Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30750_irnt_Whole_Blood.Rmd) and HTML (docs/ukb-d-30750_irnt_Whole_Blood.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Glycated haemoglobin (quantile) using Whole_Blood gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30750_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Whole_Blood eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11095
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1129  747  624  400  479  621  560  383  404  430  682  652  192  362  331 
  16   17   18   19   20   21   22 
 551  725  159  911  313  130  310 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.762776

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0169916074 0.0001940152 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
41.55842 21.92967 
#report sample size
print(sample_size)
[1] 344182
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11095 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.02276317 0.10751416 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.04521013 2.40602461

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
        genename region_tag susie_pip     mu2     PVE      z
4231      LRRC47        1_3     1.000  233.69 6.8e-04 -15.11
2614        LTBR       12_7     1.000   45.07 1.3e-04   4.69
7887        FN3K      17_47     1.000  557.18 1.6e-03 -28.51
5665       CNIH4      1_114     0.998   54.62 1.6e-04  -7.17
8713       GMPPB       3_35     0.998  144.33 4.2e-04  -9.50
9640        CBX6      22_16     0.995   30.01 8.7e-05   4.98
10114      PAQR9       3_87     0.993   46.58 1.3e-04   6.51
8641       OXSR1       3_27     0.990   47.26 1.4e-04  -6.86
9073        HIC1       17_3     0.986   60.36 1.7e-04   8.22
2106        KLF1      19_11     0.984  122.54 3.5e-04  -9.83
7981       PRDX2      19_11     0.984   34.99 1.0e-04  -1.98
5486       SIRT3       11_1     0.980   85.73 2.4e-04  12.59
1837       ABCC1      16_15     0.978   42.78 1.2e-04   6.58
837      ST6GAL1      3_114     0.974   50.22 1.4e-04   7.13
4062       MYO5C      15_21     0.974   77.18 2.2e-04  -9.13
9131     CCDC184      12_30     0.969  114.98 3.2e-04   4.20
7956         GPT       8_94     0.965   28.12 7.9e-05   4.46
11365  LINC01305      2_105     0.957  106.55 3.0e-04  12.37
8981      OR51B6       11_4     0.957   36.45 1.0e-04   5.93
7400      ARFIP1       4_98     0.940   32.80 9.0e-05   5.29
1699      ARFRP1      20_38     0.940 4363.98 1.2e-02  -5.98
3937      HIVEP3       1_27     0.938   50.67 1.4e-04  -7.03
9538        VMO1       17_4     0.931   20.87 5.6e-05   4.08
2306      SPOCK2      10_48     0.930   29.00 7.8e-05   5.10
8978      SMIM19       8_37     0.929  232.60 6.3e-04  15.34
932       EXOSC5      19_30     0.929   25.93 7.0e-05  -5.15
3752      KCNK17       6_30     0.928   25.53 6.9e-05  -4.39
10420     FBXL22      15_29     0.919   28.24 7.5e-05  -4.72
5409        SS18      18_13     0.917   29.98 8.0e-05  -5.05
9736        H1FX       3_80     0.910   25.70 6.8e-05  -5.24
11623      JMJD7      15_15     0.907   37.33 9.8e-05   6.50
11118 AC004540.5       7_23     0.894   22.17 5.8e-05   3.25
2818     SLC12A7        5_2     0.885   67.23 1.7e-04  -7.26
1267      PABPC4       1_24     0.875   64.30 1.6e-04  -8.62
1417       ATP5D       19_2     0.875   25.85 6.6e-05  -4.62
6290     ZFP36L2       2_27     0.869  141.72 3.6e-04  16.55
7091        NEXN       1_48     0.868   41.31 1.0e-04   6.21
4189      ARPC1B       7_61     0.867   72.91 1.8e-04   9.12
5966       VLDLR        9_3     0.856   27.01 6.7e-05  -4.92
2550        MADD      11_29     0.844   40.19 9.9e-05   7.97
5834     TNFAIP8       5_72     0.814   23.62 5.6e-05   4.33
6046       PPRC1      10_65     0.812   24.31 5.7e-05   3.87

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
       genename region_tag susie_pip      mu2     PVE     z
12599     HCP5B       6_26     0.000 58476.13 0.0e+00  8.82
10848    TRIM10       6_26     0.000 38638.13 0.0e+00 -8.39
10855     HLA-G       6_26     0.000 35136.37 0.0e+00 -8.99
10853      HCG9       6_26     0.000 24123.62 0.0e+00  2.24
10968     HLA-A       6_26     0.000 20563.14 0.0e+00  1.34
10844     HLA-E       6_26     0.000 16846.01 0.0e+00  6.04
11418    TRIM26       6_26     0.000 16568.52 0.0e+00  2.42
11120 LINC00243       6_26     0.000 14748.28 0.0e+00  8.23
5868    PPP1R18       6_26     0.000 11716.22 0.0e+00  7.91
10841   MRPS18B       6_26     0.000  8836.75 0.0e+00 -1.21
6481      MOV10       1_69     0.000  6251.29 3.4e-07 -4.44
120        ST7L       1_69     0.000  4884.04 2.2e-10  0.01
10381     ZGPAT      20_38     0.001  4720.57 1.0e-05  5.00
1699     ARFRP1      20_38     0.940  4363.98 1.2e-02 -5.98
10847    TRIM15       6_26     0.000  3811.71 0.0e+00 -0.25
3093     CAPZA1       1_69     0.000  3751.76 4.8e-10 -1.10
10436     STMN3      20_38     0.000  3577.38 5.8e-11  4.82
4971       IER3       6_26     0.000  3508.61 0.0e+00 -1.26
10840  C6orf136       6_26     0.000  2226.34 0.0e+00 -4.20
4733       AHI1       6_89     0.000  2213.27 4.6e-10 -1.35

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
       genename region_tag susie_pip     mu2     PVE      z
1699     ARFRP1      20_38     0.940 4363.98 0.01200  -5.98
7887       FN3K      17_47     1.000  557.18 0.00160 -28.51
4231     LRRC47        1_3     1.000  233.69 0.00068 -15.11
8978     SMIM19       8_37     0.929  232.60 0.00063  15.34
8713      GMPPB       3_35     0.998  144.33 0.00042  -9.50
6290    ZFP36L2       2_27     0.869  141.72 0.00036  16.55
2106       KLF1      19_11     0.984  122.54 0.00035  -9.83
9131    CCDC184      12_30     0.969  114.98 0.00032   4.20
11365 LINC01305      2_105     0.957  106.55 0.00030  12.37
5486      SIRT3       11_1     0.980   85.73 0.00024  12.59
4062      MYO5C      15_21     0.974   77.18 0.00022  -9.13
10567    QRICH1       3_34     0.758   81.87 0.00018  -9.54
4189     ARPC1B       7_61     0.867   72.91 0.00018   9.12
2818    SLC12A7        5_2     0.885   67.23 0.00017  -7.26
9073       HIC1       17_3     0.986   60.36 0.00017   8.22
1267     PABPC4       1_24     0.875   64.30 0.00016  -8.62
5665      CNIH4      1_114     0.998   54.62 0.00016  -7.17
5171        EGF       4_71     0.656   79.61 0.00015  -8.34
3937     HIVEP3       1_27     0.938   50.67 0.00014  -7.03
8641      OXSR1       3_27     0.990   47.26 0.00014  -6.86

