Last updated: 2021-11-15

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 81c11f7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    analysis/figure/

Unstaged changes:
    Modified:   analysis/ukb-d-30780_irnt_Adipose_Subcutaneous_known.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30780_irnt_Adipose_Subcutaneous_known.Rmd) and HTML (docs/ukb-d-30780_irnt_Adipose_Subcutaneous_known.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 81c11f7 wesleycrouse 2021-11-15 fixing report
Rmd c123245 wesleycrouse 2021-11-15 LDL adipose sub

Overview

These are the results of a ctwas analysis of the UK Biobank trait LDL direct using Adipose_Subcutaneous gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30780_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Adipose_Subcutaneous eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 12961
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1278  918  741  500  602  740  638  485  494  502  777  731  256  426  444 
  16   17   18   19   20   21   22 
 610  799  198  977  380  144  321 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.7639843

Load ctwas results

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0234130881 0.0000584326 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
     gene       snp 
 7.788427 46.440462 
#report sample size
print(sample_size)
[1] 343621
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   12961 8696600
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.00687808 0.06867862 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.07281326 1.20053323

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
        genename region_tag susie_pip         mu2          PVE         z
5923       ABCA8      17_39 0.9982625    28.49746 8.278872e-05  5.086840
2199       FCGRT      19_34 0.9967913 10378.34712 3.010598e-02 -4.165895
7045      ZDHHC7      16_49 0.9967008    24.23491 7.029534e-05 -4.891663
7879        ACP6       1_73 0.9932775    21.77810 6.295220e-05  4.613976
7623        PKN3       9_66 0.9854511    42.73347 1.225529e-04 -6.885356
4395         POR       7_48 0.9843314    32.69729 9.366414e-05  6.026895
2313      PLPPR2      19_10 0.9790947    28.36151 8.081172e-05  3.965665
3730    C10orf88      10_77 0.9771524    31.39957 8.929071e-05 -6.762952
5600     FAM117B      2_120 0.9695151    38.09714 1.074898e-04  7.877231
3647      CCDC92      12_75 0.9604840    26.34034 7.362610e-05 -5.343007
10255    KLHDC7A       1_13 0.9544827    18.66743 5.185288e-05  4.124187
10447       FKRP      19_33 0.9482623    20.61788 5.689744e-05  4.425174
1279        SRRT       7_62 0.9450584    25.66844 7.059571e-05  4.744831
632        SPHK2      19_33 0.9412590    38.80542 1.062972e-04 -8.721460
14551 AC007950.2      15_29 0.9412296    30.76191 8.426148e-05  5.555780
5327       IL1RN       2_67 0.9410797    20.79413 5.694919e-05  4.455379
1003       TPD52       8_57 0.9370510    18.68606 5.095669e-05 -4.121885
10272    SPTY2D1      11_13 0.9335133    28.13983 7.644734e-05 -5.557123
3633       CCND2       12_4 0.9318759    19.26549 5.224666e-05 -4.128258
1526     CWF19L1      10_64 0.9256794    28.62700 7.711817e-05  5.813958
3674        KDSR      18_35 0.9199769    18.92509 5.066818e-05 -4.119957
161         MPND       19_5 0.9197113    19.83813 5.309731e-05 -4.322018
7441       TMED4       7_32 0.9191981    36.87829 9.865071e-05  7.688274
8904        PDHB       3_40 0.9140947    24.02176 6.390228e-05  3.361078
4022      ACVR1C       2_94 0.9057641    19.38221 5.109033e-05 -4.185879
9348       KCNK3       2_16 0.9044393    20.54412 5.407385e-05 -4.772296
9036       PCSK9       1_34 0.8982431   105.00205 2.744808e-04 17.210869
1559         SCD      10_64 0.8966611    18.64373 4.864984e-05 -4.541468
11865     C2CD4A      15_28 0.8713009    21.59986 5.476958e-05  4.535165
13258  LINC01184       5_78 0.8593862    18.23008 4.559291e-05 -3.918127
6023        NTN5      19_33 0.8492136    47.56594 1.175529e-04 10.033010
7079     UBASH3B      11_74 0.8475160    23.99612 5.918467e-05  4.906621
5607       PARP9       3_76 0.8452748    22.78261 5.604304e-05  3.744644
6967        PELO       5_30 0.8402073    61.55834 1.505198e-04  8.522224
1237       CPNE3       8_62 0.8147843    18.04139 4.277922e-05  3.753687
3724        GPAM      10_70 0.8129956    19.45034 4.601885e-05  4.000718
      num_eqtl
5923         2
2199         2
7045         3
7879         4
7623         2
4395         2
2313         1
3730         1
5600         2
3647         5
10255        1
10447        5
1279         2
632          1
14551        1
5327         1
1003         2
10272        1
3633         2
1526         2
3674         2
161          2
7441         2
8904         2
4022         1
9348         1
9036         1
1559         1
11865        1
13258        2
6023         2
7079         1
5607         1
6967         1
1237         3
3724         1

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag    susie_pip        mu2          PVE          z
75       KMT2E       7_65 0.000000e+00 61406.4269 0.000000e+00 -3.0023371
5123     SRPK2       7_65 0.000000e+00 42876.5960 0.000000e+00 -2.5902427
6042     RPS11      19_34 1.218825e-02 14569.1716 5.167690e-04 -2.4990920
1412    FLT3LG      19_34 1.013001e-02 12581.6580 3.709097e-04  2.4043507
2199     FCGRT      19_34 9.967913e-01 10378.3471 3.010598e-02 -4.1658948
13638    RTEL1      20_38 0.000000e+00  6459.8182 0.000000e+00 -3.9462192
8994     USP39       2_54 2.710276e-12  4489.2019 3.540813e-14  4.0835994
2528      CCNJ      10_61 6.651905e-04  4224.3905 8.177686e-06 -4.6393182
1879     GMEB2      20_38 0.000000e+00  3769.8594 0.000000e+00  2.2095747
8997     VAMP5       2_54 6.218803e-12  3677.0268 6.654630e-14  4.6225955
4296     PRRG2      19_34 6.346413e-04  2889.6595 5.336977e-06  2.0148130
4298     PRR12      19_34 7.826670e-04  2154.4303 4.907155e-06  1.9257259
4297     SCAF1      19_34 2.374574e-03  1461.2603 1.009796e-05  2.1876224
3611     VAMP8       2_54 2.393565e-09  1286.7765 8.963315e-12 -0.5259735
2206   SLC17A7      19_34 4.120128e-04  1175.7166 1.409723e-06 -1.7087222
4571      APOE      19_31 0.000000e+00   999.9678 0.000000e+00 37.8075498
9035     CPT1C      19_34 4.669232e-04   920.8332 1.251258e-06  0.8492599
13190 TNFRSF6B      20_38 0.000000e+00   822.9465 0.000000e+00  2.2944943
12031    LIME1      20_38 0.000000e+00   421.6586 0.000000e+00 -2.9819676
3883      POLK       5_44 3.571822e-02   345.0503 3.586679e-05 23.9950413
      num_eqtl
75           1
5123         2
6042         1
1412         1
2199         2
13638        3
8994         1
2528         1
1879         1
8997         2
4296         2
4298         1
4297         1
3611         2
2206         2
4571         2
9035         2
13190        3
12031        1
3883         1

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
        genename region_tag  susie_pip         mu2          PVE          z
2199       FCGRT      19_34 0.99679127 10378.34712 3.010598e-02  -4.165895
6042       RPS11      19_34 0.01218825 14569.17164 5.167690e-04  -2.499092
1412      FLT3LG      19_34 0.01013001 12581.65797 3.709097e-04   2.404351
1287        CETP      16_30 0.59931467   157.61639 2.749012e-04  13.824230
9036       PCSK9       1_34 0.89824307   105.00205 2.744808e-04  17.210869
3267       NRBP1       2_16 0.78298651   106.73558 2.432113e-04   5.571352
4991       PSRC1       1_67 0.27672417   192.00911 1.546284e-04 -22.968124
6967        PELO       5_30 0.84020734    61.55834 1.505198e-04   8.522224
7623        PKN3       9_66 0.98545107    42.73347 1.225529e-04  -6.885356
6023        NTN5      19_33 0.84921360    47.56594 1.175529e-04  10.033010
5600     FAM117B      2_120 0.96951505    38.09714 1.074898e-04   7.877231
632        SPHK2      19_33 0.94125900    38.80542 1.062972e-04  -8.721460
5576     DNAJC13       3_82 0.74690937    48.23841 1.048531e-04  -4.919872
7441       TMED4       7_32 0.91919811    36.87829 9.865071e-05   7.688274
4395         POR       7_48 0.98433137    32.69729 9.366414e-05   6.026895
3730    C10orf88      10_77 0.97715244    31.39957 8.929071e-05  -6.762952
14551 AC007950.2      15_29 0.94122959    30.76191 8.426148e-05   5.555780
5923       ABCA8      17_39 0.99826247    28.49746 8.278872e-05   5.086840
2313      PLPPR2      19_10 0.97909467    28.36151 8.081172e-05   3.965665
13216    TMEM199      17_17 0.76873569    35.77300 8.002997e-05   6.692808
      num_eqtl
2199         2
6042         1
1412         1
1287         2
9036         1
3267         1
4991         2
6967         1
7623         2
6023         2
5600         2
632          1
5576         2
7441         2
4395         2
3730         1
14551        1
5923         2
2313         1
13216        2

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
        genename region_tag    susie_pip       mu2          PVE         z
4571        APOE      19_31 0.000000e+00 999.96778 0.000000e+00  37.80755
12880 AC067959.1       2_13 4.072320e-11 330.71746 3.919398e-14 -25.52145
3883        POLK       5_44 3.571822e-02 345.05025 3.586679e-05  23.99504
4991       PSRC1       1_67 2.767242e-01 192.00911 1.546284e-04 -22.96812
9036       PCSK9       1_34 8.982431e-01 105.00205 2.744808e-04  17.21087
11376    ANKDD1B       5_44 2.216674e-02 122.31840 7.890672e-06  15.52949
1211        APOB       2_13 2.837784e-10 181.86756 1.501948e-13 -15.03583
2354     ATP13A1      19_15 5.739104e-02 175.75452 2.935424e-05 -14.74773
8740     GATAD2A      19_15 2.463813e-02 187.72384 1.346008e-05 -14.43456
6024      GEMIN7      19_31 0.000000e+00 157.43955 0.000000e+00  14.13454
1287        CETP      16_30 5.993147e-01 157.61639 2.749012e-04  13.82423
6093      CELSR2       1_67 8.522725e-03 109.89040 2.725577e-06  13.72575
4570     NECTIN2      19_31 0.000000e+00  55.57768 0.000000e+00 -13.59762
8941        FEN1      11_34 6.056125e-02 130.93608 2.307674e-05  12.59183
4644       YIPF2       19_9 6.639134e-14 177.08337 3.421444e-17  11.69253
268       NPC1L1       7_32 4.099715e-02  82.55662 9.849767e-06  10.76193
4377     SMARCA4       19_9 0.000000e+00 101.79287 0.000000e+00  10.69172
7824        USP1       1_39 7.150444e-02  94.23231 1.960890e-05  10.57358
6033      TIMM29       19_9 0.000000e+00 104.96417 0.000000e+00  10.16969
4552        MAU2      19_15 6.748590e-02  74.31016 1.459424e-05  10.16871
      num_eqtl
4571         2
12880        1
3883         1
4991         2
9036         1
11376        1
1211         2
2354         3
8740         2
6024         2
1287         2
6093         2
4570         1
8941         1
4644         2
268          1
4377         2
7824         1
6033         1
4552         2

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.01751408
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
        genename region_tag    susie_pip       mu2          PVE         z
4571        APOE      19_31 0.000000e+00 999.96778 0.000000e+00  37.80755
12880 AC067959.1       2_13 4.072320e-11 330.71746 3.919398e-14 -25.52145
3883        POLK       5_44 3.571822e-02 345.05025 3.586679e-05  23.99504
4991       PSRC1       1_67 2.767242e-01 192.00911 1.546284e-04 -22.96812
9036       PCSK9       1_34 8.982431e-01 105.00205 2.744808e-04  17.21087
11376    ANKDD1B       5_44 2.216674e-02 122.31840 7.890672e-06  15.52949
1211        APOB       2_13 2.837784e-10 181.86756 1.501948e-13 -15.03583
2354     ATP13A1      19_15 5.739104e-02 175.75452 2.935424e-05 -14.74773
8740     GATAD2A      19_15 2.463813e-02 187.72384 1.346008e-05 -14.43456
6024      GEMIN7      19_31 0.000000e+00 157.43955 0.000000e+00  14.13454
1287        CETP      16_30 5.993147e-01 157.61639 2.749012e-04  13.82423
6093      CELSR2       1_67 8.522725e-03 109.89040 2.725577e-06  13.72575
4570     NECTIN2      19_31 0.000000e+00  55.57768 0.000000e+00 -13.59762
8941        FEN1      11_34 6.056125e-02 130.93608 2.307674e-05  12.59183
4644       YIPF2       19_9 6.639134e-14 177.08337 3.421444e-17  11.69253
268       NPC1L1       7_32 4.099715e-02  82.55662 9.849767e-06  10.76193
4377     SMARCA4       19_9 0.000000e+00 101.79287 0.000000e+00  10.69172
7824        USP1       1_39 7.150444e-02  94.23231 1.960890e-05  10.57358
6033      TIMM29       19_9 0.000000e+00 104.96417 0.000000e+00  10.16969
4552        MAU2      19_15 6.748590e-02  74.31016 1.459424e-05  10.16871
      num_eqtl
4571         2
12880        1
3883         1
4991         2
9036         1
11376        1
1211         2
2354         3
8740         2
6024         2
1287         2
6093         2
4570         1
8941         1
4644         2
268          1
4377         2
7824         1
6033         1
4552         2

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]
report_cols_region <- report_cols[!(report_cols %in% c("num_eqtl"))]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols_region])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 19_31"
      genename region_tag susie_pip        mu2 PVE            z
7552    ZNF233      19_31         0  98.228951   0  -9.63193736
7553    ZNF235      19_31         0   8.185909   0  -0.97877558
624     ZNF112      19_31         0  72.068605   0   7.18938487
14021   ZNF285      19_31         0  10.013342   0  -1.26709542
14628   ZNF229      19_31         0   8.630054   0   1.23011935
8729    ZNF180      19_31         0  25.642421   0   1.41443321
11089 CEACAM19      19_31         0  13.759203   0   3.64086985
898        PVR      19_31         0  30.112592   0  -3.01973306
4570   NECTIN2      19_31         0  55.577675   0 -13.59762224
4572    TOMM40      19_31         0  56.000201   0   5.53230466
4571      APOE      19_31         0 999.967785   0  37.80754977
4573     APOC1      19_31         0 296.620171   0   7.53014709
12950    APOC2      19_31         0  99.467017   0   7.82468739
2196    CLPTM1      19_31         0  48.802068   0  -2.57517256
9263    ZNF296      19_31         0  65.538646   0   5.25423092
123      MARK4      19_31         0  20.312700   0  -2.24637681
6024    GEMIN7      19_31         0 157.439551   0  14.13454209
2198   PPP1R37      19_31         0  35.405859   0  -2.37518201
131   TRAPPC6A      19_31         0  16.600235   0   1.92140959
11388  BLOC1S3      19_31         0   8.975124   0   2.30141189
2203     ERCC2      19_31         0  13.615522   0   1.53401174
3560    CD3EAP      19_31         0  16.730266   0   0.05565582
229      ERCC1      19_31         0  13.134793   0  -2.19401016
12385    PPM1N      19_31         0  20.227762   0  -1.22009641
4224      RTN2      19_31         0   6.803450   0   2.07007103
4226      VASP      19_31         0  23.808738   0   1.26035740
4222      OPA3      19_31         0  11.581430   0   1.32335471

[1] "Region: 2_13"
        genename region_tag    susie_pip      mu2          PVE         z
1211        APOB       2_13 2.837784e-10 181.8676 1.501948e-13 -15.03583
12880 AC067959.1       2_13 4.072320e-11 330.7175 3.919398e-14 -25.52145

[1] "Region: 5_44"
          genename region_tag  susie_pip        mu2          PVE
492           HEXB       5_44 0.01736765   5.064390 2.559696e-07
9392          ENC1       5_44 0.01622141   4.498465 2.123603e-07
8217          NSA2       5_44 0.02290740   8.434046 5.622534e-07
8218          GFM2       5_44 0.01691796   6.530220 3.215111e-07
11922      FAM169A       5_44 0.01713930   4.950113 2.469043e-07
10025        GCNT4       5_44 0.01663010   4.796782 2.321482e-07
13386    LINC01336       5_44 0.02389685  13.675282 9.510367e-07
3883          POLK       5_44 0.03571822 345.050253 3.586679e-05
14207 CTC-366B18.4       5_44 0.09103018  54.870482 1.453598e-05
11376      ANKDD1B       5_44 0.02216674 122.318403 7.890672e-06
6933          POC5       5_44 0.03730029  38.519190 4.181284e-06
3884          SV2C       5_44 0.27496756  31.503093 2.520896e-05
13509   AC113404.1       5_44 0.02546824  11.766943 8.721332e-07
6412        IQGAP2       5_44 0.02909680  11.478390 9.719557e-07
               z
492   -0.2060482
9392   0.2472305
8217  -1.5148382
8218  -1.7610624
11922  0.1096504
10025 -0.4189438
13386 -1.5053404
3883  23.9950413
14207 -8.1427000
11376 15.5294946
6933  -7.0119331
3884   4.2474479
13509  2.3250769
6412  -2.1788866

[1] "Region: 1_67"
          genename region_tag   susie_pip        mu2          PVE
12677 RP11-356N1.2       1_67 0.008511622   4.878611 1.208450e-07
1230      SLC25A24       1_67 0.110623224  19.040173 6.129676e-06
7834       FAM102B       1_67 0.011788953  15.577365 5.344284e-07
7835        HENMT1       1_67 0.025890373  14.844196 1.118447e-06
3407        STXBP3       1_67 0.014885979  16.452942 7.127567e-07
3879         GPSM2       1_67 0.010770874   6.955047 2.180074e-07
7836        AKNAD1       1_67 0.010770874   6.955047 2.180074e-07
3878         CLCC1       1_67 0.008350193   5.020227 1.219945e-07
11729        TAF13       1_67 0.012348876  13.705360 4.925362e-07
12493     TMEM167B       1_67 0.011335261  15.309187 5.050146e-07
366           SARS       1_67 0.008842491  24.257145 6.242156e-07
4984         GSTM1       1_67 0.026030135  38.410146 2.909663e-06
6093        CELSR2       1_67 0.008522725 109.890397 2.725577e-06
4991         PSRC1       1_67 0.276724165 192.009108 1.546284e-04
12546       MYBPHL       1_67 0.008420809  21.076428 5.165010e-07
4994         SORT1       1_67 0.008445869  20.739040 5.097454e-07
6084         SYPL2       1_67 0.016453770  49.423212 2.366555e-06
7840       ATXN7L2       1_67 0.011482988  14.603293 4.880070e-07
9731      CYB561D1       1_67 0.008784524  51.319596 1.311964e-06
10499       AMIGO1       1_67 0.015914284  29.501073 1.366297e-06
7232         GPR61       1_67 0.008286089   9.151074 2.206693e-07
680          GNAI3       1_67 0.059461335  36.597463 6.332948e-06
8972         GSTM4       1_67 0.019958084  16.303653 9.469435e-07
3409         AMPD2       1_67 0.057412268  44.195010 7.384112e-06
12337        GSTM2       1_67 0.025354958  25.302853 1.867036e-06
4987         GSTM3       1_67 0.010048438   7.235686 2.115917e-07
4986         GSTM5       1_67 0.008934125   9.401227 2.444313e-07
                z
12677  -0.2308337
1230   -0.6406888
7834   -4.6211180
7835   -1.8537405
3407    2.9914703
3879    1.0104135
7836    1.0104135
3878   -1.7197469
11729  -2.8413870
12493   1.5934686
366    -7.0857282
4984    6.5012768
6093   13.7257529
4991  -22.9681237
12546  -7.1894797
4994   -7.1373768
6084    9.7928029
7840    5.9371453
9731    9.9823505
10499  -3.1539161
7232   -4.2425343
680    -3.8408490
8972   -0.3531182
3409    8.4673955
12337   4.6633215
4987   -1.0142898
4986    2.0991563

[1] "Region: 1_34"
         genename region_tag    susie_pip        mu2          PVE
587         YIPF1       1_34 8.060219e-14  10.381893 2.435251e-18
1144       HSPB11       1_34 4.374279e-14   5.108528 6.503131e-19
3401       LRRC42       1_34 4.352074e-14   5.262271 6.664842e-19
3399      TCEANC2       1_34 4.196643e-14   4.741349 5.790610e-19
3400       TMEM59       1_34 4.152234e-14   4.644457 5.612251e-19
7325        CDCP2       1_34 9.736656e-14  12.363077 3.503134e-18
12499      CYB5RL       1_34 1.219025e-13  14.007672 4.969342e-18
3403       MRPL37       1_34 4.407585e-14   4.994136 6.405919e-19
7327        SSBP3       1_34 4.063416e-14   4.635790 5.481953e-19
7784       ACOT11       1_34 1.343370e-13  17.148420 6.704093e-18
10806       MROH7       1_34 1.868505e-12  45.488781 2.473540e-16
7785      FAM151A       1_34 4.327649e-13  27.822867 3.504082e-17
13202        TTC4       1_34 4.096723e-14   4.885584 5.824697e-19
7786        PARS2       1_34 8.781864e-14  10.323831 2.638444e-18
108         TTC22       1_34 1.326717e-13  15.011189 5.795802e-18
3387       DHCR24       1_34 6.250556e-14   9.053461 1.646848e-18
9036        PCSK9       1_34 8.982431e-01 105.002053 2.744808e-04
12945 RP11-90C4.1       1_34 5.484502e-14   7.932894 1.266162e-18
               z
587    1.0226599
1144  -0.2303441
3401   0.2854315
3399  -0.1853540
3400   0.2100252
7325  -1.2055941
12499  1.1595815
3403   0.5344672
7327  -0.6008954
7784  -1.8518413
10806  3.9761380
7785   2.0257851
13202 -0.1056123
7786  -1.1551925
108    1.1662870
3387  -0.3806125
9036  17.2108693
12945 -0.1113431

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip         mu2          PVE
30777      rs611917       1_67 1.0000000  1138.55893 3.313415e-03
71715     rs1042034       2_13 1.0000000   268.95086 7.826962e-04
71721      rs934197       2_13 1.0000000   412.65819 1.200911e-03
322093  rs115740542       6_20 1.0000000   188.10302 5.474142e-04
367498   rs12208357      6_103 1.0000000   298.30479 8.681215e-04
404987  rs763798411       7_65 1.0000000 75043.88217 2.183914e-01
786687   rs73013176       19_9 1.0000000   242.45975 7.056022e-04
786725  rs137992968       19_9 1.0000000   244.44260 7.113727e-04
788882    rs3794991      19_15 1.0000000   512.84094 1.492461e-03
795899   rs62117204      19_31 1.0000000   829.08849 2.412799e-03
795917  rs111794050      19_31 1.0000000   826.73709 2.405956e-03
795950     rs814573      19_31 1.0000000  2427.15171 7.063456e-03
795952  rs113345881      19_31 1.0000000   845.59050 2.460823e-03
795955   rs12721109      19_31 1.0000000  1458.48490 4.244458e-03
853040   rs11591147       1_34 1.0000000  1354.64033 3.942251e-03
871345  rs528437193       2_54 1.0000000  5898.10409 1.716456e-02
976871  rs144230436      10_61 1.0000000  5154.29904 1.499995e-02
1100993 rs374141296      19_34 1.0000000 18407.46817 5.356910e-02
1106858 rs202143810      20_38 1.0000000 16806.02686 4.890861e-02
1061513  rs77542162      17_39 1.0000000   243.99385 7.100668e-04
806227   rs34507316      20_13 1.0000000   102.21251 2.974571e-04
322826     rs454182       6_22 1.0000000   167.03515 4.861029e-04
71666    rs11679386       2_12 1.0000000   174.05511 5.065322e-04
71724      rs548145       2_13 1.0000000   727.86017 2.118206e-03
494719    rs2437818       9_53 1.0000000    84.96770 2.472715e-04
502644  rs115478735       9_70 1.0000000   350.82136 1.020954e-03
71801     rs1848922       2_13 1.0000000   245.31857 7.139219e-04
729234   rs12149380      16_38 1.0000000   142.14901 4.136796e-04
796290  rs150262789      19_32 1.0000000    82.44781 2.399382e-04
59047      rs822928      1_121 1.0000000   121.96034 3.549269e-04
754280    rs1801689      17_38 1.0000000    89.97567 2.618457e-04
443015    rs4738679       8_45 1.0000000   120.62778 3.510489e-04
426829    rs7012814       8_12 1.0000000   102.22222 2.974854e-04
1061518    rs740516      17_39 1.0000000   118.59904 3.451449e-04
404998    rs4997569       7_65 1.0000000 74949.10279 2.181156e-01
1079090 rs148356565      19_10 1.0000000   105.20233 3.061580e-04
79162    rs72800939       2_28 1.0000000    63.04812 1.834816e-04
584116    rs4937122      11_77 0.9999997    80.73680 2.349588e-04
7646     rs79598313       1_18 0.9999996    52.85775 1.538257e-04
441620  rs140753685       8_42 0.9999995    62.77798 1.826953e-04
1100990 rs113176985      19_34 0.9999991 18388.02029 5.351246e-02
54649     rs2807848      1_112 0.9999989    63.98624 1.862115e-04
461125    rs6470359       8_83 0.9999956   362.17786 1.053999e-03
461128   rs13252684       8_83 0.9999849   296.19267 8.619618e-04
806226    rs6075251      20_13 0.9999844    74.50597 2.168226e-04
1078684    rs379309      19_10 0.9999831    76.42620 2.224105e-04
788913  rs113619686      19_15 0.9999828    78.84578 2.294517e-04
58997     rs6586405      1_121 0.9999652    56.24873 1.636884e-04
348935    rs9496567       6_67 0.9999646    43.39708 1.262890e-04
318364   rs11376017       6_13 0.9999343    74.89139 2.179333e-04
322072   rs72834643       6_20 0.9999228    47.56769 1.384200e-04
871350    rs2232748       2_54 0.9999040  5528.30463 1.608683e-02
698787    rs2070895      15_27 0.9998265    64.94659 1.889737e-04
367682   rs56393506      6_104 0.9997910   137.95054 4.013774e-04
367646  rs117733303      6_104 0.9997270   100.58291 2.926348e-04
729277   rs57186116      16_38 0.9997010    77.37089 2.250961e-04
30845    rs41313290       1_67 0.9996527    44.81969 1.303882e-04
538411   rs17875416      10_71 0.9996040    42.77777 1.244418e-04
494692    rs2297400       9_53 0.9992951    44.85553 1.304458e-04
79026   rs139029940       2_27 0.9991948    41.70698 1.212772e-04
1079069  rs36022659      19_10 0.9991446   163.28530 4.747836e-04
1091202  rs62115559      19_30 0.9990805   218.93562 6.365569e-04
280072    rs7701166       5_44 0.9989458    41.74451 1.213561e-04
788522    rs2302209      19_14 0.9988206    47.40383 1.377911e-04
404990   rs10274607       7_65 0.9985122 74854.32653 2.175157e-01
380879   rs56130071       7_19 0.9984407   107.73708 3.130457e-04
461116    rs2980875       8_83 0.9980352   633.92948 1.841226e-03
734729    rs2255451      16_48 0.9977545    42.31186 1.228587e-04
324048   rs28780090       6_26 0.9972192    64.61971 1.875322e-04
581455   rs75542613      11_71 0.9972110    39.46218 1.145219e-04
786708  rs147985405       19_9 0.9971834  2991.91019 8.682482e-03
431347    rs1495743       8_20 0.9968520    45.28373 1.313691e-04
581450    rs3135506      11_71 0.9968166   165.18459 4.791871e-04
811180   rs76981217      20_24 0.9957238    37.86348 1.097185e-04
621586     rs653178      12_67 0.9956545   108.48633 3.143431e-04
1090774  rs55840997      19_30 0.9950079    73.08471 2.116281e-04
442983   rs56386732       8_45 0.9924999    36.63704 1.058208e-04
138888     rs709149        3_9 0.9908560    39.07459 1.126744e-04
811131    rs6029132      20_24 0.9900871    43.93722 1.265978e-04
605002    rs7397189      12_36 0.9894455    36.53653 1.052058e-04
324071   rs62407548       6_26 0.9889379    84.75000 2.439097e-04
30111     rs1730862       1_66 0.9877001    31.82720 9.148373e-05
145898    rs9834932       3_24 0.9869064    73.91419 2.122873e-04
590025   rs11048034       12_9 0.9840744    41.02285 1.174827e-04
661133    rs2332328       14_3 0.9833522    49.88471 1.427568e-04
729010    rs4396539      16_37 0.9821794    31.88560 9.113931e-05
564249     rs174553      11_34 0.9767736   160.89318 4.573534e-04
323234   rs28986304       6_23 0.9767213    49.61396 1.410246e-04
79039    rs13430143       2_27 0.9759468   106.74594 3.031781e-04
796273   rs34942359      19_32 0.9717124    63.05336 1.783061e-04
624540    rs1169300      12_74 0.9711999    76.44526 2.160625e-04
477044    rs1556516       9_16 0.9700584    82.27290 2.322603e-04
79042     rs4076834       2_27 0.9687378   497.58791 1.402802e-03
221301    rs1458038       4_54 0.9674394    57.84775 1.628660e-04
757507    rs4969183      17_44 0.9672484    53.57873 1.508171e-04
321911   rs75080831       6_19 0.9662625    64.69946 1.819349e-04
280013   rs10062361       5_44 0.9658709   235.78515 6.627593e-04
403917    rs3197597       7_61 0.9644754    30.84290 8.656986e-05
1091285 rs185920692      19_30 0.9624772    62.06563 1.738449e-04
30776      rs614174       1_67 0.9543018   997.00335 2.768871e-03
244030  rs114756490      4_100 0.9495856    28.70009 7.931177e-05
871140  rs116298919       2_54 0.9479192   195.51625 5.393547e-04
633761    rs1012130      13_11 0.9451492    52.27240 1.437782e-04
469180    rs7024888        9_3 0.9373299    28.96077 7.899924e-05
799682   rs34003091      19_39 0.9369114   112.80320 3.075674e-04
729275    rs9652628      16_38 0.9368747   141.57287 3.859951e-04
624874   rs11057830      12_76 0.9362409    28.65852 7.808394e-05
1078955 rs146898772      19_10 0.9335190    84.70661 2.301234e-04
786713   rs34008246       19_9 0.9307697   430.07037 1.164936e-03
819537   rs62219001       21_2 0.9289824    28.88066 7.807911e-05
388248  rs141379002       7_33 0.9239433    28.57089 7.682266e-05
367492    rs9456502      6_103 0.9214539    35.21585 9.443481e-05
811184   rs73124945      20_24 0.9201328    34.63702 9.274945e-05
796190  rs377297589      19_32 0.9148043    55.56087 1.479168e-04
323263    rs3130253       6_23 0.9116315    30.12442 7.992053e-05
507594   rs10905277       10_8 0.9110444    30.82776 8.173381e-05
565079    rs6591179      11_36 0.9084156    29.38535 7.768475e-05
744739  rs117859452      17_17 0.9055281    28.07439 7.398310e-05
600089    rs2638250      12_25 0.9044876    29.71427 7.821463e-05
170070     rs189174       3_74 0.9040516    48.84111 1.284988e-04
494712    rs2777788       9_53 0.8964806    70.33165 1.834898e-04
71718    rs78610189       2_13 0.8947460    65.27825 1.699764e-04
195069   rs36205397        4_4 0.8941437    43.54356 1.133056e-04
577719  rs201912654      11_59 0.8853021    43.61893 1.123794e-04
815319   rs10641149      20_32 0.8769782    30.21548 7.711496e-05
619679    rs1196760      12_63 0.8759164    28.99816 7.391855e-05
485030   rs11144506       9_35 0.8649418    29.86618 7.517734e-05
280036    rs3843482       5_44 0.8645555   453.70001 1.141516e-03
806207   rs78348000      20_13 0.8593281    33.23065 8.310328e-05
1052156   rs2908806       17_7 0.8535522    41.23789 1.024346e-04
351671   rs12199109       6_73 0.8455182    28.95792 7.125422e-05
584119   rs74612335      11_77 0.8435624    78.48155 1.926660e-04
633753    rs1799955      13_11 0.8396620    85.78265 2.096159e-04
729215   rs12708919      16_38 0.8379278   165.05612 4.024932e-04
71518     rs6531234       2_12 0.8373807    44.76669 1.090933e-04
357874    rs9321207       6_87 0.8346463    33.48227 8.132756e-05
809925   rs11167269      20_21 0.8289012    62.92394 1.517885e-04
827915  rs149577713      21_19 0.8265083    35.40947 8.517005e-05
39376     rs1795240       1_84 0.8253529    28.82322 6.923130e-05
534888   rs10882161      10_59 0.8247620    32.49835 7.800281e-05
811149    rs6102034      20_24 0.8240734   107.53455 2.578898e-04
811325   rs11086801      20_25 0.8166312   120.68906 2.868231e-04
826778    rs2835302      21_16 0.8144176    28.99333 6.871722e-05
426840   rs13265179       8_12 0.8121150    39.53294 9.343230e-05
976844     rs915506      10_61 0.8046116  5153.93515 1.206828e-02
                 z
30777    30.975273
71715   -16.573036
71721   -33.060888
322093   12.532321
367498  -12.282337
404987   -3.272149
786687   16.232742
786725   10.752566
788882   21.492060
795899   44.672230
795917   33.599649
795950  -55.537887
795952   34.318568
795955   46.325818
853040   39.164934
871345   -1.194340
976871   -4.153975
1100993   2.412211
1106858   5.163023
1061513 -16.625724
806227    6.814661
322826   -4.779053
71666   -11.909428
71724   -33.086010
494719   -6.333973
502644  -19.011790
71801   -25.412292
729234    4.164582
796290   10.898464
59047   -12.369141
754280   -9.396430
443015   11.699924
426829  -10.906064
1061518  11.279140
404998    2.984117
1079090  10.875418
79162     7.845728
584116  -12.147947
7646     -7.024638
441620   -7.799241
1100990  -2.692042
54649     7.882775
461125   -9.646876
461128  -11.964411
806226    2.329832
1078684   8.426981
788913   -0.593903
58997    -8.960936
348935    6.340216
318364    8.507919
322072    6.048695
871350    4.165781
698787   -7.734663
367682  -14.088321
367646  -10.097959
729277   -7.714555
30845     5.646803
538411    6.266313
494692   -6.605676
79026    -6.814991
1079069   9.873513
1091202  14.946045
280072    2.484790
788522   -6.636049
404990    2.866958
380879  -10.978916
461116   22.102229
734729    6.362828
324048   -6.871357
581455    6.534400
786708   48.935175
431347    6.515969
581450  -12.372986
811180   -7.692477
621586  -11.050062
1090774   8.331826
442983    7.012272
138888    6.781974
811131    6.762459
605002    5.770964
324071   -8.257335
30111     5.284644
145898    8.481579
590025   -6.133690
661133   -7.035042
729010    5.232860
564249   12.656944
323234   -7.382502
79039     3.344504
796273    7.009565
624540   -8.685477
477044    8.992146
79042    20.108567
221301    7.417851
757507   -7.169275
321911    7.906709
280013  -20.320600
403917    5.045242
1091285   7.096889
30776    -7.395089
244030   -4.988910
871140   -1.134879
633761    2.781022
469180    5.055827
799682   10.423688
729275  -11.950504
624874   -4.929635
1078955  -3.660667
786713  -12.967795
819537    4.948445
388248   -4.896981
367492   -5.963991
811184    7.775426
796190    6.786505
323263   -5.641451
507594   -5.125802
565079   -4.893333
744739    3.851670
600089    5.037754
170070   -6.767794
494712    5.737015
71718     8.385467
195069   -6.159378
577719    6.305597
815319   -5.075761
619679    4.866700
485030   -5.042667
280036  -25.034352
806207   -5.220624
1052156   6.026359
351671   -4.857045
584119  -11.904831
633753    6.693636
729215  -11.302762
71518     7.170830
357874   -5.401634
809925    7.795037
827915   -3.316824
39376     4.846186
534888    5.475649
811149   11.189979
811325  -10.975177
826778    4.653743
426840    7.414877
976844    4.639318

SNPs with largest effect sizes

#plot PIP vs effect size
#plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                 id region_tag    susie_pip      mu2          PVE
404987  rs763798411       7_65 1.000000e+00 75043.88 2.183914e-01
404998    rs4997569       7_65 1.000000e+00 74949.10 2.181156e-01
404990   rs10274607       7_65 9.985122e-01 74854.33 2.175157e-01
405005    rs6952534       7_65 3.330669e-16 74720.13 7.242516e-17
404993   rs13230660       7_65 3.876101e-03 74695.51 8.425776e-04
405004    rs4730069       7_65 0.000000e+00 74656.20 0.000000e+00
404997   rs10242713       7_65 0.000000e+00 74394.16 0.000000e+00
405000   rs10249965       7_65 0.000000e+00 73784.47 0.000000e+00
405012    rs1013016       7_65 0.000000e+00 70758.63 0.000000e+00
405037    rs8180737       7_65 0.000000e+00 67146.84 0.000000e+00
405030   rs17778396       7_65 0.000000e+00 67130.43 0.000000e+00
405031    rs2237621       7_65 0.000000e+00 67100.37 0.000000e+00
405002   rs71562637       7_65 0.000000e+00 67067.58 0.000000e+00
405064   rs10224564       7_65 0.000000e+00 66978.19 0.000000e+00
405049   rs10255779       7_65 0.000000e+00 66943.24 0.000000e+00
405066   rs78132606       7_65 0.000000e+00 66623.96 0.000000e+00
405069    rs4610671       7_65 0.000000e+00 66540.27 0.000000e+00
405071   rs12669532       7_65 0.000000e+00 63778.61 0.000000e+00
405028    rs2237618       7_65 0.000000e+00 62736.31 0.000000e+00
405073  rs118089279       7_65 0.000000e+00 62114.71 0.000000e+00
405060   rs73188303       7_65 0.000000e+00 62067.31 0.000000e+00
405070  rs560364150       7_65 0.000000e+00 49230.37 0.000000e+00
405056   rs10261738       7_65 0.000000e+00 40201.47 0.000000e+00
405011  rs368909701       7_65 0.000000e+00 30863.84 0.000000e+00
405010    rs2299297       7_65 0.000000e+00 24319.08 0.000000e+00
404996    rs6961668       7_65 0.000000e+00 22263.45 0.000000e+00
405054   rs56384866       7_65 0.000000e+00 20005.36 0.000000e+00
1100993 rs374141296      19_34 1.000000e+00 18407.47 5.356910e-02
1100990 rs113176985      19_34 9.999991e-01 18388.02 5.351246e-02
1100983  rs35295508      19_34 1.073992e-05 18300.22 5.719756e-07
1100997   rs2946865      19_34 8.376866e-06 18264.01 4.452439e-07
1100988  rs73056069      19_34 1.448471e-05 18257.96 7.696307e-07
1100981  rs61371437      19_34 3.338087e-04 18235.00 1.771429e-05
1100985   rs2878354      19_34 1.465398e-05 18203.70 7.763107e-07
1100971    rs739349      19_34 3.329284e-04 18160.68 1.759557e-05
1100972    rs756628      19_34 3.055162e-04 18160.50 1.614665e-05
1100968    rs739347      19_34 1.263878e-04 18127.40 6.667472e-06
1100969   rs2073614      19_34 7.032501e-05 18111.89 3.706756e-06
1100974   rs2077300      19_34 8.011674e-04 18067.36 4.212483e-05
1100978  rs73056059      19_34 6.301036e-04 18032.90 3.306723e-05
1100964   rs4802613      19_34 9.588347e-05 18032.59 5.031787e-06
1100998  rs60815603      19_34 3.754717e-06 18004.99 1.967389e-07
1101001   rs1316885      19_34 5.002071e-06 17915.21 2.607907e-07
1101003  rs60746284      19_34 7.229350e-06 17898.70 3.765660e-07
1101006   rs2946863      19_34 5.368889e-06 17885.94 2.794580e-07
1100999  rs35443645      19_34 3.817582e-06 17865.82 1.984868e-07
1100962  rs10403394      19_34 1.262844e-04 17776.26 6.532967e-06
1100963  rs17555056      19_34 4.863870e-05 17774.77 2.515975e-06
1100979  rs73056062      19_34 8.292969e-06 17561.20 4.238231e-07
1101009 rs553431297      19_34 2.623183e-05 17361.21 1.325344e-06
                 z
404987  -3.2721491
404998   2.9841166
404990   2.8669582
405005   2.8884240
404993   2.9479628
405004   2.8658735
404997   2.8123983
405000   2.8497381
405012  -2.3988524
405037   2.8328454
405030   2.7980012
405031   2.8029605
405002   2.6635936
405064   2.7911904
405049   2.8135791
405066   2.7728082
405069   2.7249742
405071   2.7702573
405028   2.4663255
405073   2.6667208
405060   2.4217031
405070   1.8694582
405056   2.6665109
405011   0.7778883
405010  -0.7963506
404996   3.2318586
405054   1.8825782
1100993  2.4122106
1100990 -2.6920415
1100983 -2.6673841
1100997 -2.7042362
1100988 -2.8620364
1100981 -2.4817929
1100985 -2.8021669
1100971 -2.4874835
1100972 -2.4791524
1100968 -2.4351089
1100969 -2.4259236
1100974 -2.6423569
1100978 -2.6287434
1100964 -2.4736415
1100998 -2.5756724
1101001 -2.6081557
1101003 -2.7767892
1101006 -2.6328340
1100999 -2.4998457
1100962 -2.4990920
1100963 -2.4726709
1100979 -2.1759694
1101009 -2.4664028

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag   susie_pip        mu2          PVE
404987  rs763798411       7_65 1.000000000 75043.8822 0.2183914318
404998    rs4997569       7_65 0.999999999 74949.1028 0.2181156062
404990   rs10274607       7_65 0.998512209 74854.3265 0.2175156901
1100993 rs374141296      19_34 1.000000000 18407.4682 0.0535691013
1100990 rs113176985      19_34 0.999999118 18388.0203 0.0535124572
1106858 rs202143810      20_38 1.000000000 16806.0269 0.0489086140
1106855   rs6089961      20_38 0.659268971 16617.4341 0.0318820989
1106857   rs2738758      20_38 0.659268971 16617.4341 0.0318820989
1106836  rs35201382      20_38 0.390730204 16612.9410 0.0188905155
871345  rs528437193       2_54 1.000000000  5898.1041 0.0171645624
871350    rs2232748       2_54 0.999903973  5528.3046 0.0160868334
976871  rs144230436      10_61 1.000000000  5154.2990 0.0149999535
1106838   rs2750483      20_38 0.273949328 16612.0846 0.0132438629
976844     rs915506      10_61 0.804611585  5153.9351 0.0120682843
1106837  rs67468102      20_38 0.224353422 16610.0367 0.0108448511
976875    rs1047370      10_61 0.657939484  5153.0692 0.0098667069
786708  rs147985405       19_9 0.997183368  2991.9102 0.0086824818
1106833   rs2315009      20_38 0.171477459 16607.2822 0.0082875452
795950     rs814573      19_31 1.000000000  2427.1517 0.0070634557
795955   rs12721109      19_31 1.000000000  1458.4849 0.0042444580
871334      rs14976       2_54 0.343874039  4237.4593 0.0042405798
871333    rs2289976       2_54 0.327595532  4232.7082 0.0040353072
853040   rs11591147       1_34 1.000000000  1354.6403 0.0039422513
30777      rs611917       1_67 1.000000000  1138.5589 0.0033134149
30776      rs614174       1_67 0.954301843   997.0033 0.0027688707
795952  rs113345881      19_31 1.000000000   845.5905 0.0024608231
795899   rs62117204      19_31 1.000000000   829.0885 0.0024127992
795917  rs111794050      19_31 1.000000000   826.7371 0.0024059562
871335   rs72843872       2_54 0.189897665  4244.9608 0.0023459222
71724      rs548145       2_13 1.000000000   727.8602 0.0021182063
461116    rs2980875       8_83 0.998035201   633.9295 0.0018412261
871331    rs1374370       2_54 0.138632765  4224.5803 0.0017043930
788882    rs3794991      19_15 1.000000000   512.8409 0.0014924610
79042     rs4076834       2_27 0.968737828   497.5879 0.0014028020
871461       rs7316       2_54 0.506706141   895.8882 0.0013210836
71721      rs934197       2_13 1.000000000   412.6582 0.0012009108
786713   rs34008246       19_9 0.930769714   430.0704 0.0011649360
280036    rs3843482       5_44 0.864555544   453.7000 0.0011415160
461125    rs6470359       8_83 0.999995563   362.1779 0.0010539992
786698    rs8102273       19_9 0.590586660   600.1720 0.0010315248
502644  rs115478735       9_70 1.000000000   350.8214 0.0010209544
871467    rs3024821       2_54 0.387897543   896.0980 0.0010115628
367498   rs12208357      6_103 1.000000000   298.3048 0.0008681215
461128   rs13252684       8_83 0.999984856   296.1927 0.0008619618
404993   rs13230660       7_65 0.003876101 74695.5132 0.0008425776
976820   rs10786262      10_61 0.052942128  5146.0216 0.0007928541
71715     rs1042034       2_13 1.000000000   268.9509 0.0007826962
71801     rs1848922       2_13 1.000000000   245.3186 0.0007139219
786725  rs137992968       19_9 1.000000000   244.4426 0.0007113727
1061513  rs77542162      17_39 1.000000000   243.9938 0.0007100668
                  z
404987   -3.2721491
404998    2.9841166
404990    2.8669582
1100993   2.4122106
1100990  -2.6920415
1106858   5.1630228
1106855  -5.4768594
1106857  -5.4768594
1106836  -5.4829409
871345   -1.1943396
871350    4.1657806
976871   -4.1539753
1106838  -5.4803179
976844    4.6393182
1106837  -5.4817963
976875    4.6387213
786708   48.9351750
1106833  -5.4827739
795950  -55.5378874
795955   46.3258178
871334    2.7468945
871333    2.7557689
853040   39.1649340
30777    30.9752731
30776    -7.3950888
795952   34.3185677
795899   44.6722304
795917   33.5996491
871335    2.7104140
71724   -33.0860100
461116   22.1022294
871331    2.7663193
788882   21.4920605
79042    20.1085673
871461    0.9857653
71721   -33.0608878
786713  -12.9677952
280036  -25.0343522
461125   -9.6468762
786698   14.1676792
502644  -19.0117902
871467    0.9590447
367498  -12.2823367
461128  -11.9644114
404993    2.9479628
976820    4.5865580
71715   -16.5730356
71801   -25.4122923
786725   10.7525659
1061513 -16.6257239

