Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30760_irnt_Whole_Blood.Rmd) and HTML (docs/ukb-d-30760_irnt_Whole_Blood.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd da9f015 wesleycrouse 2021-08-07 adding more reports
html da9f015 wesleycrouse 2021-08-07 adding more reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait HDL cholesterol (quantile) using Whole_Blood gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30760_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Whole_Blood eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11095
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1129  747  624  400  479  621  560  383  404  430  682  652  192  362  331 
  16   17   18   19   20   21   22 
 551  725  159  911  313  130  310 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.762776

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0217570808 0.0001937125 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
25.05420 18.46942 
#report sample size
print(sample_size)
[1] 315133
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11095 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.01919175 0.09874228 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.04357772 0.99304822

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
          genename region_tag susie_pip    mu2     PVE      z
8482         SPSB1        1_6     1.000 135.03 4.3e-04   5.65
10765      ZDHHC18       1_18     1.000 128.92 4.1e-04 -12.13
4610          ACP2      11_29     1.000 200.54 6.4e-04 -19.05
11023        SIPA1      11_36     0.998  45.32 1.4e-04  -8.55
9863         LAMP1      13_62     0.992  37.01 1.2e-04   6.08
5397         VPS53       17_1     0.991  35.08 1.1e-04   5.63
4564         PSRC1       1_67     0.986 104.31 3.3e-04  11.36
2626      C12orf49      12_72     0.985  24.67 7.7e-05   4.53
6439        SLFN13      17_21     0.985  24.72 7.7e-05   4.69
6089         FADS1      11_34     0.984 381.82 1.2e-03 -24.03
6590         NTAN1      16_15     0.982  91.49 2.9e-04  -9.78
2195        PCOLCE       7_62     0.981  23.57 7.3e-05   3.77
3224          RPA2       1_19     0.977  25.54 7.9e-05   4.96
5389          CTRL      16_36     0.977 303.47 9.4e-04  17.12
3378          GPAM      10_70     0.976  98.29 3.0e-04  10.19
12304 RP11-54O7.17        1_1     0.963  41.97 1.3e-04  -6.37
1386         ITPR3       6_28     0.960  33.99 1.0e-04  -5.18
5665         CNIH4      1_114     0.952  30.08 9.1e-05   5.00
5834       TNFAIP8       5_72     0.946  41.91 1.3e-04  -6.40
6370         CEBPG      19_23     0.945  24.23 7.3e-05  -5.41
9777        RAB11B       19_8     0.939  83.58 2.5e-04 -13.29
6404       PITPNC1      17_39     0.938  28.32 8.4e-05  -4.89
6923        NBEAL2       3_33     0.936  30.78 9.1e-05   6.02
172       STARD3NL       7_28     0.932  21.08 6.2e-05  -3.88
9322            F2      11_28     0.917  95.88 2.8e-04 -14.63
8554        DPAGT1      11_71     0.904  40.61 1.2e-04  -4.59
10417       MRPL21      11_38     0.903  54.54 1.6e-04   7.78
11415        RPS28       19_8     0.900  32.76 9.4e-05  -7.77
5095       DNAJC13       3_82     0.889  21.81 6.2e-05  -4.27
2898         ABTB1       3_79     0.878  37.44 1.0e-04  -5.97
8552       C1QTNF4      11_29     0.866 295.90 8.1e-04  17.57
10505      UGT2B17       4_48     0.857  46.23 1.3e-04   7.18
11680     MIR210HG       11_1     0.854  25.01 6.8e-05   4.82
5464          PNMT      17_23     0.849 150.93 4.1e-04 -12.29
7513         FOXK1        7_6     0.844  20.98 5.6e-05  -4.24
697          HDAC4      2_143     0.841  21.54 5.7e-05  -4.11
1769         STK24      13_50     0.836  25.64 6.8e-05   4.69
2333        PITRM1       10_4     0.831  19.18 5.1e-05  -3.72
1145          ACHE       7_62     0.829  29.78 7.8e-05   3.99
5657          ACP1        2_1     0.827  38.76 1.0e-04  -5.62
2388          BLMH      17_18     0.815  30.66 7.9e-05   4.90
478          PHPT1       9_74     0.813  20.63 5.3e-05   3.97
11727     DNAH10OS      12_75     0.802 158.77 4.0e-04  14.26

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag susie_pip     mu2     PVE     z
168      SPRTN      1_118         0 7235.82 0.0e+00 -3.56
1818     ESRP2      16_36         0 5948.57 0.0e+00 -1.67
10901   PSMB10      16_36         0 5657.79 0.0e+00 -1.76
1794     NUTF2      16_36         0 5653.01 0.0e+00  1.89
6809  C16orf86      16_36         0 5586.02 0.0e+00 -1.81
1805       ACD      16_36         0 5538.76 0.0e+00 -1.81
3138     EXOC8      1_118         0 5212.66 0.0e+00 -3.70
1804      CTCF      16_36         0 4768.14 0.0e+00  1.69
374       EDC4      16_36         0 4734.07 0.0e+00  0.83
1796     CENPT      16_36         0 4686.14 0.0e+00  0.95
806     NFATC3      16_36         0 4636.91 0.0e+00 -3.01
6806  ATP6V0D1      16_36         0 4430.24 0.0e+00 -1.60
6805    ZDHHC1      16_36         0 4418.30 0.0e+00  1.66
7875      DUS2      16_36         0 4380.70 0.0e+00  6.71
6804     TPPP3      16_36         0 4296.26 0.0e+00  0.50
10904     E2F4      16_36         0 4223.83 0.0e+00  1.99
8926   RPS6KB2      11_37         0 4030.93 5.2e-12 -2.81
7978    NDUFV1      11_37         0 3734.04 1.8e-14  0.89
881     ZNF37A      10_28         0 3512.32 0.0e+00 -1.56
10381    ZGPAT      20_38         0 3306.62 0.0e+00 -2.81

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
      genename region_tag susie_pip    mu2     PVE      z
6089     FADS1      11_34     0.984 381.82 0.00120 -24.03
5389      CTRL      16_36     0.977 303.47 0.00094  17.12
8552   C1QTNF4      11_29     0.866 295.90 0.00081  17.57
4610      ACP2      11_29     1.000 200.54 0.00064 -19.05
1267    PABPC4       1_24     0.708 227.03 0.00051  15.99
2496      ZPR1      11_70     0.273 570.70 0.00049  20.08
8482     SPSB1        1_6     1.000 135.03 0.00043   5.65
10765  ZDHHC18       1_18     1.000 128.92 0.00041 -12.13
5464      PNMT      17_23     0.849 150.93 0.00041 -12.29
11727 DNAH10OS      12_75     0.802 158.77 0.00040  14.26
4564     PSRC1       1_67     0.986 104.31 0.00033  11.36
3378      GPAM      10_70     0.976  98.29 0.00030  10.19
6590     NTAN1      16_15     0.982  91.49 0.00029  -9.78
9322        F2      11_28     0.917  95.88 0.00028 -14.63
9777    RAB11B       19_8     0.939  83.58 0.00025 -13.29
405      ADRB1      10_71     0.638 109.71 0.00022   9.27
616   UHRF1BP1       6_28     0.505 139.10 0.00022 -10.36
7462     DAGLB        7_9     0.781  88.79 0.00022   9.37
7786  CATSPER2      15_16     0.363 174.11 0.00020 -12.24
6959   CCDC116       22_4     0.478 111.20 0.00017  10.67