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
          genename region_tag susie_pip    mu2     PVE      z
7887          FN3K      17_47     1.000 557.18 1.6e-03 -28.51
5442        FN3KRP      17_47     0.002 342.46 1.8e-06 -23.76
10438         GYPE       4_94     0.001 254.15 8.2e-07  20.36
12450 RP11-88E10.5      13_61     0.020 318.30 1.9e-05 -18.04
4024           TST      22_14     0.011 309.61 1.0e-05 -17.81
6552         HKDC1      10_46     0.000 644.00 0.0e+00 -17.57
5451        ZNF750      17_47     0.002 141.27 7.5e-07  17.19
8294          GYPA       4_94     0.001 140.38 2.7e-07 -17.17
6290       ZFP36L2       2_27     0.869 141.72 3.6e-04  16.55
11732         GYPB       4_94     0.000 136.07 7.9e-08  16.09
8978        SMIM19       8_37     0.929 232.60 6.3e-04  15.34
4231        LRRC47        1_3     1.000 233.69 6.8e-04 -15.11
11449        SMIM1        1_3     0.016 213.36 9.6e-06 -14.81
3367        ATAD2B       2_14     0.011  83.54 2.8e-06  13.65
4578      TMEM106C      12_30     0.000 135.79 2.7e-10 -13.62
12516 RP1-228P16.8      12_30     0.001 131.24 4.4e-07  13.48
9992         H1FNT      12_30     0.000 115.27 8.3e-08  12.98
11374      CYP21A2       6_26     0.000 788.56 0.0e+00  12.82
12483     HIST1H3A       6_20     0.000  42.46 6.5e-09  12.60
10805        EHMT2       6_26     0.000 760.10 0.0e+00 -12.59

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.03929698
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
          genename region_tag susie_pip    mu2     PVE      z
7887          FN3K      17_47     1.000 557.18 1.6e-03 -28.51
5442        FN3KRP      17_47     0.002 342.46 1.8e-06 -23.76
10438         GYPE       4_94     0.001 254.15 8.2e-07  20.36
12450 RP11-88E10.5      13_61     0.020 318.30 1.9e-05 -18.04
4024           TST      22_14     0.011 309.61 1.0e-05 -17.81
6552         HKDC1      10_46     0.000 644.00 0.0e+00 -17.57
5451        ZNF750      17_47     0.002 141.27 7.5e-07  17.19
8294          GYPA       4_94     0.001 140.38 2.7e-07 -17.17
6290       ZFP36L2       2_27     0.869 141.72 3.6e-04  16.55
11732         GYPB       4_94     0.000 136.07 7.9e-08  16.09
8978        SMIM19       8_37     0.929 232.60 6.3e-04  15.34
4231        LRRC47        1_3     1.000 233.69 6.8e-04 -15.11
11449        SMIM1        1_3     0.016 213.36 9.6e-06 -14.81
3367        ATAD2B       2_14     0.011  83.54 2.8e-06  13.65
4578      TMEM106C      12_30     0.000 135.79 2.7e-10 -13.62
12516 RP1-228P16.8      12_30     0.001 131.24 4.4e-07  13.48
9992         H1FNT      12_30     0.000 115.27 8.3e-08  12.98
11374      CYP21A2       6_26     0.000 788.56 0.0e+00  12.82
12483     HIST1H3A       6_20     0.000  42.46 6.5e-09  12.60
10805        EHMT2       6_26     0.000 760.10 0.0e+00 -12.59

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 17_47"
           genename region_tag susie_pip    mu2     PVE      z
8234           FASN      17_47     0.002   5.04 2.3e-08  -0.04
5434        SLC16A3      17_47     0.010  23.27 7.1e-07  -1.92
5439         CSNK1D      17_47     0.002   5.45 2.5e-08   0.17
12096     LINC01970      17_47     0.016  23.01 1.1e-06   2.66
11992 RP13-516M14.1      17_47     0.012  19.53 6.8e-07   1.98
5448         SECTM1      17_47     0.004   9.36 9.6e-08   1.40
9411         OGFOD3      17_47     0.002   5.52 2.7e-08  -0.78
8226          HEXDC      17_47     0.002   5.66 3.0e-08   0.74
9219       C17orf62      17_47     0.008  14.23 3.1e-07   1.02
5445          FOXK2      17_47     0.003  18.57 1.9e-07  -3.05
5452         WDR45B      17_47     0.007  73.23 1.5e-06   9.81
5437         RAB40B      17_47     0.002  48.04 2.2e-07  -8.46
5442         FN3KRP      17_47     0.002 342.46 1.8e-06 -23.76
7887           FN3K      17_47     1.000 557.18 1.6e-03 -28.51
5441           TBCD      17_47     0.002  10.55 7.5e-08  -1.50
5451         ZNF750      17_47     0.002 141.27 7.5e-07  17.19
8932        B3GNTL1      17_47     0.017  30.03 1.5e-06   0.52
12044    AC144831.1      17_47     0.002   8.85 4.0e-08  -0.89
12430    AC144831.3      17_47     0.003  25.01 2.5e-07  -4.54

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 4_94"
           genename region_tag susie_pip    mu2     PVE      z
11721 RP11-223C24.1       4_94     0.000   6.97 3.0e-09   2.26
8295          USP38       4_94     0.000  12.07 1.2e-08  -0.67
2465           GAB1       4_94     0.000   7.83 4.7e-09   0.27
10438          GYPE       4_94     0.001 254.15 8.2e-07  20.36
11732          GYPB       4_94     0.000 136.07 7.9e-08  16.09
8294           GYPA       4_94     0.001 140.38 2.7e-07 -17.17

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 13_61"
          genename region_tag susie_pip    mu2     PVE      z
3882       TUBGCP3      13_61     0.000   5.47 3.1e-09   0.31
12450 RP11-88E10.5      13_61     0.020 318.30 1.9e-05 -18.04
708         ATP11A      13_61     0.001  26.71 6.5e-08   4.15