SNPs with largest z scores

#histogram of (abs) SNP z scores
hist(abs(ctwas_snp_res$z))

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag    susie_pip       mu2          PVE
795950    rs814573      19_31 1.000000e+00 2427.1517 7.063456e-03
786708 rs147985405       19_9 9.971834e-01 2991.9102 8.682482e-03
786703  rs73015020       19_9 2.395051e-03 2979.8260 2.076949e-05
786701 rs138175288       19_9 2.645903e-04 2975.6937 2.291302e-06
786702 rs138294113       19_9 5.610593e-05 2972.8789 4.854073e-07
786704  rs77140532       19_9 7.644535e-05 2973.0842 6.614219e-07
786705 rs112552009       19_9 1.004570e-05 2969.7824 8.682104e-08
786706  rs10412048       19_9 1.439373e-05 2969.8131 1.244007e-07
786700  rs55997232       19_9 2.788378e-10 2949.5890 2.393501e-12
795955  rs12721109      19_31 1.000000e+00 1458.4849 4.244458e-03
795899  rs62117204      19_31 1.000000e+00  829.0885 2.412799e-03
795886   rs1551891      19_31 0.000000e+00  476.0861 0.000000e+00
786709  rs17248769       19_9 0.000000e+00 2121.0722 0.000000e+00
786710   rs2228671       19_9 0.000000e+00 2109.8025 0.000000e+00
853040  rs11591147       1_34 1.000000e+00 1354.6403 3.942251e-03
786699   rs9305020       19_9 0.000000e+00 1898.6023 0.000000e+00
795946    rs405509      19_31 0.000000e+00  963.4870 0.000000e+00
795952 rs113345881      19_31 1.000000e+00  845.5905 2.460823e-03
795870  rs62120566      19_31 0.000000e+00 1415.6597 0.000000e+00
795917 rs111794050      19_31 1.000000e+00  826.7371 2.405956e-03
71724     rs548145       2_13 1.000000e+00  727.8602 2.118206e-03
795923   rs4802238      19_31 0.000000e+00  981.1816 0.000000e+00
71721     rs934197       2_13 1.000000e+00  412.6582 1.200911e-03
795864 rs188099946      19_31 0.000000e+00 1356.4681 0.000000e+00
795934   rs2972559      19_31 0.000000e+00 1356.8465 0.000000e+00
795858 rs201314191      19_31 0.000000e+00 1256.0146 0.000000e+00
795925  rs56394238      19_31 0.000000e+00  986.2288 0.000000e+00
795902   rs2965169      19_31 0.000000e+00  321.6927 0.000000e+00
795926   rs3021439      19_31 0.000000e+00  867.1722 0.000000e+00
30777     rs611917       1_67 1.000000e+00 1138.5589 3.313415e-03
71751   rs12997242       2_13 1.834533e-12  373.0173 1.991474e-15
795933  rs12162222      19_31 0.000000e+00 1157.0572 0.000000e+00
71725     rs478588       2_13 2.058931e-11  673.6905 4.036663e-14
795863  rs62119327      19_31 0.000000e+00 1103.0302 0.000000e+00
71726   rs56350433       2_13 4.322098e-13  349.6183 4.397533e-16
71731   rs56079819       2_13 4.312106e-13  348.8427 4.377633e-16
71735    rs2337383       2_13 4.420908e-13  341.8865 4.398592e-16
71736   rs56090741       2_13 4.413137e-13  341.3520 4.383996e-16
71740    rs7568899       2_13 4.609646e-13  332.3664 4.458666e-16
71741   rs62135036       2_13 4.624079e-13  332.1316 4.469467e-16
71747   rs11687710       2_13 4.570788e-13  331.3359 4.407374e-16
71752     rs532300       2_13 7.592815e-13  619.1780 1.368166e-15
71753     rs558130       2_13 7.592815e-13  619.1778 1.368165e-15
71754     rs533211       2_13 7.592815e-13  619.1778 1.368165e-15
71775     rs574461       2_13 7.817080e-13  618.7263 1.407549e-15
71777     rs494465       2_13 7.772671e-13  618.5566 1.399169e-15
71755     rs528113       2_13 7.551737e-13  618.8891 1.360129e-15
71760    rs1652418       2_13 7.539525e-13  618.5494 1.357184e-15
71762     rs563696       2_13 7.510659e-13  618.4287 1.351724e-15
71750     rs312979       2_13 7.348566e-13  618.4019 1.322494e-15
               z
795950 -55.53789
786708  48.93517
786703  48.79563
786701  48.78069
786702  48.75193
786704  48.73799
786705  48.70516
786706  48.70123
786700  48.52431
795955  46.32582
795899  44.67223
795886  42.26680
786709  40.84249
786710  40.70262
853040  39.16493
786699  34.84073
795946  34.63979
795952  34.31857
795870  33.73539
795917  33.59965
71724  -33.08601
795923 -33.07569
71721  -33.06089
795864  33.04407
795934 -32.28660
795858  32.06858
795925 -31.55187
795902  31.38057
795926 -31.04506
30777   30.97527
71751  -30.81528
795933 -30.49671
71725  -30.48811
795863  30.41868
71726  -30.23229
71731  -30.19307
71735  -29.88780
71736  -29.86248
71740  -29.70268
71741  -29.69428
71747  -29.63286
71752  -29.56783
71753  -29.56783
71754  -29.56783
71775  -29.56585
71777  -29.56317
71755  -29.56210
71760  -29.55946
71762  -29.55712
71750  -29.55544

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 36
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    print(plotEnrich(GO_enrichment[[db]]))
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                              Term Overlap
1   phospholipid biosynthetic process (GO:0008654)    4/37
2 alditol phosphate metabolic process (GO:0052646)     2/5
3         sphingoid metabolic process (GO:0046519)    2/12
4   sphingolipid biosynthetic process (GO:0030148)    3/74
5      phospholipid metabolic process (GO:0006644)    3/76
  Adjusted.P.value                  Genes
1     0.0002131762 GPAM;SPHK2;CPNE3;ABCA8
2     0.0059803621              GPAM;ACP6
3     0.0261060926             SPHK2;KDSR
4     0.0262131634       SPHK2;KDSR;ABCA8
5     0.0262131634       PLPPR2;GPAM;ACP6
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
SPTY2D1 gene(s) from the input list not found in DisGeNET CURATEDMPND gene(s) from the input list not found in DisGeNET CURATEDFCGRT gene(s) from the input list not found in DisGeNET CURATEDNTN5 gene(s) from the input list not found in DisGeNET CURATEDTMED4 gene(s) from the input list not found in DisGeNET CURATEDFAM117B gene(s) from the input list not found in DisGeNET CURATEDPELO gene(s) from the input list not found in DisGeNET CURATEDACP6 gene(s) from the input list not found in DisGeNET CURATEDLINC01184 gene(s) from the input list not found in DisGeNET CURATEDAC007950.2 gene(s) from the input list not found in DisGeNET CURATEDPARP9 gene(s) from the input list not found in DisGeNET CURATEDUBASH3B gene(s) from the input list not found in DisGeNET CURATEDC10orf88 gene(s) from the input list not found in DisGeNET CURATEDPKN3 gene(s) from the input list not found in DisGeNET CURATED
                                 Description        FDR Ratio BgRatio
48                        Learning Disorders 0.02645503  2/22 29/9703
73                           Relapsing Fever 0.02645503  1/22  1/9703
75                                 Sclerosis 0.02645503  1/22  1/9703
132                      Schnitzler Syndrome 0.02645503  1/22  1/9703
145                 Adult Learning Disorders 0.02645503  2/22 29/9703
146                     Learning Disturbance 0.02645503  2/22 29/9703
147                    Learning Disabilities 0.02645503  2/22 29/9703
188          Developmental Academic Disorder 0.02645503  2/22 29/9703
199 MUSCULAR DYSTROPHY, LIMB-GIRDLE, TYPE 2I 0.02645503  1/22  1/9703
200       MUSCULAR DYSTROPHY, CONGENITAL, 1C 0.02645503  1/22  1/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!

NULL

Sensitivity, specificity and precision for silver standard genes

library("readxl")

known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

unrelated_genes <- ctwas_gene_res$genename[!(ctwas_gene_res$genename %in% known_annotations)]

#number of genes in known annotations
print(length(known_annotations))
[1] 69
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 40
#assign ctwas, TWAS, and bystander genes
ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh]
novel_genes <- ctwas_genes[!(ctwas_genes %in% twas_genes)]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.618904
#number of ctwas genes
length(ctwas_genes)
[1] 36
#number of TWAS genes
length(twas_genes)
[1] 227
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
       genename region_tag susie_pip         mu2          PVE         z
10255   KLHDC7A       1_13 0.9544827    18.66743 5.185288e-05  4.124187
7879       ACP6       1_73 0.9932775    21.77810 6.295220e-05  4.613976
5327      IL1RN       2_67 0.9410797    20.79413 5.694919e-05  4.455379
4022     ACVR1C       2_94 0.9057641    19.38221 5.109033e-05 -4.185879
8904       PDHB       3_40 0.9140947    24.02176 6.390228e-05  3.361078
5607      PARP9       3_76 0.8452748    22.78261 5.604304e-05  3.744644
13258 LINC01184       5_78 0.8593862    18.23008 4.559291e-05 -3.918127
1003      TPD52       8_57 0.9370510    18.68606 5.095669e-05 -4.121885
1237      CPNE3       8_62 0.8147843    18.04139 4.277922e-05  3.753687
1559        SCD      10_64 0.8966611    18.64373 4.864984e-05 -4.541468
3724       GPAM      10_70 0.8129956    19.45034 4.601885e-05  4.000718
3633      CCND2       12_4 0.9318759    19.26549 5.224666e-05 -4.128258
11865    C2CD4A      15_28 0.8713009    21.59986 5.476958e-05  4.535165
3674       KDSR      18_35 0.9199769    18.92509 5.066818e-05 -4.119957
161        MPND       19_5 0.9197113    19.83813 5.309731e-05 -4.322018
2313     PLPPR2      19_10 0.9790947    28.36151 8.081172e-05  3.965665
10447      FKRP      19_33 0.9482623    20.61788 5.689744e-05  4.425174
2199      FCGRT      19_34 0.9967913 10378.34712 3.010598e-02 -4.165895
      num_eqtl
10255        1
7879         4
5327         1
4022         1
8904         2
5607         1
13258        2
1003         2
1237         3
1559         1
3724         1
3633         2
11865        1
3674         2
161          2
2313         1
10447        5
2199         2
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
     ctwas       TWAS 
0.01449275 0.18840580 
#specificity
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9972912 0.9834378 
#precision / PPV
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
     ctwas       TWAS 
0.02777778 0.05726872 
#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1))

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=2)

Sensitivity, specificity and precision for silver standard genes - bystanders only

This section first uses imputed silver standard genes to identify bystander genes within 1Mb. The bystander gene list is then subset to only genes with imputed expression in this analysis. Then, the ctwas and TWAS gene lists from this analysis are subset to only genes that are in the (subset) silver standard and bystander genes. These gene lists are then used to compute sensitivity, specificity and precision for ctwas and TWAS.

library(biomaRt)
library(GenomicRanges)
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':

    anyDuplicated, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter,
    Find, get, grep, grepl, intersect, is.unsorted, lapply, Map,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, Position, rank, rbind, Reduce, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min
Loading required package: S4Vectors

Attaching package: 'S4Vectors'
The following object is masked from 'package:base':

    expand.grid
Loading required package: IRanges
Loading required package: GenomeInfoDb
ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
G_list <- G_list[G_list$hgnc_symbol!="",]
G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
G_list$start <- G_list$start_position
G_list$end <- G_list$end_position
G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)

#remove genes without imputed expression from gene lists
known_annotations <- known_annotations[known_annotations %in% ctwas_gene_res$genename]

known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
half_window <- 1000000
known_annotations_positions$start <- known_annotations_positions$start_position - half_window
known_annotations_positions$end <- known_annotations_positions$end_position + half_window
known_annotations_positions$start[known_annotations_positions$start<1] <- 1
known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)

bystanders <- findOverlaps(known_annotations_granges,G_list_granges)
bystanders <- unique(subjectHits(bystanders))
bystanders <- G_list$hgnc_symbol[bystanders]
bystanders <- unique(bystanders[!(bystanders %in% known_annotations)])
unrelated_genes <- bystanders

#save gene lists
save(known_annotations, file=paste0(results_dir, "/known_annotations.Rd"))
save(unrelated_genes, file=paste0(results_dir, "/bystanders.Rd"))


load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))


#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

#number of genes in known annotations (with imputed expression)
print(length(known_annotations))
[1] 40
#number of bystander genes (with imputed expression)
print(length(unrelated_genes))
[1] 676
#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.618904
#number of ctwas genes (in known annotations or bystanders)
length(ctwas_genes)
[1] 3
#number of TWAS genes (in known annotations or bystanders)
length(twas_genes)
[1] 60
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
ctwas  TWAS 
0.025 0.325 
#specificity / (1 - False Positive Rate)
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9970414 0.9304734 
#precision / PPV / (1 - False Discovery Rate)
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
    ctwas      TWAS 
0.3333333 0.2166667 
#store sensitivity and specificity calculations for plots
sensitivity_plot <- sensitivity
specificity_plot <- specificity

#precision / PPV by PIP bin
pip_range <- c(0.2, 0.4, 0.6, 0.8, 1)
precision_range <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes in PIP bin
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower & ctwas_gene_res_subset$susie_pip<pip_upper]
  
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste(c(0, pip_range[-length(pip_range)]), pip_range,sep=" - ")

barplot(precision_range, ylim=c(0,1), main="Precision by PIP Range", xlab="PIP Range", ylab="Precision")
abline(h=0.2, lty=2)
abline(h=0.4, lty=2)
abline(h=0.6, lty=2)
abline(h=0.8, lty=2)
barplot(precision_range, add=T, col="darkgrey")

#precision / PPV by PIP threshold
#pip_range <- c(0.2, 0.4, 0.6, 0.8, 1)
pip_range <- c(0.5, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
number_detected <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes using PIP threshold
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower]
  
  number_detected[i] <- length(ctwas_genes)
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste0(">= ", c(0, pip_range[-length(pip_range)]))

precision_range <- precision_range*100

precision_range <- c(precision_range, precision["TWAS"]*100)
names(precision_range)[4] <- "TWAS Bonferroni"
number_detected <- c(number_detected, length(twas_genes))

barplot(precision_range, ylim=c(0,100), main="Precision for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

#false discovery rate by PIP threshold

barplot(100-precision_range, ylim=c(0,100), main="False Discovery Rate for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% Bystanders in Detected Genes")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(100-precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1), main="", xlab="1 - Specificity", ylab="Sensitivity")
title(expression("ROC Curve for cTWAS (black) and TWAS (" * phantom("red") * ")"))
title(expression(phantom("ROC Curve for cTWAS (black) and TWAS (") * "red" * phantom(")")), col.main="red")

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res_subset$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=1)

abline(a=0,b=1,lty=3)

#add previously computed points from the analysis
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

points(1-specificity_plot["ctwas"], sensitivity_plot["ctwas"], pch=21, bg="black")
points(1-specificity_plot["TWAS"], sensitivity_plot["TWAS"], pch=21, bg="red")

PIP Manhattan Plot

library(tibble)
library(tidyverse)
── Attaching packages ────────────────────────────────── tidyverse 1.3.0 ──
✔ tidyr   1.1.0     ✔ dplyr   1.0.7
✔ readr   1.4.0     ✔ stringr 1.4.0
✔ purrr   0.3.4     ✔ forcats 0.4.0
── Conflicts ───────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::collapse()        masks IRanges::collapse()
✖ dplyr::combine()         masks BiocGenerics::combine()
✖ dplyr::desc()            masks IRanges::desc()
✖ tidyr::expand()          masks S4Vectors::expand()
✖ tidyr::extract()         masks disgenet2r::extract()
✖ dplyr::filter()          masks stats::filter()
✖ dplyr::first()           masks S4Vectors::first()
✖ dplyr::lag()             masks stats::lag()
✖ BiocGenerics::Position() masks ggplot2::Position(), base::Position()
✖ purrr::reduce()          masks GenomicRanges::reduce(), IRanges::reduce()
✖ dplyr::rename()          masks S4Vectors::rename()
✖ dplyr::select()          masks biomaRt::select()
✖ dplyr::slice()           masks IRanges::slice()
full.gene.pip.summary <- data.frame(gene_name = ctwas_gene_res$genename, 
                                    gene_pip = ctwas_gene_res$susie_pip, 
                                    gene_id = ctwas_gene_res$id, 
                                    chr = as.integer(ctwas_gene_res$chrom),
                                    start = ctwas_gene_res$pos / 1e3,
                                    is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full.gene.pip.summary$is_highlight <- full.gene.pip.summary$gene_pip > 0.80

don <- full.gene.pip.summary %>% 
  
  # Compute chromosome size
  group_by(chr) %>% 
  summarise(chr_len=max(start)) %>% 
  
  # Calculate cumulative position of each chromosome
  mutate(tot=cumsum(chr_len)-chr_len) %>%
  dplyr::select(-chr_len) %>%
  
  # Add this info to the initial dataset
  left_join(full.gene.pip.summary, ., by=c("chr"="chr")) %>%
  
  # Add a cumulative position of each SNP
  arrange(chr, start) %>%
  mutate( BPcum=start+tot)

axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )

x_axis_labels <- axisdf$chr
x_axis_labels[seq(1,21,2)] <- ""

ggplot(don, aes(x=BPcum, y=gene_pip)) +
  
  # Show all points
  ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=2) +
  scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
  
  # custom X axis:
  # scale_x_continuous(label = axisdf$chr, 
  #                    breaks= axisdf$center,
  #                    guide = guide_axis(n.dodge = 2)) +
  scale_x_continuous(label = x_axis_labels,
                     breaks = axisdf$center) +
  
  scale_y_continuous(expand = c(0, 0), limits = c(0,1.25), breaks=(1:5)*0.2, minor_breaks=(1:10)*0.1) + # remove space between plot area and x axis
  
  # Add highlighted points
  ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="orange", size=2) +
  
  # Add label using ggrepel to avoid overlapping
  ggrepel::geom_label_repel(data=subset(don, is_highlight==T), 
                            aes(label=gene_name), 
                            size=4,
                            min.segment.length = 0, 
                            label.size = NA,
                            fill = alpha(c("white"),0)) +
  
  # Custom the theme:
  theme_bw() +
  theme( 
    text = element_text(size = 14),
    legend.position="none",
    panel.border = element_blank(),
    panel.grid.major.x = element_blank(),
    panel.grid.minor.x = element_blank()
  ) +
  xlab("Chromosome") + 
  ylab("cTWAS PIP")

Locus Plots - 1_67

library(ctwas)

Attaching package: 'ctwas'
The following object is masked _by_ '.GlobalEnv':

    z_snp
locus_plot <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS"){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
  a$ifcausal <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}

locus_plot("1_67", label="TWAS")

Locus Plots - 5_45 - Thin

locus_plot("5_45", label="TWAS")

Locus Plots - 5_45 - Re-run

#locus_plot("5_45", label="TWAS", rerun_ctwas = T)

Locus Plots - 8_12

locus_plot4 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS"){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[a$type=="gene"][which.max(abs(a$z[a$type=="gene"]))]
  a$ifcausal <- as.numeric(a$id==focus)
    
  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  #legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  #legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}

#locus_plot4("8_12", label="cTWAS")
locus_plot5 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", focus){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[which(a$genename==focus)]
  a$ifcausal <- as.numeric(a$id==focus)

  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(max(a$pos)-0.2*(max(a$pos)-min(a$pos)), y= 0.7 ,c("Focal Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}

locus_plot5("19_33", focus="PRKD2")

Locus Plots - Exploring known annotations

This section produces locus plots for all silver standard genes with known annotations. The highlighted gene at each region is the silver standard gene. Note that if no genes in a region have PIP>0.8, then only the result using thinned SNPs is displayed.

locus_plot3 <- function(region_tag, rerun_ctwas = F, plot_eqtl = T, label="cTWAS", focus){
  region_tag1 <- unlist(strsplit(region_tag, "_"))[1]
  region_tag2 <- unlist(strsplit(region_tag, "_"))[2]
  
  a <- ctwas_res[ctwas_res$region_tag==region_tag,]
  
  regionlist <- readRDS(paste0(results_dir, "/", analysis_id, "_ctwas.regionlist.RDS"))
  region <- regionlist[[as.numeric(region_tag1)]][[region_tag2]]
  
  R_snp_info <- do.call(rbind, lapply(region$regRDS, function(x){data.table::fread(paste0(tools::file_path_sans_ext(x), ".Rvar"))}))
  
  if (isTRUE(rerun_ctwas)){
    ld_exprfs <- paste0(results_dir, "/", analysis_id, "_expr_chr", 1:22, ".expr.gz")
    temp_reg <- data.frame("chr" = paste0("chr",region_tag1), "start" = region$start, "stop" = region$stop)
  
    write.table(temp_reg, 
                #file= paste0(results_dir, "/", analysis_id, "_ctwas.temp.reg.txt") , 
                file= "temp_reg.txt",
                row.names=F, col.names=T, sep="\t", quote = F)
  
    load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
  
    z_gene_temp <-  z_gene[z_gene$id %in% a$id[a$type=="gene"],]
    z_snp_temp <-  z_snp[z_snp$id %in% R_snp_info$id,]
  
    ctwas_rss(z_gene_temp, z_snp_temp, ld_exprfs, ld_pgenfs = NULL, 
              ld_R_dir = dirname(region$regRDS)[1],
              ld_regions_custom = "temp_reg.txt", thin = 1, 
              outputdir = ".", outname = "temp", ncore = 1, ncore.rerun = 1, prob_single = 0,
              group_prior = estimated_group_prior, group_prior_var = estimated_group_prior_var,
              estimate_group_prior = F, estimate_group_prior_var = F)
            
            
    a <- data.table::fread("temp.susieIrss.txt", header = T)
    
    rownames(z_snp_temp) <- z_snp_temp$id
    z_snp_temp <- z_snp_temp[a$id[a$type=="SNP"],]
    z_gene_temp <- z_gene_temp[a$id[a$type=="gene"],]
    
    a$z <- NA
    a$z[a$type=="SNP"] <- z_snp_temp$z
    a$z[a$type=="gene"] <- z_gene_temp$z
  }
  
  a$ifcausal <- 0
  focus <- a$id[which(a$genename==focus)]
  a$ifcausal <- as.numeric(a$id==focus)

  a$PVALUE <- (-log(2) - pnorm(abs(a$z), lower.tail=F, log.p=T))/log(10)
  
  R_gene <- readRDS(region$R_g_file)
  R_snp_gene <- readRDS(region$R_sg_file)
  R_snp <- as.matrix(Matrix::bdiag(lapply(region$regRDS, readRDS)))
  
  rownames(R_gene) <- region$gid
  colnames(R_gene) <- region$gid
  rownames(R_snp_gene) <- R_snp_info$id
  colnames(R_snp_gene) <- region$gid
  rownames(R_snp) <- R_snp_info$id
  colnames(R_snp) <- R_snp_info$id
  
  a$r2max <- NA
  
  a$r2max[a$type=="gene"] <- R_gene[focus,a$id[a$type=="gene"]]
  a$r2max[a$type=="SNP"] <- R_snp_gene[a$id[a$type=="SNP"],focus]
  
  r2cut <- 0.4
  colorsall <- c("#7fc97f", "#beaed4", "#fdc086")
  
  layout(matrix(1:2, ncol = 1), widths = 1, heights = c(1.5,1.5), respect = FALSE)
  par(mar = c(0, 4.1, 4.1, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 19, xlab=paste0("Chromosome ", region_tag1, " Position"),frame.plot=FALSE, col = "white", ylim= c(-0.1,1.1), ylab = "cTWAS PIP", xaxt = 'n')
  
  grid()
  points(a$pos[a$type=="SNP"], a$susie_pip[a$type == "SNP"], pch = 21, xlab="Genomic position", bg = colorsall[1])
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$susie_pip[a$type == "SNP"  & a$r2max >r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$susie_pip[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$susie_pip[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$susie_pip[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$susie_pip[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  
  if (isTRUE(plot_eqtl)){
    for (cgene in a[a$type=="gene" & a$ifcausal == 1, ]$id){
      load(paste0(results_dir, "/",analysis_id, "_expr_chr", region_tag1, ".exprqc.Rd"))
      eqtls <- rownames(wgtlist[[cgene]])
      points(a[a$id %in% eqtls,]$pos, rep( -0.15, nrow(a[a$id %in% eqtls,])), pch = "|", col = "salmon", cex = 1.5)
    }
  }
  
  legend(min(a$pos), y= 1.1 ,c("Gene", "SNP"), pch = c(22,21), title="Shape Legend", bty ='n', cex=0.6, title.adj = 0)
  legend(min(a$pos), y= 0.7 ,c("Lead TWAS Gene", "R2 > 0.4", "R2 <= 0.4"), pch = 19, col = c("salmon", "purple", colorsall[1]), title="Color Legend", bty ='n', cex=0.6, title.adj = 0)
  
  if (label=="cTWAS"){
    text(a$pos[a$id==focus], a$susie_pip[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
  
  par(mar = c(4.1, 4.1, 0.5, 2.1))
  plot(a$pos[a$type=="SNP"], a$PVALUE[a$type == "SNP"], pch = 21, xlab=paste0("Chromosome ", region_tag1, " Position"), frame.plot=FALSE, bg = colorsall[1], ylab = "TWAS -log10(p value)", panel.first = grid(), ylim =c(0, max(a$PVALUE)*1.2))
  points(a$pos[a$type=="SNP" & a$r2max > r2cut], a$PVALUE[a$type == "SNP"  & a$r2max > r2cut], pch = 21, bg = "purple")
  points(a$pos[a$type=="SNP" & a$ifcausal == 1], a$PVALUE[a$type == "SNP" & a$ifcausal == 1], pch = 21, bg = "salmon")
  points(a$pos[a$type=="gene"], a$PVALUE[a$type == "gene"], pch = 22, bg = colorsall[1], cex = 2)
  points(a$pos[a$type=="gene" & a$r2max > r2cut], a$PVALUE[a$type == "gene"  & a$r2max > r2cut], pch = 22, bg = "purple", cex = 2)
  points(a$pos[a$type=="gene" & a$ifcausal == 1], a$PVALUE[a$type == "gene" & a$ifcausal == 1], pch = 22, bg = "salmon", cex = 2)
  abline(h=-log10(alpha/nrow(ctwas_gene_res)), col ="red", lty = 2)
  
  if (label=="TWAS"){
    text(a$pos[a$id==focus], a$PVALUE[a$id==focus], labels=ctwas_gene_res$genename[ctwas_gene_res$id==focus], pos=3, cex=0.6)
  }
}
load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))

for (i in 1:length(known_annotations)){
  focus <- known_annotations[i]
  region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]

  locus_plot3(region_tag, focus=focus)
  mtext(text=region_tag)

  print(focus)
  print(region_tag)
  print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
}

[1] "APOA2"
[1] "1_79"
            genename region_tag  susie_pip       mu2          PVE
1233           IGSF9       1_79 0.03110337  5.084947 4.602715e-07
7429            CD1D       1_79 0.03537426  6.240779 6.424606e-07
7430            CD1A       1_79 0.02919040  4.515464 3.835859e-07
7433            CD1E       1_79 0.03033675  4.860996 4.291554e-07
7446          TAGLN2       1_79 0.04802009  8.995736 1.257129e-06
7449          DUSP23       1_79 0.03347673  5.745257 5.597225e-07
7850           CADM3       1_79 0.03000307  4.761767 4.157710e-07
8003           SPTA1       1_79 0.03266344  5.524340 5.251249e-07
8005            MNDA       1_79 0.06744246 12.078001 2.370548e-06
8006          PYHIN1       1_79 0.03309172  5.641341 5.432778e-07
8007           IFI16       1_79 0.03188884  5.308824 4.926713e-07
8008            AIM2       1_79 0.02931334  4.553157 3.884171e-07
10318         FCER1A       1_79 0.05156339  9.639737 1.446528e-06
11240       C1orf204       1_79 0.03692451  6.626546 7.120694e-07
12830      LINC01704       1_79 0.03157013  5.218651 4.794629e-07
13180          VSIG8       1_79 0.03676695  6.588073 7.049143e-07
281           ATP1A2       1_79 0.04141732  7.660566 9.233432e-07
716             CD84       1_79 0.02941505  4.584217 3.924235e-07
885           FCGR2B       1_79 0.03789131  6.859073 7.563544e-07
1137          DUSP12       1_79 0.02955346  4.626317 3.978910e-07
3484          SLAMF1       1_79 0.03862498  7.031769 7.904114e-07
3485            CD48       1_79 0.03079331  4.995056 4.476279e-07
3575            ATF6       1_79 0.04877379  9.136466 1.296836e-06
3897            COPA       1_79 0.03017585  4.813279 4.226888e-07
3898           CD244       1_79 0.05443100 10.129825 1.604606e-06
4840          ATP1A4       1_79 0.07971043 13.605335 3.156056e-06
4843           DCAF8       1_79 0.02893496  4.436645 3.735922e-07
6111            UFC1       1_79 0.08002033 13.640961 3.176622e-06
6112            PPOX       1_79 0.03542025  6.252557 6.445098e-07
6113          FCGR2A       1_79 0.17382070 20.886380 1.056538e-05
6115            SDHC       1_79 0.02895066  4.441512 3.742051e-07
6121            PIGM       1_79 0.03487332  6.112551 6.203490e-07
6122           CASQ1       1_79 0.03253114  5.487889 5.195471e-07
7454            NIT1       1_79 0.05159135  9.644154 1.447976e-06
7455            DEDD       1_79 0.29482827 26.094504 2.238920e-05
7461         B4GALT3       1_79 0.10518720 16.159216 4.946562e-06
7464          NDUFS2       1_79 0.23672774 23.887945 1.645691e-05
7466          FCER1G       1_79 0.15695991 19.910967 9.094973e-06
7467           APOA2       1_79 0.03194668  5.324987 4.950677e-07
7468         TOMM40L       1_79 0.03241361  5.455268 5.145929e-07
7469             MPZ       1_79 0.02904782  4.471559 3.780009e-07
7854          SLAMF9       1_79 0.03315572  5.658699 5.460034e-07
7855           KCNJ9       1_79 0.03305103  5.630291 5.415470e-07
7856           IGSF8       1_79 0.03917127  7.158225 8.160058e-07
7858           PEA15       1_79 0.02913932  4.499756 3.815826e-07
7859           PEX19       1_79 0.03339954  5.724511 5.564155e-07
7860           NCSTN       1_79 0.03218695  5.392365 5.051023e-07
7861          VANGL2       1_79 0.02924946  4.533590 3.859049e-07
7863           FCRLB       1_79 0.03090852  5.028508 4.523115e-07
7865          KLHDC9       1_79 0.02905842  4.474840 3.784163e-07
9413           NHLH1       1_79 0.04000960  7.348963 8.556784e-07
11982         NOS1AP       1_79 0.04286845  7.971076 9.944318e-07
12013         FCGR3A       1_79 0.07489710 13.035035 2.841172e-06
12497          TSTD1       1_79 0.04933698  9.240222 1.326708e-06
12576      LINC01133       1_79 0.02900654  4.458800 3.763866e-07
13085       C1orf226       1_79 0.05328643  9.937417 1.541028e-06
14716 RP11-122G18.11       1_79 0.09095682 14.817781 3.922281e-06
                z num_eqtl
1233   0.42528829        2
7429  -0.68914550        1
7430   0.13177842        1
7433  -0.32627268        3
7446  -1.11380907        1
7449   0.58886854        2
7850   0.34581896        2
8003   0.53584957        2
8005  -1.49070119        1
8006   0.61251073        2
8007  -0.52613904        1
8008   0.17115180        2
10318  1.19652845        1
11240  0.76234673        4
12830 -0.45705216        1
13180  0.76032649        2
281    1.01961433        2
716   -0.17012652        1
885    0.90105676        1
1137   0.18491305        3
3484   0.83666570        1
3485  -0.53813609        1
3575   1.33216623        3
3897  -0.33313590        1
3898  -1.19306430        1
4840   1.64106571        2
4843   0.02937989        1
6111  -1.71610924        1
6112  -1.13273833        2
6113  -2.56082676        2
6115  -0.02197264        1
6121   0.70491904        2
6122   0.52195982        2
7454   0.82125790        2
7455  -3.41702724        1
7461  -2.67250298        3
7464  -3.27895520        2
7466  -2.94328519        3
7467  -0.39581982        1
7468   0.43065543        1
7469   0.07283357        1
7854  -0.58691461        2
7855   0.56272965        1
7856  -0.90635405        1
7858   0.14094214        1
7859  -0.60553082        1
7860  -0.52575638        2
7861   0.14603238        2
7863  -0.58867628        3
7865   0.31833172        1
9413   0.88415968        1
11982 -1.01549743        1
12013  1.61487487        1
12497 -0.95257428        3
12576  0.08332223        1
13085 -1.24890307        1
14716 -2.08810018        1

[1] "ITIH4"
[1] "3_36"
      genename region_tag  susie_pip       mu2          PVE          z
195     SEMA3G       3_36 0.06621250  6.650062 1.281404e-06  0.4278002
196      NISCH       3_36 0.05674459  5.378396 8.881728e-07 -0.4130717
197      STAB1       3_36 0.30850946 16.677819 1.497366e-05  3.5822738
271       CHDH       3_36 0.07287796  7.671453 1.627025e-06 -0.9771110
274     GLT8D1       3_36 0.06969832  7.208039 1.462042e-06  1.0942021
436      PARP3       3_36 0.07896936  8.633668 1.984149e-06 -1.3456620
561      ITIH4       3_36 0.05544470  5.244164 8.461680e-07  1.1005563
566     IL17RB       3_36 0.06168370  6.275767 1.126568e-06 -0.8151013
3156   SELENOK       3_36 0.05108440  4.524134 6.725801e-07 -0.1830178
3157     ACTR8       3_36 0.05057829  4.450069 6.550150e-07 -0.1041810
3228     DNAH1       3_36 0.05579829  5.249189 8.523803e-07  0.3177441
3231     TNNC1       3_36 0.21711961 14.758573 9.325320e-06 -3.3561809
3236      NEK4       3_36 0.19658902 16.662554 9.532814e-06 -2.9773988
7341   CACNA1D       3_36 0.06595840  6.984083 1.340602e-06  1.1251378
7769     RPL29       3_36 0.05443710  5.106519 8.089846e-07 -0.4392119
7770     ITIH3       3_36 0.22674584 17.946333 1.184228e-05 -2.9881334
8102       TKT       3_36 0.16791039 14.104279 6.892055e-06  2.5841158
8103      RFT1       3_36 0.07443114  7.760287 1.680942e-06  0.8461193
8104    SFMBT1       3_36 0.15396484 15.003409 6.722515e-06 -1.9840557
8105      GNL3       3_36 0.19420560 16.546270 9.351519e-06 -2.9712715
8106     PBRM1       3_36 0.06140594  5.817619 1.039623e-06 -0.8048656
8150     POC1A       3_36 0.05171592  4.804022 7.230188e-07  0.6100943
8151     PPM1M       3_36 0.05863926  5.627273 9.602996e-07 -0.6814726
8153     WDR82       3_36 0.05708876  5.441720 9.040804e-07  0.3708077
8891    GLYCTK       3_36 0.05708876  5.441720 9.040804e-07  0.3708077
8897    NT5DC2       3_36 0.05651802  5.704254 9.382231e-07  0.4249165
8898     SMIM4       3_36 0.05170980  4.634961 6.974920e-07 -0.4707184
12351  TMEM110       3_36 0.05340778  5.178894 8.049370e-07 -0.4603354
13080     TLR9       3_36 0.33929847 17.172140 1.695613e-05  3.6067545
13212     ACY1       3_36 0.05452035  5.141837 8.158254e-07 -0.5115172
13284     TWF2       3_36 0.14436032 13.891841 5.836170e-06 -1.9263835
13300  ABHD14A       3_36 0.07535098  8.206826 1.799635e-06  1.3240881
14324    DCP1A       3_36 0.06331768  6.463491 1.191002e-06  0.7749500
      num_eqtl
195          1
196          2
197          1
271          1
274          1
436          2
561          1
566          1
3156         2
3157         4
3228         1
3231         2
3236         1
7341         1
7769         1
7770         1
8102         1
8103         2
8104         2
8105         1
8106         1
8150         1
8151         3
8153         1
8891         1
8897         2
8898         2
12351        1
13080        1
13212        1
13284        1
13300        1
14324        1

[1] "GHR"
[1] "5_28"
           genename region_tag  susie_pip       mu2          PVE
3077            GHR       5_28 0.05087052  4.479922 6.632190e-07
3078         HMGCS1       5_28 0.05093065  4.490625 6.655892e-07
6895          FBXO4       5_28 0.05918183  5.851818 1.007858e-06
9483          PAIP1       5_28 0.05214027  4.703107 7.136387e-07
10076         NIM1K       5_28 0.08092327  8.706397 2.050370e-06
11960       CCDC152       5_28 0.07552907  8.074666 1.774839e-06
12254       C5orf51       5_28 0.05918738  5.852669 1.008099e-06
14230 CTD-2035E11.5       5_28 0.31057739 21.597060 1.952022e-05
               z num_eqtl
3077  -0.1262247        1
3078  -0.3102555        2
6895   0.3758312        1
9483   0.2818347        1
10076  1.2121911        3
11960 -1.4400434        1
12254  0.3759901        1
14230  2.9460695        1

[1] "EPHX2"
[1] "8_27"
      genename region_tag  susie_pip       mu2          PVE           z
2123    TRIM35       8_27 0.08266517  8.014845 1.928137e-06 -1.03320305
3806       CLU       8_27 0.08108999  7.838367 1.849750e-06 -0.90762086
3808     PTK2B       8_27 0.07331590  6.915841 1.475582e-06 -0.80784214
3812     EPHX2       8_27 0.06538932  5.872090 1.117429e-06 -0.62557250
4964      ELP3       8_27 0.16265255 14.327535 6.781920e-06  2.12504185
6538    CCDC25       8_27 0.12619481 11.932307 4.382140e-06 -1.53830095
8872    SCARA3       8_27 0.06332663  5.580318 1.028408e-06 -0.51876612
8873       PBK       8_27 0.06094660  5.231949 9.279687e-07  0.48335074
8874    SCARA5       8_27 0.05581829  4.433925 7.202531e-07 -0.01387977
9354     ESCO2       8_27 0.05632461  4.515829 7.402117e-07 -0.18809073
11401    NUGGC       8_27 0.26113373 18.945058 1.439724e-05 -2.49551570
      num_eqtl
2123         2
3806         1
3808         1
3812         1
4964         1
6538         1
8872         3
8873         1
8874         1
9354         1
11401        1

[1] "LIPI"
[1] "21_1"
      genename region_tag  susie_pip      mu2          PVE          z
7176    HSPA13       21_1 0.05468812 5.715365 9.096143e-07 -0.5976853
10910    RBM11       21_1 0.06575440 7.389707 1.414075e-06 -0.9860076
11369     LIPI       21_1 0.04864069 4.654479 6.588569e-07 -0.2618739
      num_eqtl
7176         2
10910        2
11369        1

[1] "MTTP"
[1] "4_66"
           genename region_tag  susie_pip       mu2          PVE
5664           MTTP       4_66 0.05177806  7.559951 1.139161e-06
6378        TRMT10A       4_66 0.03740272  4.436930 4.829543e-07
6825          EIF4E       4_66 0.04995378  7.038158 1.023170e-06
8125         METAP1       4_66 0.04047155  5.165848 6.084315e-07
8978         TSPAN5       4_66 0.04530893  6.211309 8.190063e-07
9588           ADH6       4_66 0.07808769 11.029611 2.506473e-06
11210         ADH1A       4_66 0.03871596  4.778017 5.383417e-07
11474          ADH7       4_66 0.05109442  7.576550 1.126588e-06
11535         ADH1B       4_66 0.41779633 26.754222 3.252949e-05
11752          ADH5       4_66 0.08411582 11.850860 2.901001e-06
11796          ADH4       4_66 0.23368026 20.516922 1.395258e-05
13290         ADH1C       4_66 0.05128665  7.205360 1.075425e-06
14305 RP11-571L19.8       4_66 0.03997627  4.979432 5.792985e-07
                z num_eqtl
5664   1.12400758        1
6378  -0.06765527        2
6825   0.96532383        1
8125   0.59927970        2
8978  -0.66850706        2
9588   1.62276202        3
11210 -0.27018216        1
11474  1.18093280        1
11535 -3.61112568        2
11752  1.54003066        3
11796 -2.53274599        1
13290 -1.44685831        2
14305 -0.31136184        4

[1] "LIPA"
[1] "10_56"
       genename region_tag  susie_pip       mu2          PVE             z
628        WAPL      10_56 0.24805434 20.026732 1.445697e-05 -2.6996472034
2552     BMPR1A      10_56 0.13958471 14.474163 5.879652e-06  2.2764891466
3904       LDB3      10_56 0.06035660  6.738376 1.183587e-06 -0.6140380900
3905       OPN4      10_56 0.08057165  9.374366 2.198085e-06 -1.1028000389
3906     FAM35A      10_56 0.05091595  5.196063 7.699252e-07 -0.2590730319
6647      GLUD1      10_56 0.07106199  8.225758 1.701115e-06 -1.1325627492
9631      MMRN2      10_56 0.44161458 26.094511 3.353612e-05 -3.5874382677
10614     GRID1      10_56 0.10374476 11.703627 3.533515e-06 -1.6960715699
10862    NUTM2A      10_56 0.06704642  7.695141 1.501456e-06  1.2462484873
11256    FAM25A      10_56 0.05738894  6.280771 1.048966e-06  0.9566667456
12445    NUTM2D      10_56 0.06651215  7.622273 1.475386e-06  1.2154178990
12596 LINC00863      10_56 0.05429394  5.777828 9.129275e-07 -0.5054439421
336         FAS      10_56 0.05244707  5.464347 8.340264e-07  0.5111463639
2553     MINPP1      10_56 0.14783611 15.016142 6.460397e-06  1.9218952071
2554      ACTA2      10_56 0.05273099  5.513248 8.460456e-07  0.5063182504
2555       LIPA      10_56 0.07773327  9.045550 2.046267e-06 -1.5612453556
5560   STAMBPL1      10_56 0.04749276  4.566679 6.311726e-07 -0.2547553334
5561      CH25H      10_56 0.04756885  4.581162 6.341889e-07  0.0947268029
5562      ATAD1      10_56 0.16282481 15.932401 7.549568e-06  2.2801464509
6973    ANKRD22      10_56 0.05190164  5.369664 8.110516e-07 -0.5927424299
10568      LIPF      10_56 0.04679213  4.432392 6.035751e-07  0.0002399494
10841      RNLS      10_56 0.05192014  5.372906 8.118306e-07  0.5342430208
11898    PAPSS2      10_56 0.29463805 21.762928 1.866064e-05 -2.9168127698
12037      LIPN      10_56 0.04751161  4.570269 6.319196e-07  0.1807762682
12694      KLLN      10_56 0.12005752 13.061030 4.563385e-06  1.9541126075
      num_eqtl
628          1
2552         2
3904         2
3905         4
3906         2
6647         2
9631         1
10614        1
10862        4
11256        2
12445        4
12596        3
336          1
2553         1
2554         1
2555         2
5560         1
5561         1
5562         1
6973         2
10568        1
10841        2
11898        4
12037        1
12694        1