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip     mu2     PVE      z
8899       LPL       8_21     0.000 1474.89 0.0e+00  42.46
6089     FADS1      11_34     0.984  381.82 1.2e-03 -24.03
2496      ZPR1      11_70     0.273  570.70 4.9e-04  20.08
4610      ACP2      11_29     1.000  200.54 6.4e-04 -19.05
7654     PSMC3      11_29     0.000  130.08 7.5e-11 -18.85
8552   C1QTNF4      11_29     0.866  295.90 8.1e-04  17.57
4636     FADS2      11_34     0.003  250.26 2.0e-06 -17.42
5389      CTRL      16_36     0.977  303.47 9.4e-04  17.12
11020     LCAT      16_36     0.000  291.57 2.0e-10  16.34
1267    PABPC4       1_24     0.708  227.03 5.1e-04  15.99
5390     DPEP3      16_36     0.000  207.41 3.5e-16 -15.78
7653  SLC39A13      11_29     0.000  116.13 2.3e-11 -15.48
6813     PSKH1      16_36     0.000 1358.59 2.1e-11 -15.23
6808   CARMIL2      16_36     0.000  234.53 1.2e-18 -14.79
1807    PARD6A      16_36     0.000  207.90 6.6e-19 -14.70
9322        F2      11_28     0.917   95.88 2.8e-04 -14.63
1652     PCIF1      20_28     0.000  131.42 1.1e-07 -14.62
7874     DPEP2      16_36     0.000  227.13 0.0e+00  14.32
11727 DNAH10OS      12_75     0.802  158.77 4.0e-04  14.26
7655     RAPSN      11_29     0.000  126.87 5.9e-12 -14.15

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.03388914
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip     mu2     PVE      z
8899       LPL       8_21     0.000 1474.89 0.0e+00  42.46
6089     FADS1      11_34     0.984  381.82 1.2e-03 -24.03
2496      ZPR1      11_70     0.273  570.70 4.9e-04  20.08
4610      ACP2      11_29     1.000  200.54 6.4e-04 -19.05
7654     PSMC3      11_29     0.000  130.08 7.5e-11 -18.85
8552   C1QTNF4      11_29     0.866  295.90 8.1e-04  17.57
4636     FADS2      11_34     0.003  250.26 2.0e-06 -17.42
5389      CTRL      16_36     0.977  303.47 9.4e-04  17.12
11020     LCAT      16_36     0.000  291.57 2.0e-10  16.34
1267    PABPC4       1_24     0.708  227.03 5.1e-04  15.99
5390     DPEP3      16_36     0.000  207.41 3.5e-16 -15.78
7653  SLC39A13      11_29     0.000  116.13 2.3e-11 -15.48
6813     PSKH1      16_36     0.000 1358.59 2.1e-11 -15.23
6808   CARMIL2      16_36     0.000  234.53 1.2e-18 -14.79
1807    PARD6A      16_36     0.000  207.90 6.6e-19 -14.70
9322        F2      11_28     0.917   95.88 2.8e-04 -14.63
1652     PCIF1      20_28     0.000  131.42 1.1e-07 -14.62
7874     DPEP2      16_36     0.000  227.13 0.0e+00  14.32
11727 DNAH10OS      12_75     0.802  158.77 4.0e-04  14.26
7655     RAPSN      11_29     0.000  126.87 5.9e-12 -14.15

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 8_21"
       genename region_tag susie_pip     mu2 PVE     z
5936 CSGALNACT1       8_21         0  129.92   0  9.76
1947     INTS10       8_21         0  308.37   0 10.74
8899        LPL       8_21         0 1474.89   0 42.46

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 11_34"
           genename region_tag susie_pip    mu2     PVE      z
10165       FAM111B      11_34     0.003   6.20 5.5e-08   0.72
7794        FAM111A      11_34     0.078  35.04 8.7e-06   2.69
2506           DTX4      11_34     0.002   4.88 3.9e-08   0.19
10468         MPEG1      11_34     0.003   5.99 5.3e-08   0.24
2515         MS4A6A      11_34     0.003   7.55 7.9e-08  -1.42
7815          PATL1      11_34     0.004  11.59 1.6e-07   1.62
7817           STX3      11_34     0.002   5.01 4.0e-08   0.24
7818         MRPL16      11_34     0.003   5.59 4.7e-08  -0.55
4634            GIF      11_34     0.005  12.97 2.0e-07  -1.80
4638           TCN1      11_34     0.002   4.88 3.8e-08  -0.39
6096          MS4A2      11_34     0.038  29.51 3.6e-06   3.30
11819    AP001257.1      11_34     0.003   7.48 7.8e-08  -0.53
11116        MS4A4E      11_34     0.071  37.30 8.4e-06  -3.63
2516         MS4A4A      11_34     0.004   8.23 9.7e-08  -1.17
7825         MS4A6E      11_34     0.004  10.57 1.4e-07   1.79
7826          MS4A7      11_34     0.003   5.02 4.1e-08  -0.08
7827         MS4A14      11_34     0.004   8.78 1.1e-07   1.51
2519         CCDC86      11_34     0.006  12.46 2.2e-07  -0.91
9570         PTGDR2      11_34     0.004   8.32 9.5e-08   0.75
6093            ZP1      11_34     0.002   5.02 3.9e-08   0.40
2520         PRPF19      11_34     0.004   8.75 1.1e-07  -0.73
2521        TMEM109      11_34     0.018  22.34 1.3e-06  -1.92
2546        SLC15A3      11_34     0.017  27.37 1.4e-06   3.14
2547            CD5      11_34     0.003  12.13 1.3e-07  -2.51
8008         VPS37C      11_34     0.003   6.00 4.8e-08   1.34
11874          PGA5      11_34     0.004   8.72 1.2e-07  -0.55
11340          PGA3      11_34     0.004   8.37 1.1e-07  -0.58
8009           VWCE      11_34     0.007  20.35 4.3e-07  -2.90
6088        TMEM138      11_34     0.003   8.64 7.1e-08  -2.14
7030       CYB561A3      11_34     0.003   8.64 7.1e-08  -2.14
9981        TMEM216      11_34     0.008  18.62 4.7e-07  -2.66
11871 RP11-286N22.8      11_34     0.026  28.13 2.3e-06  -2.59
4631          DAGLA      11_34     0.002  24.99 1.9e-07   5.33
3765           MYRF      11_34     0.003  32.46 2.7e-07  -6.73
4636          FADS2      11_34     0.003 250.26 2.0e-06 -17.42
4637        TMEM258      11_34     0.003  80.81 8.9e-07  -9.92
6089          FADS1      11_34     0.984 381.82 1.2e-03 -24.03
11190         FADS3      11_34     0.002  16.67 1.3e-07   5.01
8011          BEST1      11_34     0.005  47.40 8.2e-07  -7.56
6092         INCENP      11_34     0.021  35.49 2.4e-06  -4.29
7032         ASRGL1      11_34     0.003   7.50 7.6e-08  -0.86

