95                                                                                                                                         LIPG;APOA2;ANGPTL3;LPL;LCAT;FADS1
96                                                                                                                                                         APOA1;APOA4;APOA5
97                                                                                                                                                            LRP1;LRP2;LDLR
98                                                                                                                                               APOA1;APOA4;APOE;CD36;APOA5
99                                                                                                                                                  EPHX2;APOE;LDLRAP1;KPNB1
100                                                                                                                                                        SOAT1;SOAT2;PPARG
101                                                                                                                                                          SCARB1;LPL;APOB
102                                                                                                                                                        SOAT1;SOAT2;PPARG
103                                                                                                                                        CYP27A1;HMGCR;DHCR7;ABCB11;CYP7A1
104                                                                                                                                                   STAR;EPHX2;APOE;ABCB11
105                                                                                                                                    VAPA;VAPB;APOA2;APOA1;LCAT;APOE;LPIN3
106                                                                                                                                                  APOC2;APOC1;APOA2;APOC3
107                                                                                                                                                           LRP1;LRP2;LDLR
108                                                                                                                                                         LRPAP1;LRP1;APOE
109                                                                                                                                                 LIPG;APOA2;ANGPTL3;LPIN3
110                                                                                                                                          CETP;ANGPTL3;APOA4;PPARG;ABCB11
111                                                                                                                                                      CYP27A1;APOE;CYP7A1
112                                                                                                                                                      CYP27A1;APOE;CYP7A1
113                                                                                                                                                   STARD3;STAR;TSPO;DHCR7
114                                                                                                                                                      APOC3;PCSK9;LDLRAP1
115                                                                                                                                               CYP27A1;NPC1;ABCB11;CYP7A1
116                                                                                                                                                   APOA2;LCAT;APOA1;LPIN3
117                                                                                                                                                      CYP27A1;APOE;CYP7A1
118                                                                                                                                                       LIPG;ANGPTL3;APOA2
119                                                                                                                                                       LRP1;APOC2;ANGPTL3
120                                                                                                                                                            LRP1;LPL;APOB
121                                                                                                                                                          CETP;APOA1;APOE
122                                                                                                                                              CETP;APOA1;LCAT;APOA4;APOA5
123                                                                                                                                                  ABCG8;ABCG5;NPC2;ABCB11
124                                                                                                                                                         ABCA1;CETP;PPARG
125                                                                                                                                                           CETP;LRP1;APOE
126                                                                                                                                                         STARD3;STAR;TSPO
127                                                                                                                                    NPC1;VAPA;VAPB;LRP2;LDLRAP1;APOB;LDLR
128                                                                                                                                                  LRP1;APOE;LDLRAP1;APOA5
129                                                                                                                              GHR;ABCA1;LRPAP1;LRP1;APOC2;CD36;APOE;APOA5
130                                                                                                                                                  APOC1;APOA2;APOC3;HMGCR
131                                                                                                                                                        APOC1;APOA2;APOC3
132                                                                                                                                                         SCARB1;NPC2;PLTP
133                                                                                                                                                            LPL;CD36;APOB
134                                                                                                                                ABCA1;LRP1;MTTP;PPARG;CD36;LRP2;APOE;APOB
135                                                                                                                                                          PPARG;APOE;CD36
136                                                                                                                                                          SCARB1;LPL;APOB
137                                                                                                                                                         STARD3;STAR;TSPO
138                                                                                                                                                       LIPG;APOA2;ANGPTL3
139                                                                                                                                                        APOC2;APOC1;APOC3
140                                                                                                                                              PPARG;HMGCR;APOE;DHCR7;LDLR
141                                                                                                                                     LRPAP1;APOA2;APOA1;APOC3;APOA4;HMGCR
142                                                                                                                                                    CYP27A1;ABCB11;CYP7A1
143                                                                                                                                                               PCSK9;APOE
144                                                                                                                                                   ABCA1;APOA1;APOC3;APOE
145                                                                                                                                                        EPHX2;APOE;ABCB11
146                                                                                                                                             APOC2;APOA1;APOA4;APOE;APOA5
147                                                                                                                                                        LRP1;ANGPTL3;LRP2
148                                                                                                                                                  APOA2;APOA1;APOC3;APOA4
149                                                                                                                                                                NPC2;PLTP
150                                                                                                                                                             LIPG;LDLRAP1
151                                                                                                                                                                CETP;LIPG
152                                                                                                                                                          PPARG;APOE;CD36
153                                                                                                                                                  SORT1;PCSK9;PPARG;LPIN3
154                                                                                                                                                            ABCB11;CYP7A1
155                                                                                                                                                               PCSK9;APOE
156                                                                                                                                                    LRP1;APOA2;APOA1;APOE
157                                                                                                                                                          APOH;PPARG;APOE
158                                                                                                                                                          APOH;PPARG;APOE
159                                                                                                                                                                APOE;LDLR
160                                                                                                                                                             LRPAP1;HMGCR
161                                                                                                                                                        LRPAP1;PCSK9;APOE
162                                                                                                                                              LIPI;APOA2;APOA1;LCAT;LPIN3
163                                                                                                                                                              APOA2;APOA1
164                                                                                                                                                              FADS3;FADS1
165                                                                                                                                                         TSPO;VDAC2;VDAC1
166                                                                                                                                                      PCSK9;LDLRAP1;APOA5
167                                                                                                                                                              ABCA1;PPARG
168                                                                                                                                                              STAR;CYP7A1
169                                                                                                                                                              APOA2;APOA1
170                                                                                                                                                              MYLIP;PCSK9
171                                                                                                                                                              MYLIP;PCSK9
172                                                                                                                                                              APOA2;APOA1
173                                                                                                                                                                VAPA;APOE
174                                                                                                                                                              SCARB1;LDLR
175                                                                                                                                                        LRP1;CD36;LDLRAP1
176                                                                                                                                                         APOA2;LPL;CYP7A1
177                                                                                                                                                    LRP1;APOC2;APOE;APOA5
178                                                                                                                                                              APOC1;APOC3
179                                                                                                                                                                APOH;APOE
180                                                                                                                                                              APOA2;APOA1
181                                                                                                                                                              ALDH2;ADH1B
182                                                                                                                                                                APOE;LDLR
183                                                                                                                                                          HMGCR;APOE;LDLR
184                                                                                                                                                        FADS3;FADS2;FADS1
185                                                                                                                                                              FADS2;FADS1
186                                                                                                                                                    ITIH4;APOH;APOA1;CD36
187                                                                                                                                                        APOC2;APOC1;APOC3
188                                                                                                                                                                APOE;LDLR
189                                                                                                                                                                APOH;APOE
190                                                                                                                                                                APOE;CD36
