Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30760_irnt_Liver.Rmd) and HTML (docs/ukb-d-30760_irnt_Liver.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd 627a4e1 wesleycrouse 2021-09-07 adding heritability
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait HDL cholesterol (quantile) using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30760_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1070  768  652  417  494  611  548  408  405  434  634  629  195  365  354 
  16   17   18   19   20   21   22 
 526  663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8366205

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0173481546 0.0002037697 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
27.72493 21.83352 
#report sample size
print(sample_size)
[1] 315133
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10901 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.01663781 0.12278784 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.04883558 2.83910628

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip     mu2     PVE      z
6391         TTC39B       9_13     1.000  225.23 7.1e-04 -15.12
12613       GPIHBP1       8_94     0.999  151.60 4.8e-04 -12.51
8531           TNKS       8_12     0.997  125.39 4.0e-04  17.88
11684 RP11-136O12.2       8_83     0.995  208.98 6.6e-04 -16.01
1647         ARFRP1      20_38     0.995 4575.95 1.4e-02  -4.69
7410          ABCA1       9_53     0.993  220.25 6.9e-04  22.57
1144          ASAP3       1_16     0.988   32.86 1.0e-04   6.50
6509          NTAN1      16_15     0.985   94.68 3.0e-04  -9.88
11699  RP11-10A14.4       8_11     0.984   33.39 1.0e-04   4.57
2204           AKNA       9_59     0.982   33.66 1.0e-04  -6.51
9006          BEND3       6_71     0.977   25.63 7.9e-05  -4.73
2148         PCOLCE       7_62     0.975   23.84 7.4e-05   3.77
11399       TNFSF12       17_7     0.971   50.69 1.6e-04   7.33
3137           RPA2       1_19     0.960   24.99 7.6e-05   4.95
10104         SULF2      20_29     0.959   85.34 2.6e-04  -8.20
3210           LDAH       2_12     0.958   38.74 1.2e-04  -5.78
6801          PTH1R       3_33     0.953   26.50 8.0e-05   5.15
6100           ALLC        2_2     0.951   57.35 1.7e-04   7.62
9404        PTTG1IP      21_23     0.948   68.55 2.1e-04   8.09
12229 RP11-346C20.3      16_39     0.942   25.15 7.5e-05  -4.72
7329          DAGLB        7_9     0.939   89.88 2.7e-04   9.66
4435          PSRC1       1_67     0.933  105.34 3.1e-04  11.24
3774         ZNF436       1_16     0.932   29.27 8.7e-05  -6.19
12340  RP11-54O7.17        1_1     0.926   41.29 1.2e-04  -6.30
10502        SREBF2      22_17     0.905   22.79 6.5e-05   4.56
3177         PLAGL1       6_94     0.888   22.02 6.2e-05  -4.31
906           UBE2K       4_32     0.877   35.70 9.9e-05   5.51
9528           ZFP1      16_40     0.872   29.63 8.2e-05  -5.12
9447         KLHL25      15_39     0.866   20.38 5.6e-05   3.84
2678           TFEB       6_32     0.864   26.36 7.2e-05   5.91
12687   RP4-781K5.7      1_121     0.860   64.12 1.8e-04  -7.59
156           IFFO1       12_7     0.854   41.32 1.1e-04   6.77
2831          ABTB1       3_79     0.839   37.98 1.0e-04  -5.97
7794           TMC4      19_37     0.839   21.28 5.7e-05   4.29
9693        CD300LF      17_42     0.837   22.92 6.1e-05   4.25
9140             TH       11_2     0.818   29.49 7.7e-05   4.90
3300       C10orf88      10_77     0.804   21.55 5.5e-05  -4.16

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag susie_pip      mu2     PVE      z
7241     MST1R       3_35         0 71143.77 0.0e+00  -9.45
35        RBM6       3_35         0 69299.49 0.0e+00  10.30
9460     TRAIP       3_35         0 56142.02 0.0e+00  -6.58
11255     GPX1       3_35         0 48881.70 0.0e+00  -1.61
656       RHOA       3_35         0 48859.72 0.0e+00  -1.60
7235      APEH       3_35         0 48029.90 0.0e+00   2.08
9902   SLC38A3       3_35         0 30318.08 0.0e+00   5.33
11109  BSN-AS2       3_35         0 27807.46 0.0e+00   3.24
5666     NICN1       3_35         0 25930.86 0.0e+00  -3.21
8555     GMPPB       3_35         0 24757.48 0.0e+00  -2.06
12683    HCP5B       6_24         0 13958.34 6.2e-09  -6.72
7234       BSN       3_35         0  9896.99 0.0e+00   4.23
4634     EGLN1      1_118         0  8770.30 0.0e+00   3.11
7843   CDK2AP2      11_37         0  7930.18 1.9e-11   3.07
10663   TRIM31       6_24         0  7337.40 1.5e-15   6.58
3058     EXOC8      1_118         0  7321.57 0.0e+00  -3.52
4833     FLOT1       6_24         0  7007.60 1.7e-07  -8.53
8762   RPS6KB2      11_37         0  6848.59 1.6e-09  -4.07
117   CACNA2D2       3_35         0  6394.84 0.0e+00   2.66
5240     NLRC5      16_31         0  5258.29 0.0e+00 -86.44

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
           genename region_tag susie_pip     mu2     PVE      z
1647         ARFRP1      20_38     0.995 4575.95 0.01400  -4.69
6391         TTC39B       9_13     1.000  225.23 0.00071 -15.12
7410          ABCA1       9_53     0.993  220.25 0.00069  22.57
11684 RP11-136O12.2       8_83     0.995  208.98 0.00066 -16.01
12613       GPIHBP1       8_94     0.999  151.60 0.00048 -12.51
8531           TNKS       8_12     0.997  125.39 0.00040  17.88
11776         HCAR3      12_75     0.729  138.39 0.00032  13.86
4435          PSRC1       1_67     0.933  105.34 0.00031  11.24
6509          NTAN1      16_15     0.985   94.68 0.00030  -9.88
7329          DAGLB        7_9     0.939   89.88 0.00027   9.66
10104         SULF2      20_29     0.959   85.34 0.00026  -8.20
2432          MTCH2      11_29     0.506  142.07 0.00023 -17.58
9404        PTTG1IP      21_23     0.948   68.55 0.00021   8.09
10848         CLIC1       6_26     0.792   75.04 0.00019   8.52
8409        C1QTNF4      11_29     0.423  141.53 0.00019  17.57
12687   RP4-781K5.7      1_121     0.860   64.12 0.00018  -7.59
6100           ALLC        2_2     0.951   57.35 0.00017   7.62
4485           DDB2      11_29     0.717   69.76 0.00016   1.05
11399       TNFSF12       17_7     0.971   50.69 0.00016   7.33
2998        RALGPS2       1_87     0.678   65.00 0.00014  -8.42