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 22_14"
      genename region_tag susie_pip    mu2     PVE      z
1520    HMGXB4      22_14     0.396  28.88 3.3e-05  -5.16
1521      TOM1      22_14     0.202  27.61 1.6e-05   5.07
1528      MCM5      22_14     0.001   5.23 1.4e-08   0.41
1525     HMOX1      22_14     0.006  26.42 4.9e-07   2.53
1532     RASD2      22_14     0.003  15.56 1.4e-07  -1.59
10549       MB      22_14     0.001   9.46 3.6e-08   0.89
11189    APOL6      22_14     0.005  20.62 3.2e-07   1.46
1543     APOL4      22_14     0.001   5.12 1.3e-08   0.33
4020     APOL3      22_14     0.001   7.62 2.9e-08  -0.75
1544     APOL1      22_14     0.002  13.04 8.3e-08  -1.19
4026     APOL2      22_14     0.002  11.78 6.0e-08   1.11
1547      TXN2      22_14     0.001   5.18 1.4e-08  -0.10
1548   FOXRED2      22_14     0.002   9.96 4.6e-08  -0.99
1549     EIF3D      22_14     0.002  11.87 6.6e-08   1.12
1550     IFT27      22_14     0.001   7.44 2.4e-08   0.90
1551     PVALB      22_14     0.025  33.06 2.4e-06   1.96
1553      NCF4      22_14     0.001   5.61 1.6e-08  -0.09
1554    CSF2RB      22_14     0.001   6.37 1.8e-08  -0.79
4024       TST      22_14     0.011 309.61 1.0e-05 -17.81

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 10_46"
      genename region_tag susie_pip    mu2 PVE      z
5104      DNA2      10_46         0   6.96   0   0.00
5103      TET1      10_46         0  10.55   0   1.43
7627     STOX1      10_46         0  15.00   0   2.26
2297     DDX50      10_46         0   5.83   0  -1.00
7629     DDX21      10_46         0  14.38   0   1.15
3586      SRGN      10_46         0 125.34   0   7.57
3593    VPS26A      10_46         0   8.72   0   0.87
6551   SUPV3L1      10_46         0  70.69   0  -7.67
6552     HKDC1      10_46         0 644.00   0 -17.57
865      TACR2      10_46         0 161.75   0  -5.91
1402   TSPAN15      10_46         0  13.87   0  -3.61
10439  COL13A1      10_46         0   8.47   0   1.01
1403    H2AFY2      10_46         0   5.87   0  -0.14
395      AIFM2      10_46         0   6.53   0  -0.36
6553    TYSND1      10_46         0  25.59   0  -1.65
981      SAR1A      10_46         0   9.91   0   0.12
9363      PPA1      10_46         0   8.32   0   0.87
8609    LRRC20      10_46         0   6.44   0   0.59
6038  EIF4EBP2      10_46         0   5.36   0   0.03
6556     NODAL      10_46         0   5.94   0  -0.41