[1] "LDLRAP1"
[1] "1_18"
          genename region_tag  susie_pip       mu2          PVE          z
605           PIGV       1_18 0.05136519 12.572290 1.879332e-06 -2.7730250
1402          NUDC       1_18 0.06429513 13.388589 2.505147e-06  2.5764625
3544          SYF2       1_18 0.04879230  6.162460 8.750355e-07  0.7426202
3546        MTFR1L       1_18 0.09111064 13.683658 3.628203e-06  2.7576118
3547        MAN1C1       1_18 0.04573464  7.203217 9.587205e-07  1.6902246
3548         DHDDS       1_18 0.04439161  5.463763 7.058511e-07  0.9497144
3551        ARID1A       1_18 0.05090687 12.362214 1.831441e-06 -2.7281921
4633         CEP85       1_18 0.06025510  9.598386 1.683109e-06  2.0281607
6057      SH3BGRL3       1_18 0.12270489 15.770691 5.631614e-06 -2.8355236
6058        CNKSR1       1_18 0.04898008  7.118078 1.014618e-06 -1.9113034
6067          GPN2       1_18 0.06825325  8.119909 1.612853e-06 -0.5565182
7384       LDLRAP1       1_18 0.04661922  8.917102 1.209787e-06  2.2890064
7387        PAFAH2       1_18 0.04246450  5.849825 7.229182e-07 -1.5558136
7388       SLC30A2       1_18 0.04093828  4.581994 5.458890e-07  0.4276042
7390        TRIM63       1_18 0.09737485 10.995539 3.115901e-06  1.0142171
7395        UBXN11       1_18 0.05638504  6.292779 1.032587e-06  0.4067319
7793       SELENON       1_18 0.07928259  9.836167 2.269468e-06  1.0241546
9078          CD52       1_18 0.05561002  6.203147 1.003888e-06 -0.4221420
9837        PDIK1L       1_18 0.18734630 20.052390 1.093280e-05  3.2263042
9940        ZNF683       1_18 0.04171448  5.452621 6.619306e-07 -1.4082793
10610        PAQR7       1_18 0.04109575  4.534041 5.422538e-07  0.1738933
10735      TMEM50A       1_18 0.04258632 83.462767 1.034387e-05 10.1300072
11134          RHD       1_18 0.05441571 39.553117 6.263618e-06 -6.4603360
11321         RHCE       1_18 0.04107844 46.794836 5.594126e-06  7.4344194
11636      FAM110D       1_18 0.04178882  4.585999 5.577176e-07 -0.2619079
11942        HMGN2       1_18 0.04201176  4.591698 5.613897e-07  0.2239647
12053       TMEM57       1_18 0.04545133 26.749940 3.538260e-06  5.2485323
13008 RP11-96L14.7       1_18 0.04331332  5.808910 7.322113e-07 -1.4819009
13432        TRNP1       1_18 0.15821144 14.738355 6.785896e-06 -1.1357927
14265 RP3-465N24.6       1_18 0.05441571 39.553117 6.263618e-06  6.4603360
      num_eqtl
605          1
1402         1
3544         1
3546         1
3547         1
3548         2
3551         1
4633         3
6057         1
6058         2
6067         2
7384         2
7387         1
7388         1
7390         1
7395         1
7793         2
9078         1
9837         1
9940         1
10610        1
10735        1
11134        1
11321        2
11636        3
11942        2
12053        2
13008        1
13432        1
14265        1

[1] "APOB"
[1] "2_13"
        genename region_tag    susie_pip      mu2          PVE         z
1211        APOB       2_13 2.837784e-10 181.8676 1.501948e-13 -15.03583
12880 AC067959.1       2_13 4.072320e-11 330.7175 3.919398e-14 -25.52145
      num_eqtl
1211         2
12880        1

[1] "APOE"
[1] "19_31"
      genename region_tag susie_pip        mu2 PVE            z num_eqtl
123      MARK4      19_31         0  20.312700   0  -2.24637681        1
131   TRAPPC6A      19_31         0  16.600235   0   1.92140959        1
229      ERCC1      19_31         0  13.134793   0  -2.19401016        2
624     ZNF112      19_31         0  72.068605   0   7.18938487        3
898        PVR      19_31         0  30.112592   0  -3.01973306        1
2196    CLPTM1      19_31         0  48.802068   0  -2.57517256        1
2198   PPP1R37      19_31         0  35.405859   0  -2.37518201        2
2203     ERCC2      19_31         0  13.615522   0   1.53401174        1
3560    CD3EAP      19_31         0  16.730266   0   0.05565582        4
4222      OPA3      19_31         0  11.581430   0   1.32335471        2
4224      RTN2      19_31         0   6.803450   0   2.07007103        1
4226      VASP      19_31         0  23.808738   0   1.26035740        1
4570   NECTIN2      19_31         0  55.577675   0 -13.59762224        1
4571      APOE      19_31         0 999.967785   0  37.80754977        2
4572    TOMM40      19_31         0  56.000201   0   5.53230466        2
4573     APOC1      19_31         0 296.620171   0   7.53014709        1
6024    GEMIN7      19_31         0 157.439551   0  14.13454209        2
7552    ZNF233      19_31         0  98.228951   0  -9.63193736        1
7553    ZNF235      19_31         0   8.185909   0  -0.97877558        1
8729    ZNF180      19_31         0  25.642421   0   1.41443321        2
9263    ZNF296      19_31         0  65.538646   0   5.25423092        2
11089 CEACAM19      19_31         0  13.759203   0   3.64086985        3
11388  BLOC1S3      19_31         0   8.975124   0   2.30141189        1
12385    PPM1N      19_31         0  20.227762   0  -1.22009641        2
12950    APOC2      19_31         0  99.467017   0   7.82468739        2
14021   ZNF285      19_31         0  10.013342   0  -1.26709542        2
14628   ZNF229      19_31         0   8.630054   0   1.23011935        2

[1] "NPC1L1"
[1] "7_32"
        genename region_tag  susie_pip       mu2          PVE           z
17         HECW1       7_32 0.03879622  4.502064 5.083015e-07 -0.23376042
268       NPC1L1       7_32 0.04099715 82.556624 9.849767e-06 10.76193109
270       NUDCD3       7_32 0.12016967 17.520565 6.127217e-06  4.27589199
627       MRPS24       7_32 0.04400621  5.502620 7.046992e-07  0.38278180
1072      UBE2D4       7_32 0.04316907  5.512225 6.925003e-07  0.62909522
2384        OGDH       7_32 0.04345606 22.901957 2.896298e-06  0.47417198
2465        COA1       7_32 0.05470517  6.827556 1.086961e-06 -0.37405767
2466       BLVRA       7_32 0.03930484  4.699292 5.375251e-07  0.46600524
2467       URGCP       7_32 0.04456617  5.287322 6.857430e-07  0.03508092
2472       POLD2       7_32 0.10048790 13.317824 3.894640e-06  1.78074584
2474         GCK       7_32 0.04566065  6.311854 8.387246e-07  1.02935564
2476        YKT6       7_32 0.04642044  7.365875 9.950706e-07  1.67948623
3938        POLM       7_32 0.04055106  4.857444 5.732319e-07 -0.36899829
5285       DDX56       7_32 0.06932067 30.497390 6.152417e-06  7.35708820
7441       TMED4       7_32 0.91919811 36.878293 9.865071e-05  7.68827409
12733 AC004951.6       7_32 0.05933237  7.272867 1.255792e-06  0.22091509
12967  LINC00957       7_32 0.03984318  4.700790 5.450609e-07  0.29011976
      num_eqtl
17           3
268          1
270          1
627          1
1072         1
2384         2
2465         2
2466         1
2467         2
2472         4
2474         2
2476         1
3938         3
5285         2
7441         2
12733        1
12967        1

[1] "PCSK9"
[1] "1_34"
         genename region_tag    susie_pip        mu2          PVE
108         TTC22       1_34 1.326717e-13  15.011189 5.795802e-18
587         YIPF1       1_34 8.060219e-14  10.381893 2.435251e-18
1144       HSPB11       1_34 4.374279e-14   5.108528 6.503131e-19
3387       DHCR24       1_34 6.250556e-14   9.053461 1.646848e-18
3399      TCEANC2       1_34 4.196643e-14   4.741349 5.790610e-19
3400       TMEM59       1_34 4.152234e-14   4.644457 5.612251e-19
3401       LRRC42       1_34 4.352074e-14   5.262271 6.664842e-19
3403       MRPL37       1_34 4.407585e-14   4.994136 6.405919e-19
7325        CDCP2       1_34 9.736656e-14  12.363077 3.503134e-18
7327        SSBP3       1_34 4.063416e-14   4.635790 5.481953e-19
7784       ACOT11       1_34 1.343370e-13  17.148420 6.704093e-18
7785      FAM151A       1_34 4.327649e-13  27.822867 3.504082e-17
7786        PARS2       1_34 8.781864e-14  10.323831 2.638444e-18
9036        PCSK9       1_34 8.982431e-01 105.002053 2.744808e-04
10806       MROH7       1_34 1.868505e-12  45.488781 2.473540e-16
12499      CYB5RL       1_34 1.219025e-13  14.007672 4.969342e-18
12945 RP11-90C4.1       1_34 5.484502e-14   7.932894 1.266162e-18
13202        TTC4       1_34 4.096723e-14   4.885584 5.824697e-19
               z num_eqtl
108    1.1662870        2
587    1.0226599        3
1144  -0.2303441        1
3387  -0.3806125        1
3399  -0.1853540        1
3400   0.2100252        2
3401   0.2854315        2
3403   0.5344672        2
7325  -1.2055941        1
7327  -0.6008954        1
7784  -1.8518413        3
7785   2.0257851        1
7786  -1.1551925        2
9036  17.2108693        1
10806  3.9761380        4
12499  1.1595815        2
12945 -0.1113431        1
13202 -0.1056123        1

[1] "MYLIP"
[1] "6_13"
          genename region_tag  susie_pip       mu2          PVE          z
146          MYLIP       6_13 0.08653777 10.583115 2.665260e-06  1.1219050
463         DTNBP1       6_13 0.32173291 21.849708 2.045792e-05  2.6114864
4145         ATXN1       6_13 0.04786987  5.395142 7.515978e-07  0.5753436
5410          GMPR       6_13 0.05495376  6.679036 1.068148e-06  0.7796528
14194 RP11-560J1.2       6_13 0.06072175  7.243905 1.280081e-06  0.8415880
14252 RP1-151F17.2       6_13 0.08377364 10.350535 2.523426e-06 -1.2903423
      num_eqtl
146          1
463          2
4145         1
5410         1
14194        2
14252        1

[1] "OSBPL5"
[1] "11_3"
          genename region_tag  susie_pip       mu2          PVE
79          ZNF195       11_3 0.04489658  9.189417 1.200664e-06
298         OSBPL5       11_3 0.02664660  4.569047 3.543134e-07
647        TSPAN32       11_3 0.17425691 21.212698 1.075737e-05
1071        TOLLIP       11_3 0.03693407  7.443930 8.001101e-07
2819          CARS       11_3 0.07740928 14.125636 3.182155e-06
2820      SLC22A18       11_3 0.03079258  5.943437 5.326036e-07
2821          CD81       11_3 0.02696224  4.633467 3.635652e-07
2823      C11orf21       11_3 0.03069238  5.723158 5.111950e-07
4547        CDKN1C       11_3 0.19125419 22.428368 1.248329e-05
4622          LSP1       11_3 0.07511949 14.128318 3.088612e-06
4623         TNNT3       11_3 0.02719406  4.706400 3.724631e-07
6666          SYT8       11_3 0.03750832  7.572600 8.265954e-07
8708          IGF2       11_3 0.08828897 18.018558 4.629635e-06
8718          ART5       11_3 0.06505907 12.517928 2.370067e-06
9788         BRSK2       11_3 0.03458189  6.857338 6.901200e-07
10491       PHLDA2       11_3 0.33549377 27.403845 2.675570e-05
10550         MOB2       11_3 0.03264429  6.494092 6.169443e-07
10736        ASCL2       11_3 0.02875374  5.326728 4.457334e-07
10828        DUSP8       11_3 0.28864675 26.451176 2.221938e-05
12235       NAP1L4       11_3 0.16255365 20.746616 9.814412e-06
12773    LINC01150       11_3 0.13157051 18.410626 7.049323e-06
13220      IFITM10       11_3 0.03240731  6.214297 5.860779e-07
14725        PRR33       11_3 0.03815367  8.869684 9.848378e-07
2830         NUP98       11_3 0.02632474  4.454601 3.412661e-07
4546       CHRNA10       11_3 0.02743057  4.820109 3.847796e-07
4765        TRIM21       11_3 0.03208860  6.218791 5.807337e-07
8721          RRM1       11_3 0.03458420  6.885031 6.929533e-07
8722        OR51E2       11_3 0.16920407 21.212381 1.044529e-05
8723        TRIM68       11_3 0.02668311  4.574996 3.552609e-07
10415       OR51E1       11_3 0.03372023  6.672792 6.548147e-07
13487 RP11-23F23.2       11_3 0.02982610  5.565984 4.831241e-07
                z num_eqtl
79     1.14786730        2
298    0.20151551        1
647    2.25278977        1
1071  -0.80841023        2
2819  -1.77831042        2
2820  -0.43733079        2
2821   0.20617703        1
2823  -0.55061372        4
4547   2.53335014        2
4622  -1.89370692        1
4623   0.20030015        1
6666  -0.86657930        1
8708   2.87768350        1
8718   1.51689797        3
9788   0.88384194        1
10491 -3.12977961        1
10550 -1.02326080        2
10736  0.57486941        2
10828 -3.08552426        1
12235 -2.48039908        2
12773 -1.99663571        1
13220  0.57719694        1
14725 -1.74750284        1
2830  -0.08259672        1
4546   0.33897462        1
4765  -0.71226005        1
8721   0.84172180        3
8722   2.36169323        2
8723  -0.20197797        2
10415 -0.76087482        3
13487 -0.57167492        2

[1] "SCARB1"
[1] "12_76"
           genename region_tag  susie_pip       mu2          PVE
900          SCARB1      12_76 0.04497941  5.090161 6.662935e-07
1138           AACS      12_76 0.06679809  8.645254 1.680591e-06
5716       TMEM132B      12_76 0.04516820  5.075552 6.671699e-07
6801          DHX37      12_76 0.08312286 11.348157 2.745150e-06
6802            UBC      12_76 0.18059131 17.826680 9.368878e-06
14496 RP11-214K3.24      12_76 0.04312085  4.924835 6.180154e-07
               z num_eqtl
900    0.4644817        2
1138  -1.1186318        2
5716  -0.3647610        2
6801   1.7052619        1
6802  -2.1757766        1
14496 -0.6831074        1

[1] "CETP"
[1] "16_30"
          genename region_tag  susie_pip        mu2          PVE
64         CIAPIN1      16_30 0.17214874  14.897020 7.463174e-06
507        HERPUD1      16_30 0.05838811  14.363220 2.440600e-06
1287          CETP      16_30 0.59931467 157.616391 2.749012e-04
1289           MT3      16_30 0.05924333   4.707772 8.116619e-07
1291         GNAO1      16_30 0.06263732   5.222523 9.519933e-07
1292        OGFOD1      16_30 0.15510374  13.095419 5.911014e-06
1331          COQ9      16_30 0.05865500   4.637403 7.915898e-07
1987         NUP93      16_30 0.21353525  16.476560 1.023897e-05
1994          PLLP      16_30 0.06611764   5.559908 1.069807e-06
1998        POLR2C      16_30 0.06599408   6.001463 1.152610e-06
4159          BBS2      16_30 0.12288976  10.473970 3.745824e-06
4160          MT1G      16_30 0.05777613   4.753714 7.992852e-07
4161          MT2A      16_30 0.12764431  15.782956 5.862868e-06
4164          DOK4      16_30 0.05732431   4.468875 7.455167e-07
5194      CCDC102A      16_30 0.06265653   5.393224 9.834110e-07
5872         CPNE2      16_30 0.07721418   6.634346 1.490787e-06
5873         NLRC5      16_30 0.07387993   6.332294 1.361469e-06
7520          AMFR      16_30 0.12126443  12.373908 4.366773e-06
7523        RSPRY1      16_30 0.07773194   8.734951 1.975970e-06
8673        NUDT21      16_30 0.06250318   5.226823 9.507367e-07
9113          MT1E      16_30 0.05878522   4.690679 8.024615e-07
9557       FAM192A      16_30 0.07831597   7.176667 1.635661e-06
11160         MT1X      16_30 0.06861508   7.477815 1.493188e-06
11844         MT1F      16_30 0.07860421   6.798591 1.555196e-06
12219       ADGRG1      16_30 0.12120257  11.295539 3.984181e-06
12223         MT1H      16_30 0.05971606   4.770516 8.290426e-07
12224         MT1A      16_30 0.13092059  13.999055 5.333680e-06
12226         MT1M      16_30 0.10691465  10.615765 3.303002e-06
13267 RP11-461O7.1      16_30 0.06152796   5.035363 9.016201e-07
                z num_eqtl
64    -2.02099466        3
507    3.52077435        2
1287  13.82423033        2
1289   0.23412884        1
1291  -0.52872064        1
1292   1.55918687        2
1331  -0.28431278        1
1987  -2.21748371        2
1994  -0.36226197        2
1998  -0.90590353        1
4159  -0.97225733        3
4160  -0.61932212        3
4161   2.95959176        2
4164   0.10732971        1
5194   0.69758013        2
5872   0.16513057        2
5873  -0.23774647        2
7520   1.99782505        1
7523  -1.71229943        3
8673  -0.49431949        1
9113   0.36161593        2
9557   0.81027778        4
11160 -1.37965021        1
11844  0.55338625        1
12219 -1.51761847        1
12223  0.07381601        1
12224  2.49797425        1
12226  1.81397194        1
13267 -0.41702961        2

[1] "APOH"
[1] "17_38"
     genename region_tag  susie_pip       mu2          PVE          z
1453     APOH      17_38 0.21426090 17.867584 1.114113e-05 -1.9170127
7093    PRKCA      17_38 0.08046637  9.762396 2.286078e-06 -1.2170317
7095   CEP112      17_38 0.05062462  5.572178 8.209318e-07 -0.5308523
     num_eqtl
1453        1
7093        3
7095        2

[1] "TSPO"
[1] "22_18"
       genename region_tag  susie_pip       mu2          PVE          z
1679    POLDIP3      22_18 0.05178187  4.633871 6.982998e-07  0.2274642
1684     CYB5R3      22_18 0.05630277  5.392417 8.835549e-07  0.5420286
1688    PACSIN2      22_18 0.07148090  7.564412 1.573568e-06  0.9678223
1689      TTLL1      22_18 0.17083194 15.676222 7.793469e-06 -2.1322245
1696        BIK      22_18 0.05092059  4.482049 6.641870e-07  0.4591806
1702       TSPO      22_18 0.05532850  5.234110 8.427758e-07 -0.4689559
1704     TTLL12      22_18 0.07272648  7.722186 1.634380e-06 -0.9795175
4423     A4GALT      22_18 0.06043456  6.035374 1.061475e-06 -0.6869080
10705    SERHL2      22_18 0.06901903  7.244560 1.455128e-06  0.8796779
11408     RRP7A      22_18 0.05433717  5.070210 8.017579e-07 -0.4501227
12780 LINC01315      22_18 0.06951375  7.309711 1.478738e-06  1.1089502
13151   ARFGAP3      22_18 0.05131251  4.551445 6.796619e-07  0.3514497
14104     RNU12      22_18 0.07141806  7.556377 1.570515e-06  0.8996741
      num_eqtl
1679         1
1684         3
1688         2
1689         3
1696         1
1702         3
1704         2
4423         2
10705        4
11408        4
12780        2
13151        2
14104        1

[1] "PLTP"
[1] "20_28"
           genename region_tag  susie_pip       mu2          PVE
332          TOMM34      20_28 0.04533655  4.445049 5.864693e-07
648           WISP2      20_28 0.04607859  4.556285 6.109847e-07
1831           PLTP      20_28 0.24925213 25.239194 1.830774e-05
1832          PCIF1      20_28 0.05235452  5.587895 8.513787e-07
1834           MMP9      20_28 0.12995649 14.283129 5.401839e-06
1841           CD40      20_28 0.37611114 23.983088 2.625074e-05
1849        PABPC1L      20_28 0.04805949  5.005387 7.000629e-07
1850           STK4      20_28 0.06987286  8.231616 1.673840e-06
1919          WFDC2      20_28 0.04573035  4.746014 6.316171e-07
1924        DNTTIP1      20_28 0.12140623 11.912726 4.208937e-06
1927          ACOT8      20_28 0.06334567  6.885678 1.269357e-06
4051          SNX21      20_28 0.04545578  5.846657 7.734229e-07
4052           SLPI      20_28 0.05020222  5.349621 7.815670e-07
4053          WFDC3      20_28 0.13959762 13.170791 5.350695e-06
4055        SLC12A5      20_28 0.12825861 19.555311 7.299138e-06
4056           SDC4      20_28 0.04597491  4.713198 6.306041e-07
4058          NCOA5      20_28 0.05691612  7.263518 1.203102e-06
4078          RBPJL      20_28 0.07347715  8.926145 1.908695e-06
4080         KCNK15      20_28 0.04809593  4.941554 6.916593e-07
4081        TP53TG5      20_28 0.05216220  6.404313 9.721846e-07
4084         NEURL2      20_28 0.24945020 26.182796 1.900729e-05
4856        SERINC3      20_28 0.08568693 10.148534 2.530685e-06
6728           JPH2      20_28 0.04662211  4.697686 6.373768e-07
8654          YWHAB      20_28 0.04679234  4.707774 6.410778e-07
8957         ZSWIM1      20_28 0.49747963 27.481750 3.978689e-05
8968           PKIG      20_28 0.04632678  4.616209 6.223545e-07
9833          UBE2C      20_28 0.06875402  8.263570 1.653431e-06
10630       WFDC10B      20_28 0.13098132 12.644729 4.819913e-06
11570           ADA      20_28 0.07021430  8.385710 1.713506e-06
11647         FITM2      20_28 0.05031676  5.386041 7.886834e-07
11781        ZNF335      20_28 0.04753503  4.821045 6.669223e-07
12040          SYS1      20_28 0.04641331  4.944932 6.679181e-07
12568     OSER1-AS1      20_28 0.08081672  9.689722 2.278940e-06
13221        DBNDD2      20_28 0.04846708  5.389257 7.601442e-07
14566 RP3-453C12.15      20_28 0.05325997  5.663392 8.778045e-07
14718 RP11-445H22.3      20_28 0.05184085  5.639257 8.507741e-07
                z num_eqtl
332   -0.09477079        2
648    0.07374487        1
1831  -5.06974903        2
1832  -0.40126223        1
1834   1.76632544        1
1841   3.08821509        3
1849  -0.41033299        1
1850  -0.92647735        1
1919   0.70565748        1
1924   1.25299376        2
1927   0.50170116        2
4051  -1.04349049        2
4052  -0.52170155        2
4053   1.47955717        1
4055   3.19251988        2
4056  -0.46960970        4
4058  -1.06921473        1
4078  -1.21973824        1
4080   0.32476956        1
4081  -1.20704171        2
4084  -5.14834688        4
4856   1.31279423        2
6728  -0.28429650        4
8654  -0.26055073        2
8957  -5.21332474        2
8968  -0.27435123        2
9833  -1.29063071        1
10630 -1.43724745        1
11570  1.07627907        2
11647  0.60421286        1
11781  0.03190689        1
12040 -0.62993660        1
12568  1.23192967        3
13221 -0.82538860        2
14566  0.41494905        1
14718  0.58102262        2

[1] "LIPG"
[1] "18_27"
      genename region_tag  susie_pip       mu2          PVE          z
1942     SMAD7      18_27 0.03491073  5.878003 5.971853e-07 -0.5025531
1943      LIPG      18_27 0.04119536  8.452188 1.013299e-06  1.4047427
4967      CTIF      18_27 0.07594168 12.788218 2.826250e-06 -1.5876520
5972       DYM      18_27 0.03441476  5.662925 5.671603e-07 -0.3864952
8717     MYO5B      18_27 0.15196972 20.414857 9.028669e-06  2.7683503
8719     ACAA2      18_27 0.02985664  5.336283 4.636605e-07 -0.6137097
10091 C18orf32      18_27 0.02954518  5.592329 4.808390e-07  1.5533654
13942    RPL17      18_27 0.12896352 17.747457 6.660753e-06 -2.1255282
      num_eqtl
1942         1
1943         1
4967         1
5972         3
8717         1
8719         1
10091        1
13942        2

[1] "KPNB1"
[1] "17_27"
          genename region_tag  susie_pip       mu2          PVE          z
91         MAP3K14      17_27 0.09072093  6.884994 1.817738e-06 -1.0285934
920          TBX21      17_27 0.07083115  6.939598 1.430470e-06 -1.9227460
922            NSF      17_27 0.10512081  9.604572 2.938238e-06 -2.0605341
2601          WNT3      17_27 0.07205209  4.777449 1.001758e-06  0.4073694
2610         KPNB1      17_27 0.07115951 65.798026 1.362593e-05 -8.9833416
2611         GOSR2      17_27 0.10498443  7.379811 2.254709e-06  0.5031359
3740        KANSL1      17_27 0.07059257  4.726049 9.709067e-07  0.7337356
3742         CRHR1      17_27 0.13342770  9.871297 3.833015e-06  2.3227671
5301          NMT1      17_27 0.07223649  4.604850 9.680381e-07 -0.2105658
5916        NPEPPS      17_27 0.13772574 77.266226 3.096885e-05 -9.5630322
7504      ARHGAP27      17_27 0.11743928  8.577042 2.931374e-06 -1.8396376
7724         PLCD3      17_27 0.07500264  5.039775 1.100039e-06  0.5179343
9593         DCAKD      17_27 0.07339094  4.720237 1.008153e-06  0.2332407
10002      LRRC37A      17_27 0.10920883  7.720153 2.453601e-06  1.4867193
10233      EFCAB13      17_27 0.08989568 52.216423 1.366049e-05  7.9325427
10319        RPRML      17_27 0.07068060  4.598073 9.457937e-07  0.2617099
10485        ACBD4      17_27 0.07058490  4.434810 9.109765e-07 -0.3084589
10861        FMNL1      17_27 0.14994497 11.091215 4.839843e-06  1.0947893
10990       ARL17A      17_27 0.07144577  4.842763 1.006909e-06  0.5921664
11118       HEXIM1      17_27 0.10367175  7.942042 2.396144e-06 -0.9107222
11122         MAPT      17_27 0.13047166  9.704427 3.684736e-06  2.2406437
11831         MYL4      17_27 0.13504574 10.001656 3.930729e-06 -1.1719413
11984       TBKBP1      17_27 0.07623218 54.464825 1.208300e-05 -8.1169972
12749       ARL17B      17_27 0.08817019  6.058312 1.554511e-06 -0.5243534
13057     LRRC37A2      17_27 0.11749880  8.886278 3.038601e-06  2.1590825
13687        ITGB3      17_27 0.11143090 19.100830 6.194099e-06  3.9774261
13997 RP11-798G7.6      17_27 0.08817019  6.058312 1.554511e-06 -0.5243534
      num_eqtl
91           1
920          1
922          1
2601         2
2610         2
2611         1
3740         2
3742         1
5301         2
5916         1
7504         2
7724         1
9593         3
10002        3
10233        5
10319        3
10485        3
10861        1
10990        2
11118        1
11122        2
11831        2
11984        1
12749        1
13057        3
13687        2
13997        1

[1] "ALDH2"
[1] "12_67"
          genename region_tag  susie_pip       mu2          PVE
1372         ERP29      12_67 0.15329765 28.289697 1.262072e-05
2872         ARPC3      12_67 0.06289760  6.513524 1.192258e-06
2873          GPN3      12_67 0.09613867  9.589092 2.682847e-06
2874         VPS29      12_67 0.10033598  9.906185 2.892567e-06
2877         SH2B3      12_67 0.15577187 44.572567 2.020584e-05
2882        ACAD10      12_67 0.10709072 30.137673 9.392515e-06
2883         ALDH2      12_67 0.08322783 24.583232 5.954261e-06
2885         NAA25      12_67 0.07014231 25.043849 5.112125e-06
3966         IFT81      12_67 0.05926969  6.067962 1.046636e-06
5723          GIT2      12_67 0.08432622  9.646757 2.367360e-06
6819         RAD9B      12_67 0.05898260  6.033048 1.035574e-06
9600        HECTD4      12_67 0.09330047 28.024117 7.609149e-06
9759        ATP2A2      12_67 0.05764606  5.868380 9.844829e-07
9763      C12orf76      12_67 0.04736602  4.432726 6.110237e-07
11056       PPP1CC      12_67 0.19006665 15.825955 8.753791e-06
11516       ANAPC7      12_67 0.04922095  5.728226 8.205223e-07
11572        PPTC7      12_67 0.06130471  7.783795 1.388691e-06
11825      TMEM116      12_67 0.15329765 28.289697 1.262072e-05
11829      FAM109A      12_67 0.04774326  5.392396 7.492283e-07
12163        ATXN2      12_67 0.29374488 28.131876 2.404857e-05
12166        TCTN1      12_67 0.12313494 14.131827 5.064073e-06
12935 MAPKAPK5-AS1      12_67 0.07979717 27.101626 6.293658e-06
13619  RP3-473L9.4      12_67 0.09147889 31.821722 8.471589e-06
                z num_eqtl
1372  -5.80494471        1
2872   0.68493704        2
2873   0.51884682        1
2874  -0.55399022        1
2877  -7.83542471        1
2882   6.35151099        1
2883  -5.42199160        2
2885   6.04725215        2
3966  -0.24688650        1
5723  -1.61476918        2
6819  -0.27832495        1
9600  -6.42780377        2
9759  -0.26839506        1
9763  -0.03375633        2
11056 -1.69490241        1
11516 -1.28866259        2
11572 -1.49852195        1
11825  5.80494471        1
11829  1.03362273        1
12163  5.02733955        2
12166  2.45091897        2
12935  6.41042953        1
13619  6.49229983        2

[1] "APOA1"
[1] "11_71"
           genename region_tag   susie_pip       mu2          PVE
2758           ZPR1      11_71 0.027138501 68.532498 5.412560e-06
2796         CEP164      11_71 0.010679436  5.582893 1.735114e-07
3569          APOA1      11_71 0.010340579  6.392219 1.923609e-07
5473          BUD13      11_71 0.012132507  5.524353 1.950528e-07
5487          FXYD2      11_71 0.013365483  7.592636 2.953232e-07
6725          SIDT2      11_71 0.013582489  9.625168 3.804591e-07
6727          TAGLN      11_71 0.011561175  6.059787 2.038823e-07
7632          PCSK7      11_71 0.009501786 10.427999 2.883543e-07
8709         RNF214      11_71 0.009406343  5.546319 1.518259e-07
8876       PAFAH1B2      11_71 0.009941395 12.256689 3.546017e-07
10048       DSCAML1      11_71 0.011878776  6.836207 2.363237e-07
11059         BACE1      11_71 0.009316798  6.184582 1.676862e-07
285          PHLDB1      11_71 0.028044438 10.750712 8.774134e-07
1010           MCAM      11_71 0.009810626  4.895203 1.397616e-07
1517          ARCN1      11_71 0.407740006 22.362262 2.653502e-05
2800         IL10RA      11_71 0.010422364  5.420265 1.644020e-07
2803          UBE4A      11_71 0.053053200 18.803482 2.903155e-06
2804           DDX6      11_71 0.017482756  9.691666 4.930928e-07
2805            CBL      11_71 0.013289939  7.299399 2.823127e-07
3566           TREH      11_71 0.019744984 10.056066 5.778368e-07
3567          IFT46      11_71 0.031747840 10.423613 9.630587e-07
3571          RPS25      11_71 0.010227200  5.275859 1.570255e-07
5480        SLC37A4      11_71 0.009397659  4.537777 1.241032e-07
5485          FXYD6      11_71 0.046690588 18.268758 2.482325e-06
6703          HYOU1      11_71 0.009846593  4.836252 1.385847e-07
6723          MPZL2      11_71 0.009306304  4.443448 1.203421e-07
6724          SCN2B      11_71 0.009568653  4.688538 1.305595e-07
7629          MPZL3      11_71 0.009733494  4.844369 1.372228e-07
7633           CD3G      11_71 0.045462919 17.263010 2.283990e-06
7639          VPS11      11_71 0.009575332  4.630045 1.290207e-07
7640          NLRX1      11_71 0.010117860  5.203039 1.532026e-07
9490          HINFP      11_71 0.043989018 16.569847 2.121207e-06
9503          ABCG4      11_71 0.060640642 19.356768 3.415993e-06
9506          PDZD3      11_71 0.009938183  5.008050 1.448425e-07
9507         C2CD2L      11_71 0.011635604  6.326639 2.142310e-07
9650          RNF26      11_71 0.011399588  6.073174 2.014769e-07
10047         SCN4B      11_71 0.016975252  9.627266 4.755975e-07
11039        CCDC84      11_71 0.011845436  6.558154 2.260752e-07
11541       TRAPPC4      11_71 0.011417049  6.235715 2.071860e-07
11954          CD3E      11_71 0.018914110 10.513760 5.787144e-07
13309       CCDC153      11_71 0.032832474 14.427861 1.378561e-06
13519 RP11-110I1.12      11_71 0.009682951  4.826245 1.359995e-07
13525   TMPRSS4-AS1      11_71 0.015574798  8.944451 4.054118e-07
13574          HMBS      11_71 0.016718720  9.658456 4.699277e-07
14179 RP11-110I1.14      11_71 0.025480291 12.976492 9.622369e-07
14629  RP11-158I9.8      11_71 0.009353098  4.472246 1.217311e-07
                 z num_eqtl
2758  -8.558083579        3
2796  -1.151441496        2
3569   1.259896730        1
5473   1.106795181        1
5487  -0.815262931        1
6725   1.789124471        1
6727  -0.208778219        1
7632   0.427156051        3
8709  -1.149310049        2
8876   1.954200048        2
10048 -0.950975759        5
11059 -0.202145940        1
285   -2.195603226        1
1010  -0.392316857        1
1517  -3.460721439        2
2800  -0.588163124        1
2803   1.931041428        2
2804  -1.440092098        2
2805   0.768500019        1
3566  -1.769814683        1
3567  -2.321005506        2
3571  -0.553265539        2
5480  -0.175372766        3
5485  -1.905698366        1
6703  -0.149647514        1
6723  -0.007818612        2
6724  -0.347449108        1
7629  -0.333954065        2
7633   1.597891521        1
7639   0.043651363        3
7640  -0.491017849        2
9490   1.858723296        1
9503   2.097751950        2
9506  -0.444556851        1
9507  -0.651233403        1
9650   0.713961504        1
10047  1.267144486        1
11039  0.858181559        1
11541  0.798148148        1
11954  1.057119238        1
13309  1.620441106        2
13519  0.275624342        1
13525 -1.131537430        1
13574 -1.302989641        3
14179  1.677677763        3
14629  0.141389981        3

[1] "NPC2"
[1] "14_34"
           genename region_tag  susie_pip       mu2          PVE
1114          PSEN1      14_34 0.02010397 16.375048 9.580424e-07
1804          PAPLN      14_34 0.01925153  8.438763 4.727857e-07
3677          DCAF4      14_34 0.01540989  8.667533 3.887006e-07
3678          PROX2      14_34 0.70325263 23.490338 4.807518e-05
3679           VSX2      14_34 0.01791110  8.634819 4.500864e-07
3682          BBOF1      14_34 0.02156863  9.446067 5.929170e-07
3683           NEK9      14_34 0.03309955 18.937215 1.824141e-06
3685           NPC2      14_34 0.03436382 13.214789 1.321545e-06
3686          DNAL1      14_34 0.02242416  9.885930 6.451401e-07
3688          ACOT2      14_34 0.01401022  6.851498 2.793513e-07
3689          LTBP2      14_34 0.01304209  5.766042 2.188494e-07
3690          AREL1      14_34 0.05425110 16.198697 2.557460e-06
3691           MLH3      14_34 0.01557866  8.131928 3.686752e-07
3692          TTLL5      14_34 0.01095600  4.450475 1.418988e-07
3693         FLVCR2      14_34 0.01130986  4.726730 1.555745e-07
3694          ABCD4      14_34 0.01098056  4.491665 1.435332e-07
3698          RBM25      14_34 0.11226918 20.179307 6.593061e-06
3699        ALDH6A1      14_34 0.22883768 20.398357 1.358448e-05
3702         EIF2B2      14_34 0.04052428 17.829408 2.102677e-06
3703           COQ6      14_34 0.02898938 13.818418 1.165782e-06
3704         ZNF410      14_34 0.01967664  9.342881 5.349978e-07
4958           NUMB      14_34 0.01159366  4.943189 1.667816e-07
5786          PTGR2      14_34 0.01170132  4.943757 1.683497e-07
7225        ELMSAN1      14_34 0.02257333  9.948175 6.535207e-07
7228        FAM161B      14_34 0.37956419 23.454004 2.590732e-05
7236           BATF      14_34 0.01474757  7.074562 3.036270e-07
8454         ZFYVE1      14_34 0.35634642 18.672437 1.936394e-05
9204         TMED10      14_34 0.02895004 17.858622 1.504587e-06
9227          RIOX1      14_34 0.01142021  4.994770 1.660007e-07
10019         PNMA1      14_34 0.01376277  6.108375 2.446538e-07
10080         ACOT4      14_34 0.01147450  5.176126 1.728459e-07
10684      SYNDIG1L      14_34 0.01265595  6.044141 2.226125e-07
10796         ACOT1      14_34 0.01183906  5.899872 2.032732e-07
11145        ENTPD5      14_34 0.20396123 26.614401 1.579736e-05
13651 RP5-1021I20.2      14_34 0.20971787 20.664322 1.261180e-05
13668 RP11-270M14.5      14_34 0.01309887  5.940865 2.264664e-07
13680   RP3-449M8.6      14_34 0.01196014  5.243296 1.824991e-07
13714     LINC01220      14_34 0.01465376  7.139045 3.044455e-07
14100   RP3-449M8.9      14_34 0.01144832  4.806645 1.601416e-07
                 z num_eqtl
1114   3.229758391        2
1804   1.737216658        1
3677   1.480577350        4
3678   4.728159457        1
3679  -0.730399204        3
3682  -2.910226590        2
3683  -3.229698770        1
3685   1.236891294        1
3686   1.601799548        1
3688  -1.206396425        4
3689   0.253509565        1
3690  -1.073394574        2
3691  -1.248354840        1
3692  -0.004986035        2
3693  -0.323831005        2
3694  -0.146051273        2
3698   4.273809776        1
3699   4.204641862        1
3702  -2.487675584        2
3703   1.903428327        2
3704   1.429488618        2
4958   0.153840456        1
5786  -0.916339410        5
7225   1.605708757        1
7228  -4.431133058        2
7236  -0.804124148        1
8454   3.247488674        1
9204  -3.199737076        1
9227   0.069112089        1
10019  0.727262838        3
10080  0.578384062        2
10684  0.918206255        1
10796  0.658176457        4
11145 -3.397736054        2
13651  4.180026519        1
13668  0.530733050        1
13680 -0.386452409        2
13714  1.016718420        3
14100 -0.204891747        3

[1] "VAPB"
[1] "20_34"
       genename region_tag  susie_pip       mu2          PVE           z
1301       GNAS      20_34 0.08821990  7.538587 1.935427e-06 -0.97211018
1304    PHACTR3      20_34 0.12515137 10.780858 3.926533e-06 -1.39239344
1859     NELFCD      20_34 0.24935052 17.409189 1.263308e-05  2.23141397
1860       CTSZ      20_34 0.18660840 14.570499 7.912722e-06 -1.92748353
1862      TUBB1      20_34 0.09001034  7.723481 2.023139e-06 -0.97658919
4059       VAPB      20_34 0.11277927  9.809866 3.219680e-06 -1.28562576
4067       EDN3      20_34 0.07270281  5.765366 1.219827e-06  0.64574281
4069     RAB22A      20_34 0.14843201 12.385561 5.350121e-06  1.59196827
4075      STX16      20_34 0.06280330  4.431077 8.098640e-07 -0.05327087
11919   APCDD1L      20_34 0.06281315  4.432504 8.102517e-07 -0.03161543
12487    NPEPL1      20_34 0.06304855  4.466533 8.195321e-07 -0.07722682
14066 LINC01711      20_34 0.07021562  5.447525 1.113149e-06 -0.48678992
      num_eqtl
1301         1
1304         2
1859         1
1860         2
1862         1
4059         3
4067         2
4069         1
4075         1
11919        1
12487        3
14066        1

[1] "APOC1"
[1] "19_31"
      genename region_tag susie_pip        mu2 PVE            z num_eqtl
123      MARK4      19_31         0  20.312700   0  -2.24637681        1
131   TRAPPC6A      19_31         0  16.600235   0   1.92140959        1
229      ERCC1      19_31         0  13.134793   0  -2.19401016        2
624     ZNF112      19_31         0  72.068605   0   7.18938487        3
898        PVR      19_31         0  30.112592   0  -3.01973306        1
2196    CLPTM1      19_31         0  48.802068   0  -2.57517256        1
2198   PPP1R37      19_31         0  35.405859   0  -2.37518201        2
2203     ERCC2      19_31         0  13.615522   0   1.53401174        1
3560    CD3EAP      19_31         0  16.730266   0   0.05565582        4
4222      OPA3      19_31         0  11.581430   0   1.32335471        2
4224      RTN2      19_31         0   6.803450   0   2.07007103        1
4226      VASP      19_31         0  23.808738   0   1.26035740        1
4570   NECTIN2      19_31         0  55.577675   0 -13.59762224        1
4571      APOE      19_31         0 999.967785   0  37.80754977        2
4572    TOMM40      19_31         0  56.000201   0   5.53230466        2
4573     APOC1      19_31         0 296.620171   0   7.53014709        1
6024    GEMIN7      19_31         0 157.439551   0  14.13454209        2
7552    ZNF233      19_31         0  98.228951   0  -9.63193736        1
7553    ZNF235      19_31         0   8.185909   0  -0.97877558        1
8729    ZNF180      19_31         0  25.642421   0   1.41443321        2
9263    ZNF296      19_31         0  65.538646   0   5.25423092        2
11089 CEACAM19      19_31         0  13.759203   0   3.64086985        3
11388  BLOC1S3      19_31         0   8.975124   0   2.30141189        1
12385    PPM1N      19_31         0  20.227762   0  -1.22009641        2
12950    APOC2      19_31         0  99.467017   0   7.82468739        2
14021   ZNF285      19_31         0  10.013342   0  -1.26709542        2
14628   ZNF229      19_31         0   8.630054   0   1.23011935        2