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip     mu2     PVE      z
5240          NLRC5      16_31     0.000 5258.29 0.0e+00 -86.44
1120           CETP      16_31     0.000 2675.98 0.0e+00 -70.46
7547           LIPC      15_26     0.000  893.76 2.2e-18 -35.69
5991          FADS1      11_34     0.004  345.91 4.2e-06  23.87
2465          APOA5      11_70     0.000  492.35 7.6e-16  22.92
7410          ABCA1       9_53     0.993  220.25 6.9e-04  22.57
8739            LPL       8_21     0.000  617.60 0.0e+00  21.57
4507          FADS2      11_34     0.002  312.23 2.3e-06  21.24
7955           FEN1      11_34     0.002  312.23 2.3e-06  21.24
1597           PLTP      20_28     0.000  221.39 1.5e-07  21.12
8531           TNKS       8_12     0.997  125.39 4.0e-04  17.88
2432          MTCH2      11_29     0.506  142.07 2.3e-04 -17.58
8409        C1QTNF4      11_29     0.423  141.53 1.9e-04  17.57
290           NR1H3      11_29     0.052  152.56 2.5e-05  16.37
2485           MADD      11_29     0.062  146.38 2.9e-05 -16.37
11738 RP11-115J16.2       8_12     0.011  240.95 8.1e-06  16.25
9360          DDX28      16_36     0.011  233.39 8.3e-06  16.18
11684 RP11-136O12.2       8_83     0.995  208.98 6.6e-04 -16.01
7523       SLC39A13      11_29     0.002  116.97 6.3e-07 -15.85
1231         PABPC4       1_24     0.077  227.86 5.6e-05  15.80

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.02926337
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip     mu2     PVE      z
5240          NLRC5      16_31     0.000 5258.29 0.0e+00 -86.44
1120           CETP      16_31     0.000 2675.98 0.0e+00 -70.46
7547           LIPC      15_26     0.000  893.76 2.2e-18 -35.69
5991          FADS1      11_34     0.004  345.91 4.2e-06  23.87
2465          APOA5      11_70     0.000  492.35 7.6e-16  22.92
7410          ABCA1       9_53     0.993  220.25 6.9e-04  22.57
8739            LPL       8_21     0.000  617.60 0.0e+00  21.57
4507          FADS2      11_34     0.002  312.23 2.3e-06  21.24
7955           FEN1      11_34     0.002  312.23 2.3e-06  21.24
1597           PLTP      20_28     0.000  221.39 1.5e-07  21.12
8531           TNKS       8_12     0.997  125.39 4.0e-04  17.88
2432          MTCH2      11_29     0.506  142.07 2.3e-04 -17.58
8409        C1QTNF4      11_29     0.423  141.53 1.9e-04  17.57
290           NR1H3      11_29     0.052  152.56 2.5e-05  16.37
2485           MADD      11_29     0.062  146.38 2.9e-05 -16.37
11738 RP11-115J16.2       8_12     0.011  240.95 8.1e-06  16.25
9360          DDX28      16_36     0.011  233.39 8.3e-06  16.18
11684 RP11-136O12.2       8_83     0.995  208.98 6.6e-04 -16.01
7523       SLC39A13      11_29     0.002  116.97 6.3e-07 -15.85
1231         PABPC4       1_24     0.077  227.86 5.6e-05  15.80

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 16_31"
          genename region_tag susie_pip     mu2 PVE      z
6688         CES5A      16_31         0   29.47   0   4.75
1124         GNAO1      16_31         0    6.21   0  -1.58
11561 RP11-461O7.1      16_31         0   20.94   0   0.43
6695          AMFR      16_31         0   47.54   0  -4.89
7710        NUDT21      16_31         0    6.21   0   2.02
3681          BBS2      16_31         0   32.30   0  -0.17
1122           MT3      16_31         0   32.53   0  -7.18
8094          MT1E      16_31         0   23.14   0  -1.47
10727         MT1M      16_31         0   86.95   0  -8.87
10725         MT1A      16_31         0   52.79   0  -6.53
10386         MT1F      16_31         0   51.70   0   6.63
9805          MT1X      16_31         0   35.71   0   2.54
1740         NUP93      16_31         0   23.80   0  -6.91
438        HERPUD1      16_31         0  371.87   0 -12.67
1120          CETP      16_31         0 2675.98   0 -70.46
5240         NLRC5      16_31         0 5258.29   0 -86.44
5239         CPNE2      16_31         0   50.06   0   2.62
8472       FAM192A      16_31         0   28.85   0   3.33
6698        RSPRY1      16_31         0   24.58   0   5.62
1745          PLLP      16_31         0   13.07   0   6.94
81          CX3CL1      16_31         0   22.31   0   2.65
1747         CCL17      16_31         0    9.01   0   1.89
52         CIAPIN1      16_31         0    8.20   0   0.41
1154          COQ9      16_31         0    6.09   0  -0.15
3685          DOK4      16_31         0   56.56   0  -2.49
4628      CCDC102A      16_31         0    5.39   0  -0.63
10722       ADGRG1      16_31         0   25.44   0   2.30
9366        ADGRG3      16_31         0    6.77   0  -0.65
5241        KATNB1      16_31         0   23.52   0   2.00
5242         KIFC3      16_31         0    5.36   0  -0.34
1754          USB1      16_31         0    8.72   0  -0.91
7571        ZNF319      16_31         0    9.93   0  -1.05
1753         MMP15      16_31         0    5.03   0   0.21
729         CFAP20      16_31         0   21.97   0  -1.92
730        CSNK2A2      16_31         0    6.36   0   0.57
9278         GINS3      16_31         0    5.69   0  -0.43
1757         NDRG4      16_31         0    8.10   0  -0.84
3680         CNOT1      16_31         0   37.92   0  -2.67
1759       SLC38A7      16_31         0    8.11   0   0.84
3684          GOT2      16_31         0   41.87   0  -2.82

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 15_26"
     genename region_tag susie_pip    mu2     PVE      z
7547     LIPC      15_26         0 893.76 2.2e-18 -35.69
4905   ADAM10      15_26         0   8.49 1.2e-20  -0.16
6536   RNF111      15_26         0  14.03 4.0e-20   0.66
4889     SLTM      15_26         0  33.99 1.8e-19  -3.79
8386  LDHAL6B      15_26         0  10.78 2.3e-20   0.59