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 11_70"
     genename region_tag susie_pip    mu2     PVE      z
5007    BUD13      11_70     0.000 139.81 0.0e+00  -9.03
2496     ZPR1      11_70     0.273 570.70 4.9e-04  20.08
3237    APOA1      11_70     0.000  84.69 0.0e+00 -11.62
6898     SIK3      11_70     0.000   7.85 0.0e+00  -0.42
8030 PAFAH1B2      11_70     0.000 111.96 0.0e+00  -2.24
6104    TAGLN      11_70     0.000  21.18 0.0e+00  -1.61
6902    PCSK7      11_70     0.000 195.53 6.8e-17   8.60
7873   RNF214      11_70     0.000  10.91 0.0e+00   0.68
9915    BACE1      11_70     0.000  90.55 0.0e+00   8.30
2530   CEP164      11_70     0.000  90.85 0.0e+00   5.06
5018    FXYD2      11_70     0.000  12.32 0.0e+00   1.10
5017    FXYD6      11_70     0.000   6.11 0.0e+00   0.75

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 11_29"
     genename region_tag susie_pip    mu2     PVE      z
6066  ARFGAP2      11_29     0.000  15.84 6.0e-14   2.22
300     NR1H3      11_29     0.000  94.83 3.4e-13 -13.98
4610     ACP2      11_29     1.000 200.54 6.4e-04 -19.05
2550     MADD      11_29     0.000  24.91 1.2e-14   3.98
4609   MYBPC3      11_29     0.000 346.28 9.4e-13   9.79
7654    PSMC3      11_29     0.000 130.08 7.5e-11 -18.85
7653 SLC39A13      11_29     0.000 116.13 2.3e-11 -15.48
7655    RAPSN      11_29     0.000 126.87 5.9e-12 -14.15
2551   PTPMT1      11_29     0.000 393.04 2.8e-13  -0.81
3631   KBTBD4      11_29     0.000  65.67 7.4e-14   1.05
8552  C1QTNF4      11_29     0.866 295.90 8.1e-04  17.57
7656    AGBL2      11_29     0.000  27.92 3.3e-14   6.68
2497    FNBP4      11_29     0.000 130.70 9.8e-14  -1.92
324    NUP160      11_29     0.000  42.61 2.5e-11 -11.86
6064    PTPRJ      11_29     0.007 112.82 2.6e-06  13.93

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 16_36"
           genename region_tag susie_pip     mu2     PVE      z
4752       DYNC1LI2      16_36     0.000   17.95 0.0e+00   0.66
9282           CDH5      16_36     0.000   25.99 0.0e+00  -2.63
11678     LINC00920      16_36     0.000   99.62 0.0e+00  -2.33
7763          BEAN1      16_36     0.000   20.54 0.0e+00   2.65
7764            TK2      16_36     0.000   16.73 0.0e+00   2.37
11156          CKLF      16_36     0.000   38.99 0.0e+00   1.36
1233          CMTM1      16_36     0.000   20.01 0.0e+00   2.55
5365          CMTM3      16_36     0.000   96.26 0.0e+00   2.40
9636          CMTM4      16_36     0.000   13.17 0.0e+00   2.46
6794           NAE1      16_36     0.000   22.09 0.0e+00  -1.59
8627           PDP2      16_36     0.000   23.09 0.0e+00  -0.91
8626           CES2      16_36     0.000  202.34 0.0e+00  -2.31
8624           CES3      16_36     0.000   27.02 0.0e+00   2.95
695            CBFB      16_36     0.000   67.16 0.0e+00  -6.53
3773       C16orf70      16_36     0.000   65.39 0.0e+00  -6.49
11479        B3GNT9      16_36     0.000  181.23 0.0e+00   2.36
5366           NOL3      16_36     0.000   65.89 0.0e+00   5.42
1793          ELMO3      16_36     0.000   80.95 0.0e+00   7.47
10210     KIAA0895L      16_36     0.000   11.62 0.0e+00   0.41
9235        EXOC3L1      16_36     0.000   72.36 0.0e+00   7.20
10904          E2F4      16_36     0.000 4223.83 0.0e+00   1.99
4756         SLC9A5      16_36     0.000   80.14 0.0e+00   7.04
3769         LRRC29      16_36     0.000   83.02 0.0e+00  -7.54
4754          FHOD1      16_36     0.000   23.84 0.0e+00   0.54
10218       PLEKHG4      16_36     0.000 2344.96 0.0e+00   5.81
6804          TPPP3      16_36     0.000 4296.26 0.0e+00   0.50
6805         ZDHHC1      16_36     0.000 4418.30 0.0e+00   1.66
6806       ATP6V0D1      16_36     0.000 4430.24 0.0e+00  -1.60
1804           CTCF      16_36     0.000 4768.14 0.0e+00   1.69
12029 CTD-2012K14.6      16_36     0.000   59.80 0.0e+00  -0.55
6808        CARMIL2      16_36     0.000  234.53 1.2e-18 -14.79
1807         PARD6A      16_36     0.000  207.90 6.6e-19 -14.70
1805            ACD      16_36     0.000 5538.76 0.0e+00  -1.81
3665          ENKD1      16_36     0.000   43.07 0.0e+00  -1.55
6809       C16orf86      16_36     0.000 5586.02 0.0e+00  -1.81
5391          GFOD2      16_36     0.000   24.20 0.0e+00   1.15
1797       TSNAXIP1      16_36     0.000   24.75 0.0e+00   1.55
1794          NUTF2      16_36     0.000 5653.01 0.0e+00   1.89
1796          CENPT      16_36     0.000 4686.14 0.0e+00   0.95
374            EDC4      16_36     0.000 4734.07 0.0e+00   0.83
10064         NRN1L      16_36     0.000   81.29 0.0e+00  -4.04
6813          PSKH1      16_36     0.000 1358.59 2.1e-11 -15.23
5389           CTRL      16_36     0.977  303.47 9.4e-04  17.12
10901        PSMB10      16_36     0.000 5657.79 0.0e+00  -1.76
5390          DPEP3      16_36     0.000  207.41 3.5e-16 -15.78
11020          LCAT      16_36     0.000  291.57 2.0e-10  16.34
7875           DUS2      16_36     0.000 4380.70 0.0e+00   6.71
7874          DPEP2      16_36     0.000  227.13 0.0e+00  14.32
806          NFATC3      16_36     0.000 4636.91 0.0e+00  -3.01
1818          ESRP2      16_36     0.000 5948.57 0.0e+00  -1.67
1816         SLC7A6      16_36     0.000  203.07 0.0e+00 -13.41
1817        PLA2G15      16_36     0.000  141.85 0.0e+00 -11.07
4414          PRMT7      16_36     0.000   79.03 0.0e+00   9.08
9744          ZFP90      16_36     0.000   22.54 0.0e+00   1.13