[1] "STARD3"
[1] "17_23"
           genename region_tag  susie_pip       mu2          PVE
19            LASP1      17_23 0.15799930 15.920978 7.320575e-06
170           MED24      17_23 0.14028386 14.795945 6.040469e-06
743          CACNB1      17_23 0.05220395  5.697116 8.655232e-07
912         SMARCE1      17_23 0.04608221  4.569080 6.127486e-07
913           GSDMB      17_23 0.05519144  6.201387 9.960493e-07
1508           CDC6      17_23 0.04814919  4.965566 6.957897e-07
2596           CSF3      17_23 0.05727969  6.538324 1.089902e-06
2597          PSMD3      17_23 0.04999169  5.305080 7.718094e-07
2598          CASC3      17_23 0.36066342 24.150651 2.534844e-05
2599       RAPGEFL1      17_23 0.29020290 21.883511 1.848158e-05
4213           MED1      17_23 0.07252390  8.686548 1.833364e-06
4214          RPL23      17_23 0.10711135 12.274085 3.826000e-06
4291           CCR7      17_23 0.05066990  5.427040 8.002642e-07
4292          NR1D1      17_23 0.06016118  6.983963 1.222753e-06
4739           TNS4      17_23 0.04538777  4.431962 5.854033e-07
4740         STARD3      17_23 0.04866297  5.061517 7.168027e-07
5983          ERBB2      17_23 0.09768485 11.421362 3.246874e-06
5984           GRB7      17_23 0.10964113 12.490218 3.985326e-06
5985          MIEN1      17_23 0.15859217 15.956518 7.364448e-06
5986           PNMT      17_23 0.06528679  7.727697 1.468235e-06
5987          STAC2      17_23 0.06127600  7.150777 1.275158e-06
7700         PLXDC1      17_23 0.05617141  6.360899 1.039810e-06
7702          IKZF3      17_23 0.38108622 24.739571 2.743694e-05
8833          GSDMA      17_23 0.14346404 15.007260 6.265630e-06
9459         ORMDL3      17_23 0.14399874 15.042193 6.303622e-06
9715           TCAP      17_23 0.05755478  6.581774 1.102414e-06
11355          MSL1      17_23 0.05333864  5.891908 9.145726e-07
12444    AC087491.2      17_23 0.07034685  8.408242 1.721354e-06
13915     LINC00672      17_23 0.14645923 15.202371 6.479603e-06
13932 RP11-387H17.4      17_23 0.04908556  5.139456 7.341608e-07
13955  RP5-1028K7.2      17_23 0.14122966 14.859370 6.107263e-06
14405         CWC25      17_23 0.04729257  4.803271 6.610744e-07
14406          EPOP      17_23 0.07709694  9.245577 2.074395e-06
14476         MLLT6      17_23 0.10018332 11.654991 3.398034e-06
14540       PIP4K2B      17_23 0.04712234  4.770713 6.542300e-07
14581         PCGF2      17_23 0.04842224  5.016662 7.069358e-07
14607         PSMB3      17_23 0.18491519 17.426240 9.377705e-06
14611         CISD3      17_23 0.05458616  6.101300 9.692263e-07
                z num_eqtl
19     2.06384703        1
170    2.57367225        1
743   -0.74789947        1
912    0.08854994        1
913    1.36595451        3
1508  -0.54487846        2
2596  -1.38591286        1
2597  -0.25796073        1
2598  -3.31731790        4
2599   2.95599474        2
4213  -1.60223183        2
4214   1.76434090        1
4291  -0.44220762        1
4292   1.13477197        1
4739   0.02859681        1
4740  -0.57272843        2
5983  -2.29348339        2
5984  -1.29578288        2
5985   2.11399068        1
5986  -1.72758728        2
5987  -0.90983233        1
7700   0.73156690        1
7702   3.46618563        1
8833   2.84876635        2
9459   2.85322256        1
9715   1.04770013        1
11355  0.98720359        1
12444  1.73462940        1
13915  1.91358441        1
13932  0.36181731        3
13955  1.89232102        1
14405 -0.51001116        1
14406 -1.22710237        1
14476 -1.60128295        1
14540 -0.32703052        3
14581  0.34617143        2
14607  2.06810346        2
14611 -0.60454978        1

[1] "PPARG"
[1] "3_9"
      genename region_tag  susie_pip       mu2          PVE          z
988      MKRN2        3_9 0.03135400  5.430624 4.955221e-07 -0.8716686
1332    TMEM40        3_9 0.03013251  6.094506 5.344340e-07  1.3996166
4769      RAF1        3_9 0.02731073  4.897512 3.892505e-07 -0.6842182
4770     PPARG        3_9 0.02722444  8.708239 6.899373e-07 -2.5953663
6298    TAMM41        3_9 0.07878073 13.991641 3.207812e-06  1.8598576
6299     VGLL4        3_9 0.03609933  6.977527 7.330287e-07  1.0266781
6323     CAND2        3_9 0.02964105  5.796627 5.000221e-07 -1.2257763
7134     TSEN2        3_9 0.02716448  5.059164 3.999451e-07  1.1650072
7314    SLC6A1        3_9 0.03379825  6.518335 6.411375e-07  0.7212287
7319     TIMP4        3_9 0.05692187 11.262681 1.865697e-06  1.5758546
7320      SYN2        3_9 0.03018848  6.735250 5.917187e-07  2.1389711
11537     HRH1        3_9 0.02794624  4.806876 3.909368e-07  0.2808860
11684     ATG7        3_9 0.03751242  7.285704 7.953657e-07 -0.8966031
12619  MKRN2OS        3_9 0.15296674 17.188665 7.651727e-06  3.8901034
      num_eqtl
988          3
1332         1
4769         1
4770         1
6298         3
6299         1
6323         3
7134         4
7314         3
7319         3
7320         2
11537        2
11684        3
12619        2

[1] "LPIN3"
[1] "20_25"
      genename region_tag  susie_pip      mu2          PVE        z
4061      CHD6      20_25 0.10371263 12.68028 3.827198e-06 1.035059
4062     PLCG1      20_25 0.15328065 16.47045 7.347050e-06 1.671800
4852     LPIN3      20_25 0.03769762 31.76804 3.485176e-06 5.915115
9747      ZHX3      20_25 0.03951900 11.71552 1.347373e-06 2.767903
10750  EMILIN3      20_25 0.04636140 31.38957 4.235086e-06 5.704566
      num_eqtl
4061         2
4062         2
4852         2
9747         1
10750        2

[1] "SORT1"
[1] "1_67"
          genename region_tag   susie_pip        mu2          PVE
366           SARS       1_67 0.008842491  24.257145 6.242156e-07
680          GNAI3       1_67 0.059461335  36.597463 6.332948e-06
1230      SLC25A24       1_67 0.110623224  19.040173 6.129676e-06
3407        STXBP3       1_67 0.014885979  16.452942 7.127567e-07
3409         AMPD2       1_67 0.057412268  44.195010 7.384112e-06
3878         CLCC1       1_67 0.008350193   5.020227 1.219945e-07
3879         GPSM2       1_67 0.010770874   6.955047 2.180074e-07
4984         GSTM1       1_67 0.026030135  38.410146 2.909663e-06
4986         GSTM5       1_67 0.008934125   9.401227 2.444313e-07
4987         GSTM3       1_67 0.010048438   7.235686 2.115917e-07
4991         PSRC1       1_67 0.276724165 192.009108 1.546284e-04
4994         SORT1       1_67 0.008445869  20.739040 5.097454e-07
6084         SYPL2       1_67 0.016453770  49.423212 2.366555e-06
6093        CELSR2       1_67 0.008522725 109.890397 2.725577e-06
7232         GPR61       1_67 0.008286089   9.151074 2.206693e-07
7834       FAM102B       1_67 0.011788953  15.577365 5.344284e-07
7835        HENMT1       1_67 0.025890373  14.844196 1.118447e-06
7836        AKNAD1       1_67 0.010770874   6.955047 2.180074e-07
7840       ATXN7L2       1_67 0.011482988  14.603293 4.880070e-07
8972         GSTM4       1_67 0.019958084  16.303653 9.469435e-07
9731      CYB561D1       1_67 0.008784524  51.319596 1.311964e-06
10499       AMIGO1       1_67 0.015914284  29.501073 1.366297e-06
11729        TAF13       1_67 0.012348876  13.705360 4.925362e-07
12337        GSTM2       1_67 0.025354958  25.302853 1.867036e-06
12493     TMEM167B       1_67 0.011335261  15.309187 5.050146e-07
12546       MYBPHL       1_67 0.008420809  21.076428 5.165010e-07
12677 RP11-356N1.2       1_67 0.008511622   4.878611 1.208450e-07
                z num_eqtl
366    -7.0857282        2
680    -3.8408490        1
1230   -0.6406888        2
3407    2.9914703        1
3409    8.4673955        1
3878   -1.7197469        4
3879    1.0104135        1
4984    6.5012768        6
4986    2.0991563        4
4987   -1.0142898        4
4991  -22.9681237        2
4994   -7.1373768        1
6084    9.7928029        4
6093   13.7257529        2
7232   -4.2425343        1
7834   -4.6211180        2
7835   -1.8537405        1
7836    1.0104135        1
7840    5.9371453        1
8972   -0.3531182        7
9731    9.9823505        2
10499  -3.1539161        2
11729  -2.8413870        2
12337   4.6633215        4
12493   1.5934686        1
12546  -7.1894797        1
12677  -0.2308337        2

[1] "FADS2"
[1] "11_34"
           genename region_tag  susie_pip        mu2          PVE
93         TMEM132A      11_34 0.04785366   7.015339 9.769766e-07
217            SYT7      11_34 0.04504220   6.171242 8.089327e-07
2779         MS4A6A      11_34 0.03942139   4.898568 5.619806e-07
2780         MS4A4A      11_34 0.12175706  14.565575 5.161098e-06
2784         CCDC86      11_34 0.04414017   6.348683 8.155262e-07
2785         PRPF19      11_34 0.03764336   4.544073 4.977989e-07
2786        TMEM109      11_34 0.06783652   9.977574 1.969740e-06
2812            CD5      11_34 0.04113275   5.168916 6.187390e-07
2814        SCGB2A2      11_34 0.07055845   9.376180 1.925286e-06
5063          DAGLA      11_34 0.09030423  22.360980 5.876507e-06
5068          FADS2      11_34 0.10124455  48.582684 1.431441e-05
5069        TMEM258      11_34 0.06130644  42.202763 7.529519e-06
6706           TKFC      11_34 0.03835879   4.681012 5.225466e-07
6708        TMEM138      11_34 0.04744389   8.607896 1.188496e-06
6713         INCENP      11_34 0.03775693   5.226734 5.743114e-07
6714            ZP1      11_34 0.13126658  15.042527 5.746392e-06
6716          CPSF7      11_34 0.04065351   5.418793 6.410929e-07
6717          MS4A2      11_34 0.07462519  10.413658 2.261565e-06
7760       CYB561A3      11_34 0.04744389   8.607896 1.188496e-06
7761        PPP1R32      11_34 0.04071487   5.212588 6.176276e-07
7762         ASRGL1      11_34 0.03781915   4.604150 5.067357e-07
8626        FAM111A      11_34 0.03961979   4.961783 5.720977e-07
8648          PATL1      11_34 0.03725178   4.459940 4.834998e-07
8651           STX3      11_34 0.09014207  12.338229 3.236687e-06
8658         MS4A6E      11_34 0.10910015  13.511300 4.289857e-06
8659          MS4A7      11_34 0.07506493  10.635878 2.323436e-06
8660         MS4A14      11_34 0.07895441  10.955159 2.517186e-06
8849           DDB1      11_34 0.04953782   6.511309 9.386971e-07
8941           FEN1      11_34 0.06056125 130.936081 2.307674e-05
9491         OR10V1      11_34 0.03732469   4.468866 4.854158e-07
10660        PTGDR2      11_34 0.05069792   7.427473 1.095851e-06
11140       TMEM216      11_34 0.03746280   4.562447 4.974145e-07
11381       FAM111B      11_34 0.09936200  12.979566 3.753192e-06
11705         MPEG1      11_34 0.04099168   5.378373 6.416038e-07
12177       LRRC10B      11_34 0.04467299   5.764632 7.494400e-07
12779          PGA3      11_34 0.05000776   6.578712 9.574115e-07
13357 RP11-855O10.2      11_34 0.03720880   4.688916 5.077365e-07
13511    AP001257.1      11_34 0.03715880   4.438625 4.799881e-07
13516    AP000442.4      11_34 0.05687255   8.241387 1.364028e-06
13579 RP11-794G24.1      11_34 0.08412300  10.437753 2.555301e-06
13586 RP11-286N22.8      11_34 0.03932925   4.983081 5.703402e-07
13590          PGA5      11_34 0.03801922   4.886600 5.406674e-07
                z num_eqtl
93    -1.18450440        1
217   -0.57786099        1
2779   0.54425280        1
2780   1.79371022        2
2784   1.02857284        2
2785   0.26571594        1
2786   1.42183198        1
2812  -0.05673626        1
2814  -0.87430500        1
5063  -3.93195300        2
5068  -6.67154547        1
5069  -6.57743600        2
6706  -0.12983138        1
6708  -1.78280456        1
6713  -0.94777319        2
6714  -1.56544705        1
6716  -0.65925712        2
6717  -1.37362441        2
7760  -1.78280456        1
7761  -0.38265325        1
7762  -0.10311627        1
8626   0.32187672        1
8648  -0.04571303        1
8651   1.99083966        3
8658   1.67282787        1
8659  -1.35533608        3
8660  -1.30793556        3
8849   0.07077958        1
8941  12.59182931        1
9491   0.05353965        1
10660 -1.09899297        2
11140 -0.27954303        1
11381 -1.62714480        2
11705  0.44595864        2
12177 -0.07842180        1
12779  0.07975455        1
13357 -0.54787454        1
13511 -0.12178151        2
13516  1.40716759        2
13579 -0.44775309        1
13586 -0.42704781        1
13590 -0.50405613        1

[1] "CYP27A1"
[1] "2_129"
         genename region_tag  susie_pip       mu2          PVE           z
279       SLC11A1      2_129 0.04391614  4.666290 5.963705e-07  0.05100451
538         PTPRN      2_129 0.04264818  4.498007 5.582656e-07 -0.11033678
872         ASIC4      2_129 0.04271441  4.460744 5.545006e-07  0.10442281
873          SPEG      2_129 0.05207228  6.277503 9.512920e-07  0.60892801
934         BCS1L      2_129 0.04574168  7.973602 1.061419e-06  2.08166821
1080         TNS1      2_129 0.04619236  5.113780 6.874363e-07  0.37728313
3320        PLCD4      2_129 0.40823863 18.131918 2.154161e-05  4.09053549
3322       ZNF142      2_129 0.04306017  4.560569 5.714985e-07 -0.15341588
3324       PRKAG3      2_129 0.04819753  9.031493 1.266790e-06 -2.46670899
3332       CNPPD1      2_129 0.10740584 12.931062 4.041871e-06 -1.79583223
3334        ABCB6      2_129 0.08143374  9.899501 2.346054e-06  1.15422213
3335        STK16      2_129 0.14023857 15.014034 6.127526e-06 -1.90468349
4041         CHPF      2_129 0.05764271  7.202828 1.208281e-06  0.82081390
4042        DNPEP      2_129 0.10819230 13.090853 4.121778e-06  1.67585142
4043         INHA      2_129 0.04903900  5.807218 8.287624e-07 -0.65920233
4044        OBSL1      2_129 0.04671411  5.214645 7.089133e-07  0.42707562
4384       TUBA4A      2_129 0.04928770  5.660873 8.119743e-07 -0.56762321
4385         AAMP      2_129 0.14795477 14.968021 6.444863e-06 -2.20803733
5219        TTLL4      2_129 0.04395255  5.198043 6.648815e-07  0.91983273
5220        USP37      2_129 0.39622587 18.025295 2.078478e-05 -4.07816656
5225       TMBIM1      2_129 0.13034375 13.808679 5.237966e-06 -2.08113590
5226      CYP27A1      2_129 0.05326632 10.379321 1.608948e-06 -2.89315752
6301      FAM134A      2_129 0.04289250  4.514845 5.635656e-07 -0.06827746
6302       CTDSP1      2_129 0.10273155 15.123969 4.521577e-06  2.60879648
6303        CNOT9      2_129 0.05936095  7.026344 1.213810e-06  1.21362648
6305        GMPPA      2_129 0.05056185  6.010876 8.844657e-07 -0.73851578
7422        CATIP      2_129 0.09717705 14.068973 3.978748e-06  2.22430822
7438      ZFAND2B      2_129 0.10278197 11.931090 3.568760e-06 -1.58442042
7978        CXCR1      2_129 0.04612223  5.142339 6.902261e-07  0.56376400
7979        ARPC2      2_129 0.10165225 11.782469 3.485568e-06 -1.94043222
7983        RNF25      2_129 0.04488136  5.319029 6.947342e-07 -0.93528618
7984        STK36      2_129 0.10822566 14.219802 4.478619e-06  3.56927112
7988          IHH      2_129 0.04587125  5.041304 6.729825e-07 -0.61498029
7996        GLB1L      2_129 0.05075190  5.838483 8.623282e-07 -0.68615748
9836          DES      2_129 0.11064942 12.863520 4.142183e-06 -1.45556658
10338      GPBAR1      2_129 0.16656950 16.035020 7.772939e-06 -2.28666919
10422       CXCR2      2_129 0.08141085  9.681782 2.293812e-06 -1.47518963
11206       NHEJ1      2_129 0.13320177 14.824598 5.746630e-06  2.00614596
11276       RUFY4      2_129 0.13506417 15.135306 5.949105e-06  1.84473382
11333     TMEM198      2_129 0.04486642  4.873550 6.363370e-07  0.31231552
11981       ATG9A      2_129 0.04557167  5.083833 6.742276e-07 -0.37507138
12386     SLC23A3      2_129 0.04265081  4.535957 5.630106e-07 -0.13068048
12831       DIRC3      2_129 0.04511063  4.949927 6.498272e-07  0.44929498
14288 RP11-33O4.1      2_129 0.06571468  8.992541 1.719749e-06 -1.43979804
      num_eqtl
279          1
538          1
872          1
873          2
934          2
1080         1
3320         1
3322         2
3324         1
3332         2
3334         1
3335         1
4041         1
4042         2
4043         2
4044         2
4384         1
4385         1
5219         1
5220         1
5225         2
5226         1
6301         1
6302         1
6303         1
6305         1
7422         1
7438         1
7978         1
7979         1
7983         1
7984         2
7988         1
7996         1
9836         1
10338        1
10422        1
11206        2
11276        2
11333        1
11981        1
12386        2
12831        2
14288        2

[1] "NCEH1"
[1] "3_106"
     genename region_tag  susie_pip      mu2          PVE          z
6349    NCEH1      3_106 0.04509989 4.437297 5.823904e-07 0.06081573
9120    NLGN1      3_106 0.07025444 8.458892 1.729448e-06 1.08118654
     num_eqtl
6349        1
9120        1

[1] "LIPC"
[1] "15_27"
           genename region_tag  susie_pip       mu2          PVE
4474         MINDY2      15_27 0.03718240  7.533033 8.151314e-07
5493           SLTM      15_27 0.02761454  4.803092 3.859926e-07
5512         ADAM10      15_27 0.02680348  4.574160 3.567984e-07
7346          CCNB2      15_27 0.36869728 27.064346 2.903941e-05
8490           LIPC      15_27 0.29678611 25.395298 2.193397e-05
9451        LDHAL6B      15_27 0.03545826  7.491701 7.730688e-07
13260   RP11-30K9.6      15_27 0.20255558 22.862100 1.347661e-05
14571   RP11-59H7.4      15_27 0.17413663 20.722866 1.050172e-05
4473           ICE2      15_27 0.03591103  7.167848 7.490952e-07
5805          BNIP2      15_27 0.03366822  6.592942 6.459810e-07
5806         GTF2A2      15_27 0.02892651  5.238282 4.409660e-07
10608         ANXA2      15_27 0.02673418  4.537994 3.530621e-07
14422 RP11-219B17.3      15_27 0.02737735  4.754173 3.787797e-07
               z num_eqtl
4474   0.9669014        1
5493  -0.6994231        2
5512  -0.0670727        2
7346   3.3483233        2
8490   2.9852576        4
9451  -1.1018855        3
13260  2.6192647        1
14571  2.8403444        2
4473  -0.8737488        2
5805  -0.7799366        1
5806  -0.4956509        1
10608 -0.2323451        1
14422 -0.3095370        1

[1] "SOAT2"
[1] "12_33"
            genename region_tag  susie_pip       mu2          PVE
236         CALCOCO1      12_33 0.07084606  6.147958 1.267555e-06
411            HOXC8      12_33 0.06493880  5.474349 1.034563e-06
630            EIF4B      12_33 0.06048567  4.934324 8.685613e-07
1509            AAAS      12_33 0.05763844  4.616415 7.743501e-07
1510            CBX5      12_33 0.06470668  5.537884 1.042830e-06
2860           KRT18      12_33 0.05745600  4.461100 7.459292e-07
2861            TNS2      12_33 0.12632401 11.858433 4.359468e-06
4006           SMUG1      12_33 0.05999442  4.845854 8.460607e-07
5145          ATP5G2      12_33 0.06210261  6.156822 1.112722e-06
5163           ESPL1      12_33 0.11286793 10.616072 3.487022e-06
5737           GPR84      12_33 0.08471970  7.900294 1.947816e-06
5738            NPFF      12_33 0.14773740 14.438155 6.207582e-06
5745         MAP3K12      12_33 0.07409543  7.091631 1.529177e-06
5746           ITGB7      12_33 0.08028431  7.545529 1.762953e-06
5748            CSAD      12_33 0.22074476 16.707851 1.073325e-05
5751          ZNF740      12_33 0.13764596 12.318065 4.934308e-06
8808            KRT1      12_33 0.06711956  5.837839 1.140306e-06
8812          SPRYD3      12_33 0.06919468  6.165285 1.241498e-06
8813           SOAT2      12_33 0.12257546 11.214208 4.000299e-06
9208             SP7      12_33 0.06038619  5.761697 1.012531e-06
9216           KRT78      12_33 0.05738783  4.444256 7.422311e-07
9560           HOXC5      12_33 0.10193040  9.489558 2.814946e-06
10587          MFSD5      12_33 0.08500710  7.540837 1.865499e-06
10952            SP1      12_33 0.37999627 15.203373 1.681278e-05
12221          PRR13      12_33 0.11204340 10.603524 3.457457e-06
13294       FLJ12825      12_33 0.16850668 14.298227 7.011640e-06
13326  RP11-834C11.6      12_33 0.36556171 21.561355 2.293808e-05
13367      LINC01598      12_33 0.05999442  4.845854 8.460607e-07
13381  RP11-834C11.4      12_33 0.05961361  4.745922 8.233534e-07
13615 RP11-834C11.10      12_33 0.05999442  4.845854 8.460607e-07
13625 RP11-1136G11.8      12_33 0.05815968  4.602031 7.789183e-07
13772 RP11-834C11.11      12_33 0.05939888  4.794122 8.287196e-07
13781    AC012531.25      12_33 0.05732387  4.434706 7.398108e-07
14706 RP11-834C11.15      12_33 0.22606324 16.893906 1.111425e-05
                 z num_eqtl
236    0.513018450        2
411    0.621629482        1
630   -0.385755780        2
1509  -0.735021442        1
1510   0.652766171        1
2860  -0.218426666        1
2861  -1.824491131        1
4006   0.396812394        1
5145   1.629895011        1
5163   1.538877559        2
5737   1.184293991        1
5738  -2.568783738        1
5745  -1.262287350        2
5746  -1.041271762        1
5748  -2.384777793        1
5751   1.892475105        2
8808  -0.570714701        1
8812  -0.545043625        1
8813  -1.851220053        1
9208  -1.333615935        2
9216   0.033259212        1
9560   1.423934785        1
10587  0.713409483        2
10952  3.442597770        1
12221 -2.625326238        1
13294 -1.872004676        1
13326 -2.960246455        1
13367 -0.396812394        1
13381 -0.009489289        1
13615 -0.396812394        1
13625 -0.012887459        1
13772 -0.256309447        2
13781  0.150041534        1
14706 -2.405714134        2

[1] "CYP7A1"
[1] "8_45"
      genename region_tag  susie_pip       mu2          PVE          z
393      NSMAF       8_45 0.03759612 10.731362 1.174135e-06 -2.5545688
5470     SDCBP       8_45 0.03299290 59.563400 5.719002e-06  8.9143332
8832    CYP7A1       8_45 0.05327798  9.516386 1.475503e-06  0.3161889
12473   UBXN2B       8_45 0.03136742 10.622745 9.696966e-07  3.8844161
      num_eqtl
393          1
5470         1
8832         1
12473        3

[1] "ADH1B"
[1] "4_66"
           genename region_tag  susie_pip       mu2          PVE
5664           MTTP       4_66 0.05177806  7.559951 1.139161e-06
6378        TRMT10A       4_66 0.03740272  4.436930 4.829543e-07
6825          EIF4E       4_66 0.04995378  7.038158 1.023170e-06
8125         METAP1       4_66 0.04047155  5.165848 6.084315e-07
8978         TSPAN5       4_66 0.04530893  6.211309 8.190063e-07
9588           ADH6       4_66 0.07808769 11.029611 2.506473e-06
11210         ADH1A       4_66 0.03871596  4.778017 5.383417e-07
11474          ADH7       4_66 0.05109442  7.576550 1.126588e-06
11535         ADH1B       4_66 0.41779633 26.754222 3.252949e-05
11752          ADH5       4_66 0.08411582 11.850860 2.901001e-06
11796          ADH4       4_66 0.23368026 20.516922 1.395258e-05
13290         ADH1C       4_66 0.05128665  7.205360 1.075425e-06
14305 RP11-571L19.8       4_66 0.03997627  4.979432 5.792985e-07
                z num_eqtl
5664   1.12400758        1
6378  -0.06765527        2
6825   0.96532383        1
8125   0.59927970        2
8978  -0.66850706        2
9588   1.62276202        3
11210 -0.27018216        1
11474  1.18093280        1
11535 -3.61112568        2
11752  1.54003066        3
11796 -2.53274599        1
13290 -1.44685831        2
14305 -0.31136184        4

[1] "LCAT"
[1] "16_36"
           genename region_tag  susie_pip       mu2          PVE
759            CBFB      16_36 0.04945609  4.432840 6.380020e-07
1379          CMTM1      16_36 0.09105170 10.050709 2.663208e-06
1985          ELMO3      16_36 0.05204512  4.879790 7.390971e-07
1986          NUTF2      16_36 0.04952411  4.444004 6.404887e-07
1988          CENPT      16_36 0.04974765  4.482755 6.489898e-07
1989       TSNAXIP1      16_36 0.04957545  4.466510 6.443995e-07
1996           CTCF      16_36 0.04982033  4.503298 6.529164e-07
1999         PARD6A      16_36 0.05293053  5.105917 7.865029e-07
2013       SLC7A6OS      16_36 0.05008346  4.562238 6.649555e-07
2014         SLC7A6      16_36 0.05423927  5.234814 8.262955e-07
2015          ESRP2      16_36 0.05621634  5.555666 9.089060e-07
4047          ENKD1      16_36 0.14948598 14.483731 6.300880e-06
4158         LRRC29      16_36 0.05301326  5.033454 7.765527e-07
4162       C16orf70      16_36 0.39877735 24.355517 2.826494e-05
4826          PRMT7      16_36 0.05553741  5.552394 8.974002e-07
5193          FHOD1      16_36 0.21969237 18.249259 1.166757e-05
5195         SLC9A5      16_36 0.08324258  9.100878 2.204698e-06
5879          CMTM3      16_36 0.17133228 15.820080 7.888023e-06
5904        RANBP10      16_36 0.04957545  4.466510 6.443995e-07
5905           CTRL      16_36 0.04945904  4.433264 6.381012e-07
5906          GFOD2      16_36 0.07964234  8.873533 2.056652e-06
7526           NAE1      16_36 0.05394996  5.343806 8.390003e-07
7535         LRRC36      16_36 0.05395706  5.233319 8.217615e-07
7536          TPPP3      16_36 0.06800487  7.355783 1.455758e-06
7537       ATP6V0D1      16_36 0.06239358  6.526073 1.184983e-06
7539       C16orf86      16_36 0.04952512  4.446696 6.408898e-07
8594          BEAN1      16_36 0.07649453  8.409846 1.872142e-06
8595            TK2      16_36 0.08432855  9.338808 2.291851e-06
8710          DPEP2      16_36 0.04975082  4.506683 6.524955e-07
8902         THAP11      16_36 0.05341192  5.113641 7.948564e-07
8962         KCTD19      16_36 0.05177175  4.847883 7.304075e-07
9566           CES3      16_36 0.08275161  9.131982 2.199185e-06
9568           CES2      16_36 0.05363642  5.187902 8.097890e-07
9569           PDP2      16_36 0.05516017  5.377113 8.631675e-07
10258       EXOC3L1      16_36 0.05329745  5.080792 7.880578e-07
10734         CMTM4      16_36 0.04947520  4.437939 6.389829e-07
11248         NRN1L      16_36 0.05429687  5.401776 8.535554e-07
12209        PSMB10      16_36 0.04946207  4.434021 6.382492e-07
12212          E2F4      16_36 0.04946698  4.434273 6.383489e-07
12340          LCAT      16_36 0.04951145  4.443981 6.403215e-07
12506          CKLF      16_36 0.05817017  5.911203 1.000683e-06
13018        B3GNT9      16_36 0.05994089  6.110613 1.065929e-06
13273  RP11-61A14.4      16_36 0.06997639  7.755129 1.579286e-06
13274     LINC00920      16_36 0.08483633  9.286053 2.292627e-06
13839 CTD-2012K14.6      16_36 0.08414722  9.215129 2.256636e-06
14494  RP11-615I2.6      16_36 0.10659383 11.658928 3.616688e-06
                 z num_eqtl
759   -0.252876085        2
1379   1.756325429        2
1985   0.510149510        2
1986  -0.034587389        1
1988  -0.005954879        1
1989  -0.067069628        1
1996   0.240048062        1
1999   0.496802872        2
2013  -0.257953484        1
2014   0.467985675        1
2015   0.620211670        1
4047  -1.748584122        1
4158  -0.607413397        1
4162   3.161389249        1
4826   0.645370435        3
5193   2.386229548        2
5195   1.427810548        2
5879   2.158846432        2
5904   0.067069628        1
5905   0.084186643        2
5906   1.359729574        1
7526  -0.703973566        1
7535   0.550976590        1
7536   0.844633083        2
7537  -1.037404231        2
7539  -0.151633954        1
8594   1.501374372        3
8595   1.663854673        2
8710  -0.164482155        1
8902   0.295264078        1
8962   0.415312501        2
9566   1.189325464        2
9568  -0.624495208        2
9569  -0.115955712        1
10258  0.621774861        1
10734  0.178201387        1
11248  0.727341908        2
12209 -0.080306770        2
12212  0.083523326        2
12340  0.055498649        1
12506  0.855232520        1
13018 -0.679554308        1
13273 -1.396847840        1
13274  1.043513113        2
13839  1.285399757        1
14494 -1.992338697        1

[1] "VDAC1"
[1] "5_80"
           genename region_tag  susie_pip       mu2          PVE
121           CDKL3       5_80 0.09633617  5.995324 1.680824e-06
447           JADE2       5_80 0.08431510  4.768195 1.169983e-06
519           FSTL4       5_80 0.08345060  4.673574 1.135008e-06
877            AFF4       5_80 0.08397072  4.730614 1.156021e-06
3126           SKP1       5_80 0.13079595  8.839815 3.364788e-06
3127         PPP2CA       5_80 0.10072360  6.406905 1.878018e-06
3129        C5orf15       5_80 0.19807264 12.792830 7.374141e-06
3135        TXNDC15       5_80 0.08592546  4.941989 1.235788e-06
4822          PCBD2       5_80 0.10695089  6.962635 2.167097e-06
6969          SAR1B       5_80 0.09489964  5.856664 1.617466e-06
8223        SHROOM1       5_80 0.11262349  7.442699 2.439381e-06
8224           GDF9       5_80 0.15457784 10.415628 4.685468e-06
8225          UQCRQ       5_80 0.11747974  7.835795 2.678961e-06
8226          LEAP2       5_80 0.08878525  5.243042 1.354704e-06
8256          CAMLG       5_80 0.08128820  4.432698 1.048615e-06
9247          HSPA4       5_80 0.08146390  4.452498 1.055575e-06
10517       C5orf24       5_80 0.08173711  4.483208 1.066420e-06
12355         VDAC1       5_80 0.13426487  9.085562 3.550050e-06
13019    CDKN2AIPNL       5_80 0.15403528 10.382270 4.654069e-06
13394     LINC01843       5_80 0.10362695  6.669961 2.011483e-06
14117 CTD-2410N18.3       5_80 0.08858876  5.222657 1.346451e-06
               z num_eqtl
121    0.7946318        1
447   -0.3248676        1
519   -0.2767465        1
877    0.3132544        2
3126  -1.2408018        1
3127   0.8605539        1
3129   1.7000678        1
3135  -0.4386475        1
4822   0.8755768        2
6969   0.6871367        3
8223   1.0107556        2
8224  -1.4862194        2
8225  -1.1575811        1
8226   0.6903155        1
8256   0.1049360        1
9247   0.0232656        2
10517  0.2016299        1
12355  1.2027849        1
13019 -1.3298699        2
13394  0.8436844        2
14117  0.4989330        1

[1] "APOC2"
[1] "19_31"
      genename region_tag susie_pip        mu2 PVE            z num_eqtl
123      MARK4      19_31         0  20.312700   0  -2.24637681        1
131   TRAPPC6A      19_31         0  16.600235   0   1.92140959        1
229      ERCC1      19_31         0  13.134793   0  -2.19401016        2
624     ZNF112      19_31         0  72.068605   0   7.18938487        3
898        PVR      19_31         0  30.112592   0  -3.01973306        1
2196    CLPTM1      19_31         0  48.802068   0  -2.57517256        1
2198   PPP1R37      19_31         0  35.405859   0  -2.37518201        2
2203     ERCC2      19_31         0  13.615522   0   1.53401174        1
3560    CD3EAP      19_31         0  16.730266   0   0.05565582        4
4222      OPA3      19_31         0  11.581430   0   1.32335471        2
4224      RTN2      19_31         0   6.803450   0   2.07007103        1
4226      VASP      19_31         0  23.808738   0   1.26035740        1
4570   NECTIN2      19_31         0  55.577675   0 -13.59762224        1
4571      APOE      19_31         0 999.967785   0  37.80754977        2
4572    TOMM40      19_31         0  56.000201   0   5.53230466        2
4573     APOC1      19_31         0 296.620171   0   7.53014709        1
6024    GEMIN7      19_31         0 157.439551   0  14.13454209        2
7552    ZNF233      19_31         0  98.228951   0  -9.63193736        1
7553    ZNF235      19_31         0   8.185909   0  -0.97877558        1
8729    ZNF180      19_31         0  25.642421   0   1.41443321        2
9263    ZNF296      19_31         0  65.538646   0   5.25423092        2
11089 CEACAM19      19_31         0  13.759203   0   3.64086985        3
11388  BLOC1S3      19_31         0   8.975124   0   2.30141189        1
12385    PPM1N      19_31         0  20.227762   0  -1.22009641        2
12950    APOC2      19_31         0  99.467017   0   7.82468739        2
14021   ZNF285      19_31         0  10.013342   0  -1.26709542        2
14628   ZNF229      19_31         0   8.630054   0   1.23011935        2
#run APOE locus again using full SNPs
# focus <- "APOE"
# region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]
# 
# locus_plot(region_tag, label="TWAS", rerun_ctwas = T)
# 
# mtext(text=region_tag)
# 
# print(focus)
# print(region_tag)
# print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])

Locus Plots - False positives

This section produces locus plots for all bystander genes with PIP>0.8 (false positives). The highlighted gene at each region is the false positive gene.

false_positives <- ctwas_gene_res$genename[ctwas_gene_res$genename %in% unrelated_genes & ctwas_gene_res$susie_pip>0.8]

for (i in 1:length(false_positives)){
  focus <- false_positives[i]
  region_tag <- ctwas_res$region_tag[which(ctwas_res$genename==focus)]

  locus_plot3(region_tag, focus=focus)
  mtext(text=region_tag)

  print(focus)
  print(region_tag)
  print(ctwas_gene_res[ctwas_gene_res$region_tag==region_tag,report_cols,])
  
  #genes at this locus that are in known annotations
  ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag][ctwas_gene_res$genename[ctwas_gene_res$region_tag==region_tag] %in% known_annotations]
}

[1] "TMED4"
[1] "7_32"
        genename region_tag  susie_pip       mu2          PVE           z
17         HECW1       7_32 0.03879622  4.502064 5.083015e-07 -0.23376042
268       NPC1L1       7_32 0.04099715 82.556624 9.849767e-06 10.76193109
270       NUDCD3       7_32 0.12016967 17.520565 6.127217e-06  4.27589199
627       MRPS24       7_32 0.04400621  5.502620 7.046992e-07  0.38278180
1072      UBE2D4       7_32 0.04316907  5.512225 6.925003e-07  0.62909522
2384        OGDH       7_32 0.04345606 22.901957 2.896298e-06  0.47417198
2465        COA1       7_32 0.05470517  6.827556 1.086961e-06 -0.37405767
2466       BLVRA       7_32 0.03930484  4.699292 5.375251e-07  0.46600524
2467       URGCP       7_32 0.04456617  5.287322 6.857430e-07  0.03508092
2472       POLD2       7_32 0.10048790 13.317824 3.894640e-06  1.78074584
2474         GCK       7_32 0.04566065  6.311854 8.387246e-07  1.02935564
2476        YKT6       7_32 0.04642044  7.365875 9.950706e-07  1.67948623
3938        POLM       7_32 0.04055106  4.857444 5.732319e-07 -0.36899829
5285       DDX56       7_32 0.06932067 30.497390 6.152417e-06  7.35708820
7441       TMED4       7_32 0.91919811 36.878293 9.865071e-05  7.68827409
12733 AC004951.6       7_32 0.05933237  7.272867 1.255792e-06  0.22091509
12967  LINC00957       7_32 0.03984318  4.700790 5.450609e-07  0.29011976
      num_eqtl
17           3
268          1
270          1
627          1
1072         1
2384         2
2465         2
2466         1
2467         2
2472         4
2474         2
2476         1
3938         3
5285         2
7441         2
12733        1
12967        1

[1] "CCDC92"
[1] "12_75"
           genename region_tag  susie_pip       mu2          PVE
372          ZCCHC8      12_75 0.05064241 12.817141 1.888973e-06
515        MPHOSPH9      12_75 0.03087760  7.425851 6.672831e-07
1268          TMED2      12_75 0.02079112  4.585181 2.774308e-07
2857          BCL7A      12_75 0.02875572  7.171329 6.001284e-07
2888         OGFOD2      12_75 0.03356930  8.204507 8.015212e-07
2889        CDK2AP1      12_75 0.18773826 23.330727 1.274681e-05
2895         GTF2H3      12_75 0.03792096 10.244128 1.130511e-06
2896         EIF2B1      12_75 0.03806846 11.612525 1.286507e-06
2897          DDX55      12_75 0.08396178 17.893757 4.372235e-06
3647         CCDC92      12_75 0.96048401 26.340340 7.362610e-05
4656          CLIP1      12_75 0.03878883 10.315993 1.164496e-06
4657         CCDC62      12_75 0.02630153  6.215464 4.757457e-07
4658          HIP1R      12_75 0.02863272  7.637638 6.364173e-07
4668       C12orf65      12_75 0.02883123  6.956820 5.837061e-07
5756          SBNO1      12_75 0.03272792  9.237419 8.798108e-07
5757          MORN3      12_75 0.02074617  4.471989 2.699970e-07
5758         VPS33A      12_75 0.02089689  4.519520 2.748491e-07
5759         VPS37B      12_75 0.11881371 19.999490 6.915217e-06
5760           RHOF      12_75 0.06582808 13.414260 2.569793e-06
6799          ABCB9      12_75 0.02100541  4.900367 2.995574e-07
6800         RILPL2      12_75 0.02826604  7.418349 6.102286e-07
7391          WDR66      12_75 0.07868177 15.872314 3.634416e-06
7398            HPD      12_75 0.14212649 21.541090 8.909699e-06
7401         LRRC43      12_75 0.04922749 11.939856 1.710516e-06
8975          TCTN2      12_75 0.14984380 24.210330 1.055747e-05
9970         B3GNT4      12_75 0.02074467  4.462980 2.694337e-07
10235         RFLNA      12_75 0.05720051 21.048278 3.503780e-06
10282        ZNF664      12_75 0.03824348 14.877484 1.655798e-06
10547       ARL6IP4      12_75 0.02135634  4.793908 2.979455e-07
10616         HCAR2      12_75 0.02966372  7.197248 6.213158e-07
10768         KMT5A      12_75 0.16388338 21.329940 1.017290e-05
10792       SNRNP35      12_75 0.02233216  4.959506 3.223216e-07
10819         KNTC1      12_75 0.05837394 13.415466 2.279004e-06
11244        RILPL1      12_75 0.03397789  9.373187 9.268383e-07
11582         HCAR1      12_75 0.02235176  5.203103 3.384499e-07
11709        DNAH10      12_75 0.02411867  7.560196 5.306483e-07
12301     LINC01089      12_75 0.12695826 19.015800 7.025801e-06
13281 RP11-486O12.2      12_75 0.04620271 12.506896 1.681656e-06
13533         HCAR3      12_75 0.03208497  7.773161 7.258044e-07
13565  RP13-942N8.1      12_75 0.02079414  4.593501 2.779746e-07
14318 RP11-347I19.8      12_75 0.10577689 17.432702 5.366310e-06
14442 RP11-347I19.7      12_75 0.10511020 17.378625 5.315946e-06
14526         ORAI1      12_75 0.02084106  4.481764 2.718248e-07
                 z num_eqtl
372   -1.997330862        1
515   -0.850400109        1
1268   0.601043736        1
2857   1.181541124        1
2888  -0.977970651        1
2889   2.851959720        1
2895   1.649373878        2
2896   2.339753799        3
2897  -2.641060332        3
3647  -5.343007339        5
4656  -1.775873434        1
4657  -0.453713661        1
4658  -1.021315410        1
4668   0.875821894        2
5756  -1.561826949        2
5757   0.002443962        4
5758  -0.014751572        1
5759  -2.064935470        2
5760   2.184756664        1
6799   0.656964218        1
6800  -1.133101871        3
7391   2.293784845        2
7398   2.595685436        1
7401   1.694167023        1
8975   3.196517420        3
9970   0.092723463        1
10235 -4.455405839        1
10282 -2.745109828        2
10547 -0.647121985        1
10616 -0.826359203        2
10768 -2.504311853        2
10792  0.111175630        1
10819 -1.799641224        1
11244 -1.735085267        1
11582 -0.779399534        1
11709 -1.713076506        3
12301  2.616204262        1
13281 -2.173324783        2
13533  0.415374217        2
13565  0.152862225        3
14318  2.506680919        1
14442  2.503442974        1
14526 -0.150022733        1

Genes with many eQTL

#distribution of number of eQTL for all imputed genes (after dropping ambiguous variants)
table(ctwas_gene_res$num_eqtl)