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip       mu2     PVE      z
33482     rs2779116       1_79     1.000    705.46 2.0e-03  30.86
38083     rs9425587       1_84     1.000     43.17 1.3e-04  -6.79
50690    rs79687284      1_108     1.000    140.40 4.1e-04  13.92
68611     rs1042034       2_13     1.000     38.75 1.1e-04  -5.51
69470   rs565332541       2_14     1.000    100.07 2.9e-04  15.51
70347      rs780093       2_16     1.000    165.24 4.8e-04  11.09
76286     rs2121564       2_28     1.000     75.26 2.2e-04   8.61
111382   rs71397673      2_102     1.000    504.64 1.5e-03  28.67
111390     rs853789      2_102     1.000   1024.25 3.0e-03  38.94
137978   rs56395424        3_9     1.000    157.81 4.6e-04 -13.84
138036   rs10602803        3_9     1.000     70.60 2.1e-04  11.11
169648   rs72964564       3_76     1.000    290.34 8.4e-04 -18.72
188009    rs1027498      3_115     1.000    107.05 3.1e-04   6.97
221606  rs149027545       4_59     1.000     83.15 2.4e-04   8.05
239199   rs11727331       4_94     1.000    161.32 4.7e-04 -17.08
239393   rs34149094       4_94     1.000     68.56 2.0e-04  -7.15
259396  rs529337207       5_12     1.000     74.47 2.2e-04  -8.65
302520    rs6885822       5_93     1.000     63.65 1.8e-04   7.67
312057    rs9378483        6_7     1.000     44.69 1.3e-04   5.38
312167   rs55792466        6_7     1.000    147.34 4.3e-04 -11.10
312203   rs75465676        6_7     1.000     56.86 1.7e-04  -5.10
316759    rs2206734       6_15     1.000    128.69 3.7e-04  15.04
318655   rs75080831       6_19     1.000    177.21 5.1e-04 -20.15
318807   rs34877685       6_20     1.000    165.21 4.8e-04  -9.72
318816   rs72834643       6_20     1.000    496.43 1.4e-03 -21.07
318837  rs115740542       6_20     1.000    844.59 2.5e-03 -28.80
319303    rs6908155       6_21     1.000    377.05 1.1e-03   8.45
319409  rs535096266       6_21     1.000     89.47 2.6e-04   6.25
319679    rs3130253       6_23     1.000    134.98 3.9e-04  13.88
319822    rs6935940       6_27     1.000     89.52 2.6e-04   3.82
323136    rs1005230       6_33     1.000     53.90 1.6e-04   7.06
344544   rs62420266       6_74     1.000     40.34 1.2e-04  -5.70
350939   rs10457576       6_87     1.000     34.89 1.0e-04   5.73
352083  rs199804242       6_89     1.000   9553.62 2.8e-02   2.81
360050   rs60425481      6_104     1.000   8396.80 2.4e-02  -6.69
374034   rs12534523       7_20     1.000     48.04 1.4e-04   5.10
380294  rs138917529       7_32     1.000    108.06 3.1e-04 -12.14
419135  rs758184196       8_11     1.000   1190.75 3.5e-03  -0.53
419164  rs117660512       8_11     1.000     52.69 1.5e-04  -1.46
431152  rs150722768       8_36     1.000     71.90 2.1e-04 -10.55
431316   rs76508735       8_36     1.000    139.58 4.1e-04  -5.99
431329   rs10099921       8_36     1.000    256.12 7.4e-04 -18.49
431336   rs12550646       8_36     1.000    237.55 6.9e-04 -16.78
431344    rs6989331       8_36     1.000     95.74 2.8e-04  -2.86
477818   rs10545172       9_37     1.000     70.29 2.0e-04   9.11
492138   rs57248636       9_62     1.000     36.60 1.1e-04   5.52
495365  rs117561717       9_70     1.000     42.50 1.2e-04   6.47
519093  rs111333451      10_45     1.000     64.10 1.9e-04   8.10
519408    rs4745982      10_46     1.000   1283.98 3.7e-03 -56.67
519409    rs6480402      10_46     1.000   9083.08 2.6e-02 -53.18
519418   rs73267631      10_46     1.000   2137.38 6.2e-03   6.15
524477     rs478839      10_57     1.000     57.90 1.7e-04  -7.51
531524   rs12244851      10_70     1.000    683.97 2.0e-03  24.38
539662     rs234856       11_2     1.000    129.94 3.8e-04  -8.70
541874    rs4910498       11_8     1.000    304.01 8.8e-04 -13.81
557550   rs12294913      11_36     1.000     59.60 1.7e-04   7.56
559925    rs4944832      11_41     1.000     65.62 1.9e-04  -8.05
566319   rs76838754      11_52     1.000     66.37 1.9e-04  -2.44
566322   rs10830962      11_52     1.000    320.81 9.3e-04  19.78
568998   rs73001144      11_57     1.000     34.98 1.0e-04  -5.71
596194  rs150158762      12_33     1.000     88.53 2.6e-04  -9.16
596900    rs7397189      12_36     1.000     42.35 1.2e-04  -6.60
608511   rs55692966      12_56     1.000     41.47 1.2e-04  -6.27
626589     rs576674      13_10     1.000    111.64 3.2e-04 -10.47
641237    rs1327315      13_40     1.000     60.61 1.8e-04  -7.81
653003  rs143614549      13_62     1.000    153.03 4.4e-04  12.51
653023   rs34300741      13_62     1.000     79.20 2.3e-04 -13.40
662717   rs72681869      14_20     1.000     50.20 1.5e-04  -7.31
675021   rs35889227      14_45     1.000     85.86 2.5e-04  -9.34
685266   rs12912777      15_13     1.000     53.81 1.6e-04   6.19
692637   rs66461959      15_31     1.000     89.82 2.6e-04   3.57
692651   rs67453880      15_31     1.000     97.93 2.8e-04   3.50
713444     rs153105      16_23     1.000     55.63 1.6e-04  -4.05
728821    rs2608604      16_54     1.000    410.67 1.2e-03  20.26
728825   rs72813547      16_54     1.000    190.88 5.5e-04 -11.15
730302  rs117100864       17_5     1.000     44.55 1.3e-04  -6.61
731292   rs72829444       17_7     1.000    101.18 2.9e-04  10.35
731454   rs10468482       17_7     1.000     78.85 2.3e-04 -10.14
748457   rs58711252      17_43     1.000    151.36 4.4e-04  14.36
748460    rs3813026      17_43     1.000    177.63 5.2e-04  10.84
748461     rs417780      17_43     1.000    400.90 1.2e-03  19.21
748464   rs61740060      17_43     1.000    151.16 4.4e-04   4.80
748572   rs11658216      17_44     1.000     39.81 1.2e-04   4.87
779037   rs59616136      19_14     1.000    211.42 6.1e-04 -18.27
803387    rs6066141      20_29     1.000     69.52 2.0e-04  -8.59
806880    rs6099616      20_33     1.000     79.78 2.3e-04   8.97
816334    rs2834259      21_14     1.000     60.61 1.8e-04   7.73
820586   rs60426421      21_23     1.000     40.05 1.2e-04  -6.28
827664    rs5756512      22_14     1.000    139.26 4.0e-04 -16.08
827672     rs228924      22_14     1.000     65.29 1.9e-04   1.15
865145  rs200856259       1_69     1.000  12329.29 3.6e-02   3.33
899803   rs56089638       3_20     1.000  13549.91 3.9e-02   2.96
899852  rs143137534       3_20     1.000  13558.31 3.9e-02   3.08
909995  rs142955295       3_35     1.000    352.17 1.0e-03  -2.32
943504  rs760400154        5_2     1.000  14144.28 4.1e-02   2.98
961266    rs1611236       6_26     1.000 129759.80 3.8e-01   8.54
986040   rs10305492       6_30     1.000     44.51 1.3e-04  -6.46
995207  rs201989772       7_61     1.000    413.89 1.2e-03   7.64
1076422   rs4760682      12_30     1.000    564.48 1.6e-03  26.64
1167014      rs5112      19_31     1.000     74.30 2.2e-04  -8.57
1182387 rs202143810      20_38     1.000   6252.46 1.8e-02  -4.13
226824   rs11728350       4_69     0.999     59.98 1.7e-04   7.83
318618   rs10498727       6_19     0.999     56.51 1.6e-04   1.65
318668    rs2281074       6_19     0.999    155.20 4.5e-04 -19.39
380437  rs142235947       7_33     0.999     33.82 9.8e-05  -5.29
419130       rs2428       8_11     0.999   1045.24 3.0e-03   6.08
539660     rs234852       11_2     0.999     68.73 2.0e-04   3.51
586308   rs66720652      12_15     0.999     35.50 1.0e-04  -5.82
616431   rs80019595      12_74     0.999     93.59 2.7e-04   3.88
652667    rs9549304      13_61     0.999     43.84 1.3e-04   7.90
704798   rs11642004       16_4     0.999     34.20 9.9e-05   5.80
728886  rs117425352      16_54     0.999     47.02 1.4e-04  -6.03
734709   rs59503666      17_15     0.999     83.37 2.4e-04 -13.24
1126000 rs371663356      17_28     0.999     43.50 1.3e-04  -6.52
1169858 rs201074739      19_35     0.999     83.99 2.4e-04  -7.84
111383     rs537183      2_102     0.998    990.51 2.9e-03  38.61
320035    rs2856992       6_27     0.998     49.26 1.4e-04  -5.62
519068  rs117731828      10_45     0.998     33.46 9.7e-05  -6.82
541334    rs3750952       11_7     0.998     37.54 1.1e-04  -5.95
748570    rs4371218      17_44     0.998     33.01 9.6e-05  -3.36
860091     rs599134       1_69     0.998     47.61 1.4e-04   6.81
198563   rs34927251       4_17     0.997     31.92 9.2e-05  -5.38
353181  rs540973884       6_92     0.997     58.53 1.7e-04  -8.58
542146   rs79057673       11_8     0.997     37.09 1.1e-04   6.04
596227  rs112538405      12_34     0.997     33.86 9.8e-05  -5.56
744074   rs62062484      17_37     0.997     30.39 8.8e-05  -5.14
111438  rs112308555      2_103     0.996     28.93 8.4e-05   4.91
282698   rs17462893       5_56     0.996     34.88 1.0e-04   6.77
569074   rs11224303      11_58     0.996    255.67 7.4e-04 -15.04
581434    rs3217907       12_4     0.996     35.62 1.0e-04   6.66
600941    rs2137537      12_44     0.996     33.91 9.8e-05   5.73
734651    rs3816511      17_15     0.996     48.40 1.4e-04  -9.10
148253  rs201274656       3_34     0.995     38.12 1.1e-04   1.92
319569    rs3129685       6_23     0.995     72.27 2.1e-04   6.26
544335       rs5215      11_12     0.995     80.66 2.3e-04  -9.02
616423  rs112623431      12_74     0.995     87.16 2.5e-04  -3.50
728769    rs8044367      16_54     0.995    221.80 6.4e-04  -4.43
1135226 rs145500346      17_47     0.995     37.43 1.1e-04   6.29
191077    rs9812813      3_120     0.994     49.25 1.4e-04   7.35
353173     rs590325       6_92     0.994     31.94 9.2e-05   6.70
667254     rs873642      14_30     0.993     43.15 1.2e-04   8.93
820309    rs8129767      21_22     0.993     29.46 8.5e-05  -4.62
1090801  rs45617834      14_52     0.993     34.77 1.0e-04  -5.61
525880    rs1977833      10_59     0.992    129.13 3.7e-04 -11.86
528135    rs6584362      10_64     0.992     29.37 8.5e-05  -4.40
553533    rs2863159      11_28     0.992     40.09 1.2e-04   6.42
615450  rs149837779      12_73     0.992     30.00 8.6e-05   5.96
623396     rs947229       13_5     0.991     27.78 8.0e-05  -4.94
736104    rs9891654      17_18     0.991     46.70 1.3e-04  -6.36
169665    rs6797915       3_76     0.990     44.29 1.3e-04   8.80
311970     rs201036        6_6     0.990     30.28 8.7e-05  -5.27
624899   rs60353775       13_7     0.990    105.35 3.0e-04  11.83
530976   rs11195508      10_70     0.988     34.95 1.0e-04  -5.48
566326     rs271042      11_52     0.988     42.43 1.2e-04  -2.47
724872    rs2927324      16_46     0.988     39.40 1.1e-04  -6.33
884042    rs3811444      1_131     0.988     59.41 1.7e-04  10.10
148252   rs74495218       3_34     0.987     32.05 9.2e-05   4.89
317718     rs191816       6_17     0.987     33.72 9.7e-05   5.41
104666    rs1427297       2_86     0.985     30.73 8.8e-05  -5.27
370803   rs13235534       7_15     0.985     31.49 9.0e-05   5.35
462453   rs10758593        9_4     0.985     46.64 1.3e-04   6.79
775045   rs10410896       19_4     0.985     39.79 1.1e-04   6.42
70134     rs1554481       2_15     0.984     27.20 7.8e-05   4.60
277564   rs12189028       5_45     0.984     33.72 9.6e-05  -2.39
776972   rs11880903       19_7     0.984     28.22 8.1e-05   5.05
807426    rs6026545      20_34     0.984     38.54 1.1e-04   5.83
129730    rs7584554      2_137     0.983     43.11 1.2e-04   6.90
7679    rs557129248       1_18     0.981     27.78 7.9e-05  -4.75
372059    rs7778372       7_17     0.980     36.23 1.0e-04  -5.76
318699  rs115902543       6_20     0.979     30.67 8.7e-05  -3.87
625836    rs9508717       13_9     0.979     39.08 1.1e-04  -5.99
735398    rs2946517      17_16     0.979     50.34 1.4e-04  -8.71
451881  rs138983405       8_78     0.977     72.03 2.0e-04  -9.06
943506  rs563200821        5_2     0.977  14144.77 4.0e-02   3.01
559050    rs3781660      11_39     0.975     27.20 7.7e-05  -4.85
726710   rs11641197      16_49     0.973     33.24 9.4e-05   6.79
775021   rs11878545       19_4     0.972     33.02 9.3e-05   5.69
527038   rs35909109      10_62     0.970     26.51 7.5e-05   4.76
389412  rs374118515       7_48     0.966     31.00 8.7e-05  -5.38
170293    rs7622489       3_78     0.964     46.89 1.3e-04   6.84
667269   rs17245565      14_30     0.964     48.60 1.4e-04  -8.58
713643  rs113675335      16_25     0.963     26.09 7.3e-05   3.80
731303    rs1641549       17_7     0.963     38.30 1.1e-04   8.54
773078     rs531621      18_45     0.962     46.04 1.3e-04   6.73
447928     rs485453       8_69     0.961     27.61 7.7e-05   5.15
496825   rs28624681       9_73     0.961    145.76 4.1e-04  12.54
743260   rs34221578      17_34     0.960     56.86 1.6e-04   7.42
1166961    rs429358      19_31     0.958     59.41 1.7e-04  -7.47
559852   rs11603349      11_41     0.955    107.48 3.0e-04 -11.10
997528   rs41295942       7_62     0.955     30.02 8.3e-05  -5.02
496783    rs1886296       9_73     0.954     25.63 7.1e-05  -4.47
588828    rs7953190      12_19     0.954     80.06 2.2e-04  -8.99
318457   rs34706906       6_19     0.953     54.73 1.5e-04 -11.13
349086    rs1744620       6_83     0.953     25.05 6.9e-05  -4.66
531554   rs66808559      10_70     0.953     31.34 8.7e-05   4.52
609207   rs10777868      12_58     0.953     35.03 9.7e-05  -7.00
745460    rs8070232      17_39     0.953     30.05 8.3e-05   5.35
149961   rs71623875       3_39     0.952     27.43 7.6e-05   4.93
590473    rs7302975      12_21     0.952     25.86 7.2e-05  -4.71
599378    rs2884593      12_40     0.952     30.57 8.5e-05   6.48
170232    rs1260471       3_77     0.950     48.61 1.3e-04  -7.16
410610   rs10227304       7_94     0.950     29.95 8.3e-05  -4.20
740290  rs144216645      17_27     0.949     47.82 1.3e-04  -7.46
783795   rs58526561      19_23     0.949     95.51 2.6e-04 -10.83
313843    rs4357124       6_11     0.948     27.77 7.6e-05   5.26
94612      rs650588       2_66     0.947     50.82 1.4e-04  -6.73
908327   rs13063578       3_33     0.947     84.45 2.3e-04   8.61
667252   rs41307086      14_29     0.946     28.58 7.9e-05   4.70
127282   rs13029395      2_133     0.945     26.68 7.3e-05   3.90
310457     rs318468        6_3     0.942     30.68 8.4e-05   5.40
479188   rs13285167       9_40     0.942     25.19 6.9e-05   4.69
277286   rs13174383       5_44     0.941     54.27 1.5e-04   7.15
808814    rs3901528      20_36     0.941     45.46 1.2e-04  -6.60
553748   rs75065406      11_28     0.938     27.16 7.4e-05  -5.12
500486    rs3824667       10_8     0.937     29.72 8.1e-05   5.17
8460     rs35495299       1_19     0.934     63.91 1.7e-04  -5.95
320185    rs6934244       6_27     0.933     29.19 7.9e-05   5.55
48406    rs17258746      1_105     0.932     39.97 1.1e-04   3.97
349561   rs41285272       6_85     0.932     26.93 7.3e-05   4.76
784102     rs889140      19_23     0.932     28.72 7.8e-05  -5.00
240040   rs10305918       4_95     0.927     26.04 7.0e-05   4.71
153284   rs17775391       3_45     0.925     31.92 8.6e-05  -5.12
50699     rs3754140      1_108     0.924     78.08 2.1e-04 -10.21
662800    rs2883893      14_20     0.921     26.15 7.0e-05   4.66
748381   rs74784618      17_43     0.918     46.83 1.2e-04   5.46
319309    rs7775817       6_21     0.917    290.44 7.7e-04  -2.43
183411   rs10653660      3_104     0.916    162.24 4.3e-04 -16.44
1042638 rs374499153       11_1     0.914     77.33 2.1e-04   9.65
177432   rs28663084       3_94     0.913     63.45 1.7e-04  -7.84
29473    rs72987493       1_67     0.912     37.92 1.0e-04   5.95
81883    rs11886868       2_40     0.910     34.04 9.0e-05  -5.87
495535  rs115478735       9_70     0.909    137.03 3.6e-04  17.60
419151   rs13265731       8_11     0.908   1069.62 2.8e-03   6.18
571343  rs117719056      11_62     0.907     24.19 6.4e-05  -4.22
542164   rs11042847       11_8     0.905     73.21 1.9e-04   9.79
50695      rs340835      1_108     0.902     88.71 2.3e-04  12.37
519009   rs10998007      10_45     0.901     25.10 6.6e-05   3.88
90687     rs4435501       2_57     0.900     30.74 8.0e-05   5.48
163860   rs62258976       3_65     0.900     23.56 6.2e-05   4.36
254616    rs4956970        5_1     0.899     27.66 7.2e-05  -5.09
435333   rs56386732       8_45     0.895     29.75 7.7e-05   5.21
301107   rs74417235       5_91     0.894     30.67 8.0e-05  -5.44
539618     rs231842       11_2     0.891     48.62 1.3e-04   6.45
481437   rs62550974       9_45     0.888    227.22 5.9e-04 -19.55
620877   rs10781644      12_82     0.888     28.63 7.4e-05  -5.43
959808    rs2394122       6_22     0.887     90.22 2.3e-04 -12.62
1076380   rs2408955      12_30     0.887    401.95 1.0e-03  27.11
531518  rs117764423      10_70     0.886    160.77 4.1e-04  -6.70
57      rs201014604        1_1     0.881     25.06 6.4e-05   4.54
639337    rs9530281      13_36     0.881     24.92 6.4e-05  -4.56
380286   rs10259649       7_32     0.873    360.33 9.1e-04  27.49
548242    rs4923464      11_19     0.868     28.97 7.3e-05  -5.03
560704    rs1215071      11_42     0.868     32.92 8.3e-05   5.65
120380     rs231811      2_120     0.867     25.65 6.5e-05   4.53
573303  rs139117557      11_67     0.867     24.01 6.1e-05  -4.35
526424   rs17109928      10_60     0.866     32.01 8.1e-05   5.60
720725   rs72799826      16_38     0.863     25.79 6.5e-05  -5.00
800402   rs61734341      20_19     0.863     27.83 7.0e-05  -5.10
129664    rs6722529      2_137     0.860     34.04 8.5e-05  -5.83
521331   rs58142007      10_51     0.859     24.10 6.0e-05  -4.02
594793   rs55770587      12_31     0.859     50.88 1.3e-04  -7.93
713528    rs2070896      16_25     0.859     68.09 1.7e-04  -7.06
629151  rs374017936      13_16     0.858     30.26 7.5e-05   5.35
4993     rs71014924       1_12     0.857     24.64 6.1e-05   4.51
738719  rs118132312      17_23     0.857     24.99 6.2e-05   4.43
183680    rs2141746      3_105     0.853     78.35 1.9e-04  -8.38
65273    rs10167277        2_7     0.850     26.38 6.5e-05  -4.69
609154   rs10860185      12_58     0.849     24.49 6.0e-05  -3.68
141811    rs2173058       3_17     0.847     35.03 8.6e-05  -5.21
183681   rs11924635      3_105     0.847     29.88 7.3e-05   1.37
558745   rs72932183      11_38     0.846     25.43 6.3e-05  -4.66
713586  rs139044487      16_25     0.845     25.20 6.2e-05  -3.11
473552   rs34280179       9_27     0.843     29.93 7.3e-05   5.01
882512   rs56043070      1_131     0.843     34.44 8.4e-05  -6.21
772977   rs72973445      18_45     0.842     24.17 5.9e-05   4.26
685824   rs77839142      15_14     0.838     25.12 6.1e-05   4.38
1021590  rs12555274       9_16     0.834    101.10 2.5e-04  10.14
252319   rs62336098      4_119     0.831     25.61 6.2e-05  -4.47
599345     rs189339      12_40     0.831     39.88 9.6e-05  -7.92
356623    rs6921399       6_98     0.830     25.44 6.1e-05   4.46
731558  rs116982102       17_8     0.830     24.32 5.9e-05  -4.28
48592     rs2724384      1_105     0.828     33.31 8.0e-05   6.19
749122    rs1285245      17_45     0.828     28.14 6.8e-05   4.90
602886     rs310792      12_47     0.824     25.42 6.1e-05  -4.51
452229   rs28529793       8_78     0.823    102.22 2.4e-04  -7.87
321787    rs6904583       6_31     0.816     25.98 6.2e-05   4.72
738298   rs12938438      17_22     0.811     25.26 6.0e-05   4.20
908853  rs112741837       3_33     0.811     33.76 8.0e-05   4.12
651421     rs754205      13_59     0.809     27.29 6.4e-05  -4.59
81872    rs11884411       2_40     0.807     44.70 1.0e-04  -7.27
109197     rs270920       2_96     0.805     30.25 7.1e-05  -5.47
1029046  rs11257655      10_10     0.805    156.14 3.7e-04  12.81
313595   rs12663475       6_10     0.802     26.85 6.3e-05  -4.74