191                                                                                                                                                              NPC1L1;CD36
192                                                                                                                                                        LRP1;CD36;LDLRAP1
193                                                                                                                                                       SCARB1;APOA2;APOA1
194                                                                                                                                                                APOE;LDLR
195                                                                                                                                                                LPL;PPARG
196                                                                                                                                                              SCARB1;LDLR
197                                                                                                                                        APOA2;PCSK9;APOA1;APOE;APOB;APOA5
198                                                                                                                                                         LRPAP1;LRP1;APOE
199                                                                                                                                                         APOA1;APOA4;CD36
200                                                                                                                                                            PPARG;LDLRAP1
201                                                                                                                                                          PCSK9;LPL;FADS1
202                                                                                                                                                              APOA2;APOA1
203                                                                                                                                                              APOC1;APOC3
204                                                                                                                                                               APOE;KPNB1
205                                                                                                                                                              STAR;CYP7A1
206                                                                                                                                                      APOA2;ANGPTL3;APOA5
207                                                                                                                                                             APOE;LDLRAP1
208                                                                                                                                                                APOE;CD36
209                                                                                                                                                              SCARB1;APOE
210                                                                                                                                                              ALDH2;ADH1B
211                                                                                                                                                               PCSK9;APOE
212                                                                                                                                                                 LPL;CD36
213                                                                                                                                                                APOE;LDLR
214                                                                                                                                                              ABCA1;PPARG
215                                                                                                                                                              FADS2;FADS1
216                                                                                                                                                              APOC1;APOC3
217                                                                                                                                                                 LPL;APOB
218                                                                                                                                                           APOA1;LPL;CD36
219                                                                                                                                                        FADS2;EPHX2;FADS1
220                                                                                                                                                              APOA2;APOA1
221                                                                                                                                        APOA2;PCSK9;APOA1;APOE;APOB;APOA5
222                                                                                                                                                         APOA1;PPARG;APOE
223                                                                                                                                                           LRP1;CD36;LRP2
224                                                                                                                                                              MYLIP;PCSK9
225                                                                                                                                                                APOA2;LPL
226                                                                                                                                                    ITIH4;APOH;APOA1;CD36
227                                                                                                                                                         SCARB1;APOH;APOE
228                                                                                                                                                               HMGCR;APOE
229                                                                                                                                                          LRP1;PPARG;APOE
230                                                                                                                                                                APOH;APOE
231                                                                                                                                                              SCARB1;APOE
232                                                                                                                                                                APOH;APOE
233                                                                                                                                                   LRPAP1;PCSK9;APOE;LDLR
234                                                                                                                                                              EPHX2;FADS1
235                                                                                                                                                                 GHR;APOE
236                                                                                                                                                         LRPAP1;LRP1;CD36
237                                                                                                                                               APOH;ANGPTL3;PPARG;ANGPTL4
238                                                                                                                                                     APOA1;LPL;PPARG;APOE
239                                                                                                                                                              SCARB1;LRP1
240                                                                                                                                                        PCSK9;PPARG;LPIN3
241                                                                                                                                                               PPARG;APOE
242                                                                                                                                                   EPHX2;ANGPTL3;LPL;LCAT
243                                                                                                                                                                APOH;APOE
244                                                                                                                                                                LRP1;CD36
245                                                                                                                                                                APOE;CD36
246                                                                                                                                                             LRPAP1;PCSK9
247                                                                                                                                                         APOA4;PPARG;CD36
248                                                                                                                                                            PPARG;LDLRAP1
249                                                                                                                                                          ABCA1;CD36;APOE
250                                                                                                                                                         TSPO;VDAC2;VDAC1
251                                                                                                                                                         APOA1;PPARG;APOE
252                                                                                                                                                      LRPAP1;LRP1;LDLRAP1
253                                                                                                                                                                APOE;CD36
254                                                                                                                                                               HMGCR;APOE
255                                                                                                                                                               HMGCR;APOE
256                                                                                                                                                              SCARB1;APOE
257                                                                                                                                                                APOH;APOE
258                                                                                                                                                         GHR;LRP2;LDLRAP1
259                                                                                                                                                        PCSK9;PPARG;LPIN3
260                                                                                                                                                                LRP1;CD36
261                                                                                                                                                               ABCA1;MTTP
262                                                                                                                                                              NPC2;ABCB11
263                                                                                                                                                                APOE;LDLR
264                                                                                                                                                      LPL;PPARG;CD36;APOB
265                                                                                                                                                               MYLIP;APOE
266                                                                                                                                                                LPL;PPARG
267                                                                                                                                                               PPARG;LRP2
268                                                                                                                                                              APOC1;APOC3
269                                                                                                                                                              APOA2;APOA1
[1] "GO_Cellular_Component_2021"
                                                          Term Overlap
1               high-density lipoprotein particle (GO:0034364)   12/19
2                                     chylomicron (GO:0042627)   10/10
3   triglyceride-rich plasma lipoprotein particle (GO:0034385)   10/15
4           very-low-density lipoprotein particle (GO:0034361)   10/15
5                                  early endosome (GO:0005769)  13/266
6                low-density lipoprotein particle (GO:0034362)     4/7
7     spherical high-density lipoprotein particle (GO:0034366)     4/8
8                     endoplasmic reticulum lumen (GO:0005788)  10/285
9                      endocytic vesicle membrane (GO:0030666)   8/158
10                 endoplasmic reticulum membrane (GO:0005789)  14/712
11                                       lysosome (GO:0005764)  11/477
12                                  lytic vacuole (GO:0000323)   8/219
13                              endocytic vesicle (GO:0030139)   7/189
14     clathrin-coated endocytic vesicle membrane (GO:0030669)    5/69
15              clathrin-coated endocytic vesicle (GO:0045334)    5/85
16               clathrin-coated vesicle membrane (GO:0030665)    5/90
17                             lysosomal membrane (GO:0005765)   8/330
18                  intracellular organelle lumen (GO:0070013)  12/848
19       collagen-containing extracellular matrix (GO:0062023)   8/380
20                        endocytic vesicle lumen (GO:0071682)    3/21
21                       organelle outer membrane (GO:0031968)   5/142
22 ATP-binding cassette (ABC) transporter complex (GO:0043190)     2/6
23                         lytic vacuole membrane (GO:0098852)   6/267
24                              endosome membrane (GO:0010008)   6/325
25                   mitochondrial outer membrane (GO:0005741)   4/126
26                   platelet dense granule lumen (GO:0031089)    2/14
27                                        vesicle (GO:0031982)   5/226
28                          endolysosome membrane (GO:0036020)    2/17
29                    basolateral plasma membrane (GO:0016323)   4/151
30                   cytoplasmic vesicle membrane (GO:0030659)   6/380
31                         platelet dense granule (GO:0042827)    2/21
32                                lysosomal lumen (GO:0043202)    3/86
33                                   endolysosome (GO:0036019)    2/25
34                        secretory granule lumen (GO:0034774)   5/316
35                          brush border membrane (GO:0031526)    2/37
36                         mitochondrial envelope (GO:0005740)   3/127
37       extracellular membrane-bounded organelle (GO:0065010)    2/56
38                          extracellular vesicle (GO:1903561)    2/59
39                                 vacuolar lumen (GO:0005775)   3/161
40                                        caveola (GO:0005901)    2/60
   Adjusted.P.value
1      5.261200e-24
2      6.209923e-24