   1    2    3    4    5    6    7    8 
6881 4360 1307  321   72   14    4    2 
#all genes with 4+ eQTL
ctwas_gene_res[ctwas_gene_res$num_eqtl>3,]
      chrom                 id       pos type region_tag1 region_tag2
540       1 ENSG00000054523.17  10210344 gene           1           7
3427      1 ENSG00000116663.10  11663463 gene           1           9
12643     1  ENSG00000226029.1  16458366 gene           1          11
7459      1  ENSG00000158825.5  20588679 gene           1          14
1421      1 ENSG00000090686.15  21782050 gene           1          15
10125     1 ENSG00000177868.11  42805362 gene           1          26
3556      1 ENSG00000117834.12  48212526 gene           1          30
7782      1 ENSG00000162383.11  53085621 gene           1          33
13102     1  ENSG00000240563.1  62194418 gene           1          39
7796      1 ENSG00000162437.14  64734373 gene           1          41
3449      1 ENSG00000116783.14  74215526 gene           1          47
3452      1 ENSG00000116791.13  74702349 gene           1          47
14321     1  ENSG00000272864.1  74701793 gene           1          47
5522      1 ENSG00000137944.17  88979282 gene           1          54
7116      1 ENSG00000154511.11  92934792 gene           1          56
9301      1  ENSG00000170989.8 101154806 gene           1          62
3878      1 ENSG00000121940.15 108930191 gene           1          67
4984      1 ENSG00000134184.12 109226267 gene           1          67
4986      1 ENSG00000134201.10 109710593 gene           1          67
4987      1 ENSG00000134202.10 109704237 gene           1          67
6084      1  ENSG00000143028.8 109465030 gene           1          67
8972      1 ENSG00000168765.16 109612653 gene           1          67
12337     1 ENSG00000213366.12 109657738 gene           1          67
11807     1 ENSG00000198162.12 117367233 gene           1          72
11756     1  ENSG00000197915.5 152219919 gene           1          74
11240     1  ENSG00000188004.9 159838179 gene           1          79
6101      1  ENSG00000143162.7 167544347 gene           1          82
3535      1 ENSG00000117533.14 171741914 gene           1          84
12590     1  ENSG00000224687.1 178093586 gene           1          87
12555     1  ENSG00000223396.2 201474507 gene           1         101
4884      1 ENSG00000133059.16 205210869 gene           1         104
6911      1 ENSG00000152104.11 214371230 gene           1         109
6195      1  ENSG00000143653.9 246720005 gene           1         131
13729     1  ENSG00000259865.1 247179932 gene           1         131
13065     1  ENSG00000238243.3 247638887 gene           1         131
3339      2 ENSG00000115705.20   1095735 gene           2           1
11076     2 ENSG00000186453.12  24119662 gene           2          14
12939     2  ENSG00000234690.6  47336895 gene           2          30
5540      2 ENSG00000138039.14  48685277 gene           2          31
7881      2 ENSG00000162869.15  48428760 gene           2          31
6244      2 ENSG00000144026.11  95142476 gene           2          57
3333      2 ENSG00000115652.14 106194127 gene           2          63
3642      2  ENSG00000119147.9 106024112 gene           2          63
4203      2 ENSG00000125629.14 118088243 gene           2          69
4205      2 ENSG00000125633.10 118013438 gene           2          69
863       2 ENSG00000071967.11 171522308 gene           2         104
4455      2 ENSG00000128652.11 176136417 gene           2         107
5596      2 ENSG00000138400.12 206765180 gene           2         122
6293      2 ENSG00000144488.14 238099977 gene           2         141
8927      2  ENSG00000168427.8 238127296 gene           2         141
12043     2 ENSG00000204104.11 238316563 gene           2         141
10005     2  ENSG00000176720.4 241550210 gene           2         144
10430     2 ENSG00000180902.17 241734689 gene           2         144
12958     2  ENSG00000235151.1 241816853 gene           2         144
6289      3 ENSG00000144455.13   4368850 gene           3           4
7134      3 ENSG00000154743.17  12431546 gene           3           9
3157      3 ENSG00000113812.13  53858803 gene           3          36
10381     3 ENSG00000180376.16  56545510 gene           3          39
9498      3 ENSG00000172340.14  67365898 gene           3          45
3202      3 ENSG00000114544.16 126082224 gene           3          78
11415     3  ENSG00000189366.9 125925826 gene           3          78
8085      3 ENSG00000163864.15 139674109 gene           3          85
6960      3  ENSG00000152580.8 151457865 gene           3          93
13112     3  ENSG00000240875.5 156751124 gene           3          97
10026     3 ENSG00000176945.16 195719309 gene           3         120
3645      3  ENSG00000119227.7 196947388 gene           3         121
4357      4 ENSG00000127415.12    971932 gene           4           2
8107      4 ENSG00000163945.15   1347151 gene           4           2
10958     4 ENSG00000185619.18    706823 gene           4           2
9729      4 ENSG00000174137.12   1676701 gene           4           3
9279      4 ENSG00000170846.16   6673665 gene           4           7
13412     4  ENSG00000251580.1   6673694 gene           4           7
13415     4  ENSG00000251615.3   8355960 gene           4          10
10163     4  ENSG00000178163.7  10456862 gene           4          11
2737      4 ENSG00000109689.15  26826816 gene           4          22
11860     4 ENSG00000198515.13  47955024 gene           4          37
4408      4 ENSG00000128039.10  55346203 gene           4          40
277       4 ENSG00000018189.12  70704417 gene           4          49
5643      4 ENSG00000138744.14  75918159 gene           4          51
11814     4 ENSG00000198189.10  87298285 gene           4          59
14305     4  ENSG00000272777.1  99067562 gene           4          66
5654      4 ENSG00000138777.19 105472284 gene           4          69
2744      4 ENSG00000109771.15 185383595 gene           4         119
6397      4 ENSG00000145476.15 186191240 gene           4         120
8216      4 ENSG00000164344.15 186191475 gene           4         120
13385     4  ENSG00000250829.2 186890499 gene           4         120
14237     4  ENSG00000272218.1 186839668 gene           4         120
8219      5  ENSG00000164366.3    188803 gene           5           1
13411     5  ENSG00000251532.1   1515420 gene           5           2
13370     5  ENSG00000250490.1   6308511 gene           5           6
13383     5  ENSG00000250786.1   9541581 gene           5           8
3079      5 ENSG00000112977.15  10675380 gene           5           9
8188      5  ENSG00000164237.8  10281437 gene           5           9
7191      5 ENSG00000155542.11  56909530 gene           5          33
11737     5 ENSG00000197822.10  69279407 gene           5          42
9006      5  ENSG00000168938.5 122859139 gene           5          74
8307      5 ENSG00000164904.17 126543217 gene           5          77
12336     5 ENSG00000213347.10 177313243 gene           5         106
9863      5 ENSG00000175309.14 178231895 gene           5         107
10183     5 ENSG00000178338.10 178836120 gene           5         107
14272     6  ENSG00000272463.1    710558 gene           6           1
5426      6 ENSG00000137275.13   3064015 gene           6           3
6445      6  ENSG00000145949.9   2677719 gene           6           3
13215     6  ENSG00000244041.7   2981538 gene           6           3
7012      6 ENSG00000153157.12  10829086 gene           6          10
6446      6 ENSG00000145979.17  13267390 gene           6          12
2948      6 ENSG00000111801.15  26391163 gene           6          20
11608     6 ENSG00000197062.11  28259100 gene           6          22
5430      6 ENSG00000137312.14  30718130 gene           6          26
12119     6  ENSG00000204516.9  31493994 gene           6          26
12121     6 ENSG00000204525.16  31262189 gene           6          26
12122     6 ENSG00000204531.17  31113082 gene           6          26
12123     6 ENSG00000204536.13  31150242 gene           6          26
12277     6  ENSG00000206344.7  31172291 gene           6          26
12376     6 ENSG00000213780.10  30902222 gene           6          26
14238     6  ENSG00000272221.1  31393306 gene           6          26
12077     6  ENSG00000204301.6  32205480 gene           6          26
12068     6 ENSG00000204256.12  32968664 gene           6          27
11916     6 ENSG00000198755.10  35461005 gene           6          28
450       6  ENSG00000044090.8  43045924 gene           6          33
11465     6 ENSG00000196284.15  45377511 gene           6          34
7023      6 ENSG00000153291.15  46630562 gene           6          35
9518      6 ENSG00000172469.15  95541495 gene           6          65
9531      6 ENSG00000172594.12 122788734 gene           6          82
3599      6 ENSG00000118507.15 131135842 gene           6          87
2988      6  ENSG00000112110.9 159789152 gene           6         103
3902      6 ENSG00000122335.13 158151578 gene           6         103
14208     6  ENSG00000272047.1 158167424 gene           6         103
13165     7  ENSG00000242611.2     58458 gene           7           1
3937      7 ENSG00000122674.11   5887685 gene           7          10
14257     7  ENSG00000272361.2  16584790 gene           7          16
840       7 ENSG00000070882.12  24860542 gene           7          21
11457     7 ENSG00000196247.11  64665395 gene           7          43
11782     7 ENSG00000198039.11  64869717 gene           7          43
13122     7  ENSG00000241258.6  66095787 gene           7          43
8358      7 ENSG00000165171.10  73842285 gene           7          47
4394      7 ENSG00000127947.15  77503532 gene           7          49
74        7 ENSG00000005471.15  87472091 gene           7          54
2363      7 ENSG00000105793.15  90334836 gene           7          55
828       7 ENSG00000070669.16  97873010 gene           7          60
8671      7  ENSG00000166997.7 100086039 gene           7          61
12216     7 ENSG00000205307.11 100478874 gene           7          61
5125      7 ENSG00000135269.17 116210408 gene           7          70
4452      7  ENSG00000128617.2 128771566 gene           7          78
7190      7  ENSG00000155530.2 134043283 gene           7          81
21        7  ENSG00000002933.7 150777235 gene           7          94
2461      7 ENSG00000106565.17 150788995 gene           7          94
11166     7 ENSG00000187260.15 151404454 gene           7          94
13842     7  ENSG00000261455.1 152420372 gene           7          94
13463     8  ENSG00000253958.1   8667057 gene           8          11
2120      8 ENSG00000104213.12  17575683 gene           8          19
11633     8 ENSG00000197217.12  23359473 gene           8          24
9737      8  ENSG00000174226.8 100646399 gene           8          69
9305      8 ENSG00000171045.14 142307501 gene           8          93
258       8  ENSG00000014164.6 143534573 gene           8          94
6574      8 ENSG00000147813.15 143578019 gene           8          94
2505      9 ENSG00000107099.15    205428 gene           9           1
9626      9 ENSG00000173253.15   1045596 gene           9           1
6576      9 ENSG00000147853.16   4718165 gene           9           5
3749      9 ENSG00000120217.13   5452560 gene           9           6
8332      9 ENSG00000164989.16  15531752 gene           9          13
12586     9  ENSG00000224549.1  22767062 gene           9          17
5390      9 ENSG00000137074.18  33024919 gene           9          25
8329      9 ENSG00000164978.17  34151465 gene           9          27
13808     9  ENSG00000260947.1  33612306 gene           9          27
2485      9 ENSG00000106733.20  75087456 gene           9          35
2490      9 ENSG00000106789.12  98122860 gene           9          49
5359      9 ENSG00000136870.10 101399660 gene           9          50
2486      9 ENSG00000106771.12 109112805 gene           9          56
9627      9 ENSG00000173258.12 111524995 gene           9          56
3664      9  ENSG00000119431.9 113343432 gene           9          58
1524      9 ENSG00000095397.13 114424432 gene           9          59
4619      9  ENSG00000130560.8 135926392 gene           9          73
7616      9 ENSG00000160360.12 136327342 gene           9          73
2577     10 ENSG00000107959.15   3148307 gene          10           4
12883    10  ENSG00000233117.2   4211392 gene          10           5
5031     10 ENSG00000134463.14  11742089 gene          10          10
6948     10 ENSG00000152465.17  15170861 gene          10          13
12157    10 ENSG00000204740.10  19490064 gene          10          16
9876     10 ENSG00000175395.15  37974942 gene          10          28
4930     10 ENSG00000133661.15  79970366 gene          10          51
3905     10 ENSG00000122375.11  86653675 gene          10          56
10862    10 ENSG00000184923.12  87206818 gene          10          56
12445    10 ENSG00000214562.14  87220987 gene          10          56
11898    10 ENSG00000198682.12  87660153 gene          10          56
6650     10 ENSG00000148690.11  93699055 gene          10          60
7173     10 ENSG00000155265.10  97822001 gene          10          62
8536     10 ENSG00000166275.15 102853979 gene          10          66
2543     10 ENSG00000107672.14 121974763 gene          10          76
6866     10 ENSG00000151640.12 132186469 gene          10          83
9420     10 ENSG00000171813.13 132365124 gene          10          83
6009     11 ENSG00000142102.15    288845 gene          11           1
10901    11 ENSG00000185201.16    306862 gene          11           1
12411    11 ENSG00000214063.10    842775 gene          11           1
13526    11  ENSG00000255284.1    728487 gene          11           1
14141    11  ENSG00000270972.1    330061 gene          11           1
2823     11 ENSG00000110665.11   2295490 gene          11           3
3829     11 ENSG00000121236.20   5580472 gene          11           4
4945     11 ENSG00000133816.13  12054282 gene          11           9
2808     11 ENSG00000110427.14  33378145 gene          11          22
3857     11  ENSG00000121691.4  34434584 gene          11          23
6670     11 ENSG00000149089.12  34916054 gene          11          23
6834     11 ENSG00000151348.13  44066439 gene          11          27
7775     11 ENSG00000162341.16  69030673 gene          11          38
9895     11 ENSG00000175581.13  73786901 gene          11          41
7439     11 ENSG00000158555.14  75504376 gene          11          42
13261    11  ENSG00000246067.7  83072772 gene          11          46
4035     11 ENSG00000123892.11  88175178 gene          11          49
2794     11  ENSG00000110218.8  94128854 gene          11          53
6690     11 ENSG00000149289.10 110092976 gene          11          65
5482     11 ENSG00000137713.15 111764842 gene          11          66
6691     11 ENSG00000149292.16 113289048 gene          11          67
10385    11 ENSG00000180425.11 114399882 gene          11          68
10048    11 ENSG00000177103.13 117806324 gene          11          71
2774     11  ENSG00000110060.8 125898452 gene          11          77
3771     11 ENSG00000120451.10 130909773 gene          11          81
13536    11  ENSG00000255455.2 130866376 gene          11          81
2866     12 ENSG00000111186.12   1507541 gene          12           2
13577    12  ENSG00000256433.2   6384185 gene          12           7
13765    12  ENSG00000260423.1   9313517 gene          12           9
13543    12  ENSG00000255621.1  13000839 gene          12          12
162      12 ENSG00000008394.12  16242555 gene          12          14
474      12 ENSG00000048540.14  16368510 gene          12          14
14514    12  ENSG00000275764.1  27036619 gene          12          18
2846     12 ENSG00000110888.17  30737069 gene          12          21
12982    12  ENSG00000235884.3  30762606 gene          12          21
4351     12  ENSG00000127337.6  69358729 gene          12          42
4348     12 ENSG00000127328.21  69698495 gene          12          43
5243     12 ENSG00000136014.11  95546940 gene          12          56
5718     12 ENSG00000139372.14 103957554 gene          12          62
12178    12  ENSG00000204954.9 103957554 gene          12          62
14626    12  ENSG00000278266.1 127113737 gene          12          77
10866    12  ENSG00000184967.6 132083372 gene          12          81
10897    12  ENSG00000185163.9 132118203 gene          12          81
10970    12 ENSG00000185684.12 132083996 gene          12          81
13585    12  ENSG00000256576.2 132189573 gene          12          81
10413    13 ENSG00000180776.15  21459023 gene          13           2
1963     13  ENSG00000102683.7  23157008 gene          13           4
10316    13 ENSG00000179630.10  43873996 gene          13          17
5268     13 ENSG00000136161.12  48532925 gene          13          20
5256     13 ENSG00000136111.12  75311388 gene          13          37
4166     13 ENSG00000125246.15  99606547 gene          13          50
10909    14  ENSG00000185271.7  20365494 gene          14           1
7334     14 ENSG00000157326.18  23953662 gene          14           3
7340     14 ENSG00000157379.13  24291558 gene          14           3
4318     14 ENSG00000126790.11  59444736 gene          14          27
5780     14 ENSG00000139998.14  64972366 gene          14          30
3677     14 ENSG00000119599.16  72915777 gene          14          34
3688     14 ENSG00000119673.14  73563190 gene          14          34
5786     14 ENSG00000140043.11  73844725 gene          14          34
10796    14  ENSG00000184227.7  73528024 gene          14          34
180      14 ENSG00000009830.11  77318589 gene          14          36
639      14 ENSG00000063761.15  77800264 gene          14          36
546      14 ENSG00000054983.16  87948531 gene          14          44
265      14 ENSG00000015133.18  91324116 gene          14          46
13650    14  ENSG00000258572.1  95515367 gene          14          49
10872    14 ENSG00000184990.12 104747641 gene          14          55
10533    15  ENSG00000182117.5  34254250 gene          15          10
12482    15 ENSG00000215252.11  34377560 gene          15          10
4466     15 ENSG00000128829.11  39933819 gene          15          13
12768    15  ENSG00000229474.6  44705554 gene          15          17
5612     15  ENSG00000138600.9  50733462 gene          15          20
8490     15 ENSG00000166035.10  58407738 gene          15          27
5503     15 ENSG00000137819.13  69291095 gene          15          32
2094     15 ENSG00000103811.15  78937302 gene          15          37
10526    15  ENSG00000182054.9  90102033 gene          15          42
5833     15 ENSG00000140470.13 100047379 gene          15          50
2021     16 ENSG00000103148.15     89636 gene          16           1
1798     16 ENSG00000100726.14   1472291 gene          16           2
2061     16 ENSG00000103381.11  12803575 gene          16          13
10689    16 ENSG00000183426.16  14873824 gene          16          15
10749    16 ENSG00000183793.13  15036083 gene          16          15
10704    16 ENSG00000183549.10  20409166 gene          16          19
9557     16 ENSG00000172775.16  57171173 gene          16          30
13817    16  ENSG00000261079.1  74350208 gene          16          39
691      16 ENSG00000065457.10  75617776 gene          16          40
10827    16 ENSG00000184517.11  75144532 gene          16          40
2018     16 ENSG00000103111.14  77190635 gene          16          42
5882     16 ENSG00000140943.16  84070873 gene          16          48
13826    16  ENSG00000261175.5  86638764 gene          16          51
7450     16 ENSG00000158717.10  88700532 gene          16          53
25       16 ENSG00000003249.13  89958562 gene          16          54
4697     16 ENSG00000131165.14  89628212 gene          16          54
10449    17 ENSG00000181031.15    216884 gene          17           1
11665    17  ENSG00000197417.7   3608661 gene          17           3
10622    17 ENSG00000182853.11   4769728 gene          17           4
2621     17 ENSG00000108509.20   4942750 gene          17           5
4499     17 ENSG00000129204.16   5029546 gene          17           5
2690     17 ENSG00000109063.14  10657024 gene          17           9
4325     17 ENSG00000126858.16  32105418 gene          17          19
4768     17 ENSG00000132141.13  34935404 gene          17          21
8617     17  ENSG00000166750.9  35243449 gene          17          21
9543     17 ENSG00000172716.16  35294108 gene          17          21
2598     17 ENSG00000108349.16  40141200 gene          17          23
9689     17 ENSG00000173801.16  41778026 gene          17          25
7716     17 ENSG00000161653.10  43961022 gene          17          26
10233    17 ENSG00000178852.15  47297628 gene          17          27
5919     17 ENSG00000141295.13  47838029 gene          17          28
8529     17 ENSG00000166260.10  54942351 gene          17          32
13895    17  ENSG00000263004.1  57078726 gene          17          33
13973    17  ENSG00000266714.6  75590244 gene          17          42
8828     17 ENSG00000167889.12  76870349 gene          17          43
10585    17 ENSG00000182534.13  76678775 gene          17          43
5952     17 ENSG00000141519.14  80036451 gene          17          45
10599    17 ENSG00000182612.10  81636805 gene          17          46
13891    17  ENSG00000262877.4  81389871 gene          17          46
5970     17 ENSG00000141580.15  82610870 gene          17          47
1936     18  ENSG00000101577.9   2994799 gene          18           3
13913    18  ENSG00000263753.6   5237163 gene          18           4
5932     18 ENSG00000141401.11  11939159 gene          18           9
977      18  ENSG00000075643.5  36187019 gene          18          19
8705     18 ENSG00000167216.16  46917629 gene          18          26
4909     18 ENSG00000133313.14  74495925 gene          18          44
8598     18  ENSG00000166573.5  77241685 gene          18          46
2316     19 ENSG00000105556.11    289498 gene          19           1
4553     19 ENSG00000129946.10    417714 gene          19           1
684      19 ENSG00000065268.10    982793 gene          19           3
1593     19 ENSG00000099817.11   1088640 gene          19           3
4580     19 ENSG00000130270.16   1807137 gene          19           3
11723    19  ENSG00000197766.7    859368 gene          19           3
12702    19  ENSG00000227500.9   1905406 gene          19           3
4220     19 ENSG00000125734.15   6731755 gene          19           7
10448    19  ENSG00000181029.8   7682243 gene          19           7
13217    19  ENSG00000244165.1  10111179 gene          19           9
13989    19  ENSG00000267100.1  10653111 gene          19           9
8736     19 ENSG00000167461.11  16040922 gene          19          13
2327     19 ENSG00000105639.18  17826295 gene          19          14
10335    19 ENSG00000179913.10  17780011 gene          19          14
659      19 ENSG00000064607.16  18981625 gene          19          15
2345     19 ENSG00000105699.16  35248017 gene          19          24
7697     19 ENSG00000161281.10  36149867 gene          19          25
3560     19 ENSG00000117877.10  45404602 gene          19          31
2308     19 ENSG00000105501.12  51621059 gene          19          37
13483    19  ENSG00000254415.3  51548567 gene          19          37
7612     19 ENSG00000160336.14  53429981 gene          19          37
8806     19 ENSG00000167766.18  52615913 gene          19          37
9296     19 ENSG00000170949.17  53080949 gene          19          37
9297     19 ENSG00000170954.11  53087254 gene          19          37
11497    19 ENSG00000196417.12  53372867 gene          19          37
11996    19 ENSG00000203326.11  53365182 gene          19          37
302      19 ENSG00000022556.15  54955709 gene          19          37
1189     19 ENSG00000083828.15  57740129 gene          19          39
4747     19 ENSG00000131845.14  57351684 gene          19          39
11850    19 ENSG00000198466.11  57761718 gene          19          39
11510    20 ENSG00000196476.11    276391 gene          20           1
4255     20  ENSG00000125895.5   1171679 gene          20           2
1344     20  ENSG00000088882.7   2763521 gene          20           4
4254     20 ENSG00000125885.13   5950827 gene          20           5
11696    20 ENSG00000197586.12  25195465 gene          20          18
6729     20 ENSG00000149599.15  31870423 gene          20          19
13751    20  ENSG00000260257.2  32854832 gene          20          19
4056     20  ENSG00000124145.6  45319581 gene          20          28
4084     20  ENSG00000124257.6  45891103 gene          20          28
6728     20  ENSG00000149596.6  44111668 gene          20          28
11675    20  ENSG00000197496.5  46705549 gene          20          29
12581    20  ENSG00000224397.5  50267397 gene          20          31
6740     20 ENSG00000149679.11  62392095 gene          20          37
1869     20 ENSG00000101190.12  62846860 gene          20          37
4200     20  ENSG00000125534.9  63520461 gene          20          37
6012     21 ENSG00000142166.12  33300656 gene          21          14
7479     21 ENSG00000159110.19  33229937 gene          21          14
10932    21 ENSG00000185437.13  39446004 gene          21          19
7355     21 ENSG00000157617.16  41887791 gene          21          23
10696    21 ENSG00000183486.12  41266758 gene          21          23
7580     21 ENSG00000160200.17  42972160 gene          21          23
6015     21  ENSG00000142178.7  43629777 gene          21          23
10847    21 ENSG00000184787.18  44775644 gene          21          23
14416    21  ENSG00000273796.1  45359863 gene          21          23
10570    21 ENSG00000182362.13  46272884 gene          21          24
14366    22  ENSG00000273203.1  17013110 gene          22           1
1612     22 ENSG00000099956.18  23775338 gene          22           6
1635     22 ENSG00000100036.12  30631127 gene          22          10
10920    22  ENSG00000185339.8  30606651 gene          22          10
1667     22  ENSG00000100191.5  32274318 gene          22          12
1708     22 ENSG00000100316.15  39319603 gene          22          16
1669     22 ENSG00000100197.20  42121632 gene          22          17
11989    22 ENSG00000198951.11  42047904 gene          22          17
10705    22 ENSG00000183569.17  42571264 gene          22          18
11408    22 ENSG00000189306.10  42510050 gene          22          18
1497     22 ENSG00000093000.18  45102024 gene          22          20
1729     22 ENSG00000100376.11  45272131 gene          22          20
12659    22  ENSG00000226328.6  45105543 gene          22          20
13130    22  ENSG00000241484.9  44727745 gene          22          20
169      22 ENSG00000008735.13  50595411 gene          22          24
1701     22 ENSG00000100299.17  50604850 gene          22          24
521       1 ENSG00000053371.12  19310497 gene           1          13
4362      1 ENSG00000127463.13  19227605 gene           1          13
9138      1  ENSG00000169914.5  19878843 gene           1          13
10806     1 ENSG00000184313.19  54566589 gene           1          34
7879      1 ENSG00000162836.11 147646379 gene           1          73
9028      3 ENSG00000169087.10 122792659 gene           3          76
2472      7 ENSG00000106628.10  44114687 gene           7          32
2417      7  ENSG00000106178.6  75823266 gene           7          48
11287     7 ENSG00000188372.14  76397141 gene           7          48
5352      9 ENSG00000136856.17 127348293 gene           9          66
2558     10 ENSG00000107819.13 101032154 gene          10          64
5563     10  ENSG00000138152.8 122252762 gene          10          77
2871     12 ENSG00000111224.13   3803806 gene          12           4
4562     12  ENSG00000130038.9   3744539 gene          12           4
3647     12  ENSG00000119242.8 123959862 gene          12          75
5757     12 ENSG00000139714.12 121672174 gene          12          75
4278     13 ENSG00000126217.20 112894196 gene          13          62
14576    13  ENSG00000277159.1 112604083 gene          13          62
7037     13 ENSG00000153531.13 113448962 gene          13          62
12926    19 ENSG00000234465.10  43569117 gene          19          30
2302     19 ENSG00000105479.15  48319272 gene          19          33
2307     19 ENSG00000105499.13  48101216 gene          19          33
10447    19 ENSG00000181027.10  46745328 gene          19          33
2186     19 ENSG00000104805.15  48899921 gene          19          34
4615     19 ENSG00000130529.15  49158325 gene          19          34
7712     19  ENSG00000161618.9  49453017 gene          19          34
1639     22 ENSG00000100056.11  19144548 gene          22           4
10823    22 ENSG00000184470.20  19876115 gene          22           4
      cs_index    susie_pip       mu2 region_tag          PVE
540          0 4.962198e-02  6.151463        1_7 8.883268e-07
3427         0 1.459724e-01 12.226166        1_9 5.193752e-06
12643        0 6.108426e-02  4.452795       1_11 7.915573e-07
7459         0 5.712227e-02  5.788403       1_14 9.622426e-07
1421         0 6.199786e-02  5.085586       1_15 9.175676e-07
10125        0 2.479930e-01 17.926730       1_26 1.293781e-05
3556         0 4.620811e-02  4.443790       1_30 5.975746e-07
7782         0 7.147293e-02  5.136337       1_33 1.068355e-06
13102        0 6.293373e-02  8.561895       1_39 1.568100e-06
7796         0 3.921595e-01 24.142355       1_41 2.755260e-05
3449         0 5.969453e-02  5.001651       1_47 8.688969e-07
3452         0 2.259012e-01 17.462696       1_47 1.148022e-05
14321        0 1.546989e-01 13.809065       1_47 6.216869e-06
5522         0 6.265668e-02  6.255446       1_54 1.140633e-06
7116         0 4.230440e-02  9.489285       1_56 1.168259e-06
9301         0 5.882386e-02  6.507252       1_62 1.113965e-06
3878         0 8.350193e-03  5.020227       1_67 1.219945e-07
4984         0 2.603014e-02 38.410146       1_67 2.909663e-06
4986         0 8.934125e-03  9.401227       1_67 2.444313e-07
4987         0 1.004844e-02  7.235686       1_67 2.115917e-07
6084         0 1.645377e-02 49.423212       1_67 2.366555e-06
8972         0 1.995808e-02 16.303653       1_67 9.469435e-07
12337        0 2.535496e-02 25.302853       1_67 1.867036e-06
11807        0 9.559667e-02  5.511477       1_72 1.533314e-06
11756        0 6.914879e-02  4.936152       1_74 9.933296e-07
11240        0 3.692451e-02  6.626546       1_79 7.120694e-07
6101         0 1.021405e-01  6.824831       1_82 2.028664e-06
3535         0 1.231723e-01 13.164119       1_84 4.718730e-06
12590        0 9.983088e-02 12.507379       1_87 3.633720e-06
12555        0 6.523429e-02  6.277605      1_101 1.191764e-06
4884         0 5.413492e-02  5.056409      1_104 7.965994e-07
6911         0 9.449775e-02  6.506331      1_109 1.789278e-06
6195         0 3.983107e-01 22.463017      1_131 2.603816e-05
13729        0 6.580479e-02  5.037900      1_131 9.647779e-07
13065        0 6.178501e-02  4.464281      1_131 8.027031e-07
3339         0 5.928944e-02  4.431071        2_1 7.645508e-07
11076        0 4.402040e-02  5.437825       2_14 6.966257e-07
12939        0 4.631808e-02  4.501695       2_30 6.068019e-07
5540         0 5.469097e-02  4.829381       2_31 7.686478e-07
7881         0 1.016970e-01 10.504292       2_31 3.108817e-06
6244         0 8.507865e-02  4.636932       2_57 1.148079e-06
3333         0 1.738982e-01 16.052970       2_63 8.124016e-06
3642         0 4.951368e-02  4.435019       2_63 6.390590e-07
4203         0 3.245491e-02  8.580922       2_69 8.104657e-07
4205         0 7.452446e-02 11.589147       2_69 2.513452e-06
863          0 8.447531e-02  7.279747      2_104 1.789643e-06
4455         0 7.410507e-02  4.528827      2_107 9.766836e-07
5596         0 6.333036e-02  4.740234      2_122 8.736390e-07
6293         0 9.372274e-02  9.808610      2_141 2.675302e-06
8927         0 8.689394e-02  9.112061      2_141 2.304233e-06
12043        0 6.638940e-02  6.649341      2_141 1.284688e-06
10005        0 5.361436e-02  6.899845      2_144 1.076566e-06
10430        0 4.832261e-02  5.960935      2_144 8.382723e-07
12958        0 4.228788e-02  4.587183      2_144 5.645239e-07
6289         0 1.330990e-01  7.352716        3_4 2.848019e-06
7134         0 2.716448e-02  5.059164        3_9 3.999451e-07
3157         0 5.057829e-02  4.450069       3_36 6.550150e-07
10381        0 8.825056e-02  9.233335       3_39 2.371354e-06
9498         0 5.848364e-02  4.641471       3_45 7.899694e-07
3202         0 8.019696e-02 10.060856       3_78 2.348082e-06
11415        0 1.976205e-01 18.284667       3_78 1.051573e-05
8085         0 6.681521e-02  4.446657       3_85 8.646280e-07
6960         0 7.018250e-02  7.175796       3_93 1.465613e-06
13112        0 5.213648e-02  4.752577       3_97 7.210928e-07
10026        0 5.298066e-02  5.318083      3_120 8.199602e-07
3645         0 9.494103e-02 10.022379      3_121 2.769141e-06
4357         0 7.348521e-02  7.531999        4_2 1.610759e-06
8107         0 6.026888e-02  5.725442        4_2 1.004205e-06
10958        0 5.314359e-02  4.583951        4_2 7.089426e-07
9729         0 6.106321e-02  5.888569        4_3 1.046429e-06
9279         0 9.531015e-02  9.529912        4_7 2.643312e-06
13412        0 1.522725e-01 13.906550        4_7 6.162559e-06
13415        0 6.381428e-02  8.388830       4_10 1.557900e-06
10163        0 5.805510e-02  5.268586       4_11 8.901328e-07
2737         0 6.443088e-02  7.408764       4_22 1.389185e-06
11860        0 1.214173e-01 13.722318       4_37 4.848733e-06
4408         0 8.222100e-02  8.556922       4_40 2.047485e-06
277          0 5.872617e-02  5.706183       4_49 9.752090e-07
5643         0 7.673055e-02  4.666961       4_51 1.042132e-06
11814        0 6.246114e-02  6.582809       4_59 1.196579e-06
14305        0 3.997627e-02  4.979432       4_66 5.792985e-07
5654         0 5.882682e-02  4.876210       4_69 8.347915e-07
2744         0 8.094222e-02  4.979169      4_119 1.172877e-06
6397         0 9.483345e-02  8.922516      4_120 2.462460e-06
8216         0 6.777560e-02  5.842907      4_120 1.152451e-06
13385        0 6.051281e-02  4.811263      4_120 8.472795e-07
14237        0 5.928961e-02  4.625734      4_120 7.981408e-07
8219         0 7.288928e-02  9.810360        5_1 2.080985e-06
13411        0 6.465297e-02  6.496067        5_2 1.222248e-06
13370        0 5.361669e-02  4.458000        5_6 6.956013e-07
13383        0 4.898161e-02  4.431700        5_8 6.317187e-07
3079         0 1.547413e-01 14.603423        5_9 6.576293e-06
8188         0 6.629082e-02  6.746521        5_9 1.301528e-06
7191         0 6.029925e-02  7.885593       5_33 1.383778e-06
11737        0 9.752168e-02  9.425459       5_42 2.675001e-06
9006         0 6.431821e-02  5.387417       5_74 1.008405e-06
8307         0 4.938261e-02  4.468748       5_77 6.422148e-07
12336        0 8.369397e-02  4.654048      5_106 1.133562e-06
9863         0 6.310943e-02  5.615066      5_107 1.031263e-06
10183        0 8.769038e-02  8.622963      5_107 2.200538e-06
14272        0 5.119606e-02  4.510033        6_1 6.719494e-07
5426         0 5.875755e-02  4.661196        6_3 7.970422e-07
6445         0 6.367771e-02  5.392188        6_3 9.992468e-07
13215        0 5.820621e-02  4.575597        6_3 7.750636e-07
7012         0 5.159617e-02  4.645635       6_10 6.975621e-07
6446         0 7.096637e-02  4.748818       6_12 9.807502e-07
2948         0 1.744862e-02  7.945247       6_20 4.034491e-07
11608        0 3.043622e-02  9.024496       6_22 7.993445e-07
5430         0 4.597292e-06 43.678102       6_26 5.843676e-10
12119        0 1.815565e-05 39.048802       6_26 2.063193e-09
12121        0 1.006660e-07  4.939213       6_26 1.446974e-12
12122        0 1.290769e-07 11.790210       6_26 4.428844e-12
12123        0 3.472355e-07 10.867848       6_26 1.098217e-11
12277        0 2.767221e-07 15.995949       6_26 1.288173e-11
12376        0 1.007762e-07  4.487520       6_26 1.316087e-12
14238        0 1.492781e-06 42.215525       6_26 1.833955e-10
12077        0 3.162212e-07 20.375684       6_26 1.875096e-11
12068        0 3.744613e-02  7.874679       6_27 8.581438e-07
11916        0 1.597898e-02  5.300136       6_28 2.464656e-07
450          0 7.777504e-02  6.188843       6_33 1.400780e-06
11465        0 7.734628e-02  6.871423       6_34 1.546701e-06
7023         0 8.210109e-02  6.964793       6_35 1.664092e-06
9518         0 5.836155e-02  4.456243       6_65 7.568607e-07
9531         0 5.661882e-02  4.506577       6_82 7.425538e-07
3599         0 7.209793e-02  5.985630       6_87 1.255894e-06
2988         0 1.253084e-02 11.698907      6_103 4.266246e-07
3902         0 5.767690e-03  4.500919      6_103 7.554807e-08
14208        0 5.847242e-03  4.589372      6_103 7.809525e-08
13165        0 4.996746e-02  4.711955        7_1 6.851863e-07
3937         0 1.750491e-01 16.459022       7_10 8.384637e-06
14257        0 8.854947e-02  7.573181       7_16 1.951572e-06
840          0 5.963248e-02  4.525519       7_21 7.853650e-07
11457        0 8.739968e-02  6.294777       7_43 1.601071e-06
11782        0 8.618212e-02  6.165812       7_43 1.546421e-06
13122        0 1.093557e-01  8.365447       7_43 2.662262e-06
8358         0 1.593654e-01 16.876074       7_47 7.826826e-06
4394         0 5.791046e-02  4.434545       7_49 7.473541e-07
74           0 1.953289e-01 16.351823       7_54 9.295078e-06
2363         0 7.152440e-02  4.434585       7_55 9.230548e-07
828          0 1.076902e-01 11.501663       7_60 3.604599e-06
8671         0 2.317753e-02  5.392645       7_61 3.637385e-07
12216        0 2.467731e-02  5.868715       7_61 4.214646e-07
5125         0 6.459907e-02  5.297491       7_70 9.959024e-07
4452         0 1.144931e-01  7.702405       7_78 2.566409e-06
7190         0 6.577891e-02  6.893642       7_81 1.319641e-06
21           0 1.115392e-01 14.565704       7_94 4.728021e-06
2461         0 8.965804e-02 12.546033       7_94 3.273527e-06
11166        0 3.191695e-01 24.776896       7_94 2.301381e-05
13842        0 3.956681e-02  5.109374       7_94 5.883274e-07
13463        0 3.907697e-02  7.557771       8_11 8.594784e-07
2120         0 1.492037e-01 15.428678       8_19 6.699286e-06
11633        0 1.344084e-01 12.791543       8_24 5.003450e-06
9737         0 7.766489e-02  4.431132       8_69 1.001520e-06
9305         0 8.894617e-02  7.511646       8_93 1.944387e-06
258          0 3.349737e-02  5.311013       8_94 5.177360e-07
6574         0 3.246077e-02  4.890865       8_94 4.620242e-07
2505         0 5.017175e-02  4.462162        9_1 6.515157e-07
9626         0 5.744776e-02  5.689267        9_1 9.511516e-07
6576         0 5.188202e-02  6.761704        9_5 1.020924e-06
3749         0 4.850107e-02  4.886942        9_6 6.897772e-07
8332         0 4.698164e-02  4.491708       9_13 6.141295e-07
12586        0 9.362888e-02  9.144406       9_17 2.491642e-06
5390         0 7.359709e-02  7.090790       9_25 1.518712e-06
8329         0 6.401293e-02  5.562218       9_27 1.036182e-06
13808        0 7.975355e-02  7.569837       9_27 1.756940e-06
2485         0 4.046784e-02  5.551293       9_35 6.537692e-07
2490         0 6.393012e-02  4.895959       9_49 9.108851e-07
5359         0 9.186241e-02  5.846452       9_50 1.562970e-06
2486         0 4.823332e-02  4.852722       9_56 6.811658e-07
9627         0 4.755173e-02  4.777804       9_56 6.611727e-07
3664         0 6.134900e-02  4.537313       9_58 8.100775e-07
1524         0 2.418645e-01 21.637752       9_59 1.523016e-05
4619         0 7.191431e-02  4.433594       9_73 9.278795e-07
7616         0 7.285912e-02  4.707852       9_73 9.982217e-07
2577         0 7.285774e-02  7.978241       10_4 1.691621e-06
12883        0 5.055248e-02  4.457466       10_5 6.557688e-07
5031         0 1.067489e-01  8.998420      10_10 2.795440e-06
6948         0 5.407575e-02  5.423068      10_13 8.534300e-07
12157        0 5.808927e-02  4.451971      10_16 7.526075e-07
9876         0 6.760057e-02  4.786728      10_28 9.416931e-07
4930         0 8.191094e-02  6.266143      10_51 1.493697e-06
3905         0 8.057165e-02  9.374366      10_56 2.198085e-06
10862        0 6.704642e-02  7.695141      10_56 1.501456e-06
12445        0 6.651215e-02  7.622273      10_56 1.475386e-06
11898        0 2.946381e-01 21.762928      10_56 1.866064e-05
6650         0 2.091865e-01 19.133611      10_60 1.164799e-05
7173         0 2.106864e-01 14.506682      10_62 8.894567e-06
8536         0 7.573597e-02  7.112368      10_66 1.567605e-06
2543         0 4.546087e-01 27.965271      10_76 3.699790e-05
6866         0 7.546753e-02  4.681919      10_83 1.028263e-06
9420         0 7.359364e-02  4.452022      10_83 9.534939e-07
6009         0 6.621158e-02  5.997767       11_1 1.155697e-06
10901        0 5.963631e-02  5.046318       11_1 8.758016e-07
12411        0 7.083342e-02  6.612905       11_1 1.363172e-06
13526        0 1.190789e-01 11.401767       11_1 3.951183e-06
14141        0 6.734565e-02  6.152498       11_1 1.205817e-06
2823         0 3.069238e-02  5.723158       11_3 5.111950e-07
3829         0 1.006951e-01 14.498486       11_4 4.248653e-06
4945         0 6.083487e-02  5.509095       11_9 9.753335e-07
2808         0 6.121774e-02  4.650116      11_22 8.284408e-07
3857         0 5.794818e-02  4.997260      11_23 8.427370e-07
6670         0 6.119944e-02  5.493139      11_23 9.783367e-07
6834         0 1.414444e-01 11.104757      11_27 4.571042e-06
7775         0 4.757130e-02 10.231065      11_38 1.416401e-06
9895         0 1.077713e-01  9.923706      11_41 3.112415e-06
7439         0 1.097952e-01  8.034023      11_42 2.567065e-06
13261        0 1.063917e-01  6.738380      11_46 2.086333e-06
4035         0 8.026508e-02  8.310418      11_49 1.941198e-06
2794         0 8.702610e-02  9.532550      11_53 2.414232e-06
6690         0 4.685023e-02  4.579029      11_65 6.243174e-07
5482         0 1.505083e-01 14.574095      11_66 6.383550e-06
6691         0 8.854745e-02 13.248003      11_67 3.413868e-06
10385        1 8.291038e-02 10.228953      11_68 2.468087e-06
10048        0 1.187878e-02  6.836207      11_71 2.363237e-07
2774         0 4.713120e-02  4.617144      11_77 6.332894e-07
3771         0 4.943787e-02  5.000034      11_81 7.193711e-07
13536        0 5.096424e-02  5.275147      11_81 7.823847e-07
2866         0 8.051852e-02  7.783980       12_2 1.823971e-06
13577        0 1.608206e-01 14.142104       12_7 6.618752e-06
13765        0 5.166516e-02  5.982148       12_9 8.994463e-07
13543        0 7.868682e-02  5.490205      12_12 1.257219e-06
162          0 6.576507e-02  6.587485      12_14 1.260768e-06
474          0 7.475655e-02  7.756932      12_14 1.687561e-06
14514        0 1.329510e-01 12.043368      12_18 4.659722e-06
2846         0 6.760241e-02  4.443052      12_21 8.741057e-07
12982        0 1.210897e-01  9.813933      12_21 3.458362e-06
4351         0 6.944753e-02  5.440086      12_42 1.099469e-06
4348         0 5.026103e-02  4.499966      12_43 6.582046e-07
5243         0 6.408990e-02  5.089866      12_56 9.493279e-07
5718         0 4.995516e-02  4.496906      12_62 6.537542e-07
12178        0 8.680689e-02  9.531941      12_62 2.407997e-06
14626        0 5.412173e-02  4.556771      12_77 7.177102e-07
10866        0 5.496139e-02  5.827674      12_81 9.321231e-07
10897        0 5.613339e-02  6.019008      12_81 9.832558e-07
10970        0 4.745017e-02  4.497614      12_81 6.210696e-07
13585        0 5.254676e-02  5.420581      12_81 8.289189e-07
10413        0 7.652726e-02  6.472837       13_2 1.441555e-06
1963         0 5.290293e-02  4.480018       13_4 6.897310e-07
10316        0 5.549466e-02  4.503128      13_17 7.272535e-07
5268         0 1.007927e-01  8.924099      13_20 2.617664e-06
5256         0 6.460352e-02  6.447870      13_37 1.212252e-06
4166         0 9.171074e-02  9.273224      13_50 2.474978e-06
10909        0 7.309326e-02  8.116696       14_1 1.726541e-06
7334         0 3.138852e-02  5.003863       14_3 4.570845e-07
7340         0 6.998099e-02 12.425296       14_3 2.530504e-06
4318         0 6.407755e-02  4.897846      14_27 9.133376e-07
5780         0 5.111519e-02  4.432401      14_30 6.593400e-07
3677         0 1.540989e-02  8.667533      14_34 3.887006e-07
3688         0 1.401022e-02  6.851498      14_34 2.793513e-07
5786         0 1.170132e-02  4.943757      14_34 1.683497e-07
10796        0 1.183906e-02  5.899872      14_34 2.032732e-07
180          0 6.796402e-02  4.888867      14_36 9.669579e-07
639          0 7.664378e-02  5.986676      14_36 1.335313e-06
546          0 6.871550e-02  6.265298      14_44 1.252901e-06
265          0 6.321513e-02  4.475653      14_46 8.233752e-07
13650        0 9.746358e-02  9.124874      14_49 2.588151e-06
10872        0 7.400890e-02  7.144219      14_55 1.538718e-06
10533        0 1.123047e-01  6.081570      15_10 1.987623e-06
12482        0 1.001055e-01  5.015204      15_10 1.461055e-06
4466         0 5.796269e-02  4.435662      15_13 7.482165e-07
12768        0 6.491627e-02  4.835227      15_17 9.134626e-07
5612         0 5.894637e-02  4.473329      15_20 7.673760e-07
8490         0 2.967861e-01 25.395298      15_27 2.193397e-05
5503         0 6.375021e-02  7.061282      15_32 1.310043e-06
2094         0 7.242486e-01 18.424674      15_37 3.883361e-05
10526        0 5.386119e-02  6.030730      15_42 9.452924e-07
5833         0 2.338924e-01 16.303247      15_50 1.109713e-05
2021         0 1.118614e-01  9.425998       16_1 3.068513e-06
1798         0 4.684180e-02  4.661097       16_2 6.353924e-07
2061         0 5.028406e-02  5.294908      16_13 7.748347e-07
10689        0 8.561826e-02 10.025994      16_15 2.498125e-06
10749        0 8.553850e-02 10.017500      16_15 2.493683e-06
10704        0 6.551777e-02  5.633390      16_19 1.074111e-06
9557         0 7.831597e-02  7.176667      16_30 1.635661e-06
13817        0 5.561881e-02  4.571053      16_39 7.398747e-07
691          0 1.332788e-01 15.577328      16_40 6.041911e-06
10827        0 1.294159e-01 15.604637      16_40 5.877081e-06
2018         0 9.232796e-02  4.764566      16_42 1.280197e-06
5882         0 4.872495e-02  5.218431      16_48 7.399658e-07
13826        0 3.876962e-02  4.768236      16_51 5.379843e-07
7450         0 4.644543e-02  4.438984      16_53 5.999940e-07
25           0 1.612424e-01 13.108651      16_54 6.151167e-06
4697         0 9.403704e-02  8.064270      16_54 2.206908e-06
10449        0 7.195120e-02  5.745481       17_1 1.203053e-06
11665        0 6.867295e-02  4.670162       17_3 9.333359e-07
10622        0 2.768906e-01 21.989342       17_4 1.771906e-05
2621         0 6.182728e-02  4.501095       17_5 8.098762e-07
4499         0 7.774076e-02  6.590311       17_5 1.490991e-06
2690         0 6.453747e-02  6.479287       17_9 1.216913e-06
4325         0 6.089621e-02  5.226389      17_19 9.262160e-07
4768         0 7.146983e-02  4.491532      17_21 9.341950e-07
8617         0 7.224344e-02  4.589854      17_21 9.649783e-07
9543         0 7.104578e-02  4.437199      17_21 9.174184e-07
2598         0 3.606634e-01 24.150651      17_23 2.534844e-05
9689         0 4.068807e-02  5.027927      17_25 5.953555e-07
7716         0 1.159428e-01 11.301158      17_26 3.813178e-06
10233        0 8.989568e-02 52.216423      17_27 1.366049e-05
5919         0 2.619212e-01 22.572042      17_28 1.720529e-05
8529         0 8.654918e-02  9.971425      17_32 2.511542e-06
13895        0 5.549062e-02  4.850018      17_33 7.832190e-07
13973        0 1.091120e-01 11.427713      17_42 3.628708e-06
8828         0 1.916633e-01 12.267487      17_43 6.842501e-06
10585        0 8.376221e-02  4.500947      17_43 1.097166e-06
5952         0 1.726286e-01 14.831638      17_45 7.451129e-06
10599        0 8.089401e-02  4.789408      17_46 1.127505e-06
13891        0 7.802561e-02  4.458599      17_46 1.012409e-06
5970         0 5.774971e-02  5.833462      17_47 9.803847e-07
1936         0 5.976521e-02  4.970231       18_3 8.644609e-07
13913        0 6.136664e-02  4.928011       18_4 8.800844e-07
5932         0 1.027418e-01  6.213652       18_9 1.857867e-06
977          0 7.493622e-02  5.888977      18_19 1.284257e-06
8705         0 7.215816e-02  6.640385      18_26 1.394437e-06
4909         0 6.079921e-02  6.419650      18_44 1.135872e-06
8598         0 5.154203e-02  4.693079      18_46 7.039466e-07
2316         0 4.827033e-02  5.040011       19_1 7.079981e-07
4553         0 4.750850e-02  4.896218       19_1 6.769434e-07
684          0 5.403014e-02 10.028716       19_3 1.576891e-06
1593         0 1.090855e-01 16.366819       19_3 5.195793e-06
4580         0 2.566234e-01 24.152998       19_3 1.803797e-05
11723        0 3.112734e-02  5.148867       19_3 4.664166e-07
12702        0 3.036951e-02  4.920810       19_3 4.349052e-07
4220         0 6.634561e-02  4.486721       19_7 8.662865e-07
10448        0 2.658225e-01 17.606759       19_7 1.362045e-05
13217        0 0.000000e+00 11.300737       19_9 0.000000e+00
13989        0 0.000000e+00 41.555232       19_9 0.000000e+00
8736         0 1.369393e-01 17.474782      19_13 6.964021e-06
2327         0 2.229788e-02  4.713721      19_14 3.058776e-07
10335        0 1.262573e-01 19.462223      19_14 7.151038e-06
659          0 2.898426e-02 20.965941      19_15 1.768467e-06
2345         0 5.185812e-02  7.325244      19_24 1.105501e-06
7697         0 6.425510e-02  5.196142      19_25 9.716479e-07
3560         0 0.000000e+00 16.730266      19_31 0.000000e+00
2308         0 3.850122e-01 33.095022      19_37 3.708151e-05
13483        0 2.159035e-02  6.009246      19_37 3.775723e-07
7612         0 2.402062e-02  6.963331      19_37 4.867675e-07
8806         0 1.821347e-02  4.489784      19_37 2.379789e-07
9296         0 1.888176e-02  4.811532      19_37 2.643907e-07
9297         0 2.623274e-02  7.752043      19_37 5.918070e-07
11497        0 1.825871e-02  4.511931      19_37 2.397468e-07
11996        0 1.877551e-02  4.761145      19_37 2.601498e-07
302          0 2.278848e-02  6.492222      19_37 4.305554e-07
1189         0 4.951397e-02  9.969522      19_39 1.436555e-06
4747         0 4.450368e-02  7.996791      19_39 1.035695e-06
11850        0 3.338469e-02  5.124183      19_39 4.978429e-07
11510        0 8.925609e-02 10.472400       20_1 2.720222e-06
4255         0 7.555796e-02  4.953577       20_2 1.089230e-06
1344         0 4.894765e-02  4.764979       20_4 6.787551e-07
4254         0 4.008864e-02  5.078698       20_5 5.925076e-07
11696        0 3.959287e-02  7.749467      20_18 8.929130e-07
6729         0 5.120928e-02  6.503883      20_19 9.692632e-07
13751        0 8.154104e-02  9.582896      20_19 2.274015e-06
4056         0 4.597491e-02  4.713198      20_28 6.306041e-07
4084         1 2.494502e-01 26.182796      20_28 1.900729e-05
6728         0 4.662211e-02  4.697686      20_28 6.373768e-07
11675        0 7.024505e-02  5.789737      20_29 1.183573e-06
12581        0 3.561318e-02  5.176869      20_31 5.365351e-07
6740         0 1.292605e-01 10.113235      20_37 3.804313e-06
1869         0 7.031657e-02  4.490480      20_37 9.189053e-07
4200         0 7.670387e-02  5.285063      20_37 1.179744e-06
6012         0 3.353109e-01 24.162518      21_14 2.357817e-05
7479         0 4.192593e-02  4.501676      21_14 5.492590e-07
10932        0 2.208200e-02  9.153284      21_19 5.882143e-07
7355         0 7.571556e-02 13.423468      21_23 2.957809e-06
10696        0 4.611006e-02  8.917912      21_23 1.196683e-06
7580         0 5.416612e-02 10.374689      21_23 1.635397e-06
6015         0 2.848489e-02  4.584989      21_23 3.800784e-07
10847        0 2.863881e-02  4.633308      21_23 3.861593e-07
14416        0 3.021118e-02  5.112689      21_23 4.495079e-07
10570        0 2.443258e-01 19.716303      21_24 1.401894e-05
14366        0 5.958036e-02  6.637191       22_1 1.150821e-06
1612         0 1.823335e-01 14.186677       22_6 7.527790e-06
1635         0 1.011679e-01  9.233762      22_10 2.718578e-06
10920        0 9.683034e-02  8.828665      22_10 2.487865e-06
1667         0 6.941895e-02  5.402849      22_12 1.091494e-06
1708         0 5.746443e-02  5.509720      22_16 9.214015e-07
1669         0 5.467582e-02  4.601589      22_17 7.321894e-07
11989        0 5.633310e-02  4.935735      22_17 8.091626e-07
10705        0 6.901903e-02  7.244560      22_18 1.455128e-06
11408        0 5.433717e-02  5.070210      22_18 8.017579e-07
1497         0 1.879331e-01 15.857129      22_20 8.672575e-06
1729         0 2.136961e-01 17.104694      22_20 1.063732e-05
12659        0 6.465651e-02  5.914065      22_20 1.112804e-06
13130        0 6.898421e-02  6.504445      22_20 1.305811e-06
169          0 7.001428e-02  5.717285      22_24 1.164922e-06
1701         0 6.228559e-02  4.758866      22_24 8.626037e-07
521          0 1.693736e-01 14.330277       1_13 7.063512e-06
4362         0 9.143968e-02  8.798896       1_13 2.341441e-06
9138         0 9.319030e-02  9.001120       1_13 2.441111e-06
10806        0 1.868505e-12 45.488781       1_34 2.473540e-16
7879         1 9.932775e-01 21.778099       1_73 6.295220e-05
9028         0 3.734024e-02  4.907991       3_76 5.333363e-07
2472         0 1.004879e-01 13.317824       7_32 3.894640e-06
2417         0 2.323409e-01 17.612682       7_48 1.190889e-05
11287        0 6.890716e-02  6.653633       7_48 1.334269e-06
5352         0 9.000403e-02 13.339162       9_66 3.493903e-06
2558         0 1.465765e-01 13.418411      10_64 5.723818e-06
5563         0 4.245584e-02  4.461662      10_77 5.512574e-07
2871         0 3.542435e-01 26.121923       12_4 2.692944e-05
4562         0 7.406565e-02 12.054995       12_4 2.598389e-06
3647         1 9.604840e-01 26.340340      12_75 7.362610e-05
5757         0 2.074617e-02  4.471989      12_75 2.699970e-07
4278         0 2.829055e-01 21.425725      13_62 1.763994e-05
14576        0 3.781685e-02  4.533875      13_62 4.989709e-07
7037         0 9.517772e-02 12.243474      13_62 3.391254e-06
12926        0 6.526748e-03 18.826025      19_30 3.575821e-07
2302         0 3.483748e-02 14.182171      19_33 1.437837e-06
2307         0 1.455655e-02  9.600340      19_33 4.066919e-07
10447        3 9.482623e-01 20.617877      19_33 5.689744e-05
2186         0 1.045121e-03 12.380242      19_34 3.765442e-08
4615         0 1.659913e-03 24.346541      19_34 1.176096e-07
7712         5 9.241005e-03 51.337514      19_34 1.380621e-06
1639         0 1.315866e-01 19.033222       22_4 7.288603e-06
10823        0 2.500688e-01 24.769840       22_4 1.802615e-05
               genename      gene_type            z num_eqtl
540               KIF1B protein_coding -0.420023025        4
3427              FBXO6 protein_coding -1.572219800        4
12643         LINC01772        lincRNA -0.398779133        4
7459                CDA protein_coding  0.585809577        4
1421              USP48 protein_coding  0.398466350        4
10125              SVBP protein_coding -2.392855228        4
3556             SLC5A9 protein_coding  0.063362895        4
7782             SLC1A7 protein_coding -0.504506046        4
13102             L1TD1 protein_coding -1.234862240        5
7796             RAVER2 protein_coding  3.020571751        4
3449             TNNI3K protein_coding -0.474773503        4
3452               CRYZ protein_coding -2.282589321        5
14321      RP11-17E13.2        lincRNA -1.942794637        4
5522              KYAT3 protein_coding  1.036122617        4
7116             FAM69A protein_coding  2.551431698        4
9301              S1PR1 protein_coding -0.748495522        5
3878              CLCC1 protein_coding -1.719746875        4
4984              GSTM1 protein_coding  6.501276770        6
4986              GSTM5 protein_coding  2.099156257        4
4987              GSTM3 protein_coding -1.014289761        4
6084              SYPL2 protein_coding  9.792802919        4
8972              GSTM4 protein_coding -0.353118235        7
12337             GSTM2 protein_coding  4.663321525        4
11807            MAN1A2 protein_coding -0.552900612        4
11756              HRNR protein_coding  0.388616850        5
11240          C1orf204 protein_coding  0.762346726        4
6101              CREG1 protein_coding -0.853956131        4
3535              VAMP4 protein_coding -2.021000926        4
12590        RASAL2-AS1        lincRNA  1.577768381        4
12555      RP11-134G8.5        lincRNA -0.771680303        4
4884              DSTYK protein_coding -0.819870882        4
6911             PTPN14 protein_coding  0.657855506        4
6195             SCCPDH protein_coding -3.048942646        4
13729    RP11-488L18.10        lincRNA -0.373514274        5
13065             OR2W3 protein_coding -0.065549661        4
3339                TPO protein_coding  0.008096188        5
11076           FAM228A protein_coding  0.940387821        5
12939        AC073283.4        lincRNA -0.112657370        4
5540              LHCGR protein_coding  0.382961327        4
7881            PPP1R21 protein_coding -1.214145067        4
6244             ZNF514 protein_coding -0.291985227        4
3333               UXS1 protein_coding  1.974871040        4
3642            C2orf40 protein_coding  0.071374113        4
4203             INSIG2 protein_coding  1.427561022        4
4205             CCDC93 protein_coding -0.578522282        4
863              CYBRD1 protein_coding  0.923509271        4
4455              HOXD3 protein_coding  0.002308690        4
5596              MDH1B protein_coding  0.304853191        4
6293              ESPNL protein_coding -1.417367242        4
8927             KLHL30 protein_coding -1.242112550        6
12043          TRAF3IP1 protein_coding -0.865308184        5
10005               BOK protein_coding  0.928550024        4
10430            D2HGDH protein_coding  0.739406811        4
12958        AC114730.2        lincRNA -0.030084372        4
6289              SUMF1 protein_coding -0.959777571        4
7134              TSEN2 protein_coding  1.165007194        4
3157              ACTR8 protein_coding -0.104181026        4
10381            CCDC66 protein_coding -1.319878876        4
9498             SUCLG2 protein_coding  0.222588098        4
3202            SLC41A3 protein_coding  1.320648871        4
11415             ALG1L protein_coding  2.174161853        5
8085             NMNAT3 protein_coding -0.058455493        4
6960             IGSF10 protein_coding -0.884441643        4
13112         LINC00886        lincRNA  0.334099160        4
10026             MUC20 protein_coding -0.548228111        4
3645               PIGZ protein_coding  1.385192240        4
4357               IDUA protein_coding -1.261859716        4
8107              UVSSA protein_coding -0.861322805        5
10958             PCGF3 protein_coding -0.260635278        4
9729             FAM53A protein_coding  0.669441330        4
9279         AC093323.3        lincRNA -1.392536686        5
13412     RP11-539L10.3        lincRNA -1.834959651        4
13415      RP11-774O3.3        lincRNA  0.974762445        5
10163           ZNF518B protein_coding  0.571070739        4
2737              STIM2 protein_coding  0.916001158        4
11860             CNGA1 protein_coding -1.923053579        4
4408             SRD5A3 protein_coding -1.170589307        4
277               RUFY3 protein_coding  0.567301477        4
5643               NAAA protein_coding -0.203875610        4
11814          HSD17B11 protein_coding  0.829426820        5
14305     RP11-571L19.8        lincRNA -0.311361835        4
5654               PPA2 protein_coding -0.255177151        4
2744             LRP2BP protein_coding  0.401078316        4
6397             CYP4V2 protein_coding -1.282357327        4
8216              KLKB1 protein_coding  0.752919864        5
13385       RP11-11N5.1        lincRNA  0.317906005        4
14237       RP11-11N5.3        lincRNA  0.126423375        4
8219            CCDC127 protein_coding -1.286290946        4
13411     CTD-2245E15.3        lincRNA  0.760792106        4
13370         LINC02145        lincRNA -0.085938722        5
13383            SNHG18        lincRNA  0.081069368        5
3079                DAP protein_coding -1.836357379        5
8188               CMBL protein_coding  0.833093909        4
7191              SETD9 protein_coding -0.882862786        4
11737              OCLN protein_coding -1.211458994        4
9006               PPIC protein_coding -0.564727535        4
8307            ALDH7A1 protein_coding -0.027854047        4
12336              MXD3 protein_coding -0.276558915        4
9863             PHYKPL protein_coding -0.582546796        7
10183           ZNF354B protein_coding -1.086779855        5
14272      RP11-532F6.3        lincRNA  0.175732225        4
5426              RIPK1 protein_coding -0.267420987        4
6445              MYLK4 protein_coding  0.509598061        6
13215         LINC01011        lincRNA -0.245955915        4
7012             SYCP2L protein_coding -0.442810060        4
6446             TBC1D7 protein_coding  0.296434275        4
2948             BTN3A3 protein_coding  0.015487617        5
11608           ZSCAN26 protein_coding  0.229080872        4
5430              FLOT1 protein_coding -3.971254534        4
12119              MICB protein_coding -3.059399101        6
12121             HLA-C protein_coding  0.183194817        4
12122            POU5F1 protein_coding -2.393737307        5
12123            CCHCR1 protein_coding  2.931589024        4
12277             HCG27        lincRNA  1.864693269        8
12376            GTF2H4 protein_coding -0.174362404        4
14238 XXbac-BPG181B23.7        lincRNA -4.476510146        5
12077            NOTCH4 protein_coding  3.165455071        4
12068              BRD2 protein_coding  1.894966403        4
11916            RPL10A protein_coding  0.898562553        4
450                CUL7 protein_coding  0.747906425        4
11465            SUPT3H protein_coding -0.904083359        4
7023           SLC25A27 protein_coding  0.889313319        4
9518              MANEA protein_coding  0.065091049        4
9531            SMPDL3A protein_coding -0.142989824        5
3599              AKAP7 protein_coding -0.616835011        4
2988             MRPL18 protein_coding -2.249761834        4
3902             SERAC1 protein_coding  0.021599445        4
14208            GTF2H5 protein_coding  0.146671647        4
13165        AC093627.8        lincRNA  0.292277061        5
3937               CCZ1 protein_coding  1.926156679        5
14257      GS1-166A23.2        lincRNA -0.926818846        4
840              OSBPL3 protein_coding  0.218366418        4
11457            ZNF107 protein_coding -0.694440454        5
11782            ZNF273 protein_coding  0.689406338        4
13122              CRCP protein_coding  1.236269262        4
8358            WBSCR27 protein_coding -2.596799408        4
4394             PTPN12 protein_coding -0.068707659        4
74                ABCB4 protein_coding  1.847895928        4
2363            GTPBP10 protein_coding  0.103843671        4
828                ASNS protein_coding  1.769924731        4
8671              CNPY4 protein_coding -0.020060388        4
12216             SAP25 protein_coding  0.068927392        4
5125                TES protein_coding -0.519405918        4
4452             OPN1SW protein_coding  1.024844827        4
7190              LRGUK protein_coding  0.889078139        5
21             TMEM176A protein_coding -1.826630114        4
2461           TMEM176B protein_coding -1.669675814        4
11166             WDR86 protein_coding -2.895133691        4
13842         LINC01003        lincRNA -0.425451886        6
13463            CLDN23 protein_coding  1.625196493        4
2120             PDGFRL protein_coding  1.866632709        4
11633            ENTPD4 protein_coding  1.932973905        4
9737              SNX31 protein_coding  0.009455059        5
9305            TSNARE1 protein_coding  1.012418419        5
258               ZC3H3 protein_coding -0.615685951        4
6574              NAPRT protein_coding  0.438990829        5
2505              DOCK8 protein_coding -0.050483179        4
9626              DMRT2 protein_coding  0.641670575        5
6576                AK3 protein_coding -0.848931759        7
3749              CD274 protein_coding -0.470739120        4
8332            CCDC171 protein_coding -0.157121597        4
12586     RP11-370B11.3        lincRNA  1.203288096        4
5390               APTX protein_coding -0.671241425        4
8329              NUDT2 protein_coding  0.550071297        4
13808      RP11-384P7.7        lincRNA  0.923319969        4
2485              NMRK1 protein_coding  0.645405159        4
2490             CORO2A protein_coding  0.290834207        4
5359             ZNF189 protein_coding  0.670394596        4
2486            TMEM245 protein_coding  0.242908835        4
9627             ZNF483 protein_coding -0.328936474        4
3664              HDHD3 protein_coding  0.189012099        7
1524               WHRN protein_coding  2.752308321        4
4619              UBAC1 protein_coding  0.030488086        4
7616              GPSM1 protein_coding -0.505102970        4
2577             PITRM1 protein_coding -1.007937847        4
12883         LINC00702        lincRNA -0.082658134        4
5031             ECHDC3 protein_coding  1.393594958        4
6948               NMT2 protein_coding -0.515306167        4
12157            MALRD1 protein_coding  0.026142064        4
9876              ZNF25 protein_coding  0.333750519        4
4930              SFTPD protein_coding -0.818569148        5
3905               OPN4 protein_coding -1.102800039        4
10862            NUTM2A protein_coding  1.246248487        4
12445            NUTM2D protein_coding  1.215417899        4
11898            PAPSS2 protein_coding -2.916812770        4
6650           FRA10AC1 protein_coding -2.261837100        5
7173            GOLGA7B protein_coding -1.895166814        4
8536             BORCS7 protein_coding  1.464598160        4
2543            NSMCE4A protein_coding  3.456734448        4
6866             DPYSL4 protein_coding  0.304520368        5
9420             PWWP2B protein_coding  0.066112686        4
6009              PGGHG protein_coding  0.675771275        4
10901            IFITM2 protein_coding -0.410119901        6
12411            TSPAN4 protein_coding  0.941077857        4
13526        AP006621.5        lincRNA -2.255614909        4
14141     RP11-326C3.15        lincRNA  0.748207679        4
2823           C11orf21 protein_coding -0.550613719        4
3829              TRIM6 protein_coding -2.456361327        4
4945             MICAL2 protein_coding  0.504432935        4
2808          KIAA1549L protein_coding -0.335820831        4
3857                CAT protein_coding -0.409668221        4
6670               APIP protein_coding -0.618278593        4
6834               EXT2 protein_coding -1.459667131        5
7775              TPCN2 protein_coding -1.237753184        4
9895             MRPL48 protein_coding  1.190168138        4
7439              GDPD5 protein_coding -1.147220793        4
13261         RAB30-AS1        lincRNA  0.929715236        4
4035              RAB38 protein_coding  1.073954861        4
2794              PANX1 protein_coding  1.243733119        4
6690            ZC3H12C protein_coding -0.176249865        4
5482            PPP2R1B protein_coding  2.737449710        4
6691              TTC12 protein_coding -1.696940513        4
10385          C11orf71 protein_coding  1.293467398        4
10048           DSCAML1 protein_coding -0.950975759        5
2774               PUS3 protein_coding -0.580011271        4
3771              SNX19 protein_coding  0.419111598        4
13536     RP11-890B15.3        lincRNA  0.501667838        4
2866              WNT5B protein_coding -1.012958275        5
13577      RP1-102E24.8        lincRNA  1.794614984        5
13765     RP13-735L24.1        lincRNA  0.161045988        6
13543      RP11-377D9.3        lincRNA -0.583178672        4
162               MGST1 protein_coding -0.837298544        4
474                LMO3 protein_coding  0.957135074        4
14514      RP11-582E3.6        lincRNA  2.303870106        4
2846            CAPRIN2 protein_coding  0.001507103        4
12982         LINC00941        lincRNA  1.284727799        4
4351             YEATS4 protein_coding  0.575990296        4
4348             RAB3IP protein_coding -0.077277878        4
5243              USP44 protein_coding -0.506369197        4
5718                TDG protein_coding -0.288433659        4
12178          C12orf73 protein_coding -1.553859140        4
14626     RP11-575F12.3        lincRNA -0.186786558        5
10866             NOC4L protein_coding  0.594594702        4
10897             DDX51 protein_coding -0.618143356        4
10970           EP400NL protein_coding  0.240202648        5
13585     RP13-977J11.2        lincRNA  0.518461113        4
10413           ZDHHC20 protein_coding -0.772215132        4
1963               SGCG protein_coding  0.109019768        4
10316             LACC1 protein_coding  0.037531417        4
5268             RCBTB2 protein_coding -1.270569149        4
5256             TBC1D4 protein_coding  0.810943103        4
4166              CLYBL protein_coding  1.176324978        4
10909            KLHL33 protein_coding  1.078266890        5
7334              DHRS4 protein_coding  0.259683625        4
7340              DHRS1 protein_coding -2.143355013        5
4318            L3HYPDH protein_coding  0.288050382        4
5780              RAB15 protein_coding  0.006329755        4
3677              DCAF4 protein_coding  1.480577350        4
3688              ACOT2 protein_coding -1.206396425        4
5786              PTGR2 protein_coding -0.916339410        5
10796             ACOT1 protein_coding  0.658176457        4
180               POMT2 protein_coding  0.463089864        6
639               ADCK1 protein_coding -0.780906896        4
546                GALC protein_coding  0.821531163        4
265             CCDC88C protein_coding  0.123727401        4
13650    RP11-1070N10.3        lincRNA  1.203939178        4
10872             SIVA1 protein_coding  0.860653750        4
10533             NOP10 protein_coding -0.909657931        4
12482           GOLGA8B protein_coding  0.420913375        4
4466            EIF2AK4 protein_coding  0.010835172        5
12768             PATL2 protein_coding -0.380215578        4
5612             SPPL2A protein_coding  0.081266251        4
8490               LIPC protein_coding  2.985257644        4
5503              PAQR5 protein_coding  0.904598585        4
2094               CTSH protein_coding  3.428984562        5
10526              IDH2 protein_coding  0.773158504        4
5833           ADAMTS17 protein_coding -2.063478773        4
2021              NPRL3 protein_coding  1.293802591        4
1798              TELO2 protein_coding  0.184463116        5
2061             CPPED1 protein_coding  0.487653845        4
10689            NPIPA1 protein_coding -1.566346740        4
10749            NPIPA5 protein_coding  1.869812585        4
10704             ACSM5 protein_coding -0.525574950        4
9557            FAM192A protein_coding  0.810277775        4
13817     RP11-252A24.3        lincRNA  0.202015770        4
691               ADAT1 protein_coding -2.271438630        5
10827              ZFP1 protein_coding  2.045831428        4
2018              MON1B protein_coding  0.330838688        4
5882             MBTPS1 protein_coding -0.197883832        5
13826         LINC02188        lincRNA -0.211254377        4
7450             RNF166 protein_coding -0.042074860        4
25               DBNDD1 protein_coding -1.819290996        6
4697             CHMP1A protein_coding -1.084918016        4
10449            RPH3AL protein_coding -0.641162542        4
11665              SHPK protein_coding  0.361813715        5
10622              VMO1 protein_coding  3.133140328        4
2621             CAMTA2 protein_coding -0.115870824        4
4499               USP6 protein_coding -0.542041500        5
2690               MYH3 protein_coding -0.937795880        4
4325              RHOT1 protein_coding -0.381424711        4
4768              CCT6B protein_coding  0.169171156        4
8617              SLFN5 protein_coding -0.212653548        4
9543             SLFN11 protein_coding  0.013621326        4
2598              CASC3 protein_coding -3.317317897        4
9689                JUP protein_coding  0.493661739        4
7716               NAGS protein_coding  1.240308747        4
10233           EFCAB13 protein_coding  7.932542707        5
5919              SCRN2 protein_coding  3.003800245        4
8529              COX11 protein_coding -1.714290715        4
13895     RP11-166P13.3        lincRNA -0.327061836        4
13973            MYO15B protein_coding  1.655225290        4
8828             MGAT5B protein_coding  1.631808474        4
10585             MXRA7 protein_coding -0.148266235        4
5952             CCDC40 protein_coding -1.858015176        5
10599           TSPAN10 protein_coding -0.338720883        4
13891     RP11-1055B8.4        lincRNA -0.125751437        4
5970             WDR45B protein_coding  0.650825359        4
1936              LPIN2 protein_coding  0.434124143        5
13913         LINC00667        lincRNA -0.420138960        4
5932              IMPA2 protein_coding -0.859576537        4
977               MOCOS protein_coding  0.630254421        5
8705            KATNAL2 protein_coding -0.822022145        4
4909              CNDP2 protein_coding -0.724962181        4
8598              GALR1 protein_coding  0.276804307        6
2316              MIER2 protein_coding  0.446946951        4
4553               SHC2 protein_coding -0.381734995        5
684               WDR18 protein_coding  1.358541653        5
1593             POLR2E protein_coding -1.958967915        4
4580             ATP8B3 protein_coding -2.743966686        5
11723               CFD protein_coding -0.458322217        5
12702            SCAMP4 protein_coding  0.386606929        4
4220             GPR108 protein_coding  0.153885660        4
10448           TRAPPC5 protein_coding  2.208169538        4
13217            P2RY11 protein_coding -1.099360760        4
13989          ILF3-AS1        lincRNA -1.680045893        4
8736              RAB8A protein_coding -2.225357558        4
2327               JAK3 protein_coding -0.270437783        4
10335            B3GNT3 protein_coding  2.066918160        5
659               SUGP2 protein_coding -4.759323306        4
2345                LSR protein_coding -0.999367319        4
7697             COX7A1 protein_coding -0.337571534        4
3560             CD3EAP protein_coding  0.055655825        4
2308            SIGLEC5 protein_coding -3.600826625        4
13483          SIGLEC14 protein_coding -0.617235528        6
7612             ZNF761 protein_coding -0.807165609        5
8806              ZNF83 protein_coding  0.100355638        8
9296             ZNF160 protein_coding  0.420306051        4
9297             ZNF415 protein_coding  1.020478511        6
11497            ZNF765 protein_coding  0.152206591        4
11996            ZNF525 protein_coding  0.288254365        5
302               NLRP2 protein_coding  0.730400034        4
1189             ZNF586 protein_coding -1.616124312        4
4747             ZNF304 protein_coding -1.089943431        4
11850            ZNF587 protein_coding -0.220575054        4
11510          C20orf96 protein_coding  1.339014986        4
4255            TMEM74B protein_coding -0.407500940        4
1344              CPXM1 protein_coding  0.327553229        4
4254               MCM8 protein_coding  0.276397649        4
11696            ENTPD6 protein_coding -1.936991180        4
6729             DUSP15 protein_coding -1.122158603        4
13751     RP5-1085F17.3        lincRNA -1.259355687        4
4056               SDC4 protein_coding -0.469609700        4
4084             NEURL2 protein_coding -5.148346881        4
6728               JPH2 protein_coding -0.284296504        4
11675           SLC2A10 protein_coding -0.619692208        5
12581            SMIM25        lincRNA -0.314600486        4
6740            CABLES2 protein_coding  1.324157184        4
1869              TCFL5 protein_coding -0.081184724        4
4200              PPDPF protein_coding -0.313736239        4
6012             IFNAR1 protein_coding -3.047194176        4
7479             IFNAR2 protein_coding  0.292538013        4
10932            SH3BGR protein_coding -3.116571305        4
7355              C2CD2 protein_coding -1.584302063        4
10696               MX2 protein_coding -1.092447263        4
7580                CBS protein_coding -1.321471322        6
6015               SIK1 protein_coding  0.243564545        5
10847            UBE2G2 protein_coding -0.224409046        5
14416   LL21NC02-21A1.1        lincRNA  0.422426912        4
10570              YBEY protein_coding  2.388955903        5
14366       AC006946.16        lincRNA -0.784405312        4
1612            SMARCB1 protein_coding  1.728548932        4
1635            SLC35E4 protein_coding  1.402168297        4
10920              TCN2 protein_coding  1.249283592        4
1667             SLC5A4 protein_coding -0.509124597        4
1708               RPL3 protein_coding  0.568767399        4
1669             CYP2D6 protein_coding  0.270522473        5
11989              NAGA protein_coding -1.011002512        4
10705            SERHL2 protein_coding  0.879677859        4
11408             RRP7A protein_coding -0.450122744        4
1497              NUP50 protein_coding -2.090819345        4
1729            FAM118A protein_coding -2.176490239        4
12659         NUP50-AS1        lincRNA -0.791556719        5
13130           ARHGAP8 protein_coding -0.778879342        4
169            MAPK8IP2 protein_coding  0.657549635        4
1701               ARSA protein_coding  0.285684735        5
521              AKR7A2 protein_coding  1.952591686        4
4362               EMC1 protein_coding  1.088366518        4
9138              OTUD3 protein_coding -1.172063931        4
10806             MROH7 protein_coding  3.976137988        4
7879               ACP6 protein_coding  4.613975854        4
9028            HSPBAP1 protein_coding  0.319028943        5
2472              POLD2 protein_coding  1.780745843        4
2417              CCL24 protein_coding  1.961790317        4
11287               ZP3 protein_coding -0.007520099        4
5352             SLC2A8 protein_coding  1.697087549        4
2558              SFXN3 protein_coding  1.830707947        4
5563             BTBD16 protein_coding -0.181379950        6
2871             PARP11 protein_coding -3.090457641        4
4562            CRACR2A protein_coding  1.547976694        4
3647             CCDC92 protein_coding -5.343007339        5
5757              MORN3 protein_coding  0.002443962        4
4278              MCF2L protein_coding -2.343386423        5
14576      RP11-88E10.4        lincRNA -0.242539766        5
7037            ADPRHL1 protein_coding  1.293374116        4
12926            PINLYP protein_coding  2.819929485        4
2302            CCDC114 protein_coding -1.802143687        4
2307            PLA2G4C protein_coding -1.382373754        4
10447              FKRP protein_coding  4.425173545        5
2186              NUCB1 protein_coding -1.455312765        4
4615              TRPM4 protein_coding -2.034168341        4
7712           ALDH16A1 protein_coding -3.466783896        4
1639             DGCR14 protein_coding  2.127548693        4
10823            TXNRD2 protein_coding  2.835183327        4
#distribution of number of eQTL for genes with PIP>0.8
table(ctwas_gene_res$num_eqtl[ctwas_gene_res$susie_pip>0.8])/sum(ctwas_gene_res$susie_pip>0.8)