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE    z
961266   rs1611236       6_26     1.000 129759.8 3.8e-01 8.54
961254 rs111734624       6_26     0.294 129488.6 1.1e-01 8.55
961251   rs2508055       6_26     0.294 129488.5 1.1e-01 8.55
961282   rs1611252       6_26     0.244 129488.3 9.2e-02 8.55
961291   rs1611260       6_26     0.223 129487.8 8.4e-02 8.55
961280   rs1611248       6_26     0.202 129487.8 7.6e-02 8.55
961296   rs1611265       6_26     0.209 129487.7 7.9e-02 8.55
961209   rs1633033       6_26     0.172 129486.2 6.5e-02 8.56
961299   rs2394171       6_26     0.105 129485.6 3.9e-02 8.55
961298   rs1611267       6_26     0.075 129485.4 2.8e-02 8.55
961249   rs1737020       6_26     0.102 129485.3 3.9e-02 8.55
961250   rs1737019       6_26     0.102 129485.3 3.9e-02 8.55
961301   rs2893981       6_26     0.092 129485.3 3.5e-02 8.55
961257   rs1611228       6_26     0.080 129485.1 3.0e-02 8.55
961217   rs2844838       6_26     0.091 129484.8 3.4e-02 8.55
961221   rs1633032       6_26     0.289 129478.1 1.1e-01 8.57
961244   rs1633020       6_26     0.010 129469.0 3.7e-03 8.54
961247   rs1633018       6_26     0.007 129468.0 2.7e-03 8.54
961264   rs1611234       6_26     0.001 129459.2 4.3e-04 8.53
961185   rs1610726       6_26     0.181 129456.6 6.8e-02 8.58
961215   rs2844840       6_26     0.005 129440.8 2.0e-03 8.55
961402   rs3129185       6_26     0.000 129433.2 2.2e-05 8.53
961410   rs1736999       6_26     0.000 129426.5 8.4e-07 8.51
961278   rs1611246       6_26     0.000 129416.1 3.8e-05 8.53
961416   rs1633001       6_26     0.000 129415.9 5.8e-07 8.51
961501   rs1632980       6_26     0.000 129408.3 7.5e-07 8.51
961232   rs1614309       6_26     0.000 129378.7 7.9e-06 8.55
961231   rs1633030       6_26     0.000 129273.6 3.9e-09 8.54
961309   rs9258382       6_26     0.000 129141.1 2.2e-08 8.63
961306   rs9258379       6_26     0.000 128927.1 0.0e+00 8.60
961273   rs1611241       6_26     0.000 128774.9 0.0e+00 8.65
961235   rs1633028       6_26     0.000 128594.0 0.0e+00 8.55
961275   rs1611244       6_26     0.000 128108.6 0.0e+00 8.66
961245   rs2735042       6_26     0.000 127901.4 0.0e+00 8.36
961297   rs1611266       6_26     0.000 126946.5 0.0e+00 8.83
961281   rs1611249       6_26     0.000 126389.5 0.0e+00 8.81
961260   rs1611230       6_26     0.000 126080.3 0.0e+00 8.82
961287 rs145043018       6_26     0.000 126053.7 0.0e+00 8.82
961295 rs147376303       6_26     0.000 126053.0 0.0e+00 8.82
961304   rs9258376       6_26     0.000 126051.3 0.0e+00 8.82
961310   rs1633016       6_26     0.000 126049.7 0.0e+00 8.82
961207   rs1633035       6_26     0.000 126047.1 0.0e+00 8.81
961227   rs1618670       6_26     0.000 126039.1 0.0e+00 8.82
961337   rs1633014       6_26     0.000 126037.2 0.0e+00 8.81
961246   rs1633019       6_26     0.000 126029.1 0.0e+00 8.80
961394   rs1633010       6_26     0.000 125994.3 0.0e+00 8.79
961447    rs909722       6_26     0.000 125973.3 0.0e+00 8.77
961465   rs1610713       6_26     0.000 125971.7 0.0e+00 8.77
961431   rs1736991       6_26     0.000 125970.5 0.0e+00 8.76
961454   rs1610648       6_26     0.000 125963.0 0.0e+00 8.76