3      9.203512e-21
4      9.203512e-21
5      1.246888e-10
6      7.731648e-08
7      1.321996e-07
8      6.153361e-07
9      8.075627e-07
10     1.200431e-06
11     6.211359e-06
12     7.353950e-06
13     2.938912e-05
14     2.938912e-05
15     7.671871e-05
16     9.509306e-05
17     1.065748e-04
18     1.698308e-04
19     2.574496e-04
20     2.574496e-04
21     6.432532e-04
22     8.164449e-04
23     1.420908e-03
24     3.827987e-03
25     3.898444e-03
26     4.116966e-03
27     4.199032e-03
28     5.675277e-03
29     6.551600e-03
30     6.795770e-03
31     7.845057e-03
32     1.043474e-02
33     1.043474e-02
34     1.423039e-02
35     2.126720e-02
36     2.763580e-02
37     4.460396e-02
38     4.700422e-02
39     4.700422e-02
40     4.700422e-02
                                                                                Genes
1                  CETP;APOC2;APOH;APOC1;APOA2;APOA1;APOC3;LCAT;APOA4;APOE;APOA5;PLTP
2                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
3                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
4                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
5          LRP1;SORT1;APOA2;PCSK9;APOA1;APOC3;APOA4;APOC2;LIPG;APOE;LDLRAP1;APOB;LDLR
6                                                               APOC2;APOE;APOB;APOA5
7                                                             APOC2;APOA2;APOA1;APOC3
8                            LRPAP1;LIPC;MTTP;APOA2;PCSK9;APOA1;APOA4;APOE;APOB;APOA5
9                                        SCARB1;LRP1;CD36;LRP2;APOE;LDLRAP1;APOB;LDLR
10 ABCA1;STARD3;HMGCR;CYP7A1;FADS2;NCEH1;SOAT1;VAPA;SOAT2;VAPB;DHCR7;APOB;FADS1;LPIN3
11                       SCARB1;STARD3;NPC1;LRP1;NPC2;SORT1;PCSK9;LRP2;APOB;LIPA;LDLR
12                                        SCARB1;NPC1;NPC2;SORT1;PCSK9;LRP2;LIPA;LDLR
13                                             ABCA1;SCARB1;LRP1;APOA1;CD36;APOE;APOB
14                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
15                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
16                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
17                                       SCARB1;STARD3;NPC1;LRP1;VAPA;PCSK9;LRP2;LDLR
18              CYP27A1;LIPC;ALDH2;MTTP;APOA2;PCSK9;APOA1;APOA4;APOE;APOB;APOA5;KPNB1
19                                  ITIH4;APOH;ANGPTL3;APOA1;APOC3;APOA4;ANGPTL4;APOE
20                                                                    APOA1;APOE;APOB
21                                                       VDAC3;TSPO;VDAC2;VDAC1;DHCR7
22                                                                        ABCG8;ABCG5
23                                                 SCARB1;STARD3;NPC1;LRP1;PCSK9;LRP2
24                                                STARD3;SORT1;PCSK9;ABCB11;APOB;LDLR
25                                                             VDAC3;TSPO;VDAC2;VDAC1
26                                                                         ITIH4;APOH
27                                                         ABCA1;CETP;VAPA;APOA1;APOE
28                                                                         PCSK9;LDLR
29                                                              LRP1;MTTP;ABCB11;LDLR
30                                                   SCARB1;LRP1;SORT1;CD36;APOB;LDLR
31                                                                         ITIH4;APOH
32                                                                     NPC2;APOB;LIPA
33                                                                         PCSK9;LDLR
34                                                        ITIH4;NPC2;APOH;APOA1;KPNB1
35                                                                          LRP2;CD36
36                                                                   STAR;VDAC2;VDAC1
37                                                                         APOA1;APOE
38                                                                         APOA1;APOE
39                                                                     NPC2;APOB;LIPA
40                                                                        SCARB1;CD36
[1] "GO_Molecular_Function_2021"
                                                                                                                                                                                Term
1                                                                                                                                                   cholesterol binding (GO:0015485)
2                                                                                                                                                        sterol binding (GO:0032934)
3                                                                                                                                         cholesterol transfer activity (GO:0120020)
4                                                                                                                                              sterol transfer activity (GO:0120015)
5                                                                                                                                 lipoprotein particle receptor binding (GO:0070325)
6                                                                                                       phosphatidylcholine-sterol O-acyltransferase activator activity (GO:0060228)
7                                                                                                                                          lipoprotein particle binding (GO:0071813)
8                                                                                                                              low-density lipoprotein particle binding (GO:0030169)
9                                                                                                                                             lipase inhibitor activity (GO:0055102)
10                                                                                                                    low-density lipoprotein particle receptor binding (GO:0050750)
11                                                                                                                                          lipoprotein lipase activity (GO:0004465)
12                                                                                                                                                 amyloid-beta binding (GO:0001540)
13                                                                                                                                         triglyceride lipase activity (GO:0004806)
14                                                                                                                                                      lipase activity (GO:0016298)
15                                                                                                                                                       lipase binding (GO:0035473)
16                                                                                                                                           apolipoprotein A-I binding (GO:0034186)
17                                                                                                                                      apolipoprotein receptor binding (GO:0034190)
18                                                                                                                                            phospholipase A1 activity (GO:0008970)
19                                                                                                                                            lipase activator activity (GO:0060229)
20                                                                                                                                  carboxylic ester hydrolase activity (GO:0052689)
21                                                                                                                                 voltage-gated anion channel activity (GO:0008308)
22                                                                                                                                   voltage-gated ion channel activity (GO:0005244)
23                                                                                                                             phosphatidylcholine transporter activity (GO:0008525)
24                                                                                                                                  protein heterodimerization activity (GO:0046982)
25                                                                                                                                phosphatidylcholine transfer activity (GO:0120019)
26                                                                                                                                               phospholipase activity (GO:0004620)
27                                                                                                                                           O-acyltransferase activity (GO:0008374)
28                                                                                                                            high-density lipoprotein particle binding (GO:0008035)
29                                                                                                                                           ceramide transfer activity (GO:0120017)
30                                                                                                                                         clathrin heavy chain binding (GO:0032050)
31                                                                                                                                     phospholipase inhibitor activity (GO:0004859)
32                                                                                                                                    protein homodimerization activity (GO:0042803)
33                                                                                                                                               anion channel activity (GO:0005253)
34                                                                                                                                       phospholipid transfer activity (GO:0120014)
35 oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen (GO:0016709)
36                                                                                                                                         steroid hydroxylase activity (GO:0008395)
37                                                                                                                                                         NADP binding (GO:0050661)
38                                                                                                                                         peptidase inhibitor activity (GO:0030414)
39                                                                                                                                     endopeptidase regulator activity (GO:0061135)
   Overlap Adjusted.P.value
1    17/50     2.288174e-28
2    17/60     4.390322e-27
3    11/18     5.744987e-22
4    11/19     1.020647e-21
5    10/28     4.677379e-17
6      6/6     3.484605e-14
7     8/24     2.055320e-13
8     6/17     3.140441e-10
9     5/10     1.805253e-09
10    6/23     2.016360e-09
11     4/5     9.113232e-09
12    7/80     1.430772e-07
13    5/23     1.612041e-07
14    6/49     1.859889e-07
15     3/5     3.788104e-06
16     3/5     3.788104e-06
17     3/6     7.112969e-06
18    3/10     3.991032e-05
19    3/12     6.897596e-05
20    5/96     1.501407e-04
21    3/16     1.501407e-04
22    3/16     1.501407e-04
23    3/18     2.082322e-04
24   6/188     3.016202e-04
25     2/5     7.035280e-04
26    4/73     7.035280e-04
27    3/30     8.567836e-04
28     2/6     9.653527e-04
29     2/8     1.732107e-03
30     2/9     2.147965e-03
31    2/10     2.592555e-03
32   8/636     7.345938e-03
33    3/68     7.879809e-03
34    2/22     1.181407e-02
35    2/36     2.870121e-02
36    2/36     2.870121e-02
37    2/36     2.870121e-02
38    2/40     3.429432e-02
39    2/46     4.375411e-02
                                                                                                Genes
1  ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;TSPO;VDAC2;VDAC1
2  ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;TSPO;VDAC2;VDAC1
3                                        ABCA1;ABCG8;CETP;ABCG5;NPC2;MTTP;APOA2;APOA1;APOA4;APOB;PLTP
4                                        ABCA1;ABCG8;CETP;ABCG5;NPC2;MTTP;APOA2;APOA1;APOA4;APOB;PLTP
5                                         LRPAP1;LRP1;APOA2;PCSK9;APOA1;APOC3;APOE;APOB;LDLRAP1;APOA5
6                                                                  APOC1;APOA2;APOA1;APOA4;APOE;APOA5
7                                                          SCARB1;LIPC;APOA2;LPL;PCSK9;CD36;LDLR;PLTP
8                                                                    SCARB1;LIPC;PCSK9;CD36;LDLR;PLTP
9                                                                     APOC2;APOC1;ANGPTL3;APOA2;APOC3
10                                                               LRPAP1;PCSK9;APOE;APOB;LDLRAP1;APOA5
11                                                                                 LIPC;LIPI;LIPG;LPL
12                                                           LRPAP1;LRP1;APOA1;CD36;APOE;LDLRAP1;LDLR
13                                                                            LIPC;LIPI;LIPG;LCAT;LPL
14                                                                       LIPC;LIPI;LIPG;LCAT;LPL;LIPA
15                                                                                  LRPAP1;APOB;APOA5
16                                                                                  ABCA1;SCARB1;LCAT
17                                                                                  APOA2;APOA1;PCSK9
18                                                                                      LIPC;LIPG;LPL
19                                                                                   APOC2;APOH;APOA5
20                                                                            LIPC;LIPG;LPL;LCAT;LIPA
21                                                                                  VDAC3;VDAC2;VDAC1
22                                                                                  VDAC3;VDAC2;VDAC1
23                                                                                    ABCA1;MTTP;PLTP
24                                                                   ABCG8;ABCG5;VAPA;VAPB;MTTP;APOA2
25                                                                                          MTTP;PLTP
26                                                                                 LIPC;LIPI;LIPG;LPL
27                                                                                   SOAT1;SOAT2;LCAT
28                                                                                         APOA2;PLTP
29                                                                                          MTTP;PLTP
30                                                                                          LRP1;LDLR
31                                                                                      APOC1;ANGPTL3
32                                                         GHR;STARD3;VAPB;EPHX2;APOA2;LPL;APOA4;APOE
33                                                                                  VDAC3;VDAC2;VDAC1
34                                                                                          MTTP;PLTP
35                                                                                     CYP27A1;CYP7A1
36                                                                                     CYP27A1;CYP7A1
37                                                                                        HMGCR;DHCR7
38                                                                                          ITIH4;LPA
39                                                                                          ITIH4;LPA
GO_known_annotations <- do.call(rbind, GO_enrichment)
GO_known_annotations <- GO_known_annotations[GO_known_annotations$Adjusted.P.value<0.05,]