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 11_34"
           genename region_tag susie_pip    mu2     PVE      z
9982        FAM111B      11_34     0.002   6.23 3.7e-08   0.72
7662        FAM111A      11_34     0.056  35.91 6.4e-06   2.69
2444           DTX4      11_34     0.003  10.06 9.9e-08   1.20
10267         MPEG1      11_34     0.002   5.01 2.7e-08  -0.08
7684          PATL1      11_34     0.003  12.34 1.2e-07   1.68
7687           STX3      11_34     0.002   5.65 3.2e-08  -0.55
7688         MRPL16      11_34     0.002   5.19 2.8e-08  -0.50
5997          MS4A2      11_34     0.009  20.41 5.5e-07   2.65
2453         MS4A6A      11_34     0.014  24.46 1.1e-06  -2.83
10924        MS4A4E      11_34     0.002   4.88 2.6e-08   0.40
7698         MS4A14      11_34     0.088  26.87 7.5e-06  -2.71
7697          MS4A7      11_34     0.003   9.07 7.5e-08  -1.47
2455         CCDC86      11_34     0.002   4.89 2.6e-08   0.29
2456         PRPF19      11_34     0.003   9.97 9.8e-08  -0.88
2457        TMEM109      11_34     0.012  21.96 8.0e-07  -1.92
2480        SLC15A3      11_34     0.059  41.83 7.8e-06   3.58
2481            CD5      11_34     0.002   7.89 4.7e-08   1.76
7874         VPS37C      11_34     0.002   6.00 3.2e-08   1.34
7875           VWCE      11_34     0.002   5.06 2.7e-08  -0.30
5990        TMEM138      11_34     0.002   8.78 4.9e-08  -2.14
6902       CYB561A3      11_34     0.002   8.78 4.9e-08  -2.14
9789        TMEM216      11_34     0.005  18.39 3.0e-07  -2.66
11817 RP11-286N22.8      11_34     0.012  25.00 9.9e-07  -2.37
5996          CPSF7      11_34     0.004  11.56 1.5e-07  -1.33
6903        PPP1R32      11_34     0.018  22.75 1.3e-06   0.80
11812 RP11-794G24.1      11_34     0.009  16.89 4.6e-07  -0.01
4508        TMEM258      11_34     0.002  63.57 4.8e-07  -8.56
4507          FADS2      11_34     0.002 312.23 2.3e-06  21.24
7955           FEN1      11_34     0.002 312.23 2.3e-06  21.24
5991          FADS1      11_34     0.004 345.91 4.2e-06  23.87
1196          GANAB      11_34     0.002 173.35 1.2e-06 -12.82
11004         FADS3      11_34     0.002  16.68 8.7e-08   5.01
7876          BEST1      11_34     0.004  47.57 5.6e-07  -7.56
3676   DKFZP434K028      11_34     0.039  47.55 5.8e-06   4.70
5994         INCENP      11_34     0.015  36.06 1.7e-06  -4.28
6904         ASRGL1      11_34     0.008  23.61 5.7e-07  -2.87

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 11_70"
     genename region_tag susie_pip    mu2     PVE      z
4868    BUD13      11_70         0 276.54 2.3e-17  -7.73
2465    APOA5      11_70         0 492.35 7.6e-16  22.92
3154    APOA1      11_70         0  69.82 5.5e-18 -11.64
7898 PAFAH1B2      11_70         0 157.57 1.4e-17  11.33
6005    SIDT2      11_70         0 151.63 5.3e-17 -13.10
6006    TAGLN      11_70         0  58.02 4.3e-18   9.26
6785    PCSK7      11_70         0 206.77 4.0e-11   8.64
7745   RNF214      11_70         0  21.77 2.5e-18  -3.40
2466   CEP164      11_70         0  27.23 1.3e-17   4.20
9720    BACE1      11_70         0 107.74 1.5e-16   9.59
4881    FXYD2      11_70         0   9.05 9.6e-19   0.74

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 9_53"
     genename region_tag susie_pip    mu2     PVE     z
7410    ABCA1       9_53     0.993 220.25 0.00069 22.57
2193     FKTN       9_53     0.000  30.23 0.00000 -2.06
1314  TMEM38B       9_53     0.000  16.58 0.00000 -2.59