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip       mu2    PVE      z
961266    rs1611236       6_26     1.000 129759.80 0.3800   8.54
961221    rs1633032       6_26     0.289 129478.05 0.1100   8.57
961251    rs2508055       6_26     0.294 129488.53 0.1100   8.55
961254  rs111734624       6_26     0.294 129488.55 0.1100   8.55
961282    rs1611252       6_26     0.244 129488.30 0.0920   8.55
961291    rs1611260       6_26     0.223 129487.82 0.0840   8.55
961296    rs1611265       6_26     0.209 129487.66 0.0790   8.55
961280    rs1611248       6_26     0.202 129487.81 0.0760   8.55
961185    rs1610726       6_26     0.181 129456.62 0.0680   8.58
961209    rs1633033       6_26     0.172 129486.20 0.0650   8.56
943504  rs760400154        5_2     1.000  14144.28 0.0410   2.98
943506  rs563200821        5_2     0.977  14144.77 0.0400   3.01
899803   rs56089638       3_20     1.000  13549.91 0.0390   2.96
899852  rs143137534       3_20     1.000  13558.31 0.0390   3.08
961249    rs1737020       6_26     0.102 129485.30 0.0390   8.55
961250    rs1737019       6_26     0.102 129485.30 0.0390   8.55
961299    rs2394171       6_26     0.105 129485.65 0.0390   8.55
865145  rs200856259       1_69     1.000  12329.29 0.0360   3.33
961301    rs2893981       6_26     0.092 129485.29 0.0350   8.55
961217    rs2844838       6_26     0.091 129484.77 0.0340   8.55
961257    rs1611228       6_26     0.080 129485.10 0.0300   8.55
352083  rs199804242       6_89     1.000   9553.62 0.0280   2.81
961298    rs1611267       6_26     0.075 129485.37 0.0280   8.55
865142    rs2932539       1_69     0.745  12330.16 0.0270  -3.42
519409    rs6480402      10_46     1.000   9083.08 0.0260 -53.18
360050   rs60425481      6_104     1.000   8396.80 0.0240  -6.69
352099    rs6923513       6_89     0.633   9592.82 0.0180   2.89
1182387 rs202143810      20_38     1.000   6252.46 0.0180  -4.13
360046    rs3106169      6_104     0.616   8358.50 0.0150   2.33
899792    rs1402975       3_20     0.374  13526.15 0.0150   3.04
360055    rs3106167      6_104     0.458   8358.37 0.0110   2.33
865137       rs1238       1_69     0.299  12326.90 0.0110  -3.41
352082    rs2327654       6_89     0.367   9592.15 0.0100   2.89
1182384   rs6089961      20_38     0.498   6219.46 0.0090  -4.48
1182386   rs2738758      20_38     0.498   6219.46 0.0090  -4.48
360047    rs3127598      6_104     0.365   8358.33 0.0089   2.34
943516  rs118079687        5_2     0.214  14125.15 0.0088   3.03
899829   rs10865811       3_20     0.220  13527.26 0.0087   2.99
519417   rs79086908      10_46     0.547   5426.60 0.0086  11.40
519414   rs35233497      10_46     0.453   5426.14 0.0071  11.40
360039   rs11755965      6_104     0.255   8356.10 0.0062   2.34
519418   rs73267631      10_46     1.000   2137.38 0.0062   6.15
899789   rs67565656       3_20     0.152  13516.57 0.0060   3.06
865143    rs2932538       1_69     0.128  12327.68 0.0046  -3.39
1182367   rs2750483      20_38     0.245   6217.46 0.0044  -4.48
1182365  rs35201382      20_38     0.220   6217.57 0.0040  -4.47
865092   rs10857969       1_69     0.108  12328.25 0.0039  -3.39
899786    rs1402980       3_20     0.100  13514.71 0.0039   3.06
519408    rs4745982      10_46     1.000   1283.98 0.0037 -56.67
961244    rs1633020       6_26     0.010 129469.00 0.0037   8.54