#GO enrichment analysis for cTWAS genes

genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
GO_ctwas_genes <- do.call(rbind, GO_enrichment)

#optionally subset to only significant GO terms
#GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Adjusted.P.value<0.05,]

#identify cTWAS genes in silver standard enriched GO terms
GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Term %in% GO_known_annotations$Term,]

overlap_genes <- lapply(GO_ctwas_genes$Genes, function(x){unlist(strsplit(x, ";"))})
overlap_genes <- -sort(-table(unlist(overlap_genes)))

#ctwas genes in silver standard enriched GO terms, not already in silver standard
overlap_genes[!(names(overlap_genes) %in% known_annotations)]

 NOS3 GSK3B  GPAM   SCD FURIN  CTSH   FN1  ACP6 PRKD2  KDSR PARP9 CNIH4 
   14    13    12    10     9     8     8     5     4     2     2     1 
 EVI5 FAM3D  MZF1 SARS2 TMED4 TPD52 
    1     1     1     1     1     1 
save(overlap_genes, file=paste0(results_dir, "/overlap_genes.Rd"))
load(paste0(results_dir, "/overlap_genes.Rd"))

overlap_genes <- overlap_genes[!(names(overlap_genes) %in% known_annotations)]
overlap_genes

 NOS3 GSK3B  GPAM   SCD FURIN  CTSH   FN1  ACP6 PRKD2  KDSR PARP9 CNIH4 
   14    13    12    10     9     8     8     5     4     2     2     1 
 EVI5 FAM3D  MZF1 SARS2 TMED4 TPD52 
    1     1     1     1     1     1 
overlap_genes <- names(overlap_genes)
#ctwas_gene_res[ctwas_gene_res$genename %in% overlap_genes, report_cols,]

Results for Paper

out_table <- ctwas_gene_res

report_cols <- report_cols[!(report_cols %in% c("mu2", "PVE"))]
report_cols <- c(report_cols,"silver","GO_overlap_silver", "bystander")

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

out_table$silver <- F
out_table$silver[out_table$genename %in% known_annotations] <- T

#create extended bystanders list (all silver standard, not just imputed silver standard)
library(biomaRt)
library(GenomicRanges)

ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
G_list <- G_list[G_list$hgnc_symbol!="",]
G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
G_list$start <- G_list$start_position
G_list$end <- G_list$end_position
G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)

known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
half_window <- 1000000
known_annotations_positions$start <- known_annotations_positions$start_position - half_window
known_annotations_positions$end <- known_annotations_positions$end_position + half_window
known_annotations_positions$start[known_annotations_positions$start<1] <- 1
known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)

bystanders_extended <- findOverlaps(known_annotations_granges,G_list_granges)
bystanders_extended <- unique(subjectHits(bystanders_extended))
bystanders_extended <- G_list$hgnc_symbol[bystanders_extended]
bystanders_extended <- unique(bystanders_extended[!(bystanders_extended %in% known_annotations)])

save(bystanders_extended, file=paste0(results_dir, "/bystanders_extended.Rd"))

load(paste0(results_dir, "/bystanders_extended.Rd"))

#add extended bystanders list to output
out_table$bystander <- F
out_table$bystander[out_table$genename %in% bystanders_extended] <- T

#reload GO overlaps with silver standard
load(paste0(results_dir, "/overlap_genes.Rd"))

out_table$GO_overlap_silver <- NA
out_table$GO_overlap_silver[out_table$susie_pip>0.8] <- 0

for (i in names(overlap_genes)){
  out_table$GO_overlap_silver[out_table$genename==i] <- overlap_genes[i]
}

cTWAS identifies high-confidence liver genes associated with LDL cholesterol

full.gene.pip.summary <- data.frame(gene_name = ctwas_gene_res$genename, 
                                    gene_pip = ctwas_gene_res$susie_pip, 
                                    gene_id = ctwas_gene_res$id, 
                                    chr = as.integer(ctwas_gene_res$chrom),
                                    start = ctwas_gene_res$pos / 1e3,
                                    is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full.gene.pip.summary$is_highlight <- full.gene.pip.summary$gene_pip > 0.80

don <- full.gene.pip.summary %>% 
  
  # Compute chromosome size
  group_by(chr) %>% 
  summarise(chr_len=max(start)) %>% 
  
  # Calculate cumulative position of each chromosome
  mutate(tot=cumsum(chr_len)-chr_len) %>%
  dplyr::select(-chr_len) %>%
  
  # Add this info to the initial dataset
  left_join(full.gene.pip.summary, ., by=c("chr"="chr")) %>%
  
  # Add a cumulative position of each SNP
  arrange(chr, start) %>%
  mutate( BPcum=start+tot)

axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )

x_axis_labels <- axisdf$chr
x_axis_labels[seq(1,21,2)] <- ""

ggplot(don, aes(x=BPcum, y=gene_pip)) +
  
  # Show all points
  ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=2) +
  scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
  
  # custom X axis:
  # scale_x_continuous(label = axisdf$chr, 
  #                    breaks= axisdf$center,
  #                    guide = guide_axis(n.dodge = 2)) +
  scale_x_continuous(label = x_axis_labels,
                     breaks = axisdf$center) +
  
  scale_y_continuous(expand = c(0, 0), limits = c(0,1.25), breaks=(1:5)*0.2, minor_breaks=(1:10)*0.1) + # remove space between plot area and x axis
  
  # Add highlighted points
  ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="orange", size=2) +
  
  # Add label using ggrepel to avoid overlapping
  ggrepel::geom_label_repel(data=subset(don, is_highlight==T), 
                            aes(label=gene_name), 
                            size=4,
                            min.segment.length = 0, 
                            label.size = NA,
                            fill = alpha(c("white"),0)) +
  
  # Custom the theme:
  theme_bw() +
  theme( 
    text = element_text(size = 14),
    legend.position="none",
    panel.border = element_blank(),
    panel.grid.major.x = element_blank(),
    panel.grid.minor.x = element_blank()
  ) +
  xlab("Chromosome") + 
  ylab("cTWAS PIP")