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip       mu2     PVE      z
29916    rs11102041       1_69     1.000     77.93 2.5e-04   7.93
56281     rs2103827      1_117     1.000    232.23 7.4e-04  22.05
56282    rs11122453      1_117     1.000    460.13 1.5e-03  25.82
56763   rs766167074      1_118     1.000   9441.35 3.0e-02   3.28
69007     rs1042034       2_13     1.000    510.31 1.6e-03 -21.96
71044   rs569546056       2_17     1.000    617.95 2.0e-03   2.35
180076    rs9817452       3_97     1.000     62.15 2.0e-04   8.17
189140   rs35374654      3_114     1.000     38.92 1.2e-04   6.03
227402   rs35518360       4_67     1.000    262.96 8.3e-04 -17.51
227468   rs13140033       4_68     1.000    165.76 5.3e-04 -13.28
272019   rs62369502       5_28     1.000     40.27 1.3e-04  -6.13
293829      rs11064       5_72     1.000     42.09 1.3e-04   6.39
365379  rs191555775      6_104     1.000    158.95 5.0e-04 -15.06
415904    rs6977416       7_93     1.000     64.71 2.1e-04  -6.76
429135    rs1372339       8_21     1.000   1936.94 6.1e-03  17.85
429171   rs75835816       8_21     1.000    678.01 2.2e-03 -26.36
429207   rs11986461       8_21     1.000    759.42 2.4e-03  25.57
490311    rs2777798       9_52     1.000    224.56 7.1e-04  13.11
490317    rs2777802       9_52     1.000    395.68 1.3e-03  12.36
490319    rs2777804       9_52     1.000    322.62 1.0e-03   4.27
513800   rs71007692      10_28     1.000  10536.52 3.3e-02  -3.29
535500   rs17875416      10_71     1.000    113.32 3.6e-04   9.59
557136    rs7123635      11_28     1.000    154.48 4.9e-04  -9.78
557313    rs1631174      11_29     1.000    106.53 3.4e-04 -15.84
558418   rs12361987      11_30     1.000     68.59 2.2e-04   0.85
560712   rs12294913      11_36     1.000     55.85 1.8e-04  -8.27
576805    rs3135506      11_70     1.000    952.50 3.0e-03 -20.84
576834   rs11216162      11_70     1.000    707.56 2.2e-03  15.29
577020  rs147611518      11_70     1.000    115.58 3.7e-04 -11.15
579878    rs4937122      11_77     1.000     56.77 1.8e-04  -7.42
599774    rs6581124      12_35     1.000     45.69 1.4e-04   7.41
599793    rs7397189      12_36     1.000     94.58 3.0e-04  11.92
619307    rs3782287      12_76     1.000     93.95 3.0e-04 -12.81
619323   rs61941677      12_76     1.000    201.06 6.4e-04 -16.01
635158    rs7999449      13_25     1.000  19145.57 6.1e-02  -3.39
635160  rs775834524      13_25     1.000  19191.70 6.1e-02  -3.45
672358   rs13379043      14_34     1.000     74.98 2.4e-04   7.79
682685    rs4983559      14_55     1.000     78.83 2.5e-04  -8.68
693072    rs7168508      15_24     1.000    387.15 1.2e-03   0.10
693074   rs10629766      15_24     1.000   1805.55 5.7e-03   3.27
693075    rs4424863      15_24     1.000   1821.95 5.8e-03   3.14
721510   rs12925793      16_36     1.000     47.03 1.5e-04   7.79
721690  rs200561116      16_36     1.000    259.48 8.2e-04  17.28
721879    rs2276329      16_37     1.000     56.22 1.8e-04  -7.06
725568   rs12443634      16_45     1.000    128.15 4.1e-04  13.60
739921    rs4793062      17_26     1.000     89.99 2.9e-04  -7.46
739947   rs55764662      17_26     1.000    220.45 7.0e-04 -16.87
764869   rs11082766      18_27     1.000    196.29 6.2e-04  12.42
764889    rs6507938      18_27     1.000    508.01 1.6e-03  28.37
764890  rs118043171      18_27     1.000    528.40 1.7e-03  23.95
765109   rs74461650      18_28     1.000     76.79 2.4e-04   8.82
778363  rs111500536       19_8     1.000     80.83 2.6e-04   8.95
778366  rs116843064       19_8     1.000    546.57 1.7e-03  25.68
779352    rs1865063      19_10     1.000     83.65 2.7e-04 -11.95
779354    rs3745683      19_10     1.000    103.63 3.3e-04 -12.71
786383     rs889140      19_23     1.000     76.49 2.4e-04   8.86
804096  rs147591082      20_28     1.000     58.95 1.9e-04  -7.58
804542    rs4812975      20_28     1.000    223.85 7.1e-04  21.69
857342  rs140584594       1_67     1.000    124.81 4.0e-04  12.66
892926  rs142955295       3_35     1.000 114839.74 3.6e-01  -7.40
921047    rs1611236       6_24     1.000  28529.96 9.1e-02  -4.36
1001089   rs4149307       9_53     1.000    385.94 1.2e-03  19.86
1001323  rs11789603       9_53     1.000    302.93 9.6e-04  18.82
1001402   rs2740488       9_53     1.000    509.05 1.6e-03 -26.99
1009870 rs773844590      10_39     1.000  18018.22 5.7e-02  -3.88
1049439 rs146923372      11_37     1.000  10919.20 3.5e-02   2.69
1079213    rs261290      15_26     1.000   1461.43 4.6e-03 -44.15
1079311  rs12708454      15_26     1.000    568.82 1.8e-03  29.56
1101259      rs5883      16_31     1.000   1280.07 4.1e-03  25.59
1101277 rs117427818      16_31     1.000   1060.08 3.4e-03 -58.01
1130014  rs11556624      17_23     1.000    101.77 3.2e-04   6.49
1158671    rs429358      19_32     1.000    512.77 1.6e-03 -24.04
1158741  rs35136575      19_32     1.000     89.84 2.9e-04   9.41
1158772      rs5167      19_32     1.000    285.29 9.1e-04  17.02
1191739 rs202143810      20_38     1.000   5023.78 1.6e-02   4.04
1200570 rs780018294      22_10     1.000   1192.61 3.8e-03  -0.82
1200691   rs6006310      22_10     1.000   1085.34 3.4e-03  -6.59
55705      rs878811      1_116     0.999     33.76 1.1e-04   5.66
409912    rs6961342       7_80     0.999     90.98 2.9e-04 -13.21
429137   rs17091881       8_21     0.999    597.32 1.9e-03 -24.49
599816  rs140734681      12_36     0.999     35.25 1.1e-04  -2.42
603834    rs2137537      12_44     0.999     32.68 1.0e-04  -5.19
739903  rs117007812      17_26     0.999     63.90 2.0e-04   4.71
972767  rs118027010       8_80     0.999     39.35 1.2e-04   5.42
981815   rs72647336       8_83     0.999     58.71 1.9e-04  -7.75
1072291 rs532140742      12_75     0.999    118.32 3.8e-04 -11.44
1101167  rs12448528      16_31     0.999   1391.94 4.4e-03  66.11
56274     rs6678475      1_117     0.998     39.44 1.2e-04  -1.80
94993     rs3789066       2_66     0.998     32.01 1.0e-04  -5.15
223127    rs4425336       4_60     0.998     39.53 1.3e-04   7.21
383415       rs9490       7_28     0.998     39.96 1.3e-04   5.29
693819   rs72737411      15_25     0.998     31.79 1.0e-04  -5.09
907730    rs6762415       3_83     0.998     47.22 1.5e-04  -6.87
1073877 rs533328276      12_75     0.998     57.20 1.8e-04   1.46
1136292 rs117380643      17_25     0.998    102.17 3.2e-04 -10.28
786345   rs56287732      19_23     0.997     41.79 1.3e-04  -5.27
1049434  rs57808037      11_37     0.997  10917.87 3.5e-02   2.67
1079189  rs11071376      15_26     0.997    211.45 6.7e-04   4.90
32940   rs185073199       1_73     0.996     30.68 9.7e-05   5.33
282513  rs115912456       5_49     0.996     30.31 9.6e-05   5.30
428945  rs113231830       8_20     0.996     31.87 1.0e-04  -5.70
778368   rs62117512       19_8     0.996     87.45 2.8e-04  13.30
53627     rs2642420      1_112     0.995     39.86 1.3e-04  -7.39
464691    rs1016565        9_1     0.995     30.86 9.7e-05  -5.31
725575   rs11641142      16_45     0.994     65.06 2.1e-04  10.95
787919   rs11879413      19_28     0.994     29.37 9.3e-05   5.43
1078649  rs28690720      15_26     0.993    283.66 8.9e-04 -21.34
764909    rs8093206      18_27     0.992     72.36 2.3e-04  -7.76
563294     rs695110      11_42     0.991    115.77 3.6e-04 -11.10
133931    rs4675812      2_144     0.990     36.07 1.1e-04   6.34
589392   rs66720652      12_15     0.989     33.02 1.0e-04   5.45
274870     rs173964       5_33     0.988    153.67 4.8e-04 -10.81
699874   rs16972386      15_38     0.988     30.06 9.4e-05  -5.13
750490   rs72854483      17_46     0.987     27.42 8.6e-05  -4.96
538245   rs10901802      10_78     0.985     30.71 9.6e-05   5.51
424209    rs1402522       8_13     0.984     33.25 1.0e-04   6.21
695321   rs11071771      15_29     0.984     42.11 1.3e-04  -6.23
320513    rs4134975       6_15     0.983     31.48 9.8e-05   4.79
672214     rs177392      14_34     0.983     29.64 9.2e-05  -4.40
767765   rs41292412      18_31     0.982     38.26 1.2e-04  -6.21
896402   rs73082723       3_36     0.980     38.96 1.2e-04   6.29
401736    rs2734897       7_61     0.979     29.96 9.3e-05  -5.53
326571  rs181268076       6_27     0.978     48.17 1.5e-04  -6.52
394348  rs367867252       7_48     0.977     32.15 1.0e-04  -5.36
1101185    rs183130      16_31     0.977   6445.83 2.0e-02  97.19
1007150   rs1044531       9_59     0.975     33.37 1.0e-04   6.42
764905   rs62101781      18_27     0.973    218.74 6.8e-04  17.00
375433      rs38172       7_16     0.971     28.28 8.7e-05   5.01
619213   rs11057671      12_76     0.971     68.19 2.1e-04   8.60
883903   rs79800183       2_12     0.970     50.70 1.6e-04   6.70
982093  rs200974272       8_83     0.970     48.96 1.5e-04   8.22
90041        rs9248       2_54     0.968     39.86 1.2e-04   6.23
379347    rs2699814       7_23     0.968     44.65 1.4e-04   6.12
551461   rs12288512      11_19     0.966     62.49 1.9e-04  -7.87
197705   rs17468437       4_12     0.965     26.11 8.0e-05   4.81
519931    rs2393730      10_42     0.964     27.28 8.3e-05   5.11
369633    rs6462198        7_2     0.963     37.32 1.1e-04  -7.07
825530      rs12321       22_9     0.962     29.35 9.0e-05   4.92
1047605   rs4930352      11_37     0.962    370.33 1.1e-03   8.12
281185    rs3733890       5_46     0.961     33.04 1.0e-04  -5.71
603955    rs1707498      12_44     0.956     31.11 9.4e-05   5.19
559113  rs145487327      11_32     0.955     36.31 1.1e-04   4.94
557051    rs1317826      11_28     0.954     68.04 2.1e-04  -5.41
572421   rs72980276      11_59     0.954     26.42 8.0e-05  -4.87
616379     rs653178      12_67     0.954    140.10 4.2e-04  10.81
216643    rs7696472       4_48     0.952     31.15 9.4e-05   5.26
324773    rs1131159       6_25     0.950     44.54 1.3e-04   8.41
659110    rs1955512       14_8     0.948     34.37 1.0e-04   5.52
329701  rs115482652       6_34     0.946     25.10 7.5e-05  -4.88
347377    rs2388334       6_67     0.946     32.08 9.6e-05   5.48
473661  rs145804707       9_18     0.946     24.34 7.3e-05  -4.54
304260    rs4958365       5_90     0.944     32.10 9.6e-05   4.88
757354   rs57440424      18_12     0.944     55.93 1.7e-04   7.71
1079459   rs2070895      15_26     0.940   1887.99 5.6e-03  43.96
560718     rs671976      11_36     0.937     32.84 9.8e-05  -6.73
325169    rs3869145       6_26     0.936     39.38 1.2e-04  -7.37
589347   rs11045182      12_15     0.936     51.12 1.5e-04   7.13
536244  rs113097445      10_72     0.933     25.48 7.5e-05  -4.72
777277   rs67868323       19_4     0.933     53.58 1.6e-04  -6.94
497120  rs111472765       9_67     0.931     23.99 7.1e-05   4.47
558254   rs72484110      11_30     0.931    365.95 1.1e-03  12.61
792369    rs2316866       20_1     0.931     25.30 7.5e-05  -4.69
298227    rs4705986       5_80     0.930     28.50 8.4e-05   4.86
968644  rs142752118       8_11     0.930     31.62 9.3e-05  -4.33
1092309  rs12921195       16_4     0.929     34.99 1.0e-04  -6.11
498182  rs115478735       9_70     0.928     56.80 1.7e-04   7.54
557182    rs2167079      11_29     0.926    208.02 6.1e-04  18.01
578360    rs1219430      11_74     0.926     29.97 8.8e-05  -5.60
15743    rs12140153       1_39     0.924     27.46 8.1e-05   4.53
599806    rs3809113      12_36     0.923    102.33 3.0e-04  11.00
815725  rs546634737      21_11     0.923     25.84 7.6e-05   4.59
786381   rs56361048      19_23     0.921     32.87 9.6e-05   6.75
737718    rs2011614      17_18     0.919     33.92 9.9e-05  -6.00
654518  rs191951647      13_62     0.918     24.42 7.1e-05   4.57
633586   rs78212345      13_21     0.917     33.18 9.7e-05   5.75
699943    rs1509559      15_38     0.916     27.26 7.9e-05   4.63
342479  rs560253203       6_56     0.913     23.87 6.9e-05   4.33
129451   rs11900497      2_135     0.909     27.37 7.9e-05  -4.92
54791    rs12132342      1_115     0.907     24.48 7.0e-05  -4.47
114540   rs71410739      2_107     0.906     27.16 7.8e-05  -4.97
329702    rs9472126       6_34     0.906     24.51 7.1e-05   4.71
591574   rs11614652      12_18     0.904     29.42 8.4e-05   5.16
560916    rs6591179      11_36     0.899     42.84 1.2e-04   7.29
359207  rs151288714       6_92     0.896     50.51 1.4e-04   7.62
38511    rs35039375       1_84     0.895     28.42 8.1e-05  -5.18
400345   rs12534274       7_58     0.893     28.48 8.1e-05   5.15
415913    rs4725377       7_93     0.892     32.89 9.3e-05   1.96
557079   rs61337452      11_28     0.892    266.64 7.5e-04  14.68
203058   rs56147366       4_22     0.887     57.92 1.6e-04  -7.71
546861    rs7121538      11_11     0.882     45.06 1.3e-04   6.46
717729   rs62039688      16_27     0.882     25.44 7.1e-05   4.50
350883    rs2038014       6_74     0.881     26.15 7.3e-05  -4.75
490194   rs34849882       9_52     0.880     52.85 1.5e-04   3.81
1009867  rs12768525      10_39     0.879  18091.03 5.0e-02  -4.13
820329    rs8128478      21_21     0.872     25.96 7.2e-05   4.91
546785  rs547219635      11_11     0.871     27.36 7.6e-05   4.11
96499     rs2130980       2_68     0.867     28.49 7.8e-05   5.09
36082     rs4657041       1_79     0.865     26.66 7.3e-05  -4.76
576795    rs9326246      11_70     0.864    530.41 1.5e-03  22.70
825242   rs73166732       22_9     0.863     24.53 6.7e-05  -4.01
1196802   rs9980311      21_23     0.861     59.23 1.6e-04  -6.68
788532    rs7248167      19_30     0.860     32.92 9.0e-05  -5.71
808113   rs41310841      20_34     0.860     25.61 7.0e-05  -4.62
599590   rs34358051      12_35     0.859     33.95 9.3e-05  -5.67
288985   rs55815433       5_62     0.856     25.16 6.8e-05   4.49
240699  rs116329078       4_94     0.855     27.26 7.4e-05   5.04
789767    rs4802880      19_35     0.855     70.74 1.9e-04  -8.38
678682    rs1242889      14_47     0.851     26.29 7.1e-05   4.68
394121   rs13247874       7_47     0.850    157.30 4.2e-04  12.82
739870    rs4039062      17_26     0.847     38.99 1.0e-04   2.90
1009936  rs12775129      10_39     0.847  18093.67 4.9e-02  -4.10
376188   rs17138358       7_17     0.844    130.08 3.5e-04 -11.94
429148    rs2410620       8_21     0.844   3112.95 8.3e-03  46.36
453126    rs2570952       8_69     0.844     42.42 1.1e-04   6.36
466318     rs447124        9_5     0.842     26.36 7.0e-05  -4.72
131796   rs11900603      2_139     0.841     24.51 6.5e-05  -4.43
109995  rs187764768       2_97     0.838     24.20 6.4e-05   4.06
463598   rs11778265       8_92     0.837     27.25 7.2e-05  -4.87
78472     rs4566412       2_31     0.836     36.60 9.7e-05  -5.54
615678   rs34132586      12_66     0.834     24.13 6.4e-05   3.95
456873   rs10095930       8_78     0.833     57.90 1.5e-04   4.72
746092    rs7210770      17_39     0.833     28.40 7.5e-05   4.89
83853    rs62143990       2_43     0.831     27.14 7.2e-05   4.91
705081   rs11634241      15_48     0.831     24.58 6.5e-05  -4.55
773344    rs4519424      18_43     0.830     24.24 6.4e-05  -4.34
369623   rs10480060        7_1     0.829     24.52 6.5e-05  -4.29
170991   rs62262433       3_76     0.824     25.42 6.7e-05   4.72
534992    rs4285809      10_70     0.819     92.20 2.4e-04  -9.88
226232    rs6532770       4_66     0.813     35.02 9.0e-05   5.40
626731    rs9554263       13_7     0.812     29.82 7.7e-05  -5.23
629212  rs117280550      13_13     0.810     24.50 6.3e-05  -4.21
796044   rs73604325       20_8     0.809     25.14 6.5e-05  -4.33
246124   rs11100443      4_105     0.807     23.40 6.0e-05  -3.79
359340  rs377695739       6_93     0.807     29.02 7.4e-05   5.26
78191    rs12105520       2_30     0.806     25.97 6.6e-05  -3.43
232434   rs58125305       4_77     0.805     28.97 7.4e-05   5.07
1187583   rs2281279      20_29     0.804     53.18 1.4e-04   6.32