         1          2          3          4          5 
0.44444444 0.41666667 0.05555556 0.02777778 0.05555556 
#genes with 2+ eQTL and PIP>0.8
ctwas_gene_res[ctwas_gene_res$num_eqtl>1 & ctwas_gene_res$susie_pip>0.8,]
      chrom                 id       pos type region_tag1 region_tag2
7879      1 ENSG00000162836.11 147646379 gene           1          73
5600      2 ENSG00000138439.11 202630335 gene           2         120
8904      3 ENSG00000168291.12  58433123 gene           3          40
13258     5  ENSG00000245937.7 128070567 gene           5          78
7441      7 ENSG00000158604.14  44582687 gene           7          32
4395      7 ENSG00000127948.15  75894921 gene           7          48
1279      7 ENSG00000087087.18 100874758 gene           7          62
1003      8 ENSG00000076554.15  80171625 gene           8          57
1237      8 ENSG00000085719.12  86514210 gene           8          62
7623      9  ENSG00000160447.6 128703005 gene           9          66
1526     10 ENSG00000095485.16 100267650 gene          10          64
3633     12  ENSG00000118971.7   4209750 gene          12           4
3647     12  ENSG00000119242.8 123959862 gene          12          75
7045     16 ENSG00000153786.12  85001918 gene          16          49
5923     17 ENSG00000141338.13  68883786 gene          17          39
3674     18 ENSG00000119537.15  63366845 gene          18          35
161      19 ENSG00000008382.15   4342850 gene          19           5
6023     19 ENSG00000142233.11  48702748 gene          19          33
10447    19 ENSG00000181027.10  46745328 gene          19          33
2199     19 ENSG00000104870.12  49506216 gene          19          34
      cs_index susie_pip         mu2 region_tag          PVE  genename
7879         1 0.9932775    21.77810       1_73 6.295220e-05      ACP6
5600         1 0.9695151    38.09714      2_120 1.074898e-04   FAM117B
8904         0 0.9140947    24.02176       3_40 6.390228e-05      PDHB
13258        0 0.8593862    18.23008       5_78 4.559291e-05 LINC01184
7441         2 0.9191981    36.87829       7_32 9.865071e-05     TMED4
4395         1 0.9843314    32.69729       7_48 9.366414e-05       POR
1279         2 0.9450584    25.66844       7_62 7.059571e-05      SRRT
1003         1 0.9370510    18.68606       8_57 5.095669e-05     TPD52
1237         0 0.8147843    18.04139       8_62 4.277922e-05     CPNE3
7623         1 0.9854511    42.73347       9_66 1.225529e-04      PKN3
1526         1 0.9256794    28.62700      10_64 7.711817e-05   CWF19L1
3633         1 0.9318759    19.26549       12_4 5.224666e-05     CCND2
3647         1 0.9604840    26.34034      12_75 7.362610e-05    CCDC92
7045         1 0.9967008    24.23491      16_49 7.029534e-05    ZDHHC7
5923         3 0.9982625    28.49746      17_39 8.278872e-05     ABCA8
3674         1 0.9199769    18.92509      18_35 5.066818e-05      KDSR
161          0 0.9197113    19.83813       19_5 5.309731e-05      MPND
6023         4 0.8492136    47.56594      19_33 1.175529e-04      NTN5
10447        3 0.9482623    20.61788      19_33 5.689744e-05      FKRP
2199         2 0.9967913 10378.34712      19_34 3.010598e-02     FCGRT
           gene_type         z num_eqtl
7879  protein_coding  4.613976        4
5600  protein_coding  7.877231        2
8904  protein_coding  3.361078        2
13258        lincRNA -3.918127        2
7441  protein_coding  7.688274        2
4395  protein_coding  6.026895        2
1279  protein_coding  4.744831        2
1003  protein_coding -4.121885        2
1237  protein_coding  3.753687        3
7623  protein_coding -6.885356        2
1526  protein_coding  5.813958        2
3633  protein_coding -4.128258        2
3647  protein_coding -5.343007        5
7045  protein_coding -4.891663        3
5923  protein_coding  5.086840        2
3674  protein_coding -4.119957        2
161   protein_coding -4.322018        2
6023  protein_coding 10.033010        2
10447 protein_coding  4.425174        5
2199  protein_coding -4.165895        2