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip      mu2     PVE      z
54829     rs2103827      1_117     1.000   229.80 7.3e-04  22.05
54830    rs11122453      1_117     1.000   454.63 1.4e-03  25.82
55311   rs766167074      1_118     1.000  7488.50 2.4e-02   3.28
61484    rs10183939        2_2     1.000    37.21 1.2e-04  -6.06
67509     rs1042034       2_13     1.000   496.41 1.6e-03 -21.96
178236    rs9817452       3_97     1.000    62.12 2.0e-04   8.17
187300   rs35374654      3_114     1.000    38.70 1.2e-04   6.03
224442   rs35518360       4_67     1.000   258.77 8.2e-04 -17.51
224508   rs13140033       4_68     1.000   163.47 5.2e-04 -13.28
268561   rs62369502       5_28     1.000    39.46 1.3e-04  -6.13
326229  rs142449754       6_32     1.000    58.36 1.9e-04  -7.92
363653  rs191555775      6_104     1.000   158.77 5.0e-04 -15.06
413398    rs6977416       7_94     1.000    63.06 2.0e-04  -6.76
422149    rs7012814       8_12     1.000   176.51 5.6e-04  17.03
422160   rs13265179       8_12     1.000   235.09 7.5e-04 -17.38
427378    rs1372339       8_21     1.000  1811.87 5.7e-03  17.85
427414   rs75835816       8_21     1.000   668.52 2.1e-03 -26.36
427450   rs11986461       8_21     1.000   738.54 2.3e-03  25.57
458040   rs10956254       8_83     1.000    60.58 1.9e-04  -9.41
464318    rs7832515       8_94     1.000   142.64 4.5e-04  12.51
471422     rs677622       9_13     1.000   189.59 6.0e-04  14.52
491549    rs2777798       9_52     1.000   214.76 6.8e-04  13.11
491555    rs2777802       9_52     1.000   369.51 1.2e-03  12.36
491557    rs2777804       9_52     1.000   295.80 9.4e-04   4.27
491563    rs7024300       9_53     1.000   193.01 6.1e-04  14.80
491569    rs2297400       9_53     1.000   191.43 6.1e-04  13.31
491580   rs62568181       9_53     1.000   257.79 8.2e-04 -21.81
491593    rs2254819       9_53     1.000   211.41 6.7e-04 -20.60
515288   rs71007692      10_28     1.000  8198.27 2.6e-02  -3.29
559402   rs12361987      11_30     1.000   120.13 3.8e-04   0.85
576582   rs11216162      11_70     1.000   709.72 2.3e-03  15.29
576768  rs147611518      11_70     1.000   114.73 3.6e-04 -11.15
579233    rs4937122      11_77     1.000    54.63 1.7e-04  -7.42
600348    rs6581124      12_35     1.000    46.53 1.5e-04   7.41
600367    rs7397189      12_36     1.000    74.76 2.4e-04  11.92
619881    rs3782287      12_76     1.000    93.31 3.0e-04 -12.81
619897   rs61941677      12_76     1.000   198.94 6.3e-04 -16.01
635734  rs775834524      13_25     1.000 13957.84 4.4e-02  -3.45
671770   rs13379043      14_34     1.000    73.36 2.3e-04   7.79
691493    rs7168508      15_24     1.000   330.61 1.0e-03   0.10
691495   rs10629766      15_24     1.000  1556.78 4.9e-03   3.27
691496    rs4424863      15_24     1.000  1570.76 5.0e-03   3.14
692350   rs58038553      15_27     1.000   248.66 7.9e-04 -21.17
692352    rs1711037      15_27     1.000   114.95 3.6e-04  14.00
692410   rs28594460      15_27     1.000   240.14 7.6e-04  17.86
692426   rs62000868      15_27     1.000   656.19 2.1e-03  27.17
692432    rs2070895      15_27     1.000  1719.32 5.5e-03  43.96
719258    rs8064102      16_31     1.000   527.09 1.7e-03   8.00
719280  rs190575415      16_31     1.000   580.76 1.8e-03  20.50
719290     rs821840      16_31     1.000  7834.45 2.5e-02  97.05
719291   rs12720926      16_31     1.000  4824.04 1.5e-02  86.67
719295   rs66495554      16_31     1.000  1692.33 5.4e-03  -8.74
722114    rs2276329      16_37     1.000    55.28 1.8e-04  -7.06
726844   rs12443634      16_46     1.000   126.26 4.0e-04  13.60
763673   rs11082766      18_27     1.000   192.84 6.1e-04  12.42
763693    rs6507938      18_27     1.000   504.60 1.6e-03  28.37
763694  rs118043171      18_27     1.000   521.62 1.7e-03  23.95
763913   rs74461650      18_28     1.000    75.31 2.4e-04   8.82
777838    rs1865063      19_11     1.000    82.35 2.6e-04 -11.95
777840    rs3745683      19_11     1.000   102.44 3.3e-04 -12.71
787722     rs405509      19_31     1.000    69.31 2.2e-04  11.23
787726     rs814573      19_31     1.000   420.39 1.3e-03 -21.83
787732    rs4803775      19_31     1.000   321.84 1.0e-03  16.28
787738    rs4803784      19_31     1.000   121.84 3.9e-04   2.47
803032  rs147591082      20_28     1.000    58.19 1.8e-04  -7.58
803478    rs4812975      20_28     1.000   222.10 7.0e-04  21.69
803977    rs6063139      20_29     1.000    63.55 2.0e-04   3.37
862295  rs140584594       1_67     1.000   128.88 4.1e-04  12.66
930246   rs35733538       3_95     1.000  2030.02 6.4e-03  -4.87
1021867   rs3072639      11_29     1.000  2409.61 7.6e-03   2.02
1047118 rs146923372      11_37     1.000  7826.06 2.5e-02   2.69
1103689   rs4986970      16_36     1.000   148.77 4.7e-04 -12.75
1104520  rs56090907      16_36     1.000  8212.19 2.6e-02   4.70
1129532  rs11556624      17_23     1.000    97.28 3.1e-04   6.49
1136242 rs202007993      17_26     1.000  2138.65 6.8e-03   2.72
1136272   rs7209751      17_26     1.000  2146.39 6.8e-03  -7.24
1136274  rs72836561      17_26     1.000   672.70 2.1e-03 -26.31
1159982 rs116843064       19_8     1.000   532.72 1.7e-03  25.68
1194769 rs202143810      20_38     1.000  4394.65 1.4e-02   4.04
29519    rs11102041       1_69     0.999    75.94 2.4e-04   7.93
52948     rs2642420      1_112     0.999    36.77 1.2e-04  -7.39
54253      rs878811      1_116     0.999    33.32 1.1e-04   5.66
407406    rs6961342       7_80     0.999    90.46 2.9e-04 -13.21
427380   rs17091881       8_21     0.999   588.38 1.9e-03 -24.49
600390  rs140734681      12_36     0.999    34.56 1.1e-04  -2.42
604408    rs2137537      12_44     0.999    32.22 1.0e-04  -5.19
635732    rs7999449      13_25     0.999 13916.66 4.4e-02  -3.39
54822     rs6678475      1_117     0.998    38.57 1.2e-04  -1.80
220167    rs4425336       4_60     0.998    39.20 1.2e-04   7.21
692240   rs72737411      15_25     0.998    31.32 9.9e-05  -5.09
842792    rs4989532        1_6     0.998   538.26 1.7e-03   2.86
842793    rs2072735        1_6     0.998   516.58 1.6e-03   3.39
1065877 rs532140742      12_75     0.998   122.53 3.9e-04 -11.44
1135810 rs117380643      17_25     0.998   103.48 3.3e-04 -10.28
93890     rs3789066       2_66     0.997    31.34 9.9e-05  -5.15
279055  rs115912456       5_49     0.996    29.98 9.5e-05   5.30
427188  rs113231830       8_20     0.996    31.54 1.0e-04  -5.70
491596    rs2437818       9_53     0.996   103.81 3.3e-04  14.54
32543   rs185073199       1_73     0.995    30.29 9.6e-05   5.33
726851   rs11641142      16_46     0.995    65.75 2.1e-04  10.95
465260    rs1016565        9_1     0.994    30.45 9.6e-05  -5.31
563042     rs695110      11_42     0.993   111.92 3.5e-04 -11.10
803769    rs6066141      20_29     0.993    34.16 1.1e-04   5.54
804015   rs78492788      20_29     0.993    71.39 2.2e-04   8.17
1047113  rs57808037      11_37     0.992  7824.84 2.5e-02   2.67
763713    rs8093206      18_27     0.991    71.16 2.2e-04  -7.76
321931    rs1131159       6_26     0.990    51.45 1.6e-04   8.41
576553    rs3135506      11_70     0.990   572.46 1.8e-03 -20.84
786625   rs11879413      19_30     0.989    30.08 9.4e-05   5.43
271412     rs173964       5_33     0.988   150.34 4.7e-04 -10.81
589331   rs66720652      12_15     0.988    32.65 1.0e-04   5.45
131895    rs4675812      2_144     0.987    35.37 1.1e-04   6.34
698713   rs16972386      15_38     0.987    29.74 9.3e-05  -5.13
749294   rs72854483      17_46     0.985    27.16 8.5e-05  -4.96
540067   rs10901802      10_78     0.984    30.43 9.5e-05   5.51
1067463 rs533328276      12_75     0.984    54.51 1.7e-04   1.46
422452    rs1402522       8_13     0.983    32.92 1.0e-04   6.21
316691    rs4134975       6_15     0.981    30.89 9.6e-05   4.79
671626     rs177392      14_34     0.981    29.19 9.1e-05  -4.40
766569   rs41292412      18_31     0.981    37.80 1.2e-04  -6.21
323729  rs181268076       6_27     0.976    47.65 1.5e-04  -6.52
391842  rs367867252       7_48     0.976    31.78 9.8e-05  -5.36
521053   rs11510917      10_39     0.976    27.00 8.4e-05   4.72
367934   rs11971790        7_3     0.973    57.59 1.8e-04  -6.64
619787   rs11057671      12_76     0.972    67.42 2.1e-04   8.60
763709   rs62101781      18_27     0.972   216.45 6.7e-04  17.00
553875   rs12288512      11_19     0.970    62.04 1.9e-04  -7.87
373526      rs38172       7_16     0.969    27.94 8.6e-05   5.01
456564    rs9297630       8_80     0.969    47.91 1.5e-04  -6.67
1018929   rs7123635      11_28     0.969    91.43 2.8e-04  -9.78
377440    rs2699814       7_23     0.967    44.18 1.4e-04   6.12
694160   rs11071771      15_29     0.967    38.29 1.2e-04  -6.23
604529    rs1707498      12_44     0.964    30.83 9.4e-05   5.19
195243   rs17468437       4_12     0.963    25.89 7.9e-05   4.81
1011982 rs140201358       11_1     0.963    30.91 9.4e-05  -5.35
1045284   rs4930352      11_37     0.962   283.83 8.7e-04   8.12
521848    rs2393730      10_42     0.961    27.07 8.3e-05   5.11
825169      rs12321       22_9     0.957    28.95 8.8e-05   4.92
1166492  rs73024215      19_23     0.956    62.75 1.9e-04  -8.87
616953     rs653178      12_67     0.954   138.56 4.2e-04  10.81
422257    rs7016636       8_12     0.949    70.95 2.1e-04  -2.41
572169   rs72980276      11_59     0.947    26.16 7.9e-05  -4.87
658522    rs1955512       14_8     0.946    33.91 1.0e-04   5.52
842794  rs115843159        1_6     0.946    45.70 1.4e-04  -0.36
277727    rs3733890       5_46     0.943    32.30 9.7e-05  -5.71
344359    rs2388334       6_67     0.943    31.71 9.5e-05   5.48
300438    rs4958365       5_90     0.942    31.67 9.5e-05   4.88
326683  rs115482652       6_34     0.942    24.98 7.5e-05  -4.88
399230    rs2734897       7_61     0.942    28.75 8.6e-05  -5.53
756158   rs57440424      18_12     0.941    56.05 1.7e-04   7.71
537343  rs113097445      10_72     0.939    25.54 7.6e-05  -4.72
397839   rs12534274       7_58     0.938    28.29 8.4e-05   5.15
474899  rs145804707       9_18     0.936    24.23 7.2e-05  -4.54
589286   rs11045182      12_15     0.936    50.55 1.5e-04   7.13
205632   rs58932203       4_32     0.932    32.28 9.6e-05   5.40
776081   rs67868323       19_4     0.930    53.96 1.6e-04  -6.94
790723    rs2316866       20_1     0.928    25.12 7.4e-05  -4.69
500311  rs115478735       9_70     0.927    56.41 1.7e-04   7.54
294405    rs4705986       5_80     0.925    27.97 8.2e-05   4.86
577715    rs1219430      11_74     0.924    29.75 8.7e-05  -5.60
584667   rs10849492       12_7     0.924    41.96 1.2e-04  -6.60
15346    rs12140153       1_39     0.917    27.20 7.9e-05   4.53
499249  rs111472765       9_67     0.916    23.74 6.9e-05   4.47
560097  rs145487327      11_32     0.912    34.70 1.0e-04   4.94
698782    rs1509559      15_38     0.912    27.05 7.8e-05   4.63
276795    rs4496694       5_44     0.911    28.84 8.3e-05   4.80
53339    rs12132342      1_115     0.908    24.40 7.0e-05  -4.47
634160   rs78212345      13_21     0.908    32.73 9.4e-05   5.75
786776    rs6508974      19_30     0.906    30.47 8.8e-05   5.36
128348   rs11900497      2_135     0.904    27.19 7.8e-05  -4.92
113437   rs71410739      2_107     0.901    27.03 7.7e-05  -4.97
339461  rs560253203       6_56     0.901    23.80 6.8e-05   4.33
678094    rs1242889      14_47     0.901    26.17 7.5e-05   4.68
326684    rs9472126       6_34     0.897    24.52 7.0e-05   4.71
39058    rs35039375       1_84     0.895    28.40 8.1e-05  -5.18
591513   rs11614652      12_18     0.890    29.01 8.2e-05   5.16
1058353  rs10507274      12_72     0.889    29.34 8.3e-05   4.63
356723  rs151288714       6_92     0.887    50.08 1.4e-04   7.62
200596   rs56147366       4_22     0.885    57.16 1.6e-04  -7.71
549275    rs7121538      11_11     0.885    44.88 1.3e-04   6.46
815364  rs546634737      21_11     0.882    25.68 7.2e-05   4.59
491432   rs34849882       9_52     0.876    51.29 1.4e-04   3.81
717442   rs62039688      16_27     0.875    25.30 7.0e-05   4.50
576543    rs9326246      11_70     0.873   546.08 1.5e-03  22.70
348399    rs2038014       6_74     0.869    26.05 7.2e-05  -4.75
819968    rs8128478      21_21     0.868    25.97 7.2e-05   4.91
788952    rs4802880      19_35     0.864    65.30 1.8e-04  -8.38
95396     rs2130980       2_68     0.861    28.20 7.7e-05   5.09
413407    rs4725377       7_94     0.860    31.72 8.7e-05   1.96
559238   rs72484110      11_30     0.855   171.75 4.7e-04  12.61
1199832   rs9980311      21_23     0.855    58.43 1.6e-04  -6.68
549199  rs547219635      11_11     0.853    26.77 7.2e-05   4.11
824881   rs73166732       22_9     0.852    24.46 6.6e-05  -4.01
616252   rs34132586      12_66     0.851    23.79 6.4e-05   3.95
237739  rs116329078       4_94     0.850    27.13 7.3e-05   5.04
1051208   rs2229738      11_38     0.845    35.50 9.5e-05  -6.32
391615   rs13247874       7_47     0.844   154.25 4.1e-04  12.82
285527   rs55815433       5_62     0.843    25.26 6.8e-05   4.49
374281   rs17138358       7_17     0.841   127.84 3.4e-04 -11.94
427391    rs2410620       8_21     0.839  2988.31 8.0e-03  46.36
148423   rs75987913       3_35     0.836    28.72 7.6e-05   5.70
463659   rs11778265       8_92     0.834    26.99 7.1e-05  -4.87
455116   rs10095930       8_78     0.833    56.26 1.5e-04   4.72
827519    rs9610329      22_14     0.832    28.53 7.5e-05  -5.09
131933   rs59389004      2_144     0.830    26.23 6.9e-05   5.13
76974     rs4566412       2_31     0.829    36.21 9.5e-05  -5.54
466887     rs447124        9_5     0.825    26.45 6.9e-05  -4.72
704687   rs11634241      15_48     0.825    24.54 6.4e-05  -4.55
82750    rs62143990       2_43     0.824    26.82 7.0e-05   4.91
807752   rs41310841      20_34     0.824    26.05 6.8e-05  -4.62
1018554  rs71474191      11_28     0.824    42.99 1.1e-04  -6.70
1189555  rs12975366      19_37     0.824    44.81 1.2e-04  -8.30
130693   rs11900603      2_139     0.822    24.85 6.5e-05  -4.43
627305    rs9554263       13_7     0.810    29.52 7.6e-05  -5.23
772148    rs4519424      18_43     0.810    24.48 6.3e-05  -4.34
108892  rs187764768       2_97     0.809    24.58 6.3e-05   4.06
169883   rs62262433       3_76     0.806    25.77 6.6e-05   4.72
356856  rs377695739       6_93     0.804    28.84 7.4e-05   5.26