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                 id region_tag susie_pip     mu2     PVE      z
519408    rs4745982      10_46     1.000 1283.98 3.7e-03 -56.67
519409    rs6480402      10_46     1.000 9083.08 2.6e-02 -53.18
519405    rs6480398      10_46     0.000  856.15 0.0e+00  46.60
111390     rs853789      2_102     1.000 1024.25 3.0e-03  38.94
111383     rs537183      2_102     0.998  990.51 2.9e-03  38.61
111384     rs518598      2_102     0.002  972.85 4.3e-06  38.19
111386     rs485094      2_102     0.000  924.72 4.2e-10  37.34
380303    rs2908282       7_32     0.578  914.96 1.5e-03  35.83
380299     rs917793       7_32     0.392  914.00 1.0e-03  35.81
380293    rs4607517       7_32     0.030  908.94 7.9e-05  35.72
380305     rs732360       7_32     0.000  868.17 5.7e-08  35.03
33482     rs2779116       1_79     1.000  705.46 2.0e-03  30.86
111388    rs2544360      2_102     0.000  799.43 5.6e-10  30.12
111389     rs853791      2_102     0.000  792.74 5.1e-10  29.94
519430  rs142196758      10_46     0.000  799.88 0.0e+00 -29.25
318837  rs115740542       6_20     1.000  844.59 2.5e-03 -28.80
33494      rs863327       1_79     0.001  604.42 1.7e-06  28.76
111382   rs71397673      2_102     1.000  504.64 1.5e-03  28.67
111392     rs853785      2_102     0.166  719.89 3.5e-04  28.45
111391     rs860510      2_102     0.404  707.74 8.3e-04  28.07
1135189  rs28485881      17_47     0.000  493.30 6.9e-08  27.93
1135212   rs7208565      17_47     0.000  490.37 6.1e-08  27.91
1135218 rs113373052      17_47     0.000  490.41 6.1e-08  27.91
1135186   rs9909940      17_47     0.000  492.16 6.7e-08  27.90
1135169   rs1046917      17_47     0.000  492.35 6.7e-08 -27.89
1135166   rs1046875      17_47     0.000  491.66 6.6e-08 -27.88
1135168   rs1046896      17_47     0.000  490.71 6.5e-08  27.87
1135174  rs12947062      17_47     0.000  490.41 6.4e-08 -27.87
111385     rs579275      2_102     0.430  694.11 8.7e-04  27.85
33462    rs12042917       1_79     0.001  553.23 9.4e-07  27.53
380286   rs10259649       7_32     0.873  360.33 9.1e-04  27.49
33454    rs12405509       1_79     0.001  549.59 8.9e-07  27.45
1135221   rs2263122      17_47     0.000  483.31 4.9e-08 -27.22
380284    rs2908294       7_32     0.127  351.48 1.3e-04  27.14
1135177   rs2257084      17_47     0.000  484.92 6.1e-08 -27.14
1076380   rs2408955      12_30     0.887  401.95 1.0e-03  27.11
1135188   rs2256833      17_47     0.000  477.43 3.9e-08 -27.01
33420    rs11264980       1_79     0.000  529.45 7.0e-07  26.99
1135200   rs3848403      17_47     0.000  474.77 3.7e-08  26.98
1135178   rs5822544      17_47     0.000  478.56 5.8e-08 -26.97
1135203   rs3859207      17_47     0.000  473.70 3.7e-08  26.97
1135190   rs2459703      17_47     0.000  474.95 3.8e-08 -26.96
1135207   rs8082558      17_47     0.000  471.75 3.6e-08  26.92
1135204   rs8067360      17_47     0.000  470.64 3.6e-08  26.89
1135182   rs3803771      17_47     0.000  469.76 3.6e-08 -26.87
1076094  rs12819124      12_30     0.113  404.13 1.3e-04 -26.83
1135162   rs9895455      17_47     0.000  464.62 1.1e-07  26.71
1076422   rs4760682      12_30     1.000  564.48 1.6e-03  26.64
1135153  rs72634341      17_47     0.000  402.81 3.0e-08  26.52
1135156  rs12449739      17_47     0.000  399.29 2.9e-08  26.47