cTWAS genes in GO terms enriched for silver standard genes

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

#GO enrichment analysis for silver standard genes
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- known_annotations
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
for (db in dbs){
  print(db)
  df <- GO_enrichment[[db]]
  df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
  plotEnrich(GO_enrichment[[db]])
  print(df)
}
[1] "GO_Biological_Process_2021"
                                                                                       Term
1                                                        cholesterol transport (GO:0030301)
2                                                      cholesterol homeostasis (GO:0042632)
3                                                           sterol homeostasis (GO:0055092)
4                                                           cholesterol efflux (GO:0033344)
5                                                             sterol transport (GO:0015918)
6                                                cholesterol metabolic process (GO:0008203)
7                                                     sterol metabolic process (GO:0016125)
8                            triglyceride-rich lipoprotein particle remodeling (GO:0034370)
9                                 high-density lipoprotein particle remodeling (GO:0034375)
10                                               reverse cholesterol transport (GO:0043691)
11                                         secondary alcohol metabolic process (GO:1902652)
12                                   regulation of lipoprotein lipase activity (GO:0051004)
13                                                      phospholipid transport (GO:0015914)
14                                                             lipid transport (GO:0006869)
15                                                    acylglycerol homeostasis (GO:0055090)
16                            very-low-density lipoprotein particle remodeling (GO:0034372)
17                                                    triglyceride homeostasis (GO:0070328)
18                                              triglyceride metabolic process (GO:0006641)
19                                                         phospholipid efflux (GO:0033700)
20                                                      chylomicron remodeling (GO:0034371)
21                                         regulation of cholesterol transport (GO:0032374)
22                                                        chylomicron assembly (GO:0034378)
23                                               chylomicron remnant clearance (GO:0034382)
24                                               lipoprotein metabolic process (GO:0042157)
25                                               diterpenoid metabolic process (GO:0016101)
26                            positive regulation of steroid metabolic process (GO:0045940)
27                                                  retinoid metabolic process (GO:0001523)
28                                                           lipid homeostasis (GO:0055088)
29                                      negative regulation of lipase activity (GO:0060192)
30                           positive regulation of cholesterol esterification (GO:0010873)
31                                           intestinal cholesterol absorption (GO:0030299)
32                                negative regulation of cholesterol transport (GO:0032375)
33                                                 intestinal lipid absorption (GO:0098856)
34                                              acylglycerol metabolic process (GO:0006639)
35                                    regulation of cholesterol esterification (GO:0010872)
36                                                    phospholipid homeostasis (GO:0055091)
37                              very-low-density lipoprotein particle assembly (GO:0034379)
38                              positive regulation of lipid metabolic process (GO:0045834)
39                                  high-density lipoprotein particle assembly (GO:0034380)
40                          negative regulation of lipoprotein lipase activity (GO:0051005)
41                       negative regulation of lipoprotein particle clearance (GO:0010985)
42              regulation of very-low-density lipoprotein particle remodeling (GO:0010901)
43                                         intracellular cholesterol transport (GO:0032367)
44                                positive regulation of cholesterol transport (GO:0032376)
45                             regulation of intestinal cholesterol absorption (GO:0030300)
46                          positive regulation of lipoprotein lipase activity (GO:0051006)
47                                              acylglycerol catabolic process (GO:0046464)
48                           positive regulation of lipid biosynthetic process (GO:0046889)
49                       positive regulation of triglyceride metabolic process (GO:0090208)
50                         positive regulation of triglyceride lipase activity (GO:0061365)
51                                       regulation of lipid catabolic process (GO:0050994)
52                                                   steroid metabolic process (GO:0008202)
53                              positive regulation of lipid catabolic process (GO:0050996)
54                                              triglyceride catabolic process (GO:0019433)
55                                             organophosphate ester transport (GO:0015748)
56                                       phosphatidylcholine metabolic process (GO:0046470)
57                                regulation of triglyceride catabolic process (GO:0010896)
58                                                fatty acid metabolic process (GO:0006631)
59                               regulation of fatty acid biosynthetic process (GO:0042304)
60                                              regulation of sterol transport (GO:0032371)
61              cellular response to low-density lipoprotein particle stimulus (GO:0071404)
62                                 low-density lipoprotein particle remodeling (GO:0034374)
63                  regulation of macrophage derived foam cell differentiation (GO:0010743)
64                                                 organic substance transport (GO:0071702)
65                                            regulation of cholesterol efflux (GO:0010874)
66                                               receptor-mediated endocytosis (GO:0006898)
67                                      secondary alcohol biosynthetic process (GO:1902653)
68                                           regulation of cholesterol storage (GO:0010885)
69                                                          cholesterol import (GO:0070508)
70                                                               sterol import (GO:0035376)
71                                    monocarboxylic acid biosynthetic process (GO:0072330)
72                                            cholesterol biosynthetic process (GO:0006695)
73                           positive regulation of cellular metabolic process (GO:0031325)
74                                                 sterol biosynthetic process (GO:0016126)
75                         positive regulation of fatty acid metabolic process (GO:0045923)
76                                 regulation of receptor-mediated endocytosis (GO:0048259)
77                                             fatty acid biosynthetic process (GO:0006633)
78                             regulation of Cdc42 protein signal transduction (GO:0032489)
79                       positive regulation of triglyceride catabolic process (GO:0010898)
80                                                  lipid biosynthetic process (GO:0008610)
81                                   positive regulation of cholesterol efflux (GO:0010875)
82                        negative regulation of receptor-mediated endocytosis (GO:0048261)
83                                                       lipoprotein transport (GO:0042953)
84                                       regulation of lipid metabolic process (GO:0019216)
85                                       monocarboxylic acid metabolic process (GO:0032787)
86                                                    lipoprotein localization (GO:0044872)
87                                                     lipid catabolic process (GO:0016042)
88                      positive regulation of fatty acid biosynthetic process (GO:0045723)
89                                              intracellular sterol transport (GO:0032366)
90                                                steroid biosynthetic process (GO:0006694)
91                                    regulation of lipid biosynthetic process (GO:0046890)
92                                               regulation of lipase activity (GO:0060191)
93                        positive regulation of cellular biosynthetic process (GO:0031328)
94                                        regulation of amyloid-beta clearance (GO:1900221)
95                                              phospholipid metabolic process (GO:0006644)
96                                   regulation of intestinal lipid absorption (GO:1904729)
97             positive regulation of protein catabolic process in the vacuole (GO:1904352)
98                                 positive regulation of biosynthetic process (GO:0009891)
99                                 regulation of cholesterol metabolic process (GO:0090181)
100                                                  foam cell differentiation (GO:0090077)
101                                 positive regulation of cholesterol storage (GO:0010886)
102                               macrophage derived foam cell differentiation (GO:0010742)
103                              organic hydroxy compound biosynthetic process (GO:1901617)
104                                    regulation of steroid metabolic process (GO:0019218)
105                               organonitrogen compound biosynthetic process (GO:1901566)
106                             negative regulation of lipid metabolic process (GO:0045833)
107                          regulation of lysosomal protein catabolic process (GO:1905165)
108                              positive regulation of amyloid-beta clearance (GO:1900223)
109                                           cellular lipid catabolic process (GO:0044242)
110                                                       chemical homeostasis (GO:0048878)
111                                              cholesterol catabolic process (GO:0006707)
112                                                   sterol catabolic process (GO:0016127)
113                                       steroid hormone biosynthetic process (GO:0120178)
114                   regulation of low-density lipoprotein particle clearance (GO:0010988)
115                                                bile acid metabolic process (GO:0008206)
116                                   phosphatidylcholine biosynthetic process (GO:0006656)
117                                                  alcohol catabolic process (GO:0046164)
118                                          organophosphate catabolic process (GO:0046434)
119                                       regulation of phospholipase activity (GO:0010517)
120                                  positive regulation of lipid localization (GO:1905954)
121                              positive regulation of phospholipid transport (GO:2001140)
122                                      glycerophospholipid metabolic process (GO:0006650)
123                                         organic hydroxy compound transport (GO:0015850)
124        negative regulation of macrophage derived foam cell differentiation (GO:0010745)
125                                     positive regulation of lipid transport (GO:0032370)
126                                   C21-steroid hormone biosynthetic process (GO:0006700)
127                                                      membrane organization (GO:0061024)
128                                         positive regulation of endocytosis (GO:0045807)
129                    positive regulation of multicellular organismal process (GO:0051240)
130                                   negative regulation of catabolic process (GO:0009895)
131                             negative regulation of lipid catabolic process (GO:0050995)
132                                          carbohydrate derivative transport (GO:1901264)
133        positive regulation of macrophage derived foam cell differentiation (GO:0010744)
134                                                          protein transport (GO:0015031)
135                                                       fatty acid transport (GO:0015908)
136                                       positive regulation of lipid storage (GO:0010884)
137                                      C21-steroid hormone metabolic process (GO:0008207)
138                                             phospholipid catabolic process (GO:0009395)
139                                         negative regulation of endocytosis (GO:0045806)
140                                    regulation of primary metabolic process (GO:0080090)
141                    negative regulation of multicellular organismal process (GO:0051241)
142                                             bile acid biosynthetic process (GO:0006699)
143  regulation of low-density lipoprotein particle receptor catabolic process (GO:0032803)
144                              regulation of Rho protein signal transduction (GO:0035023)
145                             regulation of small molecule metabolic process (GO:0062012)
146                          positive regulation of cellular catabolic process (GO:0031331)
147                                                       artery morphogenesis (GO:0048844)
148                     negative regulation of cellular component organization (GO:0051129)
149                                                       glycolipid transport (GO:0046836)
150                      positive regulation of lipoprotein particle clearance (GO:0010986)
151                                    positive regulation of sterol transport (GO:0032373)
152                                            long-chain fatty acid transport (GO:0015909)
153                                                        response to insulin (GO:0032868)
154                                  regulation of bile acid metabolic process (GO:1904251)
155                          positive regulation of receptor catabolic process (GO:2000646)
156                                           positive regulation of transport (GO:0051050)
157                      negative regulation of endothelial cell proliferation (GO:0001937)
158                          negative regulation of endothelial cell migration (GO:0010596)
159                          regulation of nitrogen compound metabolic process (GO:0051171)
160                              negative regulation of amyloid-beta clearance (GO:1900222)
161                          negative regulation of cellular metabolic process (GO:0031324)
162                                   glycerophospholipid biosynthetic process (GO:0046474)
163 negative regulation of production of molecular mediator of immune response (GO:0002701)
164                                unsaturated fatty acid biosynthetic process (GO:0006636)
165                                                            anion transport (GO:0006820)
166                       positive regulation of receptor-mediated endocytosis (GO:0048260)
167                                 negative regulation of cholesterol storage (GO:0010887)
168                               regulation of bile acid biosynthetic process (GO:0070857)
169                                           peptidyl-amino acid modification (GO:0018193)
170                low-density lipoprotein particle receptor catabolic process (GO:0032802)
171                low-density lipoprotein receptor particle metabolic process (GO:0032799)
172                                                          protein oxidation (GO:0018158)
173                               positive regulation by host of viral process (GO:0044794)
174                   positive regulation of triglyceride biosynthetic process (GO:0010867)
175                                                   receptor internalization (GO:0031623)
176                                                        response to glucose (GO:0009749)
177                     positive regulation of cellular component organization (GO:0051130)
178                     negative regulation of fatty acid biosynthetic process (GO:0045717)
179                                          negative regulation of hemostasis (GO:1900047)
180                                           peptidyl-methionine modification (GO:0018206)
181                                                          ethanol oxidation (GO:0006069)
182                            negative regulation of amyloid fibril formation (GO:1905907)
183                           negative regulation of protein metabolic process (GO:0051248)
184                                   unsaturated fatty acid metabolic process (GO:0033559)
185                                     alpha-linolenic acid metabolic process (GO:0036109)
186                                                     platelet degranulation (GO:0002576)
187                                   negative regulation of metabolic process (GO:0009892)
188                                     negative regulation of cell activation (GO:0050866)
189                                         negative regulation of coagulation (GO:0050819)
190                                                    cGMP-mediated signaling (GO:0019934)
191                                                      intestinal absorption (GO:0050892)
192                                                 receptor metabolic process (GO:0043112)
193                                                 regulation of phagocytosis (GO:0050764)
194                                     regulation of amyloid fibril formation (GO:1905906)
195                                 regulation of sequestering of triglyceride (GO:0010889)
196                            regulation of triglyceride biosynthetic process (GO:0010866)
197                                    post-translational protein modification (GO:0043687)
198                                                  regulation of endocytosis (GO:0030100)
199                                                   amyloid fibril formation (GO:1990000)
200                    positive regulation of small molecule metabolic process (GO:0062013)
201                                       cellular response to nutrient levels (GO:0031669)
202     negative regulation of cytokine production involved in immune response (GO:0002719)
203                        negative regulation of fatty acid metabolic process (GO:0045922)
204                             regulation of cholesterol biosynthetic process (GO:0045540)
205                                 regulation of steroid biosynthetic process (GO:0050810)
206                                   positive regulation of catabolic process (GO:0009896)
207                                amyloid precursor protein metabolic process (GO:0042982)
208                                  nitric oxide mediated signal transduction (GO:0007263)
209                      positive regulation of nitric-oxide synthase activity (GO:0051000)
210                                                  ethanol metabolic process (GO:0006067)
211                  positive regulation of cellular protein catabolic process (GO:1903364)
212                                                     response to fatty acid (GO:0070542)
213                                                           long-term memory (GO:0007616)
214                                       negative regulation of lipid storage (GO:0010888)
215                                            linoleic acid metabolic process (GO:0043651)
216                          negative regulation of lipid biosynthetic process (GO:0051055)
217                                                regulation of lipid storage (GO:0010883)
218                                regulation of interleukin-1 beta production (GO:0032651)
219                                    long-chain fatty acid metabolic process (GO:0001676)
220              regulation of cytokine production involved in immune response (GO:0002718)
221                                         cellular protein metabolic process (GO:0044267)
222                                    negative regulation of defense response (GO:0031348)
223                                       transport across blood-brain barrier (GO:0150104)
224                                                 receptor catabolic process (GO:0032801)
225                                                         response to hexose (GO:0009746)
226                                                       regulated exocytosis (GO:0045055)
227                                   regulation of endothelial cell migration (GO:0010594)
228                                   negative regulation of protein transport (GO:0051224)
229                                             positive regulation of binding (GO:0051099)
230                                            regulation of blood coagulation (GO:0030193)
231                              positive regulation of monooxygenase activity (GO:0032770)
232                                       negative regulation of wound healing (GO:0061045)
233                     negative regulation of macromolecule metabolic process (GO:0010605)
234                                 long-chain fatty acid biosynthetic process (GO:0042759)
235                                         regulation of developmental growth (GO:0048638)
236                                                   regulation of cell death (GO:0010941)
237                                                 regulation of angiogenesis (GO:0045765)
238                                        regulation of inflammatory response (GO:0050727)
239                                                   apoptotic cell clearance (GO:0043277)
240                              cellular response to peptide hormone stimulus (GO:0071375)
241             negative regulation of blood vessel endothelial cell migration (GO:0043537)
242                            phosphate-containing compound metabolic process (GO:0006796)
243                           negative regulation of epithelial cell migration (GO:0010633)
244                                          cellular response to amyloid-beta (GO:1904646)
245                                       cyclic-nucleotide-mediated signaling (GO:0019935)
246                                     regulation of receptor internalization (GO:0002090)
247                                                          response to lipid (GO:0033993)
248         regulation of vascular associated smooth muscle cell proliferation (GO:1904705)
249                          regulation of protein-containing complex assembly (GO:0043254)
250                                                              ion transport (GO:0006811)
251                       negative regulation of response to external stimulus (GO:0032102)
252                                              regulation of protein binding (GO:0043393)
253                                regulation of cellular component biogenesis (GO:0044087)
254                                   negative regulation of protein secretion (GO:0050709)
255                                   negative regulation of secretion by cell (GO:1903531)
256                               regulation of nitric-oxide synthase activity (GO:0050999)
257                                   negative regulation of blood coagulation (GO:0030195)
258                                     cellular response to organic substance (GO:0071310)
259                                      cellular response to insulin stimulus (GO:0032869)
260                                                   response to amyloid-beta (GO:1904645)
261              establishment of protein localization to extracellular region (GO:0035592)
262                                   regulation of cellular metabolic process (GO:0031323)
263                                    regulation of protein metabolic process (GO:0051246)
264                                positive regulation of cell differentiation (GO:0045597)
265                        negative regulation of cell projection organization (GO:0031345)
266                            positive regulation of fat cell differentiation (GO:0045600)
267                               negative regulation of BMP signaling pathway (GO:0030514)
268                       negative regulation of cellular biosynthetic process (GO:0031327)
269                                        positive regulation of phagocytosis (GO:0050766)
    Overlap Adjusted.P.value
1     28/51     3.291336e-55
2     29/71     1.134840e-52
3     29/72     1.264418e-52
4     16/24     1.003687e-32
5     15/21     2.203564e-31
6     20/77     5.273224e-31
7     19/70     7.882518e-30
8     12/13     1.520527e-27
9     13/18     2.514128e-27
10    12/17     5.731565e-25
11    15/49     2.711706e-24
12    12/21     2.245426e-23
13    15/59     5.665269e-23
14   17/109     2.748742e-22
15    12/25     3.145271e-22
16      9/9     2.283165e-21
17    12/31     7.414146e-21
18    13/55     1.935295e-19
19     9/12     4.196729e-19
20      8/9     5.374944e-18
21    10/25     1.639871e-17
22     8/10     2.436689e-17
23      7/7     1.679428e-16
24      7/9     5.763376e-15
25    11/64     8.362646e-15
26     7/13     2.508790e-13
27    11/92     5.133855e-13
28    10/64     5.133855e-13
29      6/9     3.296018e-12
30      6/9     3.296018e-12
31      6/9     3.296018e-12
32     6/11     1.693836e-11
33     6/11     1.693836e-11
34     8/41     3.013332e-11
35     6/12     3.013332e-11
36     6/12     3.013332e-11
37     6/12     3.013332e-11
38     7/25     4.654994e-11
39     6/13     5.294950e-11
40      5/6     5.459029e-11
41      5/6     5.459029e-11
42      5/6     5.459029e-11
43     6/15     1.393181e-10
44     7/33     3.496187e-10
45      5/8     4.627510e-10
46      5/8     4.627510e-10
47     7/35     5.017364e-10
48     7/35     5.017364e-10
49     6/19     6.556580e-10
50      5/9     9.553575e-10
51     6/21     1.253116e-09
52    9/104     1.493946e-09
53     6/22     1.653549e-09
54     6/23     2.189811e-09
55     6/25     3.733511e-09
56     8/77     3.733511e-09
57     5/12     5.225810e-09
58    9/124     6.552660e-09
59     6/29     9.279729e-09
60      4/5     9.798195e-09
61     5/14     1.207993e-08
62     5/14     1.207993e-08
63     6/31     1.339781e-08
64    9/136     1.355933e-08
65     6/33     1.942867e-08
66    9/143     2.054367e-08
67     6/34     2.282600e-08
68     5/16     2.390304e-08
69      4/6     2.513038e-08
70      4/6     2.513038e-08
71     7/63     2.556641e-08
72     6/35     2.556641e-08
73    8/105     3.517095e-08
74     6/38     4.196695e-08
75     5/18     4.228478e-08
76     6/39     4.816188e-08
77     7/71     5.609765e-08
78      4/8     1.033779e-07
79      4/8     1.033779e-07
80     7/80     1.258618e-07
81     5/23     1.517283e-07
82     5/26     2.906610e-07
83     4/10     2.936601e-07
84     7/92     3.199662e-07
85    8/143     3.471498e-07
86     4/11     4.442138e-07
87     5/29     4.906437e-07
88     4/13     9.252034e-07
89     4/13     9.252034e-07
90     6/65     9.598111e-07
91     5/35     1.249797e-06
92     4/14     1.249797e-06
93    8/180     1.884951e-06
94     4/16     2.212485e-06
95     6/76     2.336232e-06
96      3/5     3.664395e-06
97      3/5     3.664395e-06
98     5/44     3.827136e-06
99     4/21     6.819051e-06
100     3/6     6.952354e-06
101     3/6     6.952354e-06
102     3/6     6.952354e-06
103    5/50     6.991423e-06
104    4/23     9.554179e-06
105   7/158     1.040987e-05
106    4/24     1.121951e-05
107     3/7     1.146235e-05
108     3/7     1.146235e-05
109    4/27     1.788032e-05
110    5/65     2.452122e-05
111     3/9     2.639634e-05
112     3/9     2.639634e-05
113    4/31     3.060279e-05
114    3/10     3.695601e-05
115    4/33     3.856854e-05
116    4/33     3.856854e-05
117    3/11     4.775659e-05
118    3/11     4.775659e-05
119    3/11     4.775659e-05
120    3/11     4.775659e-05
121    3/11     4.775659e-05
122    5/80     6.182763e-05
123    4/40     7.973389e-05
124    3/13     7.973389e-05
125    3/13     7.973389e-05
126    3/15     1.252218e-04
127   7/242     1.420233e-04
128    4/48     1.598563e-04
129   8/345     1.704405e-04
130    4/49     1.709436e-04
131    3/18     2.111817e-04
132    3/18     2.111817e-04
133    3/18     2.111817e-04
134   8/369     2.646441e-04
135    3/20     2.892290e-04
136    3/21     3.341258e-04
137    3/24     4.974036e-04
138    3/24     4.974036e-04
139    3/25     5.597802e-04
140   5/130     5.616142e-04
141   6/214     6.166972e-04
142    3/27     6.934199e-04
143     2/5     7.406583e-04
144    4/73     7.449454e-04
145    3/28     7.586859e-04
146   5/141     7.898802e-04
147    3/30     9.228897e-04
148    4/80     1.034287e-03
149     2/6     1.049782e-03
150     2/6     1.049782e-03
151     2/6     1.049782e-03
152    3/32     1.085012e-03
153    4/84     1.208000e-03
154     2/7     1.428577e-03
155     2/7     1.428577e-03
156    4/91     1.611630e-03
157    3/37     1.625395e-03
158    3/38     1.749224e-03
159     2/8     1.841132e-03
160     2/8     1.841132e-03
161    3/39     1.855101e-03
162   5/177     2.046657e-03
163     2/9     2.304288e-03
164     2/9     2.304288e-03
165    3/43     2.420344e-03
166    3/44     2.575438e-03
167    2/10     2.756295e-03
168    2/10     2.756295e-03
169    2/10     2.756295e-03
170    2/10     2.756295e-03
171    2/10     2.756295e-03
172    2/11     3.303347e-03
173    2/11     3.303347e-03
174    2/11     3.303347e-03
175    3/49     3.337798e-03
176    3/49     3.337798e-03
177   4/114     3.341630e-03
178    2/12     3.781332e-03
179    2/12     3.781332e-03
180    2/12     3.781332e-03
181    2/12     3.781332e-03
182    2/12     3.781332e-03
183    3/52     3.822266e-03
184    3/54     4.245657e-03
185    2/13     4.386588e-03
186   4/125     4.489058e-03
187    3/56     4.645735e-03
188    2/14     4.945884e-03
189    2/14     4.945884e-03
190    2/14     4.945884e-03
191    2/14     4.945884e-03
192    3/58     4.985945e-03
193    3/58     4.985945e-03
194    2/15     5.548828e-03
195    2/15     5.548828e-03
196    2/15     5.548828e-03
197   6/345     5.596173e-03
198    3/61     5.626994e-03
199    3/63     6.147256e-03
200    2/16     6.200855e-03
201    3/66     6.840974e-03
202    2/17     6.840974e-03
203    2/17     6.840974e-03
204    2/17     6.840974e-03
205    2/17     6.840974e-03
206    3/67     7.093595e-03
207    2/18     7.532008e-03
208    2/18     7.532008e-03
209    2/18     7.532008e-03
210    2/19     8.241667e-03
211    2/19     8.241667e-03
212    2/19     8.241667e-03
213    2/19     8.241667e-03
214    2/20     9.094348e-03
215    2/21     9.982653e-03
216    2/22     1.085553e-02
217    2/22     1.085553e-02
218    3/83     1.230478e-02
219    3/83     1.230478e-02
220    2/24     1.273659e-02
221   6/417     1.291939e-02
222    3/85     1.298477e-02
223    3/86     1.336097e-02
224    2/25     1.350640e-02
225    2/25     1.350640e-02
226   4/180     1.399465e-02
227    3/89     1.440735e-02
228    2/26     1.440735e-02
229    3/90     1.479001e-02
230    2/27     1.539039e-02
231    2/28     1.646589e-02
232    2/29     1.757027e-02
233   4/194     1.771224e-02
234    2/30     1.862299e-02
235    2/31     1.977865e-02
236   3/102     2.036757e-02
237   4/203     2.042828e-02
238   4/206     2.141587e-02
239    2/33     2.198466e-02
240   3/106     2.228428e-02
241    2/34     2.311351e-02
242   4/212     2.328380e-02
243    2/35     2.415927e-02
244    2/35     2.415927e-02
245    2/36     2.531623e-02
246    2/36     2.531623e-02
247   3/114     2.646649e-02
248    2/37     2.648825e-02
249   3/116     2.742785e-02
250   3/116     2.742785e-02
251   3/118     2.842391e-02
252   3/118     2.842391e-02
253    2/39     2.842391e-02
254    2/39     2.842391e-02
255    2/39     2.842391e-02
256    2/39     2.842391e-02
257    2/40     2.973753e-02
258   3/123     3.119488e-02
259   3/129     3.533580e-02
260    2/44     3.533580e-02
261    2/46     3.834204e-02
262    2/47     3.980515e-02
263    2/48     4.128649e-02
264   4/258     4.183273e-02
265    2/49     4.262417e-02
266    2/51     4.583569e-02
267    2/52     4.720898e-02
268    2/52     4.720898e-02
269    2/53     4.877011e-02
                                                                                                                                                                       Genes
1         SCARB1;CETP;LCAT;LIPC;NPC1L1;LIPG;CD36;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;STARD3;ABCG5;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;APOC2;APOC1
2   SCARB1;CETP;MTTP;PCSK9;LPL;LCAT;ABCB11;CYP7A1;LIPC;LIPG;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;ABCG5;EPHX2;APOA2;APOA1;APOC3;APOA4;APOA5;SOAT1;NPC1;NPC2;SOAT2;APOC2;ANGPTL3
3   SCARB1;CETP;MTTP;PCSK9;LPL;LCAT;ABCB11;CYP7A1;LIPC;LIPG;APOE;LDLRAP1;APOB;LDLR;ABCA1;ABCG8;ABCG5;EPHX2;APOA2;APOA1;APOC3;APOA4;APOA5;SOAT1;NPC1;NPC2;SOAT2;APOC2;ANGPTL3
4                                                                              ABCA1;ABCG8;SCARB1;ABCG5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;NPC2;SOAT2;APOC2;APOC1;APOE
5                                                                                    ABCG8;CETP;STARD3;ABCG5;OSBPL5;APOA2;APOA1;LCAT;NPC1;NPC1L1;NPC2;CD36;APOB;LDLRAP1;LDLR
6                                              ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;HMGCR;APOA5;CYP7A1;CYP27A1;SOAT1;SOAT2;NPC1L1;ANGPTL3;APOE;DHCR7;LDLRAP1;APOB
7                                                      ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;HMGCR;LIPA;CYP7A1;CYP27A1;SOAT1;SOAT2;ANGPTL3;APOE;DHCR7;LDLRAP1;APOB
8                                                                                                           CETP;LIPC;APOC2;APOA2;APOA1;APOC3;LCAT;LPL;APOA4;APOE;APOB;APOA5
9                                                                                                   CETP;SCARB1;APOA2;APOA1;APOC3;LCAT;APOA4;LIPC;APOC2;APOC1;LIPG;APOE;PLTP
10                                                                                                       ABCA1;CETP;SCARB1;LIPC;APOC2;LIPG;APOA2;APOA1;APOC3;LCAT;APOA4;APOE
11                                                                             ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;LCAT;APOA4;CYP27A1;SOAT1;SOAT2;ANGPTL3;APOE;LDLRAP1;APOB
12                                                                                                   LIPC;SORT1;APOC2;APOH;APOC1;ANGPTL3;APOA1;APOC3;LPL;APOA4;ANGPTL4;APOA5
13                                                                                    ABCA1;SCARB1;OSBPL5;MTTP;APOA2;APOA1;APOC3;APOA4;APOA5;NPC2;APOC2;APOC1;APOE;LDLR;PLTP
14                                                                        ABCA1;SCARB1;ABCG8;CETP;ABCG5;OSBPL5;MTTP;APOA1;APOA4;ABCB11;APOA5;NPC2;NPC1L1;CD36;APOE;LDLR;PLTP
15                                                                                                   CETP;SCARB1;LIPC;APOC2;ANGPTL3;LPL;APOA1;APOC3;APOA4;APOE;ANGPTL4;APOA5
16                                                                                                                           CETP;LIPC;APOC2;APOA1;LCAT;LPL;APOA4;APOE;APOA5
17                                                                                                   CETP;SCARB1;LIPC;APOC2;ANGPTL3;LPL;APOA1;APOC3;APOA4;APOE;ANGPTL4;APOA5
18                                                                                                      CETP;APOA2;LPL;APOC3;APOA5;LIPC;LIPI;APOH;LIPG;APOC1;APOE;APOB;LPIN3
19                                                                                                                      ABCA1;APOC2;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOA5
20                                                                                                                               APOC2;APOA2;APOA1;APOC3;LPL;APOA4;APOE;APOB
21                                                                                                                   CETP;LRP1;APOC2;LIPG;APOC1;APOA2;TSPO;APOA1;APOA4;APOA5
22                                                                                                                              APOC2;MTTP;APOA2;APOA1;APOC3;APOA4;APOE;APOB
23                                                                                                                                     LIPC;APOC2;APOC1;APOC3;APOE;APOB;LDLR
24                                                                                                                                  NPC1L1;MTTP;APOA2;APOA1;APOA4;APOE;APOA5
25                                                                                                               LRP1;ADH1B;APOC2;APOA2;APOA1;LPL;APOC3;APOA4;LRP2;APOE;APOB
26                                                                                                                                APOC1;APOA2;APOA1;APOA4;APOE;LDLRAP1;APOA5
27                                                                                                               LRP1;ADH1B;APOC2;APOA2;APOA1;LPL;APOC3;APOA4;LRP2;APOE;APOB
28                                                                                                               ABCA1;CETP;LIPG;ANGPTL3;APOA1;APOA4;PPARG;APOE;ABCB11;APOA5
29                                                                                                                                   SORT1;APOC1;ANGPTL3;APOA2;APOC3;ANGPTL4
30                                                                                                                                        APOC1;APOA2;APOA1;APOA4;APOE;APOA5
31                                                                                                                                        ABCG8;ABCG5;NPC1L1;SOAT2;CD36;LDLR
32                                                                                                                                       ABCG8;ABCG5;APOC2;APOC1;APOA2;APOC3
33                                                                                                                                        ABCG8;ABCG5;NPC1L1;SOAT2;CD36;LDLR
34                                                                                                                                CETP;APOH;APOC1;APOA2;LPL;APOC3;APOE;APOA5
35                                                                                                                                        APOC1;APOA2;APOA1;APOA4;APOE;APOA5
36                                                                                                                                      ABCA1;CETP;LIPG;ANGPTL3;APOA1;ABCB11
37                                                                                                                                         SOAT1;SOAT2;APOC1;MTTP;APOC3;APOB
38                                                                                                                                APOA2;ANGPTL3;APOA1;APOA4;PPARG;APOE;APOA5
39                                                                                                                                        ABCA1;APOA2;APOA1;APOA4;APOE;APOA5
40                                                                                                                                         SORT1;APOC1;ANGPTL3;APOC3;ANGPTL4
41                                                                                                                                            LRPAP1;APOC2;APOC1;APOC3;PCSK9
42                                                                                                                                             APOC2;APOA2;APOA1;APOC3;APOA5
43                                                                                                                                         ABCA1;NPC1;STAR;NPC2;LDLRAP1;LDLR
44                                                                                                                                      CETP;LRP1;LIPG;APOA1;PPARG;APOE;PLTP
45                                                                                                                                             ABCG8;ABCG5;APOA1;APOA4;APOA5
46                                                                                                                                              APOC2;APOH;APOA1;APOA4;APOA5
47                                                                                                                                      LIPC;LIPI;LIPG;APOA2;LPL;APOC3;APOA5
48                                                                                                                                  SCARB1;APOC2;APOA1;APOA4;APOE;LDLR;APOA5
49                                                                                                                                       SCARB1;APOC2;APOA1;APOA4;APOA5;LDLR
50                                                                                                                                              APOC2;APOH;APOA1;APOA4;APOA5
51                                                                                                                                    APOC1;APOA2;ANGPTL3;APOC3;ABCB11;APOA5
52                                                                                                                     CYP27A1;STARD3;NPC1;STAR;TSPO;LRP2;ABCB11;LIPA;CYP7A1
53                                                                                                                                     APOC2;APOA2;ANGPTL3;APOA1;APOA4;APOA5
54                                                                                                                                            LIPC;LIPI;LIPG;APOC3;LPL;APOA5
55                                                                                                                                         SCARB1;OSBPL5;NPC2;MTTP;LDLR;PLTP
56                                                                                                                              CETP;LIPC;APOA2;APOA1;LCAT;APOA4;APOA5;LPIN3
57                                                                                                                                             APOC2;APOA1;APOC3;APOA4;APOA5
58                                                                                                                        LIPC;LIPI;LIPG;ANGPTL3;LPL;PPARG;CD36;ABCB11;LPIN3
59                                                                                                                                       APOC2;APOC1;APOA1;APOC3;APOA4;APOA5
60                                                                                                                                                     LRP1;APOC1;TSPO;APOA4
61                                                                                                                                                 ABCA1;LPL;PPARG;CD36;LDLR
62                                                                                                                                                  CETP;LIPC;APOA2;APOB;LPA
63                                                                                                                                            ABCA1;CETP;LPL;PPARG;CD36;APOB
64                                                                                                                        ABCA1;ABCG8;CETP;ABCG5;APOA1;APOA4;LRP2;APOA5;PLTP
65                                                                                                                                           CETP;LRP1;APOA1;PPARG;APOE;PLTP
66                                                                                                                        SCARB1;LRP1;APOA1;CD36;LRP2;APOE;LDLRAP1;APOB;LDLR
67                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
68                                                                                                                                               ABCA1;SCARB1;LPL;PPARG;APOB
69                                                                                                                                                    SCARB1;APOA1;CD36;LDLR
70                                                                                                                                                    SCARB1;APOA1;CD36;LDLR
71                                                                                                                                  CYP27A1;LIPC;LIPI;LIPG;LPL;ABCB11;CYP7A1
72                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
73                                                                                                                            APOC1;APOA2;PCSK9;APOA1;APOA4;PPARG;APOE;APOA5
74                                                                                                                                      NPC1L1;APOA1;APOA4;HMGCR;DHCR7;APOA5
75                                                                                                                                             APOC2;APOA1;APOA4;PPARG;APOA5
76                                                                                                                                    LRPAP1;APOC2;APOC1;APOC3;LDLRAP1;APOA5
77                                                                                                                                      FADS3;LIPC;LIPI;EPHX2;LIPG;LPL;FADS1
78                                                                                                                                                    ABCA1;APOA1;APOC3;APOE
79                                                                                                                                                   APOC2;APOA1;APOA4;APOA5
80                                                                                                                                       LIPC;STAR;LIPI;LIPG;LPL;HMGCR;FADS1
81                                                                                                                                                LRP1;APOA1;PPARG;APOE;PLTP
82                                                                                                                                            LRPAP1;APOC2;APOC1;PCSK9;APOC3
83                                                                                                                                                      LRP1;PPARG;CD36;APOB
84                                                                                                                                  NPC2;APOC2;APOC1;APOC3;PPARG;HMGCR;DHCR7
85                                                                                                                            NPC1;ADH1B;ANGPTL3;LPL;PPARG;VDAC1;CD36;ABCB11
86                                                                                                                                                      LRP1;PPARG;CD36;APOB
87                                                                                                                                                  LIPC;LIPI;LIPG;LPL;APOA4
88                                                                                                                                                   APOC2;APOA1;APOA4;APOA5
89                                                                                                                                                      ABCA1;NPC1;STAR;NPC2
90                                                                                                                                    CYP27A1;STAR;HMGCR;DHCR7;ABCB11;CYP7A1
91                                                                                                                                               STAR;APOA1;APOA4;APOE;APOA5
92                                                                                                                                                    LIPC;APOA2;ANGPTL3;LPL
93                                                                                                                             SCARB1;STAR;APOC2;APOA1;APOA4;CD36;APOA5;LDLR
94                                                                                                                                                    LRPAP1;LRP1;HMGCR;APOE
95                                                                                                                                         LIPG;APOA2;ANGPTL3;LPL;LCAT;FADS1
96                                                                                                                                                         APOA1;APOA4;APOA5
97                                                                                                                                                            LRP1;LRP2;LDLR
98                                                                                                                                               APOA1;APOA4;APOE;CD36;APOA5
99                                                                                                                                                  EPHX2;APOE;LDLRAP1;KPNB1
100                                                                                                                                                        SOAT1;SOAT2;PPARG
101                                                                                                                                                          SCARB1;LPL;APOB
102                                                                                                                                                        SOAT1;SOAT2;PPARG
103                                                                                                                                        CYP27A1;HMGCR;DHCR7;ABCB11;CYP7A1
104                                                                                                                                                   STAR;EPHX2;APOE;ABCB11
105                                                                                                                                    VAPA;VAPB;APOA2;APOA1;LCAT;APOE;LPIN3
106                                                                                                                                                  APOC2;APOC1;APOA2;APOC3
107                                                                                                                                                           LRP1;LRP2;LDLR
108                                                                                                                                                         LRPAP1;LRP1;APOE
109                                                                                                                                                 LIPG;APOA2;ANGPTL3;LPIN3
110                                                                                                                                          CETP;ANGPTL3;APOA4;PPARG;ABCB11
111                                                                                                                                                      CYP27A1;APOE;CYP7A1
112                                                                                                                                                      CYP27A1;APOE;CYP7A1
113                                                                                                                                                   STARD3;STAR;TSPO;DHCR7
114                                                                                                                                                      APOC3;PCSK9;LDLRAP1
115                                                                                                                                               CYP27A1;NPC1;ABCB11;CYP7A1
116                                                                                                                                                   APOA2;LCAT;APOA1;LPIN3
117                                                                                                                                                      CYP27A1;APOE;CYP7A1
118                                                                                                                                                       LIPG;ANGPTL3;APOA2
119                                                                                                                                                       LRP1;APOC2;ANGPTL3
120                                                                                                                                                            LRP1;LPL;APOB
121                                                                                                                                                          CETP;APOA1;APOE
122                                                                                                                                              CETP;APOA1;LCAT;APOA4;APOA5
123                                                                                                                                                  ABCG8;ABCG5;NPC2;ABCB11
124                                                                                                                                                         ABCA1;CETP;PPARG
125                                                                                                                                                           CETP;LRP1;APOE
126                                                                                                                                                         STARD3;STAR;TSPO
127                                                                                                                                    NPC1;VAPA;VAPB;LRP2;LDLRAP1;APOB;LDLR
128                                                                                                                                                  LRP1;APOE;LDLRAP1;APOA5
129                                                                                                                              GHR;ABCA1;LRPAP1;LRP1;APOC2;CD36;APOE;APOA5
130                                                                                                                                                  APOC1;APOA2;APOC3;HMGCR
131                                                                                                                                                        APOC1;APOA2;APOC3
132                                                                                                                                                         SCARB1;NPC2;PLTP
133                                                                                                                                                            LPL;CD36;APOB
134                                                                                                                                ABCA1;LRP1;MTTP;PPARG;CD36;LRP2;APOE;APOB
135                                                                                                                                                          PPARG;APOE;CD36
136                                                                                                                                                          SCARB1;LPL;APOB
137                                                                                                                                                         STARD3;STAR;TSPO
138                                                                                                                                                       LIPG;APOA2;ANGPTL3
139                                                                                                                                                        APOC2;APOC1;APOC3
140                                                                                                                                              PPARG;HMGCR;APOE;DHCR7;LDLR
141                                                                                                                                     LRPAP1;APOA2;APOA1;APOC3;APOA4;HMGCR
142                                                                                                                                                    CYP27A1;ABCB11;CYP7A1
143                                                                                                                                                               PCSK9;APOE
144                                                                                                                                                   ABCA1;APOA1;APOC3;APOE
145                                                                                                                                                        EPHX2;APOE;ABCB11
146                                                                                                                                             APOC2;APOA1;APOA4;APOE;APOA5
147                                                                                                                                                        LRP1;ANGPTL3;LRP2
148                                                                                                                                                  APOA2;APOA1;APOC3;APOA4
149                                                                                                                                                                NPC2;PLTP
150                                                                                                                                                             LIPG;LDLRAP1
151                                                                                                                                                                CETP;LIPG
152                                                                                                                                                          PPARG;APOE;CD36
153                                                                                                                                                  SORT1;PCSK9;PPARG;LPIN3
154                                                                                                                                                            ABCB11;CYP7A1
155                                                                                                                                                               PCSK9;APOE
156                                                                                                                                                    LRP1;APOA2;APOA1;APOE
157                                                                                                                                                          APOH;PPARG;APOE
158                                                                                                                                                          APOH;PPARG;APOE
159                                                                                                                                                                APOE;LDLR
160                                                                                                                                                             LRPAP1;HMGCR
161                                                                                                                                                        LRPAP1;PCSK9;APOE
162                                                                                                                                              LIPI;APOA2;APOA1;LCAT;LPIN3
163                                                                                                                                                              APOA2;APOA1
164                                                                                                                                                              FADS3;FADS1
165                                                                                                                                                         TSPO;VDAC2;VDAC1
166                                                                                                                                                      PCSK9;LDLRAP1;APOA5
167                                                                                                                                                              ABCA1;PPARG
168                                                                                                                                                              STAR;CYP7A1
169                                                                                                                                                              APOA2;APOA1
170                                                                                                                                                              MYLIP;PCSK9
171                                                                                                                                                              MYLIP;PCSK9
172                                                                                                                                                              APOA2;APOA1
173                                                                                                                                                                VAPA;APOE
174                                                                                                                                                              SCARB1;LDLR
175                                                                                                                                                        LRP1;CD36;LDLRAP1
176                                                                                                                                                         APOA2;LPL;CYP7A1
177                                                                                                                                                    LRP1;APOC2;APOE;APOA5
178                                                                                                                                                              APOC1;APOC3
179                                                                                                                                                                APOH;APOE
180                                                                                                                                                              APOA2;APOA1
181                                                                                                                                                              ALDH2;ADH1B
182                                                                                                                                                                APOE;LDLR
183                                                                                                                                                          HMGCR;APOE;LDLR
184                                                                                                                                                        FADS3;FADS2;FADS1
185                                                                                                                                                              FADS2;FADS1
186                                                                                                                                                    ITIH4;APOH;APOA1;CD36
187                                                                                                                                                        APOC2;APOC1;APOC3
188                                                                                                                                                                APOE;LDLR
189                                                                                                                                                                APOH;APOE
190                                                                                                                                                                APOE;CD36
191                                                                                                                                                              NPC1L1;CD36
192                                                                                                                                                        LRP1;CD36;LDLRAP1
193                                                                                                                                                       SCARB1;APOA2;APOA1
194                                                                                                                                                                APOE;LDLR
195                                                                                                                                                                LPL;PPARG
196                                                                                                                                                              SCARB1;LDLR
197                                                                                                                                        APOA2;PCSK9;APOA1;APOE;APOB;APOA5
198                                                                                                                                                         LRPAP1;LRP1;APOE
199                                                                                                                                                         APOA1;APOA4;CD36
200                                                                                                                                                            PPARG;LDLRAP1
201                                                                                                                                                          PCSK9;LPL;FADS1
202                                                                                                                                                              APOA2;APOA1
203                                                                                                                                                              APOC1;APOC3
204                                                                                                                                                               APOE;KPNB1
205                                                                                                                                                              STAR;CYP7A1
206                                                                                                                                                      APOA2;ANGPTL3;APOA5
207                                                                                                                                                             APOE;LDLRAP1
208                                                                                                                                                                APOE;CD36
209                                                                                                                                                              SCARB1;APOE
210                                                                                                                                                              ALDH2;ADH1B
211                                                                                                                                                               PCSK9;APOE
212                                                                                                                                                                 LPL;CD36
213                                                                                                                                                                APOE;LDLR
214                                                                                                                                                              ABCA1;PPARG
215                                                                                                                                                              FADS2;FADS1
216                                                                                                                                                              APOC1;APOC3
217                                                                                                                                                                 LPL;APOB
218                                                                                                                                                           APOA1;LPL;CD36
219                                                                                                                                                        FADS2;EPHX2;FADS1
220                                                                                                                                                              APOA2;APOA1
221                                                                                                                                        APOA2;PCSK9;APOA1;APOE;APOB;APOA5
222                                                                                                                                                         APOA1;PPARG;APOE
223                                                                                                                                                           LRP1;CD36;LRP2
224                                                                                                                                                              MYLIP;PCSK9
225                                                                                                                                                                APOA2;LPL
226                                                                                                                                                    ITIH4;APOH;APOA1;CD36
227                                                                                                                                                         SCARB1;APOH;APOE
228                                                                                                                                                               HMGCR;APOE
229                                                                                                                                                          LRP1;PPARG;APOE
230                                                                                                                                                                APOH;APOE
231                                                                                                                                                              SCARB1;APOE
232                                                                                                                                                                APOH;APOE
233                                                                                                                                                   LRPAP1;PCSK9;APOE;LDLR
234                                                                                                                                                              EPHX2;FADS1
235                                                                                                                                                                 GHR;APOE
236                                                                                                                                                         LRPAP1;LRP1;CD36
237                                                                                                                                               APOH;ANGPTL3;PPARG;ANGPTL4
238                                                                                                                                                     APOA1;LPL;PPARG;APOE
239                                                                                                                                                              SCARB1;LRP1
240                                                                                                                                                        PCSK9;PPARG;LPIN3
241                                                                                                                                                               PPARG;APOE
242                                                                                                                                                   EPHX2;ANGPTL3;LPL;LCAT
243                                                                                                                                                                APOH;APOE
244                                                                                                                                                                LRP1;CD36
245                                                                                                                                                                APOE;CD36
246                                                                                                                                                             LRPAP1;PCSK9
247                                                                                                                                                         APOA4;PPARG;CD36
248                                                                                                                                                            PPARG;LDLRAP1
249                                                                                                                                                          ABCA1;CD36;APOE
250                                                                                                                                                         TSPO;VDAC2;VDAC1
251                                                                                                                                                         APOA1;PPARG;APOE
252                                                                                                                                                      LRPAP1;LRP1;LDLRAP1
253                                                                                                                                                                APOE;CD36
254                                                                                                                                                               HMGCR;APOE
255                                                                                                                                                               HMGCR;APOE
256                                                                                                                                                              SCARB1;APOE
257                                                                                                                                                                APOH;APOE
258                                                                                                                                                         GHR;LRP2;LDLRAP1
259                                                                                                                                                        PCSK9;PPARG;LPIN3
260                                                                                                                                                                LRP1;CD36
261                                                                                                                                                               ABCA1;MTTP
262                                                                                                                                                              NPC2;ABCB11
263                                                                                                                                                                APOE;LDLR
264                                                                                                                                                      LPL;PPARG;CD36;APOB
265                                                                                                                                                               MYLIP;APOE
266                                                                                                                                                                LPL;PPARG
267                                                                                                                                                               PPARG;LRP2
268                                                                                                                                                              APOC1;APOC3
269                                                                                                                                                              APOA2;APOA1
[1] "GO_Cellular_Component_2021"
                                                          Term Overlap
1               high-density lipoprotein particle (GO:0034364)   12/19
2                                     chylomicron (GO:0042627)   10/10
3   triglyceride-rich plasma lipoprotein particle (GO:0034385)   10/15
4           very-low-density lipoprotein particle (GO:0034361)   10/15
5                                  early endosome (GO:0005769)  13/266
6                low-density lipoprotein particle (GO:0034362)     4/7
7     spherical high-density lipoprotein particle (GO:0034366)     4/8
8                     endoplasmic reticulum lumen (GO:0005788)  10/285
9                      endocytic vesicle membrane (GO:0030666)   8/158
10                 endoplasmic reticulum membrane (GO:0005789)  14/712
11                                       lysosome (GO:0005764)  11/477
12                                  lytic vacuole (GO:0000323)   8/219
13                              endocytic vesicle (GO:0030139)   7/189
14     clathrin-coated endocytic vesicle membrane (GO:0030669)    5/69
15              clathrin-coated endocytic vesicle (GO:0045334)    5/85
16               clathrin-coated vesicle membrane (GO:0030665)    5/90
17                             lysosomal membrane (GO:0005765)   8/330
18                  intracellular organelle lumen (GO:0070013)  12/848
19       collagen-containing extracellular matrix (GO:0062023)   8/380
20                        endocytic vesicle lumen (GO:0071682)    3/21
21                       organelle outer membrane (GO:0031968)   5/142
22 ATP-binding cassette (ABC) transporter complex (GO:0043190)     2/6
23                         lytic vacuole membrane (GO:0098852)   6/267
24                              endosome membrane (GO:0010008)   6/325
25                   mitochondrial outer membrane (GO:0005741)   4/126
26                   platelet dense granule lumen (GO:0031089)    2/14
27                                        vesicle (GO:0031982)   5/226
28                          endolysosome membrane (GO:0036020)    2/17
29                    basolateral plasma membrane (GO:0016323)   4/151
30                   cytoplasmic vesicle membrane (GO:0030659)   6/380
31                         platelet dense granule (GO:0042827)    2/21
32                                lysosomal lumen (GO:0043202)    3/86
33                                   endolysosome (GO:0036019)    2/25
34                        secretory granule lumen (GO:0034774)   5/316
35                          brush border membrane (GO:0031526)    2/37
36                         mitochondrial envelope (GO:0005740)   3/127
37       extracellular membrane-bounded organelle (GO:0065010)    2/56
38                          extracellular vesicle (GO:1903561)    2/59
39                                 vacuolar lumen (GO:0005775)   3/161
40                                        caveola (GO:0005901)    2/60
   Adjusted.P.value
1      5.261200e-24
2      6.209923e-24
3      9.203512e-21
4      9.203512e-21
5      1.246888e-10
6      7.731648e-08
7      1.321996e-07
8      6.153361e-07
9      8.075627e-07
10     1.200431e-06
11     6.211359e-06
12     7.353950e-06
13     2.938912e-05
14     2.938912e-05
15     7.671871e-05
16     9.509306e-05
17     1.065748e-04
18     1.698308e-04
19     2.574496e-04
20     2.574496e-04
21     6.432532e-04
22     8.164449e-04
23     1.420908e-03
24     3.827987e-03
25     3.898444e-03
26     4.116966e-03
27     4.199032e-03
28     5.675277e-03
29     6.551600e-03
30     6.795770e-03
31     7.845057e-03
32     1.043474e-02
33     1.043474e-02
34     1.423039e-02
35     2.126720e-02
36     2.763580e-02
37     4.460396e-02
38     4.700422e-02
39     4.700422e-02
40     4.700422e-02
                                                                                Genes
1                  CETP;APOC2;APOH;APOC1;APOA2;APOA1;APOC3;LCAT;APOA4;APOE;APOA5;PLTP
2                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
3                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
4                            APOC2;APOH;APOC1;APOA2;APOA1;APOC3;APOA4;APOE;APOB;APOA5
5          LRP1;SORT1;APOA2;PCSK9;APOA1;APOC3;APOA4;APOC2;LIPG;APOE;LDLRAP1;APOB;LDLR
6                                                               APOC2;APOE;APOB;APOA5
7                                                             APOC2;APOA2;APOA1;APOC3
8                            LRPAP1;LIPC;MTTP;APOA2;PCSK9;APOA1;APOA4;APOE;APOB;APOA5
9                                        SCARB1;LRP1;CD36;LRP2;APOE;LDLRAP1;APOB;LDLR
10 ABCA1;STARD3;HMGCR;CYP7A1;FADS2;NCEH1;SOAT1;VAPA;SOAT2;VAPB;DHCR7;APOB;FADS1;LPIN3
11                       SCARB1;STARD3;NPC1;LRP1;NPC2;SORT1;PCSK9;LRP2;APOB;LIPA;LDLR
12                                        SCARB1;NPC1;NPC2;SORT1;PCSK9;LRP2;LIPA;LDLR
13                                             ABCA1;SCARB1;LRP1;APOA1;CD36;APOE;APOB
14                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
15                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
16                                                        LRP2;APOE;LDLRAP1;APOB;LDLR
17                                       SCARB1;STARD3;NPC1;LRP1;VAPA;PCSK9;LRP2;LDLR
18              CYP27A1;LIPC;ALDH2;MTTP;APOA2;PCSK9;APOA1;APOA4;APOE;APOB;APOA5;KPNB1
19                                  ITIH4;APOH;ANGPTL3;APOA1;APOC3;APOA4;ANGPTL4;APOE
20                                                                    APOA1;APOE;APOB
21                                                       VDAC3;TSPO;VDAC2;VDAC1;DHCR7
22                                                                        ABCG8;ABCG5
23                                                 SCARB1;STARD3;NPC1;LRP1;PCSK9;LRP2
24                                                STARD3;SORT1;PCSK9;ABCB11;APOB;LDLR
25                                                             VDAC3;TSPO;VDAC2;VDAC1
26                                                                         ITIH4;APOH
27                                                         ABCA1;CETP;VAPA;APOA1;APOE
28                                                                         PCSK9;LDLR
29                                                              LRP1;MTTP;ABCB11;LDLR
30                                                   SCARB1;LRP1;SORT1;CD36;APOB;LDLR
31                                                                         ITIH4;APOH
32                                                                     NPC2;APOB;LIPA
33                                                                         PCSK9;LDLR
34                                                        ITIH4;NPC2;APOH;APOA1;KPNB1
35                                                                          LRP2;CD36
36                                                                   STAR;VDAC2;VDAC1
37                                                                         APOA1;APOE
38                                                                         APOA1;APOE
39                                                                     NPC2;APOB;LIPA
40                                                                        SCARB1;CD36
[1] "GO_Molecular_Function_2021"
                                                                                                                                                                                Term
1                                                                                                                                                   cholesterol binding (GO:0015485)
2                                                                                                                                                        sterol binding (GO:0032934)
3                                                                                                                                         cholesterol transfer activity (GO:0120020)
4                                                                                                                                              sterol transfer activity (GO:0120015)
5                                                                                                                                 lipoprotein particle receptor binding (GO:0070325)
6                                                                                                       phosphatidylcholine-sterol O-acyltransferase activator activity (GO:0060228)
7                                                                                                                                          lipoprotein particle binding (GO:0071813)
8                                                                                                                              low-density lipoprotein particle binding (GO:0030169)
9                                                                                                                                             lipase inhibitor activity (GO:0055102)
10                                                                                                                    low-density lipoprotein particle receptor binding (GO:0050750)
11                                                                                                                                          lipoprotein lipase activity (GO:0004465)
12                                                                                                                                                 amyloid-beta binding (GO:0001540)
13                                                                                                                                         triglyceride lipase activity (GO:0004806)
14                                                                                                                                                      lipase activity (GO:0016298)
15                                                                                                                                                       lipase binding (GO:0035473)
16                                                                                                                                           apolipoprotein A-I binding (GO:0034186)
17                                                                                                                                      apolipoprotein receptor binding (GO:0034190)
18                                                                                                                                            phospholipase A1 activity (GO:0008970)
19                                                                                                                                            lipase activator activity (GO:0060229)
20                                                                                                                                  carboxylic ester hydrolase activity (GO:0052689)
21                                                                                                                                 voltage-gated anion channel activity (GO:0008308)
22                                                                                                                                   voltage-gated ion channel activity (GO:0005244)
23                                                                                                                             phosphatidylcholine transporter activity (GO:0008525)
24                                                                                                                                  protein heterodimerization activity (GO:0046982)
25                                                                                                                                phosphatidylcholine transfer activity (GO:0120019)
26                                                                                                                                               phospholipase activity (GO:0004620)
27                                                                                                                                           O-acyltransferase activity (GO:0008374)
28                                                                                                                            high-density lipoprotein particle binding (GO:0008035)
29                                                                                                                                           ceramide transfer activity (GO:0120017)
30                                                                                                                                         clathrin heavy chain binding (GO:0032050)
31                                                                                                                                     phospholipase inhibitor activity (GO:0004859)
32                                                                                                                                    protein homodimerization activity (GO:0042803)
33                                                                                                                                               anion channel activity (GO:0005253)
34                                                                                                                                       phospholipid transfer activity (GO:0120014)
35 oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen (GO:0016709)
36                                                                                                                                         steroid hydroxylase activity (GO:0008395)
37                                                                                                                                                         NADP binding (GO:0050661)
38                                                                                                                                         peptidase inhibitor activity (GO:0030414)
39                                                                                                                                     endopeptidase regulator activity (GO:0061135)
   Overlap Adjusted.P.value
1    17/50     2.288174e-28
2    17/60     4.390322e-27
3    11/18     5.744987e-22
4    11/19     1.020647e-21
5    10/28     4.677379e-17
6      6/6     3.484605e-14
7     8/24     2.055320e-13
8     6/17     3.140441e-10
9     5/10     1.805253e-09
10    6/23     2.016360e-09
11     4/5     9.113232e-09
12    7/80     1.430772e-07
13    5/23     1.612041e-07
14    6/49     1.859889e-07
15     3/5     3.788104e-06
16     3/5     3.788104e-06
17     3/6     7.112969e-06
18    3/10     3.991032e-05
19    3/12     6.897596e-05
20    5/96     1.501407e-04
21    3/16     1.501407e-04
22    3/16     1.501407e-04
23    3/18     2.082322e-04
24   6/188     3.016202e-04
25     2/5     7.035280e-04
26    4/73     7.035280e-04
27    3/30     8.567836e-04
28     2/6     9.653527e-04
29     2/8     1.732107e-03
30     2/9     2.147965e-03
31    2/10     2.592555e-03
32   8/636     7.345938e-03
33    3/68     7.879809e-03
34    2/22     1.181407e-02
35    2/36     2.870121e-02
36    2/36     2.870121e-02
37    2/36     2.870121e-02
38    2/40     3.429432e-02
39    2/46     4.375411e-02
                                                                                                Genes
1  ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;TSPO;VDAC2;VDAC1
2  ABCA1;STARD3;CETP;OSBPL5;APOA2;APOA1;APOC3;APOA4;APOA5;NPC1;SOAT1;STAR;NPC2;SOAT2;TSPO;VDAC2;VDAC1
3                                        ABCA1;ABCG8;CETP;ABCG5;NPC2;MTTP;APOA2;APOA1;APOA4;APOB;PLTP
4                                        ABCA1;ABCG8;CETP;ABCG5;NPC2;MTTP;APOA2;APOA1;APOA4;APOB;PLTP
5                                         LRPAP1;LRP1;APOA2;PCSK9;APOA1;APOC3;APOE;APOB;LDLRAP1;APOA5
6                                                                  APOC1;APOA2;APOA1;APOA4;APOE;APOA5
7                                                          SCARB1;LIPC;APOA2;LPL;PCSK9;CD36;LDLR;PLTP
8                                                                    SCARB1;LIPC;PCSK9;CD36;LDLR;PLTP
9                                                                     APOC2;APOC1;ANGPTL3;APOA2;APOC3
10                                                               LRPAP1;PCSK9;APOE;APOB;LDLRAP1;APOA5
11                                                                                 LIPC;LIPI;LIPG;LPL
12                                                           LRPAP1;LRP1;APOA1;CD36;APOE;LDLRAP1;LDLR
13                                                                            LIPC;LIPI;LIPG;LCAT;LPL
14                                                                       LIPC;LIPI;LIPG;LCAT;LPL;LIPA
15                                                                                  LRPAP1;APOB;APOA5
16                                                                                  ABCA1;SCARB1;LCAT
17                                                                                  APOA2;APOA1;PCSK9
18                                                                                      LIPC;LIPG;LPL
19                                                                                   APOC2;APOH;APOA5
20                                                                            LIPC;LIPG;LPL;LCAT;LIPA
21                                                                                  VDAC3;VDAC2;VDAC1
22                                                                                  VDAC3;VDAC2;VDAC1
23                                                                                    ABCA1;MTTP;PLTP
24                                                                   ABCG8;ABCG5;VAPA;VAPB;MTTP;APOA2
25                                                                                          MTTP;PLTP
26                                                                                 LIPC;LIPI;LIPG;LPL
27                                                                                   SOAT1;SOAT2;LCAT
28                                                                                         APOA2;PLTP
29                                                                                          MTTP;PLTP
30                                                                                          LRP1;LDLR
31                                                                                      APOC1;ANGPTL3
32                                                         GHR;STARD3;VAPB;EPHX2;APOA2;LPL;APOA4;APOE
33                                                                                  VDAC3;VDAC2;VDAC1
34                                                                                          MTTP;PLTP
35                                                                                     CYP27A1;CYP7A1
36                                                                                     CYP27A1;CYP7A1
37                                                                                        HMGCR;DHCR7
38                                                                                          ITIH4;LPA
39                                                                                          ITIH4;LPA
GO_known_annotations <- do.call(rbind, GO_enrichment)
GO_known_annotations <- GO_known_annotations[GO_known_annotations$Adjusted.P.value<0.05,]