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE     z
635734 rs775834524      13_25     1.000 13957.84 4.4e-02 -3.45
635732   rs7999449      13_25     0.999 13916.66 4.4e-02 -3.39
635724   rs7337153      13_25     0.071 13903.22 3.2e-03 -3.34
635729   rs9537143      13_25     0.151 13870.42 6.7e-03  3.46
635728   rs9597193      13_25     0.209 13869.54 9.2e-03  3.47
635725   rs9527399      13_25     0.282 13869.52 1.2e-02  3.48
635727   rs9527401      13_25     0.208 13869.46 9.2e-03  3.47
635723   rs9537125      13_25     0.010 13858.58 4.2e-04  3.41
635722   rs9527398      13_25     0.010 13858.54 4.2e-04  3.41
635720   rs9537123      13_25     0.006 13857.32 2.6e-04  3.40
635713   rs3013347      13_25     0.000 13601.26 3.8e-13 -3.33
635714   rs2937326      13_25     0.000 13601.20 3.4e-13 -3.33
635715   rs9597179      13_25     0.000 13564.03 1.3e-13  3.41
635739   rs9537159      13_25     0.000 13316.46 0.0e+00 -3.29
635716   rs9537116      13_25     0.000 13309.27 0.0e+00  3.49
635745    rs539380      13_25     0.000 13303.05 0.0e+00 -3.31
635738  rs35800055      13_25     0.000 13274.33 0.0e+00  3.32
635735   rs4536353      13_25     0.000 13274.20 0.0e+00  3.36
635737  rs67100646      13_25     0.000 13274.13 0.0e+00  3.37
635736   rs4296148      13_25     0.000 13273.39 0.0e+00  3.36
635742   rs7994036      13_25     0.000 13270.69 0.0e+00  3.37
635740   rs9597201      13_25     0.000 13270.16 0.0e+00  3.37
635744   rs9537174      13_25     0.000 13269.57 0.0e+00  3.36
635711   rs3105089      13_25     0.000 12629.48 0.0e+00 -3.78
635710   rs3124374      13_25     0.000 12554.92 0.0e+00 -3.88
635709   rs2315886      13_25     0.000 12551.28 0.0e+00 -3.89
635708   rs2315887      13_25     0.000 12551.24 0.0e+00 -3.89
635700   rs2315898      13_25     0.000 12537.42 0.0e+00 -3.90
635702   rs3105045      13_25     0.000 12534.42 0.0e+00 -3.90
635703   rs2315895      13_25     0.000 12534.42 0.0e+00 -3.89
635704   rs3124405      13_25     0.000 12534.13 0.0e+00 -3.89
635698   rs7317475      13_25     0.000 12520.62 0.0e+00 -3.86
635706   rs3124402      13_25     0.000 12516.22 0.0e+00 -3.91
635692    rs616312      13_25     0.000 12490.83 0.0e+00 -3.83
635695    rs520268      13_25     0.000 12490.81 0.0e+00 -3.83
635690   rs4635225      13_25     0.000 12490.60 0.0e+00 -3.82
635687   rs1960704      13_25     0.000 12490.35 0.0e+00 -3.84
635751   rs9569325      13_25     0.000 12368.69 0.0e+00 -3.27
635756   rs2095219      13_25     0.000 12321.66 0.0e+00 -3.31
635748    rs480215      13_25     0.000 12315.09 0.0e+00 -3.27
635755   rs4885924      13_25     0.000 12298.34 0.0e+00 -3.30
635754   rs4885918      13_25     0.000 12264.48 0.0e+00 -3.28
635760   rs9537216      13_25     0.000 12238.49 0.0e+00 -3.28
635762    rs475059      13_25     0.000 12235.82 0.0e+00 -3.29
635763   rs2780471      13_25     0.000 12233.23 0.0e+00 -3.29
635764   rs2780470      13_25     0.000 12233.20 0.0e+00 -3.29
635747    rs640805      13_25     0.000 12166.51 0.0e+00 -3.27
635753   rs9537189      13_25     0.000 12133.72 0.0e+00 -3.01
635773    rs668506      13_25     0.000 12122.62 0.0e+00 -3.27
635770   rs2991029      13_25     0.000 12098.89 0.0e+00 -3.15