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 42
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
FBXL22 gene(s) from the input list not found in DisGeNET CURATEDJMJD7 gene(s) from the input list not found in DisGeNET CURATEDARFIP1 gene(s) from the input list not found in DisGeNET CURATEDOR51B6 gene(s) from the input list not found in DisGeNET CURATEDCNIH4 gene(s) from the input list not found in DisGeNET CURATEDSMIM19 gene(s) from the input list not found in DisGeNET CURATEDSPOCK2 gene(s) from the input list not found in DisGeNET CURATEDAC004540.5 gene(s) from the input list not found in DisGeNET CURATEDMADD gene(s) from the input list not found in DisGeNET CURATEDKCNK17 gene(s) from the input list not found in DisGeNET CURATEDPPRC1 gene(s) from the input list not found in DisGeNET CURATEDFN3K gene(s) from the input list not found in DisGeNET CURATEDLINC01305 gene(s) from the input list not found in DisGeNET CURATEDCCDC184 gene(s) from the input list not found in DisGeNET CURATEDCBX6 gene(s) from the input list not found in DisGeNET CURATEDATP5D gene(s) from the input list not found in DisGeNET CURATEDH1FX gene(s) from the input list not found in DisGeNET CURATED
                                                                                    Description
46                                                                                       polyps
79                                                                             Moderate drinker
105                                                                  In(Lu) phenotype (finding)
116                                                                Cardiomyopathy, Dilated, 1CC
119                                                 FETAL HEMOGLOBIN QUANTITATIVE TRAIT LOCUS 6
120                                                 Congenital dyserythropoietic anemia type IV
121                                                   CARDIOMYOPATHY, FAMILIAL HYPERTROPHIC, 20
126                             MUSCULAR DYSTROPHY-DYSTROGLYCANOPATHY (LIMB-GIRDLE), TYPE C, 14
127 MUSCULAR DYSTROPHY-DYSTROGLYCANOPATHY (CONGENITAL WITH BRAIN AND EYE ANOMALIES), TYPE A, 14
128      MUSCULAR DYSTROPHY-DYSTROGLYCANOPATHY (CONGENITAL WITH MENTAL RETARDATION), TYPE B, 14
           FDR Ratio BgRatio
46  0.03232698  1/25  1/9703
79  0.03232698  1/25  1/9703
105 0.03232698  1/25  1/9703
116 0.03232698  1/25  1/9703
119 0.03232698  1/25  1/9703
120 0.03232698  1/25  1/9703
121 0.03232698  1/25  1/9703
126 0.03232698  1/25  1/9703
127 0.03232698  1/25  1/9703
128 0.03232698  1/25  1/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2