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE     z
892926 rs142955295       3_35     1.000 114839.7 3.6e-01 -7.40
892892   rs9853458       3_35     0.514 114681.1 1.9e-01  7.39
892890   rs9876508       3_35     0.339 114680.9 1.2e-01  7.39
892891   rs9815766       3_35     0.109 114675.3 4.0e-02  7.39
892863   rs1049256       3_35     0.068 114673.9 2.5e-02  7.39
892860   rs7634902       3_35     0.049 114673.8 1.8e-02  7.39
892857   rs3811696       3_35     0.018 114668.2 6.6e-03  7.39
892858   rs3811695       3_35     0.007 114667.8 2.7e-03  7.38
892856   rs4855850       3_35     0.013 114665.6 4.9e-03  7.38
892893   rs7374277       3_35     0.184 114664.7 6.7e-02  7.40
892951  rs34451146       3_35     0.149 114663.5 5.4e-02 -7.41
892964   rs9814765       3_35     0.087 114663.3 3.2e-02 -7.41
892965  rs11130221       3_35     0.087 114663.3 3.2e-02 -7.41
892971  rs13063621       3_35     0.078 114663.2 2.8e-02 -7.40
892980   rs9871654       3_35     0.053 114663.1 1.9e-02 -7.40
892894   rs7374183       3_35     0.060 114659.1 2.2e-02  7.40
892919   rs7634886       3_35     0.059 114658.3 2.2e-02 -7.41
892952  rs57648519       3_35     0.046 114657.9 1.7e-02 -7.41
892942   rs6446295       3_35     0.002 114657.0 5.6e-04 -7.38
892842   rs3749240       3_35     0.095 114652.2 3.4e-02  7.41
892937   rs7431106       3_35     0.001 114651.6 1.9e-04 -7.38
892923   rs9865480       3_35     0.009 114651.3 3.3e-03 -7.39
892849  rs34614773       3_35     0.034 114649.3 1.2e-02  7.41
892928   rs6809431       3_35     0.003 114645.7 9.2e-04 -7.39
892924  rs60205400       3_35     0.002 114645.5 7.9e-04 -7.39
892931   rs9859153       3_35     0.002 114645.0 9.0e-04 -7.39
892946   rs6766836       3_35     0.002 114645.0 9.0e-04 -7.39
892921   rs9882639       3_35     0.002 114644.1 6.0e-04 -7.39
892848  rs11130219       3_35     0.005 114642.3 1.7e-03  7.40
892816   rs1491986       3_35     0.035 114641.6 1.3e-02  7.42
892847  rs11130218       3_35     0.002 114636.4 6.7e-04  7.40
892866  rs10632976       3_35     0.003 114635.0 1.1e-03  7.38
892833  rs12381242       3_35     0.164 114633.2 6.0e-02  7.43
892905   rs7372730       3_35     0.108 114633.1 3.9e-02  7.42
892909   rs9855505       3_35     0.102 114633.1 3.7e-02  7.42
892900   rs7429353       3_35     0.013 114627.1 4.8e-03  7.41
892904   rs7372725       3_35     0.012 114627.1 4.5e-03  7.41
892825  rs11709680       3_35     0.001 114619.4 4.6e-04  7.40
892824  rs11716575       3_35     0.001 114619.4 4.9e-04  7.40
892836   rs4855862       3_35     0.000 114618.2 1.8e-04  7.39
892811   rs6785549       3_35     0.050 114613.3 1.8e-02  7.44
892907   rs9872864       3_35     0.003 114612.8 9.1e-04  7.41
892823   rs3749241       3_35     0.001 114610.5 2.5e-04  7.40
892828   rs4855841       3_35     0.000 114599.5 1.3e-05  7.39
892917  rs12490656       3_35     0.196 114582.8 7.1e-02 -7.47
892912  rs35365539       3_35     0.000 114566.1 2.7e-07  7.35
892898   rs7372966       3_35     0.000 114557.2 4.6e-06  7.39
892901   rs7426497       3_35     0.000 114551.7 2.6e-07  7.37
892807   rs9873183       3_35     0.000 114548.0 1.5e-06  7.40
892830   rs4855867       3_35     0.000 114531.9 2.1e-11  7.32