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip      mu2    PVE      z
635732    rs7999449      13_25     0.999 13916.66 0.0440  -3.39
635734  rs775834524      13_25     1.000 13957.84 0.0440  -3.45
515288   rs71007692      10_28     1.000  8198.27 0.0260  -3.29
1104520  rs56090907      16_36     1.000  8212.19 0.0260   4.70
719290     rs821840      16_31     1.000  7834.45 0.0250  97.05
1047113  rs57808037      11_37     0.992  7824.84 0.0250   2.67
1047118 rs146923372      11_37     1.000  7826.06 0.0250   2.69
55311   rs766167074      1_118     1.000  7488.50 0.0240   3.28
719291   rs12720926      16_31     1.000  4824.04 0.0150  86.67
515287    rs2474565      10_28     0.552  8245.03 0.0140  -3.38
1194769 rs202143810      20_38     1.000  4394.65 0.0140   4.04
515294    rs2472183      10_28     0.478  8244.99 0.0130  -3.37
515297   rs11011452      10_28     0.506  8245.24 0.0130  -3.36
635725    rs9527399      13_25     0.282 13869.52 0.0120   3.48
1104490  rs71395853      16_36     0.407  8240.49 0.0110   1.69
635727    rs9527401      13_25     0.208 13869.46 0.0092   3.47
635728    rs9597193      13_25     0.209 13869.54 0.0092   3.47
427391    rs2410620       8_21     0.839  2988.31 0.0080  46.36
1021867   rs3072639      11_29     1.000  2409.61 0.0076   2.02
55308    rs10489611      1_118     0.301  7541.46 0.0072   3.63
55310      rs971534      1_118     0.287  7541.42 0.0069   3.63
1136242 rs202007993      17_26     1.000  2138.65 0.0068   2.72
1136272   rs7209751      17_26     1.000  2146.39 0.0068  -7.24
635729    rs9537143      13_25     0.151 13870.42 0.0067   3.46
930246   rs35733538       3_95     1.000  2030.02 0.0064  -4.87
1104522  rs71395854      16_36     0.243  8241.74 0.0063   1.66
55309     rs2486737      1_118     0.256  7541.35 0.0061   3.63
1194744   rs2315009      20_38     0.423  4453.09 0.0060   3.82
55302     rs2256908      1_118     0.241  7541.01 0.0058   3.63
427378    rs1372339       8_21     1.000  1811.87 0.0057  17.85
692432    rs2070895      15_27     1.000  1719.32 0.0055  43.96
719295   rs66495554      16_31     1.000  1692.33 0.0054  -8.74
1194748  rs67468102      20_38     0.357  4453.38 0.0051   3.81
691496    rs4424863      15_24     1.000  1570.76 0.0050   3.14
691495   rs10629766      15_24     1.000  1556.78 0.0049   3.27
515285    rs9299760      10_28     0.181  8240.12 0.0047  -3.37
1194747  rs35201382      20_38     0.313  4453.34 0.0044   3.79
55305     rs2790891      1_118     0.180  7540.85 0.0043   3.62
55306     rs2491405      1_118     0.180  7540.85 0.0043   3.62
1194749   rs2750483      20_38     0.283  4453.46 0.0040   3.79
55298     rs1076804      1_118     0.158  7531.54 0.0038   3.67
635724    rs7337153      13_25     0.071 13903.22 0.0032  -3.34
1047128   rs6591245      11_37     0.116  7812.85 0.0029   2.61
427450   rs11986461       8_21     1.000   738.54 0.0023  25.57
576582   rs11216162      11_70     1.000   709.72 0.0023  15.29
1104492  rs34530665      16_36     0.085  8240.49 0.0022   1.65
1104533  rs35189054      16_36     0.083  8239.89 0.0022   1.65
1194746  rs35046559      20_38     0.154  4437.14 0.0022   3.91
427414   rs75835816       8_21     1.000   668.52 0.0021 -26.36
692426   rs62000868      15_27     1.000   656.19 0.0021  27.17