#number of SNPs at PIP>0.8 threshold
sum(out_table$susie_pip>0.8)
[1] 32
#number of SNPs at PIP>0.5 threshold
sum(out_table$susie_pip>0.5)
[1] 83
#genes with PIP>0.8
head(out_table[order(-out_table$susie_pip),report_cols], sum(out_table$susie_pip>0.8))
        genename region_tag susie_pip         z num_eqtl silver
2252       PRKD2      19_33 0.9990989  5.316724        2  FALSE
6227       CNIH4      1_114 0.9916593  6.201835        2  FALSE
7878        ACP6       1_73 0.9881237  4.575774        4  FALSE
1003       TPD52       8_57 0.9812117 -4.557712        2  FALSE
1163       GSK3B       3_74 0.9750098  6.835676        1  FALSE
3740    C10orf88      10_77 0.9675624 -6.783901        1  FALSE
1553        MZF1      19_39 0.9648108 -4.742966        2  FALSE
402        TUBG2      17_25 0.9570282  4.434366        2  FALSE
9315       KCNK3       2_16 0.9525992 -4.821789        1  FALSE
3305         FN1      2_127 0.9418621 -4.446065        1  FALSE
9946      ZNF575      19_30 0.9308837 -5.954341        2  FALSE
6406       USP53       4_77 0.9248454 -4.856546        1  FALSE
14455 AC007950.2      15_29 0.9135056  5.555780        1  FALSE
13062     ATP5J2       7_61 0.9089457 -5.116980        2  FALSE
1542         SCD      10_64 0.8945838 -4.541468        1  FALSE
3734        GPAM      10_70 0.8925750  4.133221        1  FALSE
3645       CCND2       12_4 0.8874327 -4.065830        1  FALSE
2080        CTSH      15_37 0.8853807  3.805849        4  FALSE
12483      FXYD7      19_24 0.8819526 -3.872239        1  FALSE
266       NPC1L1       7_32 0.8707786 11.631021        1   TRUE
1508     CWF19L1      10_64 0.8687056  5.747567        1  FALSE
756         EVI5       1_56 0.8564938 -6.589915        2  FALSE
6974        PELO       5_30 0.8524653  8.522224        1  FALSE
9463        POP7       7_62 0.8450469  5.858772        1  FALSE
7444       TMED4       7_32 0.8423169  7.608826        2  FALSE
8291        NOS3       7_93 0.8379598  3.856590        2  FALSE
2174       SARS2      19_26 0.8249021  4.480159        1  FALSE
5866       FURIN      15_42 0.8215001 -4.391033        1  FALSE
5626       PARP9       3_76 0.8120411 -5.774700        1  FALSE
3681        KDSR      18_35 0.8103019 -3.912562        3  FALSE
13192  LINC01184       5_78 0.8057176 -3.918269        2  FALSE
11839      FAM3D       3_40 0.8027527 -3.889457        1  FALSE
      GO_overlap_silver bystander
2252                  4     FALSE
6227                  1     FALSE
7878                  5     FALSE
1003                  1     FALSE
1163                 13     FALSE
3740                  0     FALSE
1553                  1     FALSE
402                   0     FALSE
9315                  0     FALSE
3305                  8     FALSE
9946                  0     FALSE
6406                  0     FALSE
14455                 0     FALSE
13062                 0     FALSE
1542                 10     FALSE
3734                 12     FALSE
3645                  0     FALSE
2080                  8     FALSE
12483                 0     FALSE
266                  11     FALSE
1508                  0     FALSE
756                   1     FALSE
6974                  0     FALSE
9463                  0     FALSE
7444                  1      TRUE
8291                 14     FALSE
2174                  1     FALSE
5866                  9     FALSE
5626                  2     FALSE
3681                  2     FALSE
13192                 0     FALSE
11839                 1     FALSE
head(out_table[order(-out_table$susie_pip),report_cols[-(7:8)]], sum(out_table$susie_pip>0.8))
        genename region_tag susie_pip         z num_eqtl silver
2252       PRKD2      19_33 0.9990989  5.316724        2  FALSE
6227       CNIH4      1_114 0.9916593  6.201835        2  FALSE
7878        ACP6       1_73 0.9881237  4.575774        4  FALSE
1003       TPD52       8_57 0.9812117 -4.557712        2  FALSE
1163       GSK3B       3_74 0.9750098  6.835676        1  FALSE
3740    C10orf88      10_77 0.9675624 -6.783901        1  FALSE
1553        MZF1      19_39 0.9648108 -4.742966        2  FALSE
402        TUBG2      17_25 0.9570282  4.434366        2  FALSE
9315       KCNK3       2_16 0.9525992 -4.821789        1  FALSE
3305         FN1      2_127 0.9418621 -4.446065        1  FALSE
9946      ZNF575      19_30 0.9308837 -5.954341        2  FALSE
6406       USP53       4_77 0.9248454 -4.856546        1  FALSE
14455 AC007950.2      15_29 0.9135056  5.555780        1  FALSE
13062     ATP5J2       7_61 0.9089457 -5.116980        2  FALSE
1542         SCD      10_64 0.8945838 -4.541468        1  FALSE
3734        GPAM      10_70 0.8925750  4.133221        1  FALSE
3645       CCND2       12_4 0.8874327 -4.065830        1  FALSE
2080        CTSH      15_37 0.8853807  3.805849        4  FALSE
12483      FXYD7      19_24 0.8819526 -3.872239        1  FALSE
266       NPC1L1       7_32 0.8707786 11.631021        1   TRUE
1508     CWF19L1      10_64 0.8687056  5.747567        1  FALSE
756         EVI5       1_56 0.8564938 -6.589915        2  FALSE
6974        PELO       5_30 0.8524653  8.522224        1  FALSE
9463        POP7       7_62 0.8450469  5.858772        1  FALSE
7444       TMED4       7_32 0.8423169  7.608826        2  FALSE
8291        NOS3       7_93 0.8379598  3.856590        2  FALSE
2174       SARS2      19_26 0.8249021  4.480159        1  FALSE
5866       FURIN      15_42 0.8215001 -4.391033        1  FALSE
5626       PARP9       3_76 0.8120411 -5.774700        1  FALSE
3681        KDSR      18_35 0.8103019 -3.912562        3  FALSE
13192  LINC01184       5_78 0.8057176 -3.918269        2  FALSE
11839      FAM3D       3_40 0.8027527 -3.889457        1  FALSE
head(out_table[order(-out_table$susie_pip),report_cols[c(1,7:8)]], sum(out_table$susie_pip>0.8))
        genename GO_overlap_silver bystander
2252       PRKD2                 4     FALSE
6227       CNIH4                 1     FALSE
7878        ACP6                 5     FALSE
1003       TPD52                 1     FALSE
1163       GSK3B                13     FALSE
3740    C10orf88                 0     FALSE
1553        MZF1                 1     FALSE
402        TUBG2                 0     FALSE
9315       KCNK3                 0     FALSE
3305         FN1                 8     FALSE
9946      ZNF575                 0     FALSE
6406       USP53                 0     FALSE
14455 AC007950.2                 0     FALSE
13062     ATP5J2                 0     FALSE
1542         SCD                10     FALSE
3734        GPAM                12     FALSE
3645       CCND2                 0     FALSE
2080        CTSH                 8     FALSE
12483      FXYD7                 0     FALSE
266       NPC1L1                11     FALSE
1508     CWF19L1                 0     FALSE
756         EVI5                 1     FALSE
6974        PELO                 0     FALSE
9463        POP7                 0     FALSE
7444       TMED4                 1      TRUE
8291        NOS3                14     FALSE
2174       SARS2                 1     FALSE
5866       FURIN                 9     FALSE
5626       PARP9                 2     FALSE
3681        KDSR                 2     FALSE
13192  LINC01184                 0     FALSE
11839      FAM3D                 1     FALSE

cTWAS avoids false positives when multiple genes are in a region

TNKS is a silver standard (assumed true positive gene) that is correctly detected. The bystander gene RP11-115J16.2 is significant using TWAS but has low PIP using cTWAS.

# #TNKS gene
# locus_plot4("8_12", label="cTWAS")
# 
# out_table[out_table$region_tag=="8_12",report_cols[-(7:8)]]
# out_table[out_table$region_tag=="8_12",report_cols[c(1,7:8)]]

FADS1 is a silver standard gene (assumed true positive gene) that is correctly detected. There are 5 significant TWAS genes at this locus, including FADS2, another silver standard gene. FADS2 is not detected due to its high LD with FADS1. The remaining 3 bystander genes at this locus have low PIP using cTWAS.

# #FADS1 gene
# locus_plot3("11_34", focus="FADS1")
# 
# out_table[out_table$region_tag=="11_34",report_cols[-(7:8)]]
# out_table[out_table$region_tag=="11_34",report_cols[c(1,7:8)]]
# 
# #number of significant TWAS genes at this locus
# sum(abs(out_table$z[out_table$region_tag=="11_34"])>sig_thresh)

cTWAS avoids false positives when SNPs in a region are (considerably) more significant

POLK is a gene that is significant using TWAS but not detected using TWAS. cTWAS places a high posterior probability on SNPs are this locus. OpenTargets suggets that the causal gene at this locus is HMGCR (note: different GWAS, similar population), which is not imputed in our dataset. cTWAS selected the variants at this locus because the causal gene is not imputed. Note that MR-JTI claims POLK is causal using their method, and their paper includes a discussion of its potential relevance to LDL.

locus_plot("5_45", label="TWAS")

#locus_plot("5_45", label="TWAS", rerun_ctwas = T)

out_table[out_table$region_tag=="5_45",report_cols[-(7:8)]]
      genename region_tag  susie_pip           z num_eqtl silver
4872     AP3B1       5_45 0.11393562  1.72776969        1  FALSE
4873     ZBED3       5_45 0.03919705 -0.12603742        1  FALSE
6426     CRHBP       5_45 0.04776444  0.73384553        2  FALSE
8184     F2RL2       5_45 0.03985237  0.24209270        2  FALSE
8190     F2RL1       5_45 0.13587040  1.96525972        3  FALSE
8191     AGGF1       5_45 0.04035005 -0.31697845        1  FALSE
8192     WDR41       5_45 0.05757220  0.99877957        1  FALSE
9347      TBCA       5_45 0.03894052 -0.09942578        1  FALSE
10420      F2R       5_45 0.04504062 -0.72708071        2  FALSE
out_table[out_table$region_tag=="5_45",report_cols[c(1,7:8)]]
      genename GO_overlap_silver bystander
4872     AP3B1                NA     FALSE
4873     ZBED3                NA     FALSE
6426     CRHBP                NA     FALSE
8184     F2RL2                NA     FALSE
8190     F2RL1                NA     FALSE
8191     AGGF1                NA     FALSE
8192     WDR41                NA     FALSE
9347      TBCA                NA     FALSE
10420      F2R                NA     FALSE