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip       mu2    PVE     z
892926  rs142955295       3_35     1.000 114839.74 0.3600 -7.40
892892    rs9853458       3_35     0.514 114681.13 0.1900  7.39
892890    rs9876508       3_35     0.339 114680.87 0.1200  7.39
921047    rs1611236       6_24     1.000  28529.96 0.0910 -4.36
892917   rs12490656       3_35     0.196 114582.76 0.0710 -7.47
892893    rs7374277       3_35     0.184 114664.66 0.0670  7.40
635158    rs7999449      13_25     1.000  19145.57 0.0610 -3.39
635160  rs775834524      13_25     1.000  19191.70 0.0610 -3.45
892833   rs12381242       3_35     0.164 114633.25 0.0600  7.43
1009870 rs773844590      10_39     1.000  18018.22 0.0570 -3.88
892951   rs34451146       3_35     0.149 114663.53 0.0540 -7.41
1009867  rs12768525      10_39     0.879  18091.03 0.0500 -4.13
1009936  rs12775129      10_39     0.847  18093.67 0.0490 -4.10
892891    rs9815766       3_35     0.109 114675.32 0.0400  7.39
892905    rs7372730       3_35     0.108 114633.10 0.0390  7.42
892909    rs9855505       3_35     0.102 114633.08 0.0370  7.42
1049434  rs57808037      11_37     0.997  10917.87 0.0350  2.67
1049439 rs146923372      11_37     1.000  10919.20 0.0350  2.69
892842    rs3749240       3_35     0.095 114652.25 0.0340  7.41
513800   rs71007692      10_28     1.000  10536.52 0.0330 -3.29
921016    rs1633020       6_24     0.367  28519.78 0.0330 -4.40
892964    rs9814765       3_35     0.087 114663.28 0.0320 -7.41
892965   rs11130221       3_35     0.087 114663.28 0.0320 -7.41
56763   rs766167074      1_118     1.000   9441.35 0.0300  3.28
892971   rs13063621       3_35     0.078 114663.23 0.0280 -7.40
892863    rs1049256       3_35     0.068 114673.90 0.0250  7.39
892894    rs7374183       3_35     0.060 114659.09 0.0220  7.40
892919    rs7634886       3_35     0.059 114658.31 0.0220 -7.41
920978    rs2844838       6_24     0.233  28521.78 0.0210 -4.38
1101185    rs183130      16_31     0.977   6445.83 0.0200 97.19
513799    rs2474565      10_28     0.557  10590.16 0.0190 -3.38
892980    rs9871654       3_35     0.053 114663.05 0.0190 -7.40
513809   rs11011452      10_28     0.533  10590.53 0.0180 -3.36
892811    rs6785549       3_35     0.050 114613.27 0.0180  7.44
892860    rs7634902       3_35     0.049 114673.75 0.0180  7.39
892952   rs57648519       3_35     0.046 114657.94 0.0170 -7.41
921020    rs1633018       6_24     0.183  28519.28 0.0170 -4.39
513806    rs2472183      10_28     0.475  10590.15 0.0160 -3.37
635151    rs9527399      13_25     0.269  19079.36 0.0160  3.48
1191739 rs202143810      20_38     1.000   5023.78 0.0160  4.04
920965    rs1633033       6_24     0.159  28521.81 0.0140 -4.38
892816    rs1491986       3_35     0.035 114641.64 0.0130  7.42
635154    rs9597193      13_25     0.190  19079.44 0.0120  3.47
892849   rs34614773       3_35     0.034 114649.32 0.0120  7.41
635153    rs9527401      13_25     0.189  19079.33 0.0110  3.47
56760    rs10489611      1_118     0.324   9501.90 0.0098  3.63
56762      rs971534      1_118     0.310   9501.87 0.0093  3.63
635155    rs9537143      13_25     0.140  19080.77 0.0085  3.46
921033    rs1611228       6_24     0.094  28521.42 0.0085 -4.37
429148    rs2410620       8_21     0.844   3112.95 0.0083 46.36