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip     mu2     PVE      z
719290    rs821840      16_31     1.000 7834.45 2.5e-02  97.05
719288  rs12446515      16_31     0.000 7773.72 1.3e-16  96.60
719291  rs12720926      16_31     1.000 4824.04 1.5e-02  86.67
719287    rs193695      16_31     0.000 3349.09 0.0e+00  64.87
427391   rs2410620       8_21     0.839 2988.31 8.0e-03  46.36
427398   rs1441762       8_21     0.161 2985.27 1.5e-03  46.33
427401   rs4126104       8_21     0.000 2952.53 3.6e-10  46.23
427397  rs35878331       8_21     0.000 2969.58 4.9e-07  46.15
427402  rs35369244       8_21     0.000 2899.53 0.0e+00  45.75
427396   rs6999813       8_21     0.000 1461.23 0.0e+00  44.52
427375  rs10645926       8_21     0.000 1507.65 0.0e+00  44.49
427382  rs78963197       8_21     0.000 1480.25 0.0e+00  44.28
692432   rs2070895      15_27     1.000 1719.32 5.5e-03  43.96
427387  rs17489226       8_21     0.000 1406.86 0.0e+00  43.81
427413   rs7816447       8_21     0.000 1407.45 0.0e+00  43.76
427411  rs11989309       8_21     0.000 1400.82 0.0e+00  43.75
427408  rs28675909       8_21     0.000 1398.17 0.0e+00  43.73
427415  rs11984698       8_21     0.000 1397.28 0.0e+00  43.71
427409  rs79198716       8_21     0.000 1389.50 0.0e+00  43.67
427410   rs7004149       8_21     0.000 1388.24 0.0e+00  43.66
427371 rs149553676       8_21     0.000 2367.28 0.0e+00  43.48
427370       rs287       8_21     0.000 2292.07 0.0e+00  43.36
427377   rs1569209       8_21     0.000 1352.81 0.0e+00  42.99
427379  rs80073370       8_21     0.000 1321.39 0.0e+00  42.50
427400  rs11986942       8_21     0.000 2712.79 0.0e+00  41.89
427440  rs80026582       8_21     0.000 1349.47 0.0e+00  41.88
719293   rs4784744      16_31     0.000 2061.82 0.0e+00 -37.95
719292    rs289717      16_31     0.000 2055.81 0.0e+00 -37.93
719294   rs4784745      16_31     0.000 2145.71 0.0e+00 -37.86
427393   rs4083261       8_21     0.000 2544.36 0.0e+00  37.40
427392  rs12541912       8_21     0.000 2584.97 0.0e+00  36.34
692434   rs8034802      15_27     0.000 1109.87 0.0e+00  34.81
692445    rs686958      15_27     0.000 1082.01 0.0e+00 -34.78
692435    rs633695      15_27     0.000 1048.29 0.0e+00  33.81
692440    rs488490      15_27     0.000 1065.40 0.0e+00 -33.44
692438    rs261341      15_27     0.000  999.93 0.0e+00 -32.91
427405   rs6586886       8_21     0.000  943.03 0.0e+00  32.48
692444    rs485671      15_27     0.000 1007.16 0.0e+00 -32.42
719231  rs79984435      16_31     0.000  889.77 0.0e+00 -30.34
719235  rs16962399      16_31     0.000  888.05 0.0e+00 -30.31
719240   rs3764266      16_31     0.000  790.05 0.0e+00 -30.08
719239 rs147569850      16_31     0.000  790.46 0.0e+00 -30.06
719245   rs1968493      16_31     0.000  487.49 0.0e+00  29.95
427353  rs73597690       8_21     0.000  839.40 0.0e+00  28.50
427403   rs2898495       8_21     0.000  987.73 0.0e+00  28.47
763693   rs6507938      18_27     1.000  504.60 1.6e-03  28.37
427439 rs117501405       8_21     0.000  629.44 0.0e+00  28.21
427394   rs4389957       8_21     0.000 1031.58 0.0e+00  28.13
763690   rs7241918      18_27     0.000  487.12 4.5e-07  27.97
719289 rs201825234      16_31     0.000  590.87 0.0e+00 -27.64