#GO enrichment analysis for cTWAS genes

genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
GO_ctwas_genes <- do.call(rbind, GO_enrichment)

#optionally subset to only significant GO terms
#GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Adjusted.P.value<0.05,]

#identify cTWAS genes in silver standard enriched GO terms
GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Term %in% GO_known_annotations$Term,]

overlap_genes <- lapply(GO_ctwas_genes$Genes, function(x){unlist(strsplit(x, ";"))})
overlap_genes <- -sort(-table(unlist(overlap_genes)))

#ctwas genes in silver standard enriched GO terms, not already in silver standard
overlap_genes[!(names(overlap_genes) %in% known_annotations)]

   GPAM   ABCA8     SCD   SPHK2    ACP6   CPNE3     POR  ZDHHC7  ACVR1C 
     12      10      10       6       5       4       3       3       2 
   KDSR   PARP9    PDHB  PLPPR2    NTN5 SPTY2D1   TMED4   TPD52 
      2       2       2       2       1       1       1       1 
save(overlap_genes, file=paste0(results_dir, "/overlap_genes.Rd"))
load(paste0(results_dir, "/overlap_genes.Rd"))

overlap_genes <- overlap_genes[!(names(overlap_genes) %in% known_annotations)]
overlap_genes

   GPAM   ABCA8     SCD   SPHK2    ACP6   CPNE3     POR  ZDHHC7  ACVR1C 
     12      10      10       6       5       4       3       3       2 
   KDSR   PARP9    PDHB  PLPPR2    NTN5 SPTY2D1   TMED4   TPD52 
      2       2       2       2       1       1       1       1 
overlap_genes <- names(overlap_genes)
#ctwas_gene_res[ctwas_gene_res$genename %in% overlap_genes, report_cols,]

Results for Paper

out_table <- ctwas_gene_res

report_cols <- report_cols[!(report_cols %in% c("mu2", "PVE"))]
report_cols <- c(report_cols,"silver","GO_overlap_silver", "bystander")

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

out_table$silver <- F
out_table$silver[out_table$genename %in% known_annotations] <- T

#create extended bystanders list (all silver standard, not just imputed silver standard)
library(biomaRt)
library(GenomicRanges)

ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
G_list <- G_list[G_list$hgnc_symbol!="",]
G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
G_list$start <- G_list$start_position
G_list$end <- G_list$end_position
G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)

known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
half_window <- 1000000
known_annotations_positions$start <- known_annotations_positions$start_position - half_window
known_annotations_positions$end <- known_annotations_positions$end_position + half_window
known_annotations_positions$start[known_annotations_positions$start<1] <- 1
known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)

bystanders_extended <- findOverlaps(known_annotations_granges,G_list_granges)
bystanders_extended <- unique(subjectHits(bystanders_extended))
bystanders_extended <- G_list$hgnc_symbol[bystanders_extended]
bystanders_extended <- unique(bystanders_extended[!(bystanders_extended %in% known_annotations)])

save(bystanders_extended, file=paste0(results_dir, "/bystanders_extended.Rd"))

load(paste0(results_dir, "/bystanders_extended.Rd"))

#add extended bystanders list to output
out_table$bystander <- F
out_table$bystander[out_table$genename %in% bystanders_extended] <- T

#reload GO overlaps with silver standard
load(paste0(results_dir, "/overlap_genes.Rd"))

out_table$GO_overlap_silver <- NA
out_table$GO_overlap_silver[out_table$susie_pip>0.8] <- 0

for (i in names(overlap_genes)){
  out_table$GO_overlap_silver[out_table$genename==i] <- overlap_genes[i]
}

cTWAS identifies high-confidence liver genes associated with LDL cholesterol

full.gene.pip.summary <- data.frame(gene_name = ctwas_gene_res$genename, 
                                    gene_pip = ctwas_gene_res$susie_pip, 
                                    gene_id = ctwas_gene_res$id, 
                                    chr = as.integer(ctwas_gene_res$chrom),
                                    start = ctwas_gene_res$pos / 1e3,
                                    is_highlight = F, stringsAsFactors = F) %>% as_tibble()
full.gene.pip.summary$is_highlight <- full.gene.pip.summary$gene_pip > 0.80

don <- full.gene.pip.summary %>% 
  
  # Compute chromosome size
  group_by(chr) %>% 
  summarise(chr_len=max(start)) %>% 
  
  # Calculate cumulative position of each chromosome
  mutate(tot=cumsum(chr_len)-chr_len) %>%
  dplyr::select(-chr_len) %>%
  
  # Add this info to the initial dataset
  left_join(full.gene.pip.summary, ., by=c("chr"="chr")) %>%
  
  # Add a cumulative position of each SNP
  arrange(chr, start) %>%
  mutate( BPcum=start+tot)

axisdf <- don %>% group_by(chr) %>% summarize(center=( max(BPcum) + min(BPcum) ) / 2 )

x_axis_labels <- axisdf$chr
x_axis_labels[seq(1,21,2)] <- ""

ggplot(don, aes(x=BPcum, y=gene_pip)) +
  
  # Show all points
  ggrastr::geom_point_rast(aes(color=as.factor(chr)), size=2) +
  scale_color_manual(values = rep(c("grey", "skyblue"), 22 )) +
  
  # custom X axis:
  # scale_x_continuous(label = axisdf$chr, 
  #                    breaks= axisdf$center,
  #                    guide = guide_axis(n.dodge = 2)) +
  scale_x_continuous(label = x_axis_labels,
                     breaks = axisdf$center) +
  
  scale_y_continuous(expand = c(0, 0), limits = c(0,1.25), breaks=(1:5)*0.2, minor_breaks=(1:10)*0.1) + # remove space between plot area and x axis
  
  # Add highlighted points
  ggrastr::geom_point_rast(data=subset(don, is_highlight==T), color="orange", size=2) +
  
  # Add label using ggrepel to avoid overlapping
  ggrepel::geom_label_repel(data=subset(don, is_highlight==T), 
                            aes(label=gene_name), 
                            size=4,
                            min.segment.length = 0, 
                            label.size = NA,
                            fill = alpha(c("white"),0)) +
  
  # Custom the theme:
  theme_bw() +
  theme( 
    text = element_text(size = 14),
    legend.position="none",
    panel.border = element_blank(),
    panel.grid.major.x = element_blank(),
    panel.grid.minor.x = element_blank()
  ) +
  xlab("Chromosome") + 
  ylab("cTWAS PIP")

#number of SNPs at PIP>0.8 threshold
sum(out_table$susie_pip>0.8)
[1] 36
#number of SNPs at PIP>0.5 threshold
sum(out_table$susie_pip>0.5)
[1] 91
#genes with PIP>0.8
head(out_table[order(-out_table$susie_pip),report_cols], sum(out_table$susie_pip>0.8))
        genename region_tag susie_pip         z num_eqtl silver
5923       ABCA8      17_39 0.9982625  5.086840        2  FALSE
2199       FCGRT      19_34 0.9967913 -4.165895        2  FALSE
7045      ZDHHC7      16_49 0.9967008 -4.891663        3  FALSE
7879        ACP6       1_73 0.9932775  4.613976        4  FALSE
7623        PKN3       9_66 0.9854511 -6.885356        2  FALSE
4395         POR       7_48 0.9843314  6.026895        2  FALSE
2313      PLPPR2      19_10 0.9790947  3.965665        1  FALSE
3730    C10orf88      10_77 0.9771524 -6.762952        1  FALSE
5600     FAM117B      2_120 0.9695151  7.877231        2  FALSE
3647      CCDC92      12_75 0.9604840 -5.343007        5  FALSE
10255    KLHDC7A       1_13 0.9544827  4.124187        1  FALSE
10447       FKRP      19_33 0.9482623  4.425174        5  FALSE
1279        SRRT       7_62 0.9450584  4.744831        2  FALSE
632        SPHK2      19_33 0.9412590 -8.721460        1  FALSE
14551 AC007950.2      15_29 0.9412296  5.555780        1  FALSE
5327       IL1RN       2_67 0.9410797  4.455379        1  FALSE
1003       TPD52       8_57 0.9370510 -4.121885        2  FALSE
10272    SPTY2D1      11_13 0.9335133 -5.557123        1  FALSE
3633       CCND2       12_4 0.9318759 -4.128258        2  FALSE
1526     CWF19L1      10_64 0.9256794  5.813958        2  FALSE
3674        KDSR      18_35 0.9199769 -4.119957        2  FALSE
161         MPND       19_5 0.9197113 -4.322018        2  FALSE
7441       TMED4       7_32 0.9191981  7.688274        2  FALSE
8904        PDHB       3_40 0.9140947  3.361078        2  FALSE
4022      ACVR1C       2_94 0.9057641 -4.185879        1  FALSE
9348       KCNK3       2_16 0.9044393 -4.772296        1  FALSE
9036       PCSK9       1_34 0.8982431 17.210869        1   TRUE
1559         SCD      10_64 0.8966611 -4.541468        1  FALSE
11865     C2CD4A      15_28 0.8713009  4.535165        1  FALSE
13258  LINC01184       5_78 0.8593862 -3.918127        2  FALSE
6023        NTN5      19_33 0.8492136 10.033010        2  FALSE
7079     UBASH3B      11_74 0.8475160  4.906621        1  FALSE
5607       PARP9       3_76 0.8452748  3.744644        1  FALSE
6967        PELO       5_30 0.8402073  8.522224        1  FALSE
1237       CPNE3       8_62 0.8147843  3.753687        3  FALSE
3724        GPAM      10_70 0.8129956  4.000718        1  FALSE
      GO_overlap_silver bystander
5923                 10     FALSE
2199                  0     FALSE
7045                  3     FALSE
7879                  5     FALSE
7623                  0     FALSE
4395                  3     FALSE
2313                  2      TRUE
3730                  0     FALSE
5600                  0     FALSE
3647                  0      TRUE
10255                 0     FALSE
10447                 0     FALSE
1279                  0     FALSE
632                   6     FALSE
14551                 0     FALSE
5327                  0     FALSE
1003                  1     FALSE
10272                 1     FALSE
3633                  0     FALSE
1526                  0     FALSE
3674                  2     FALSE
161                   0     FALSE
7441                  1      TRUE
8904                  2     FALSE
4022                  2     FALSE
9348                  0     FALSE
9036                 37     FALSE
1559                 10     FALSE
11865                 0     FALSE
13258                 0     FALSE
6023                  1     FALSE
7079                  0     FALSE
5607                  2     FALSE
6967                  0     FALSE
1237                  4     FALSE
3724                 12     FALSE
head(out_table[order(-out_table$susie_pip),report_cols[-(7:8)]], sum(out_table$susie_pip>0.8))
        genename region_tag susie_pip         z num_eqtl silver
5923       ABCA8      17_39 0.9982625  5.086840        2  FALSE
2199       FCGRT      19_34 0.9967913 -4.165895        2  FALSE
7045      ZDHHC7      16_49 0.9967008 -4.891663        3  FALSE
7879        ACP6       1_73 0.9932775  4.613976        4  FALSE
7623        PKN3       9_66 0.9854511 -6.885356        2  FALSE
4395         POR       7_48 0.9843314  6.026895        2  FALSE
2313      PLPPR2      19_10 0.9790947  3.965665        1  FALSE
3730    C10orf88      10_77 0.9771524 -6.762952        1  FALSE
5600     FAM117B      2_120 0.9695151  7.877231        2  FALSE
3647      CCDC92      12_75 0.9604840 -5.343007        5  FALSE
10255    KLHDC7A       1_13 0.9544827  4.124187        1  FALSE
10447       FKRP      19_33 0.9482623  4.425174        5  FALSE
1279        SRRT       7_62 0.9450584  4.744831        2  FALSE
632        SPHK2      19_33 0.9412590 -8.721460        1  FALSE
14551 AC007950.2      15_29 0.9412296  5.555780        1  FALSE
5327       IL1RN       2_67 0.9410797  4.455379        1  FALSE
1003       TPD52       8_57 0.9370510 -4.121885        2  FALSE
10272    SPTY2D1      11_13 0.9335133 -5.557123        1  FALSE
3633       CCND2       12_4 0.9318759 -4.128258        2  FALSE
1526     CWF19L1      10_64 0.9256794  5.813958        2  FALSE
3674        KDSR      18_35 0.9199769 -4.119957        2  FALSE
161         MPND       19_5 0.9197113 -4.322018        2  FALSE
7441       TMED4       7_32 0.9191981  7.688274        2  FALSE
8904        PDHB       3_40 0.9140947  3.361078        2  FALSE
4022      ACVR1C       2_94 0.9057641 -4.185879        1  FALSE
9348       KCNK3       2_16 0.9044393 -4.772296        1  FALSE
9036       PCSK9       1_34 0.8982431 17.210869        1   TRUE
1559         SCD      10_64 0.8966611 -4.541468        1  FALSE
11865     C2CD4A      15_28 0.8713009  4.535165        1  FALSE
13258  LINC01184       5_78 0.8593862 -3.918127        2  FALSE
6023        NTN5      19_33 0.8492136 10.033010        2  FALSE
7079     UBASH3B      11_74 0.8475160  4.906621        1  FALSE
5607       PARP9       3_76 0.8452748  3.744644        1  FALSE
6967        PELO       5_30 0.8402073  8.522224        1  FALSE
1237       CPNE3       8_62 0.8147843  3.753687        3  FALSE
3724        GPAM      10_70 0.8129956  4.000718        1  FALSE
head(out_table[order(-out_table$susie_pip),report_cols[c(1,7:8)]], sum(out_table$susie_pip>0.8))
        genename GO_overlap_silver bystander
5923       ABCA8                10     FALSE
2199       FCGRT                 0     FALSE
7045      ZDHHC7                 3     FALSE
7879        ACP6                 5     FALSE
7623        PKN3                 0     FALSE
4395         POR                 3     FALSE
2313      PLPPR2                 2      TRUE
3730    C10orf88                 0     FALSE
5600     FAM117B                 0     FALSE
3647      CCDC92                 0      TRUE
10255    KLHDC7A                 0     FALSE
10447       FKRP                 0     FALSE
1279        SRRT                 0     FALSE
632        SPHK2                 6     FALSE
14551 AC007950.2                 0     FALSE
5327       IL1RN                 0     FALSE
1003       TPD52                 1     FALSE
10272    SPTY2D1                 1     FALSE
3633       CCND2                 0     FALSE
1526     CWF19L1                 0     FALSE
3674        KDSR                 2     FALSE
161         MPND                 0     FALSE
7441       TMED4                 1      TRUE
8904        PDHB                 2     FALSE
4022      ACVR1C                 2     FALSE
9348       KCNK3                 0     FALSE
9036       PCSK9                37     FALSE
1559         SCD                10     FALSE
11865     C2CD4A                 0     FALSE
13258  LINC01184                 0     FALSE
6023        NTN5                 1     FALSE
7079     UBASH3B                 0     FALSE
5607       PARP9                 2     FALSE
6967        PELO                 0     FALSE
1237       CPNE3                 4     FALSE
3724        GPAM                12     FALSE

cTWAS avoids false positives when multiple genes are in a region

TNKS is a silver standard (assumed true positive gene) that is correctly detected. The bystander gene RP11-115J16.2 is significant using TWAS but has low PIP using cTWAS.

# #TNKS gene
# locus_plot4("8_12", label="cTWAS")
# 
# out_table[out_table$region_tag=="8_12",report_cols[-(7:8)]]
# out_table[out_table$region_tag=="8_12",report_cols[c(1,7:8)]]

FADS1 is a silver standard gene (assumed true positive gene) that is correctly detected. There are 5 significant TWAS genes at this locus, including FADS2, another silver standard gene. FADS2 is not detected due to its high LD with FADS1. The remaining 3 bystander genes at this locus have low PIP using cTWAS.

# #FADS1 gene
# locus_plot3("11_34", focus="FADS1")
# 
# out_table[out_table$region_tag=="11_34",report_cols[-(7:8)]]
# out_table[out_table$region_tag=="11_34",report_cols[c(1,7:8)]]
# 
# #number of significant TWAS genes at this locus
# sum(abs(out_table$z[out_table$region_tag=="11_34"])>sig_thresh)

cTWAS avoids false positives when SNPs in a region are (considerably) more significant

POLK is a gene that is significant using TWAS but not detected using TWAS. cTWAS places a high posterior probability on SNPs are this locus. OpenTargets suggets that the causal gene at this locus is HMGCR (note: different GWAS, similar population), which is not imputed in our dataset. cTWAS selected the variants at this locus because the causal gene is not imputed. Note that MR-JTI claims POLK is causal using their method, and their paper includes a discussion of its potential relevance to LDL.

locus_plot("5_45", label="TWAS")

#locus_plot("5_45", label="TWAS", rerun_ctwas = T)

out_table[out_table$region_tag=="5_45",report_cols[-(7:8)]]
      genename region_tag  susie_pip          z num_eqtl silver
3095     PDE8B       5_45 0.06221375  0.2387889        1  FALSE
4860     AP3B1       5_45 0.11964878  1.3922880        1  FALSE
4861     ZBED3       5_45 0.06166792 -0.1260374        1  FALSE
6413     CRHBP       5_45 0.06784777 -0.6328738        1  FALSE
8186     F2RL2       5_45 0.08093380 -0.9027896        2  FALSE
8191     F2RL1       5_45 0.23897109  2.2141016        3  FALSE
8192     AGGF1       5_45 0.08974170 -1.0343064        2  FALSE
8193     WDR41       5_45 0.06701744  0.4828811        3  FALSE
9379      TBCA       5_45 0.06373028  0.3199763        1  FALSE
10456      F2R       5_45 0.06798428 -0.6619550        1  FALSE
out_table[out_table$region_tag=="5_45",report_cols[c(1,7:8)]]
      genename GO_overlap_silver bystander
3095     PDE8B                NA     FALSE
4860     AP3B1                NA     FALSE
4861     ZBED3                NA     FALSE
6413     CRHBP                NA     FALSE
8186     F2RL2                NA     FALSE
8191     F2RL1                NA     FALSE
8192     AGGF1                NA     FALSE
8193     WDR41                NA     FALSE
9379      TBCA                NA     FALSE
10456      F2R                NA     FALSE

cTWAS is more precise than TWAS in distinguishing silver standard and bystander genes

load(paste0(results_dir, "/known_annotations.Rd"))
load(paste0(results_dir, "/bystanders.Rd"))

#remove genes without imputed expression from bystander list
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

#subset results to genes in known annotations or bystanders
ctwas_gene_res_subset <- ctwas_gene_res[ctwas_gene_res$genename %in% c(known_annotations, unrelated_genes),]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>0.8]
twas_genes <- ctwas_gene_res_subset$genename[abs(ctwas_gene_res_subset$z)>sig_thresh]

#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
ctwas  TWAS 
0.025 0.325 
#specificity / (1 - False Positive Rate)
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9970414 0.9304734 
#precision / PPV / (1 - False Discovery Rate)
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
    ctwas      TWAS 
0.3333333 0.2166667 
#store sensitivity and specificity calculations for plots
sensitivity_plot <- sensitivity
specificity_plot <- specificity

#precision / PPV by PIP threshold
pip_range <- c(0.5, 0.8, 1)
precision_range <- rep(NA, length(pip_range))
number_detected <- rep(NA, length(pip_range))

for (i in 1:length(pip_range)){
  pip_upper <- pip_range[i]

  if (i==1){
    pip_lower <- 0
  } else {
    pip_lower <- pip_range[i-1]
  }
  
  #assign ctwas genes using PIP threshold
  ctwas_genes <- ctwas_gene_res_subset$genename[ctwas_gene_res_subset$susie_pip>=pip_lower]
  
  number_detected[i] <- length(ctwas_genes)
  precision_range[i] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
}

names(precision_range) <- paste0(">= ", c(0, pip_range[-length(pip_range)]))

precision_range <- precision_range*100

precision_range <- c(precision_range, precision["TWAS"]*100)
names(precision_range)[4] <- "TWAS Bonferroni"
number_detected <- c(number_detected, length(twas_genes))

barplot(precision_range, ylim=c(0,100), main="Precision for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% of Detected Genes in Silver Standard")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

#false discovery rate by PIP threshold

barplot(100-precision_range, ylim=c(0,100), main="False Discovery Rate for Distinguishing Silver Standard and Bystander Genes", xlab="PIP Threshold for Detection", ylab="% Bystanders in Detected Genes")
abline(h=20, lty=2)
abline(h=40, lty=2)
abline(h=60, lty=2)
abline(h=80, lty=2)
xx <- barplot(100-precision_range, add=T, col=c(rep("darkgrey",3), "white"))
text(x = xx, y = rep(0, length(number_detected)), label = paste0(number_detected, " detected"), pos = 3, cex=0.8)

#text(x = xx, y = precision_range, label = paste0(round(precision_range,1), "%"), pos = 3, cex=0.8, offset = 1.5)

Undetected silver standard genes have low TWAS z-scores or stronger signal from nearby variants

For all 69 silver standard genes, sequentially bin each gene using the following criteria: 1) gene not imputed; 2) gene detected by cTWAS at PIP>0.8; 3) gene insignificant by TWAS; 4) gene nearby a detected silver standard gene; 5) gene nearby a detected bystander gene; 6) gene nearby a detected SNP; 7) inconclusive.

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

#categorize silver standard genes by case
silver_standard_case <- c()
uncertain_regions <- matrix(NA, 0, 2)

for (i in 1:length(known_annotations)){
  current_gene <- known_annotations[i]
  
  if (current_gene %in% ctwas_gene_res$genename) {
    if (ctwas_gene_res$susie_pip[ctwas_gene_res$genename == current_gene] > 0.8){
      silver_standard_case <- c(silver_standard_case, "Detected (PIP > 0.8)")
    } else {
      if (abs(ctwas_gene_res$z[ctwas_gene_res$genename == current_gene]) < sig_thresh){
        silver_standard_case <- c(silver_standard_case, "Insignificant z-score")
      } else {
        current_region <- ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]
        current_gene_res <- ctwas_gene_res[ctwas_gene_res$region_tag==current_region,]
        current_snp_res <- ctwas_snp_res[ctwas_snp_res$region_tag==current_region,]
        
        if (any(current_gene_res$susie_pip>0.8)){
          if (any(current_gene_res$genename[current_gene_res$susie_pip>0.8] %in% known_annotations)){
            silver_standard_case <- c(silver_standard_case, "Nearby Silver Standard Gene")
          } else {
            silver_standard_case <- c(silver_standard_case, "Nearby Bystander Gene")
          }
        } else {
          #if (any(current_snp_res$susie_pip>0.8)){
          if (sum(current_snp_res$susie_pip)>0.8){
            silver_standard_case <- c(silver_standard_case, "Nearby SNP(s)")
          } else {
            silver_standard_case <- c(silver_standard_case, "Inconclusive")
            
            uncertain_regions <- rbind(uncertain_regions, c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
            
            print(c(current_gene, ctwas_gene_res$region_tag[ctwas_gene_res$genename == current_gene]))
          }
        }
      }
    }
  } else {
    silver_standard_case <- c(silver_standard_case, "Not Imputed")
  }
}
names(silver_standard_case) <- known_annotations

#table of outcomes for silver standard genes
-sort(-table(silver_standard_case))
silver_standard_case
          Not Imputed Insignificant z-score         Nearby SNP(s) 
                   29                    27                    11 
 Detected (PIP > 0.8) Nearby Bystander Gene 
                    1                     1 
#show inconclusive genes
silver_standard_case[silver_standard_case=="Inconclusive"]
named character(0)
# for (i in 1:nrow(uncertain_regions)){
#   locus_plot3(uncertain_regions[i,2], focus=uncertain_regions[i,1])
# }

#pie chart of outcomes for silver standard genes
df <- data.frame(-sort(-table(silver_standard_case)))
names(df) <- c("Outcome", "Frequency")
#df <- df[df$Outcome!="Not Imputed",] #exclude genes not imputed
df$Outcome <- droplevels(df$Outcome) #exclude genes not imputed

bp<- ggplot(df, aes(x=Outcome, y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity", position=position_dodge()) + 
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) + theme(legend.position = "none")
bp

pie <- ggplot(df, aes(x="", y=Frequency, fill=Outcome)) + geom_bar(width = 1, stat = "identity")
pie <- pie + coord_polar("y", start=0) + theme_minimal() + theme(axis.title.y=element_blank())
pie

# locus_plot3(focus="KPNB1", region_tag="17_27")
# locus_plot3(focus="LPIN3", region_tag="20_25")
# locus_plot3(focus="LIPC", region_tag="15_26")

Some cTWAS genes share biological characteristics with silver standard genes

Perform GO enrichment analysis using silver standard genes. Identify detected cTWAS genes not already in silver standard that are also members of these GO terms.

#reload silver standard genes
known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="LDL")
New names:
* `` -> ...4
* `` -> ...5
known_annotations <- unique(known_annotations$`Gene Symbol`)

#GO enrichment analysis for silver standard genes
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- known_annotations
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
# for (db in dbs){
#   print(db)
#   df <- GO_enrichment[[db]]
#   df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
#   plotEnrich(GO_enrichment[[db]])
#   print(df)
# }

GO_known_annotations <- do.call(rbind, GO_enrichment)
GO_known_annotations <- GO_known_annotations[GO_known_annotations$Adjusted.P.value<0.05,]

#GO enrichment analysis for cTWAS genes

genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
GO_enrichment <- enrichr(genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
GO_ctwas_genes <- do.call(rbind, GO_enrichment)

#identify cTWAS genes in silver standard enriched GO terms
GO_ctwas_genes <- GO_ctwas_genes[GO_ctwas_genes$Term %in% GO_known_annotations$Term,]

GO_ctwas_genes_byterms <- as.data.frame(matrix(NA, 0, 2))

for (i in 1:nrow(GO_ctwas_genes)){
  for (j in unlist(strsplit(GO_ctwas_genes$Genes[i], split=";"))){
    GO_ctwas_genes_byterms<- rbind(GO_ctwas_genes_byterms, c(j, GO_ctwas_genes$Term[i]))
  }
  colnames(GO_ctwas_genes_byterms) <- c("Gene", "GO_term")
}
Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated

Warning in `[<-.factor`(`*tmp*`, ri, value = "GPAM"): invalid factor level,
NA generated
GO_ctwas_genes_byterms <- GO_ctwas_genes_byterms[order(GO_ctwas_genes_byterms$Gene),]
GO_ctwas_genes_byterms <- GO_ctwas_genes_byterms[!(GO_ctwas_genes_byterms$Gene %in% known_annotations),]

#detected cTWAS genes (not on silver standard) that overlap with GO terms enriched for silver standard genes

GO_ctwas_genes_byterms
      Gene                                     GO_term
1   PLPPR2 phospholipid metabolic process (GO:0006644)
7   PLPPR2                                        <NA>
2     <NA> phospholipid metabolic process (GO:0006644)
3     <NA> phospholipid metabolic process (GO:0006644)
4     <NA>                                        <NA>
5     <NA>                                        <NA>
6     <NA>                                        <NA>
8     <NA>                                        <NA>
9     <NA>                                        <NA>
10    <NA>                                        <NA>
11    <NA>                                        <NA>
12    <NA>                                        <NA>
13    <NA>                                        <NA>
14    <NA>                                        <NA>
15    <NA>                                        <NA>
16    <NA>                                        <NA>
17    <NA>                                        <NA>
18    <NA>                                        <NA>
19    <NA>                                        <NA>
20    <NA>                                        <NA>
21    <NA>                                        <NA>
22    <NA>                                        <NA>
23    <NA>                                        <NA>
24    <NA>                                        <NA>
25    <NA>                                        <NA>
26    <NA>                                        <NA>
27    <NA>                                        <NA>
28    <NA>                                        <NA>
29    <NA>                                        <NA>
30    <NA>                                        <NA>
31    <NA>                                        <NA>
32    <NA>                                        <NA>
33    <NA>                                        <NA>
34    <NA>                                        <NA>
35    <NA>                                        <NA>
36    <NA>                                        <NA>
37    <NA>                                        <NA>
38    <NA>                                        <NA>
39    <NA>                                        <NA>
40    <NA>                                        <NA>
41    <NA>                                        <NA>
42    <NA>                                        <NA>
43    <NA>                                        <NA>
44    <NA>                                        <NA>
45    <NA>                                        <NA>
46    <NA>                                        <NA>
47    <NA>                                        <NA>
48    <NA>                                        <NA>
49    <NA>                                        <NA>
50    <NA>                                        <NA>
51    <NA>                                        <NA>
52    <NA>                                        <NA>
53    <NA>                                        <NA>
54    <NA>                                        <NA>
55    <NA>                                        <NA>
56    <NA>                                        <NA>
57    <NA>                                        <NA>
58    <NA>                                        <NA>
59    <NA>                                        <NA>
60    <NA>                                        <NA>
61    <NA>                                        <NA>
62    <NA>                                        <NA>
63    <NA>                                        <NA>
64    <NA>                                        <NA>
65    <NA>                                        <NA>
66    <NA>                                        <NA>
67    <NA>                                        <NA>
68    <NA>                                        <NA>
69    <NA>                                        <NA>
70    <NA>                                        <NA>
71    <NA>                                        <NA>
72    <NA>                                        <NA>
73    <NA>                                        <NA>
74    <NA>                                        <NA>
75    <NA>                                        <NA>
76    <NA>                                        <NA>
77    <NA>                                        <NA>
78    <NA>                                        <NA>
79    <NA>                                        <NA>
80    <NA>                                        <NA>
81    <NA>                                        <NA>
82    <NA>                                        <NA>
83    <NA>                                        <NA>
84    <NA>                                        <NA>
85    <NA>                                        <NA>
86    <NA>                                        <NA>
87    <NA>                                        <NA>
88    <NA>                                        <NA>
89    <NA>                                        <NA>
90    <NA>                                        <NA>
91    <NA>                                        <NA>
92    <NA>                                        <NA>
93    <NA>                                        <NA>
94    <NA>                                        <NA>
95    <NA>                                        <NA>
96    <NA>                                        <NA>
97    <NA>                                        <NA>
98    <NA>                                        <NA>
99    <NA>                                        <NA>
100   <NA>                                        <NA>
101   <NA>                                        <NA>
102   <NA>                                        <NA>
103   <NA>                                        <NA>
104   <NA>                                        <NA>

cTWAS detects some genes that are not significant using a stringent TWAS threshold

TTC39B is a member of the Dyslipidaemia term in the disease_GLAD4U. This gene was not included in our silver standard. This gene is not significant using TWAS but is detected by cTWAS.

#locus_plot3(focus="TTC39B", region_tag="9_13")

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] ctwas_0.1.31         forcats_0.4.0        stringr_1.4.0       
 [4] dplyr_1.0.7          purrr_0.3.4          readr_1.4.0         
 [7] tidyr_1.1.0          tidyverse_1.3.0      tibble_3.1.2        
[10] GenomicRanges_1.36.0 GenomeInfoDb_1.20.0  IRanges_2.18.1      
[13] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
[16] readxl_1.3.1         WebGestaltR_0.4.4    disgenet2r_0.99.2   
[19] enrichR_3.0          cowplot_1.0.0        ggplot2_3.3.3       

loaded via a namespace (and not attached):
  [1] ggbeeswarm_0.6.0       colorspace_1.4-1       rjson_0.2.20          
  [4] ellipsis_0.3.2         rprojroot_2.0.2        XVector_0.24.0        
  [7] fs_1.3.1               rstudioapi_0.10        farver_2.1.0          
 [10] ggrepel_0.8.1          bit64_4.0.5            AnnotationDbi_1.46.0  
 [13] fansi_0.5.0            lubridate_1.7.4        xml2_1.3.2            
 [16] logging_0.10-108       codetools_0.2-16       doParallel_1.0.16     
 [19] cachem_1.0.5           knitr_1.23             jsonlite_1.6          
 [22] workflowr_1.6.2        apcluster_1.4.8        Cairo_1.5-12.2        
 [25] broom_0.7.9            dbplyr_1.4.2           compiler_3.6.1        
 [28] httr_1.4.1             backports_1.1.4        assertthat_0.2.1      
 [31] Matrix_1.2-18          fastmap_1.1.0          cli_3.0.1             
 [34] later_0.8.0            htmltools_0.3.6        prettyunits_1.0.2     
 [37] tools_3.6.1            igraph_1.2.4.1         gtable_0.3.0          
 [40] glue_1.4.2             GenomeInfoDbData_1.2.1 reshape2_1.4.3        
 [43] doRNG_1.8.2            Rcpp_1.0.6             Biobase_2.44.0        
 [46] cellranger_1.1.0       vctrs_0.3.8            svglite_1.2.2         
 [49] iterators_1.0.13       xfun_0.8               rvest_0.3.5           
 [52] lifecycle_1.0.0        rngtools_1.5           XML_3.98-1.20         
 [55] zlibbioc_1.30.0        scales_1.1.0           hms_1.1.0             
 [58] promises_1.0.1         yaml_2.2.0             curl_3.3              
 [61] memoise_2.0.0          ggrastr_0.2.3          gdtools_0.1.9         
 [64] stringi_1.4.3          RSQLite_2.2.7          foreach_1.5.1         
 [67] rlang_0.4.11           pkgconfig_2.0.3        bitops_1.0-6          
 [70] evaluate_0.14          lattice_0.20-38        labeling_0.3          
 [73] bit_4.0.4              tidyselect_1.1.0       plyr_1.8.4            
 [76] magrittr_2.0.1         R6_2.5.0               generics_0.0.2        
 [79] DBI_1.1.1              pgenlibr_0.3.1         pillar_1.6.1          
 [82] haven_2.3.1            whisker_0.3-2          withr_2.4.1           
 [85] RCurl_1.98-1.1         modelr_0.1.8           crayon_1.4.1          
 [88] utf8_1.2.1             rmarkdown_1.13         progress_1.2.2        
 [91] grid_3.6.1             data.table_1.14.0      blob_1.2.1            
 [94] git2r_0.26.1           reprex_0.3.0           digest_0.6.20         
 [97] httpuv_1.5.1           munsell_0.5.0          beeswarm_0.2.3        
[100] vipor_0.4.5