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                 id region_tag susie_pip     mu2     PVE      z
1101185    rs183130      16_31     0.977 6445.83 2.0e-02  97.19
1101197   rs3764261      16_31     0.001 6433.11 1.1e-05  97.09
1101199    rs821840      16_31     0.023 6440.76 4.7e-04  97.05
1101182    rs247617      16_31     0.000 6411.96 5.4e-09  97.00
1101207  rs17231506      16_31     0.000 6425.09 2.4e-07  96.97
1101206  rs36229491      16_31     0.000 6409.78 5.5e-10  96.92
1101179    rs247616      16_31     0.000 6409.33 2.2e-10  96.89
1101172  rs12446515      16_31     0.000 6359.70 0.0e+00  96.60
1101173  rs56156922      16_31     0.000 6363.95 0.0e+00  96.41
1101195  rs12149545      16_31     0.000 6246.31 0.0e+00  95.44
1101174  rs56228609      16_31     0.000 6217.43 0.0e+00  95.21
1101175    rs173539      16_31     0.000 6257.28 0.0e+00  94.83
1101213   rs1800775      16_31     0.000 5008.34 0.0e+00  89.02
1101215   rs3816117      16_31     0.000 4957.79 0.0e+00  88.89
1101216    rs711752      16_31     0.000 5374.88 0.0e+00  87.85
1101250   rs1532625      16_31     0.000 5269.89 0.0e+00  87.85
1101249   rs7205804      16_31     0.000 5247.85 0.0e+00  87.77
1101217    rs708272      16_31     0.000 5362.10 0.0e+00  87.76
1101251   rs1532624      16_31     0.000 5233.51 0.0e+00  87.56
1101218  rs34620476      16_31     0.000 5303.81 0.0e+00  87.48
1101227  rs11508026      16_31     0.000 5201.28 0.0e+00  86.68
1101225  rs12720926      16_31     0.000 5195.34 0.0e+00  86.67
1101233   rs4784741      16_31     0.000 5162.04 0.0e+00  86.45
1101166  rs72786786      16_31     0.000 5048.51 0.0e+00  86.44
1101236  rs12444012      16_31     0.000 5160.92 0.0e+00  86.44
1101230   rs8045855      16_31     0.000 2230.90 4.6e-07 -83.63
1101255  rs11076175      16_31     0.661 2174.83 4.6e-03 -83.59
1101231  rs12720922      16_31     0.000 2210.20 3.3e-08 -83.56
1101256   rs7499892      16_31     0.339 2174.04 2.3e-03 -83.50
1101219   rs1864163      16_31     0.000 2792.27 0.0e+00 -83.36
1101234  rs12720908      16_31     0.000 2206.65 9.1e-08 -83.27
1101220   rs5817082      16_31     0.000 2736.61 0.0e+00 -82.02
1101247   rs9939224      16_31     0.000 2188.65 0.0e+00  81.97
1101226   rs7203984      16_31     0.000 2101.35 3.4e-14 -79.55
1101257    rs289713      16_31     0.000 2028.00 1.1e-14  79.32
1101232 rs118146573      16_31     0.000 1122.57 0.0e+00 -72.70
1101181  rs12923459      16_31     0.000 2626.45 0.0e+00 -70.46
1101202    rs711751      16_31     0.000 2220.05 0.0e+00  69.77
1101260  rs11076176      16_31     0.000 2003.74 0.0e+00 -68.44
1101170   rs7203286      16_31     0.000 2444.68 0.0e+00 -67.89
1101246   rs9926440      16_31     0.000 2380.83 0.0e+00  67.68
1101164   rs9989419      16_31     0.000 2679.19 3.5e-11  66.43
1101167  rs12448528      16_31     0.999 1391.94 4.4e-03  66.11
1101224   rs9929488      16_31     0.000 2199.31 0.0e+00 -64.88
1101165    rs193695      16_31     0.001 2615.97 6.8e-06  64.87
1101261    rs289714      16_31     0.000 1873.62 0.0e+00  64.41
1101201  rs36229786      16_31     0.000 1119.76 0.0e+00 -62.95
1101189  rs12934632      16_31     0.000  971.22 0.0e+00 -62.20
1101196  rs12708967      16_31     0.000  968.84 0.0e+00 -62.18
1101188  rs28888131      16_31     0.000  962.45 0.0e+00 -62.11