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 43
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
                                            Term Overlap Adjusted.P.value
1 phospholipid biosynthetic process (GO:0008654)    3/37       0.03089371
              Genes
1 DPAGT1;GPAM;FADS1
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
PNMT gene(s) from the input list not found in DisGeNET CURATEDC12orf49 gene(s) from the input list not found in DisGeNET CURATEDC1QTNF4 gene(s) from the input list not found in DisGeNET CURATEDPSRC1 gene(s) from the input list not found in DisGeNET CURATEDSPSB1 gene(s) from the input list not found in DisGeNET CURATEDSTK24 gene(s) from the input list not found in DisGeNET CURATEDMRPL21 gene(s) from the input list not found in DisGeNET CURATEDCNIH4 gene(s) from the input list not found in DisGeNET CURATEDCEBPG gene(s) from the input list not found in DisGeNET CURATEDBLMH gene(s) from the input list not found in DisGeNET CURATEDZDHHC18 gene(s) from the input list not found in DisGeNET CURATEDPHPT1 gene(s) from the input list not found in DisGeNET CURATEDRP11-54O7.17 gene(s) from the input list not found in DisGeNET CURATEDLAMP1 gene(s) from the input list not found in DisGeNET CURATEDPITPNC1 gene(s) from the input list not found in DisGeNET CURATEDSLFN13 gene(s) from the input list not found in DisGeNET CURATEDFOXK1 gene(s) from the input list not found in DisGeNET CURATEDRPA2 gene(s) from the input list not found in DisGeNET CURATEDSTARD3NL gene(s) from the input list not found in DisGeNET CURATEDNTAN1 gene(s) from the input list not found in DisGeNET CURATEDABTB1 gene(s) from the input list not found in DisGeNET CURATEDMIR210HG gene(s) from the input list not found in DisGeNET CURATEDDNAH10OS gene(s) from the input list not found in DisGeNET CURATED
                                Description        FDR Ratio BgRatio
34           Inherited Factor II deficiency 0.03661177  1/20  1/9703
57           Sinus Thrombosis, Intracranial 0.03661177  1/20  2/9703
77                  Skin Diseases, Vascular 0.03661177  1/20  1/9703
114            Mesenteric Venous Thrombosis 0.03661177  1/20  2/9703
115             Acid Phosphatase Deficiency 0.03661177  1/20  1/9703
119                  Gray Platelet Syndrome 0.03661177  1/20  2/9703
120 Hereditary factor II deficiency disease 0.03661177  1/20  1/9703
124                      Tubular aggregates 0.03661177  1/20  2/9703
165          Petrous Sinus Thrombophlebitis 0.03661177  1/20  2/9703
166     Intracranial Sinus Thrombophlebitis 0.03661177  1/20  2/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
           description size overlap        FDR       database
1 Therapeutic abortion   12       3 0.03108406 disease_GLAD4U
         userId
1 F2;ACP2;SIPA1

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2