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))

#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
     ctwas       TWAS 
0.02083333 0.27083333 
#specificity / (1 - False Positive Rate)
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9985915 0.9464789 
#precision / PPV / (1 - False Discovery Rate)
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
   ctwas     TWAS 
0.500000 0.254902 
#store sensitivity and specificity calculations for plots
sensitivity_plot <- sensitivity
specificity_plot <- specificity

#precision / PPV by PIP threshold
pip_range <- c(0.5, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
number_detected <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes using PIP threshold
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower]
  
  number_detected[i] <- length(ctwas_genes)
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste0(">= ", c(0, pip_range[-length(pip_range)]))

precision_range <- precision_range*100

precision_range <- c(precision_range, precision["TWAS"]*100)
names(precision_range)[4] <- "TWAS Bonferroni"
number_detected <- c(number_detected, length(twas_genes))

barplot(precision_range, ylim=c(0,100), main="Precision for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

#false discovery rate by PIP threshold

barplot(100-precision_range, ylim=c(0,100), main="False Discovery Rate for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% Bystanders in Detected Genes")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(100-precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

For all 69 silver standard genes, sequentially bin each gene using the following criteria: 1) gene not imputed; 2) gene detected by cTWAS at PIP>0.8; 3) gene insignificant by TWAS; 4) gene nearby a detected silver standard gene; 5) gene nearby a detected bystander gene; 6) gene nearby a detected SNP; 7) inconclusive.

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

#categorize silver standard genes by case
silver_standard_case <- c()
uncertain_regions <- matrix(NA, 0, 2)

for (i in 1:length(known_annotations)){
  current_gene <- known_annotations[i]
  
  if (current_gene %in% ctwas_gene_res$genename) {
    if (ctwas_gene_res$susie_pip[ctwas_gene_res$genename == current_gene] > 0.8){
      silver_standard_case <- c(silver_standard_case, "Detected (PIP > 0.8)")
    } else {
      if (abs(ctwas_gene_res$z[ctwas_gene_res$genename == current_gene]) < sig_thresh){
        silver_standard_case <- c(silver_standard_case, "Insignificant z-score")
      } else {
        current_region <- ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]
        current_gene_res <- ctwas_gene_res[ctwas_gene_res$region_tag==current_region,]
        current_snp_res <- ctwas_snp_res[ctwas_snp_res$region_tag==current_region,]
        
        if (any(current_gene_res$susie_pip>0.8)){
          if (any(current_gene_res$genename[current_gene_res$susie_pip>0.8] %in% known_annotations)){
            silver_standard_case <- c(silver_standard_case, "Nearby Silver Standard Gene")
          } else {
            silver_standard_case <- c(silver_standard_case, "Nearby Bystander Gene")
          }
        } else {
          #if (any(current_snp_res$susie_pip>0.8)){
          if (sum(current_snp_res$susie_pip)>0.8){
            silver_standard_case <- c(silver_standard_case, "Nearby SNP(s)")
          } else {
            silver_standard_case <- c(silver_standard_case, "Inconclusive")
            
            uncertain_regions <- rbind(uncertain_regions, c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
            
            print(c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
          }
        }
      }
    }
  } else {
    silver_standard_case <- c(silver_standard_case, "Not Imputed")
  }
}
names(silver_standard_case) <- known_annotations

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
Insignificant z-score           Not Imputed         Nearby SNP(s) 
                   35                    21                    12 
 Detected (PIP > 0.8) 
                    1 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)
# for (i in 1:nrow(uncertain_regions)){
#   locus_plot3(uncertain_regions[i,2], focus=uncertain_regions[i,1])
# }

#pie chart of outcomes for silver standard genes
df <- data.frame(-sort(-table(silver_standard_case)))
names(df) <- c("Outcome", "Frequency")
#df <- df[df$Outcome!="Not Imputed",] #exclude genes not imputed
df$Outcome <- droplevels(df$Outcome) #exclude genes not imputed

bp<- ggplot(df, aes(x=Outcome, y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity", position=position_dodge()) + 
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) + theme(legend.position = "none")
bp

pie <- ggplot(df, aes(x="", y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity")
pie <- pie + coord_polar("y", start=0) + theme_minimal() + theme(axis.title.y=element_blank())
pie

# locus_plot3(focus="KPNB1", region_tag="17_27")
# locus_plot3(focus="LPIN3", region_tag="20_25")
# locus_plot3(focus="LIPC", region_tag="15_26")

Some cTWAS genes share biological characteristics with silver standard genes

Perform GO enrichment analysis using silver standard genes. Identify detected cTWAS genes not already in silver standard that are also members of these GO terms.

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

#GO enrichment analysis for silver standard genes
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- known_annotations
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
# for (db in dbs){
#   print(db)
#   df <- GO_enrichment[[db]]
#   df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
#   plotEnrich(GO_enrichment[[db]])
#   print(df)
# }

GO_known_annotations <- do.call(rbind, GO_enrichment)
GO_known_annotations <- GO_known_annotations[GO_known_annotations$Adjusted.P.value<0.05,]

#GO enrichment analysis for cTWAS genes

genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
GO_ctwas_genes <- do.call(rbind, GO_enrichment)

#identify cTWAS genes in silver standard enriched GO terms
GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Term %in% GO_known_annotations$Term,]

GO_ctwas_genes_byterms <- as.data.frame(matrix(NA, 0, 2))

for (i in 1:nrow(GO_ctwas_genes)){
  for (j in unlist(strsplit(GO_ctwas_genes$Genes[i], split=";"))){
    GO_ctwas_genes_byterms<- rbind(GO_ctwas_genes_byterms, c(j, GO_ctwas_genes$Term[i]))
  }
  colnames(GO_ctwas_genes_byterms) <- c("Gene", "GO_term")
}
Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "SCD"): invalid factor level,
NA generated
GO_ctwas_genes_byterms <- GO_ctwas_genes_byterms[order(GO_ctwas_genes_byterms$Gene),]
GO_ctwas_genes_byterms <- GO_ctwas_genes_byterms[!(GO_ctwas_genes_byterms$Gene %in% known_annotations),]

#detected cTWAS genes (not on silver standard) that overlap with GO terms enriched for silver standard genes