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 37
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
                                                                         Term
1                              regulation of cholesterol storage (GO:0010885)
2                             protein localization to chromosome (GO:0034502)
3                     negative regulation of cholesterol storage (GO:0010887)
4                         response to laminar fluid shear stress (GO:0034616)
5 cellular response to low-density lipoprotein particle stimulus (GO:0071404)
6                                        cholesterol homeostasis (GO:0042632)
7                                             sterol homeostasis (GO:0055092)
8                           negative regulation of lipid storage (GO:0010888)
9                    regulation of cholesterol metabolic process (GO:0090181)
  Overlap Adjusted.P.value                Genes
1    3/16      0.001290405  ABCA1;SREBF2;TTC39B
2    3/34      0.006738224      TNKS;RPA2;IFFO1
3    2/10      0.014920166         ABCA1;TTC39B
4    2/10      0.014920166         ABCA1;SREBF2
5    2/14      0.018281918         ABCA1;SREBF2
6    3/71      0.018281918 ABCA1;GPIHBP1;TTC39B
7    3/72      0.018281918 ABCA1;GPIHBP1;TTC39B
8    2/20      0.030551572         ABCA1;TTC39B
9    2/21      0.030551572        SREBF2;TTC39B
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
RP4-781K5.7 gene(s) from the input list not found in DisGeNET CURATEDRP11-10A14.4 gene(s) from the input list not found in DisGeNET CURATEDTNKS gene(s) from the input list not found in DisGeNET CURATEDTTC39B gene(s) from the input list not found in DisGeNET CURATEDRP11-346C20.3 gene(s) from the input list not found in DisGeNET CURATEDCD300LF gene(s) from the input list not found in DisGeNET CURATEDTMC4 gene(s) from the input list not found in DisGeNET CURATEDKLHL25 gene(s) from the input list not found in DisGeNET CURATEDAKNA gene(s) from the input list not found in DisGeNET CURATEDRPA2 gene(s) from the input list not found in DisGeNET CURATEDRP11-54O7.17 gene(s) from the input list not found in DisGeNET CURATEDUBE2K gene(s) from the input list not found in DisGeNET CURATEDDAGLB gene(s) from the input list not found in DisGeNET CURATEDABTB1 gene(s) from the input list not found in DisGeNET CURATEDNTAN1 gene(s) from the input list not found in DisGeNET CURATEDALLC gene(s) from the input list not found in DisGeNET CURATEDRP11-136O12.2 gene(s) from the input list not found in DisGeNET CURATEDIFFO1 gene(s) from the input list not found in DisGeNET CURATEDZFP1 gene(s) from the input list not found in DisGeNET CURATEDPTTG1IP gene(s) from the input list not found in DisGeNET CURATEDBEND3 gene(s) from the input list not found in DisGeNET CURATEDC10orf88 gene(s) from the input list not found in DisGeNET CURATEDPSRC1 gene(s) from the input list not found in DisGeNET CURATED
                                                                                        Description
21                                                                             Hypercholesterolemia
22                                                                   Hypercholesterolemia, Familial
42                                                                                  Tangier Disease
52                                                         Jansen type metaphyseal chondrodysplasia
58                                                                        Hypoalphalipoproteinemias
68                                                                       Tangier Disease Neuropathy
91                                                                         Eiken Skeletal Dysplasia
93                                                               Failure of Tooth Eruption, Primary
94                                                                Chondrodysplasia, blomstrand type
98 DYSTONIA, DOPA-RESPONSIVE, WITH OR WITHOUT HYPERPHENYLALANINEMIA, AUTOSOMAL RECESSIVE (disorder)
          FDR Ratio BgRatio
21 0.01154401  2/14 39/9703
22 0.01154401  2/14 18/9703
42 0.01154401  1/14  1/9703
52 0.01154401  1/14  1/9703
58 0.01154401  1/14  1/9703
68 0.01154401  1/14  1/9703
91 0.01154401  1/14  1/9703
93 0.01154401  1/14  1/9703
94 0.01154401  1/14  1/9703
98 0.01154401  1/14  1/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
                   description size overlap        FDR       database
1                Dyslipidaemia   84       5 0.02472682 disease_GLAD4U
2             Arteriosclerosis  173       6 0.02472682 disease_GLAD4U
3  Arterial Occlusive Diseases  174       6 0.02472682 disease_GLAD4U
4 Hyperlipoproteinemia Type II   23       3 0.04147764 disease_GLAD4U
                                  userId
1      PSRC1;GPIHBP1;TTC39B;ABCA1;SREBF2
2 PSRC1;LDAH;TTC39B;ABCA1;TNFSF12;SREBF2
3 PSRC1;LDAH;TTC39B;ABCA1;TNFSF12;SREBF2
4                   GPIHBP1;ABCA1;SREBF2

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2