Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30740_irnt_Whole_Blood.Rmd) and HTML (docs/ukb-d-30740_irnt_Whole_Blood.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Glucose (quantile) using Whole_Blood gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30740_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Whole_Blood eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11095
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1129  747  624  400  479  621  560  383  404  430  682  652  192  362  331 
  16   17   18   19   20   21   22 
 551  725  159  911  313  130  310 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.762776

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
       gene         snp 
0.010986634 0.000147187 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
     gene       snp 
 8.491741 11.082572 
#report sample size
print(sample_size)
[1] 314916
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11095 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.003286957 0.045050671 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.01977635 0.34170116

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
      genename region_tag susie_pip    mu2     PVE     z
2550      MADD      11_29     0.991  42.25 1.3e-04  9.18
6290   ZFP36L2       2_27     0.921  69.43 2.0e-04 10.18
7872      IGF2       11_2     0.919 101.36 3.0e-04 -9.28
10110 C15orf52      15_14     0.872  25.19 7.0e-05 -4.80
1693      PTK6      20_37     0.798  21.59 5.5e-05 -4.58
3262     SGIP1       1_42     0.790  25.11 6.3e-05 -4.95
11139   NPEPL1      20_34     0.788  20.12 5.0e-05  3.38
9643     AIFM3       22_4     0.788  22.53 5.6e-05 -4.70
1667   PABPC1L      20_28     0.785  43.46 1.1e-04 -6.88
2787       NNT       5_28     0.775  20.93 5.2e-05 -4.13
8719      CHD2      15_43     0.775  21.68 5.3e-05 -4.23
5922    GIGYF1       7_62     0.711  43.06 9.7e-05 -6.95
4397     H3F3B      17_42     0.628  21.96 4.4e-05  4.20
6089     FADS1      11_34     0.576  50.73 9.3e-05 -7.62
7996   FAM234A       16_1     0.546  49.05 8.5e-05  8.01
2989     USP34       2_40     0.526  23.05 3.9e-05  3.75
1366   CWF19L1      10_64     0.514  19.13 3.1e-05 -3.90
4963     LRRC1       6_40     0.495  23.63 3.7e-05  4.61
10164    RNFT1      17_35     0.489  20.20 3.1e-05 -4.24
6952     LRWD1       7_63     0.479  24.60 3.7e-05  3.83

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
       genename region_tag susie_pip     mu2 PVE     z
12599     HCP5B       6_26         0 2027.17   0  4.41
10848    TRIM10       6_26         0 1340.43   0 -3.71
10855     HLA-G       6_26         0 1290.24   0 -5.57
10853      HCG9       6_26         0  820.97   0  0.99
10968     HLA-A       6_26         0  705.76   0  1.28
10844     HLA-E       6_26         0  570.91   0  1.29
11418    TRIM26       6_26         0  563.57   0 -0.45
11120 LINC00243       6_26         0  552.63   0  4.13
5868    PPP1R18       6_26         0  393.37   0 -0.54
10841   MRPS18B       6_26         0  301.95   0 -0.03
11652       C4A       6_26         0  150.35   0 -6.04
11218       C4B       6_26         0  147.72   0  5.98
7712         C2       6_26         0  146.07   0  5.95
10847    TRIM15       6_26         0  143.95   0 -1.81
11047     CLIC1       6_26         0  142.44   0 -5.87
10808      NEU1       6_26         0  139.47   0 -5.81
10825      APOM       6_26         0  133.32   0 -5.67
4971       IER3       6_26         0  125.90   0  0.96
10789      PBX2       6_26         0  116.23   0 -5.28
11374   CYP21A2       6_26         0  103.60   0  4.98

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
      genename region_tag susie_pip    mu2     PVE     z
7872      IGF2       11_2     0.919 101.36 3.0e-04 -9.28
6290   ZFP36L2       2_27     0.921  69.43 2.0e-04 10.18
2550      MADD      11_29     0.991  42.25 1.3e-04  9.18
1667   PABPC1L      20_28     0.785  43.46 1.1e-04 -6.88
5922    GIGYF1       7_62     0.711  43.06 9.7e-05 -6.95
6089     FADS1      11_34     0.576  50.73 9.3e-05 -7.62
7996   FAM234A       16_1     0.546  49.05 8.5e-05  8.01
10110 C15orf52      15_14     0.872  25.19 7.0e-05 -4.80
3262     SGIP1       1_42     0.790  25.11 6.3e-05 -4.95
9643     AIFM3       22_4     0.788  22.53 5.6e-05 -4.70
1693      PTK6      20_37     0.798  21.59 5.5e-05 -4.58
8719      CHD2      15_43     0.775  21.68 5.3e-05 -4.23
2787       NNT       5_28     0.775  20.93 5.2e-05 -4.13
11139   NPEPL1      20_34     0.788  20.12 5.0e-05  3.38
4397     H3F3B      17_42     0.628  21.96 4.4e-05  4.20
6761     UBE2Z      17_28     0.424  32.25 4.3e-05 -5.67
9050    FBXO46      19_32     0.460  28.27 4.1e-05 -5.98
2861      OGG1        3_8     0.421  29.90 4.0e-05  3.43
2989     USP34       2_40     0.526  23.05 3.9e-05  3.75
3804     OPRL1      20_38     0.372  32.31 3.8e-05  3.65