GO_ctwas_genes_byterms
    Gene                        GO_term
1   NOS3 response to lipid (GO:0033993)
7   NOS3                           <NA>
27  NOS3                           <NA>
30  NOS3                           <NA>
40  NOS3                           <NA>
47  NOS3                           <NA>
48  NOS3                           <NA>
85  NOS3                           <NA>
94  NOS3                           <NA>
95  NOS3                           <NA>
97  NOS3                           <NA>
99  NOS3                           <NA>
102 NOS3                           <NA>
103 NOS3                           <NA>
2   <NA> response to lipid (GO:0033993)
3   <NA> response to lipid (GO:0033993)
4   <NA>                           <NA>
5   <NA>                           <NA>
6   <NA>                           <NA>
8   <NA>                           <NA>
9   <NA>                           <NA>
10  <NA>                           <NA>
11  <NA>                           <NA>
12  <NA>                           <NA>
13  <NA>                           <NA>
14  <NA>                           <NA>
15  <NA>                           <NA>
16  <NA>                           <NA>
17  <NA>                           <NA>
18  <NA>                           <NA>
19  <NA>                           <NA>
20  <NA>                           <NA>
21  <NA>                           <NA>
22  <NA>                           <NA>
23  <NA>                           <NA>
24  <NA>                           <NA>
25  <NA>                           <NA>
26  <NA>                           <NA>
28  <NA>                           <NA>
29  <NA>                           <NA>
31  <NA>                           <NA>
32  <NA>                           <NA>
33  <NA>                           <NA>
34  <NA>                           <NA>
35  <NA>                           <NA>
36  <NA>                           <NA>
37  <NA>                           <NA>
38  <NA>                           <NA>
39  <NA>                           <NA>
41  <NA>                           <NA>
42  <NA>                           <NA>
43  <NA>                           <NA>
44  <NA>                           <NA>
45  <NA>                           <NA>
46  <NA>                           <NA>
49  <NA>                           <NA>
50  <NA>                           <NA>
51  <NA>                           <NA>
52  <NA>                           <NA>
53  <NA>                           <NA>
54  <NA>                           <NA>
55  <NA>                           <NA>
56  <NA>                           <NA>
57  <NA>                           <NA>
58  <NA>                           <NA>
59  <NA>                           <NA>
60  <NA>                           <NA>
61  <NA>                           <NA>
62  <NA>                           <NA>
63  <NA>                           <NA>
64  <NA>                           <NA>
65  <NA>                           <NA>
66  <NA>                           <NA>
67  <NA>                           <NA>
68  <NA>                           <NA>
69  <NA>                           <NA>
70  <NA>                           <NA>
71  <NA>                           <NA>
72  <NA>                           <NA>
73  <NA>                           <NA>
74  <NA>                           <NA>
75  <NA>                           <NA>
76  <NA>                           <NA>
77  <NA>                           <NA>
78  <NA>                           <NA>
79  <NA>                           <NA>
80  <NA>                           <NA>
81  <NA>                           <NA>
82  <NA>                           <NA>
83  <NA>                           <NA>
84  <NA>                           <NA>
86  <NA>                           <NA>
87  <NA>                           <NA>
88  <NA>                           <NA>
89  <NA>                           <NA>
90  <NA>                           <NA>
91  <NA>                           <NA>
92  <NA>                           <NA>
93  <NA>                           <NA>
96  <NA>                           <NA>
98  <NA>                           <NA>
100 <NA>                           <NA>
101 <NA>                           <NA>
104 <NA>                           <NA>
105 <NA>                           <NA>

cTWAS detects some genes that are not significant using a stringent TWAS threshold

TTC39B is a member of the Dyslipidaemia term in the disease_GLAD4U. This gene was not included in our silver standard. This gene is not significant using TWAS but is detected by cTWAS.

#locus_plot3(focus="TTC39B", region_tag="9_13")

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] ctwas_0.1.31         forcats_0.4.0        stringr_1.4.0       
 [4] dplyr_1.0.7          purrr_0.3.4          readr_1.4.0         
 [7] tidyr_1.1.0          tidyverse_1.3.0      tibble_3.1.2        
[10] GenomicRanges_1.36.0 GenomeInfoDb_1.20.0  IRanges_2.18.1      
[13] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
[16] readxl_1.3.1         WebGestaltR_0.4.4    disgenet2r_0.99.2   
[19] enrichR_3.0          cowplot_1.0.0        ggplot2_3.3.3       

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_1.4-1       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.3.1               rstudioapi_0.10        farver_2.1.0          
 [10] ggrepel_0.8.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_0.5.0            lubridate_1.7.4        xml2_1.3.2            
 [16] logging_0.10-108       codetools_0.2-16       doParallel_1.0.16     
 [19] cachem_1.0.5           knitr_1.23             jsonlite_1.6          
 [22] workflowr_1.6.2        apcluster_1.4.8        Cairo_1.5-12.2        
 [25] broom_0.7.9            dbplyr_1.4.2           compiler_3.6.1        
 [28] httr_1.4.1             backports_1.1.4        assertthat_0.2.1      
 [31] Matrix_1.2-18          fastmap_1.1.0          cli_3.0.1             
 [34] later_0.8.0            htmltools_0.3.6        prettyunits_1.0.2     
 [37] tools_3.6.1            igraph_1.2.4.1         gtable_0.3.0          
 [40] glue_1.4.2             GenomeInfoDbData_1.2.1 reshape2_1.4.3        
 [43] doRNG_1.8.2            Rcpp_1.0.6             Biobase_2.44.0        
 [46] cellranger_1.1.0       vctrs_0.3.8            svglite_1.2.2         
 [49] iterators_1.0.13       xfun_0.8               rvest_0.3.5           
 [52] lifecycle_1.0.0        rngtools_1.5           XML_3.98-1.20         
 [55] zlibbioc_1.30.0        scales_1.1.0           hms_1.1.0             
 [58] promises_1.0.1         yaml_2.2.0             curl_3.3              
 [61] memoise_2.0.0          ggrastr_0.2.3          gdtools_0.1.9         
 [64] stringi_1.4.3          RSQLite_2.2.7          foreach_1.5.1         
 [67] rlang_0.4.11           pkgconfig_2.0.3        bitops_1.0-6          
 [70] evaluate_0.14          lattice_0.20-38        labeling_0.3          
 [73] bit_4.0.4              tidyselect_1.1.0       plyr_1.8.4            
 [76] magrittr_2.0.1         R6_2.5.0               generics_0.0.2        
 [79] DBI_1.1.1              pgenlibr_0.3.1         pillar_1.6.1          
 [82] haven_2.3.1            whisker_0.3-2          withr_2.4.1           
 [85] RCurl_1.98-1.1         modelr_0.1.8           crayon_1.4.1          
 [88] utf8_1.2.1             rmarkdown_1.13         progress_1.2.2        
 [91] grid_3.6.1             data.table_1.14.0      blob_1.2.1            
 [94] git2r_0.26.1           reprex_0.3.0           digest_0.6.20         
 [97] httpuv_1.5.1           munsell_0.5.0          beeswarm_0.2.3        
[100] vipor_0.4.5