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
     genename region_tag susie_pip    mu2     PVE      z
2236     YKT6       7_32     0.004  41.56 4.8e-07 -11.82
6290  ZFP36L2       2_27     0.921  69.43 2.0e-04  10.18
2953    NRBP1       2_16     0.043  97.49 1.3e-05 -10.09
7872     IGF2       11_2     0.919 101.36 3.0e-04  -9.28
2550     MADD      11_29     0.991  42.25 1.3e-04   9.18
2956    SNX17       2_16     0.039  83.76 1.0e-05  -9.16
3490   SEC22A       3_76     0.038  60.53 7.3e-06   8.18
7996  FAM234A       16_1     0.546  49.05 8.5e-05   8.01
7255   EIF5A2      3_104     0.016  39.41 2.0e-06   7.88
9564   CAMK1D      10_10     0.018  50.84 2.9e-06   7.87
6089    FADS1      11_34     0.576  50.73 9.3e-05  -7.62
3631   KBTBD4      11_29     0.024  28.80 2.2e-06  -7.05
5922   GIGYF1       7_62     0.711  43.06 9.7e-05  -6.95
1667  PABPC1L      20_28     0.785  43.46 1.1e-04  -6.88
970    UBE2D4       7_32     0.000  37.96 1.6e-11  -6.85
4610     ACP2      11_29     0.055  34.33 6.0e-06  -6.79
2497    FNBP4      11_29     0.019  24.80 1.5e-06   6.50
7304   ZNF513       2_16     0.017  37.72 2.0e-06  -6.27
7821    YWHAB      20_28     0.037  36.75 4.3e-06   6.26
8876  ARHGAP1      11_28     0.166  43.25 2.3e-05  -6.22

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.006219018
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
     genename region_tag susie_pip    mu2     PVE      z
2236     YKT6       7_32     0.004  41.56 4.8e-07 -11.82
6290  ZFP36L2       2_27     0.921  69.43 2.0e-04  10.18
2953    NRBP1       2_16     0.043  97.49 1.3e-05 -10.09
7872     IGF2       11_2     0.919 101.36 3.0e-04  -9.28
2550     MADD      11_29     0.991  42.25 1.3e-04   9.18
2956    SNX17       2_16     0.039  83.76 1.0e-05  -9.16
3490   SEC22A       3_76     0.038  60.53 7.3e-06   8.18
7996  FAM234A       16_1     0.546  49.05 8.5e-05   8.01
7255   EIF5A2      3_104     0.016  39.41 2.0e-06   7.88
9564   CAMK1D      10_10     0.018  50.84 2.9e-06   7.87
6089    FADS1      11_34     0.576  50.73 9.3e-05  -7.62
3631   KBTBD4      11_29     0.024  28.80 2.2e-06  -7.05
5922   GIGYF1       7_62     0.711  43.06 9.7e-05  -6.95
1667  PABPC1L      20_28     0.785  43.46 1.1e-04  -6.88
970    UBE2D4       7_32     0.000  37.96 1.6e-11  -6.85
4610     ACP2      11_29     0.055  34.33 6.0e-06  -6.79
2497    FNBP4      11_29     0.019  24.80 1.5e-06   6.50
7304   ZNF513       2_16     0.017  37.72 2.0e-06  -6.27
7821    YWHAB      20_28     0.037  36.75 4.3e-06   6.26
8876  ARHGAP1      11_28     0.166  43.25 2.3e-05  -6.22

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 7_32"
        genename region_tag susie_pip   mu2     PVE      z
2226        COA1       7_32     0.000  9.20 4.3e-12   0.06
2227       BLVRA       7_32     0.000 13.04 1.2e-11   1.08
565       MRPS24       7_32     0.000 11.89 1.4e-11   0.07
970       UBE2D4       7_32     0.000 37.96 1.6e-11  -6.85
2228       URGCP       7_32     0.000 29.68 1.3e-11   5.98
11314 AC004951.6       7_32     0.000  8.88 4.2e-12  -0.37
4841        DBNL       7_32     0.000 24.69 2.4e-11  -1.07
3572        POLM       7_32     0.000 10.02 8.4e-12  -0.57
2232       AEBP1       7_32     0.000 75.46 1.9e-10  -1.82
2233       POLD2       7_32     0.000 27.84 5.8e-10   0.92
2236        YKT6       7_32     0.004 41.56 4.8e-07 -11.82
523       CAMK2B       7_32     0.000 69.97 3.2e-08   5.10
4838       DDX56       7_32     0.000 28.29 1.9e-10   2.87
6708       TMED4       7_32     0.000 28.29 1.9e-10   2.87
2151        OGDH       7_32     0.000 20.23 6.5e-11  -1.77

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 2_27"
        genename region_tag susie_pip   mu2     PVE     z
11353 AC093609.1       2_27     0.011  4.69 1.6e-07  0.51
12581  LINC01126       2_27     0.084 30.16 8.0e-06 -4.46
6290     ZFP36L2       2_27     0.921 69.43 2.0e-04 10.18
3047       THADA       2_27     0.046 30.66 4.5e-06  5.53
6292     PLEKHH2       2_27     0.120 30.42 1.2e-05  4.07
5065    DYNC2LI1       2_27     0.022 12.27 8.5e-07 -1.86
5077      LRPPRC       2_27     0.012  6.50 2.5e-07 -1.13

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 2_16"
      genename region_tag susie_pip   mu2     PVE      z
11045  SLC35F6       2_16     0.022 14.70 1.0e-06   4.06
3366   TMEM214       2_16     0.037 14.82 1.8e-06  -3.75
5074   EMILIN1       2_16     0.020 10.91 7.0e-07  -4.40
5061       KHK       2_16     0.033 14.43 1.5e-06   3.75
5059    CGREF1       2_16     0.020 11.55 7.4e-07   2.81
5070      PREB       2_16     0.023  9.40 6.9e-07   0.81
5076    ATRAID       2_16     0.018 22.16 1.3e-06   4.81
1090       CAD       2_16     0.022  8.16 5.8e-07   1.60
5071    SLC5A6       2_16     0.017 10.47 5.6e-07  -2.97
7303       UCN       2_16     0.017  9.04 5.0e-07   2.74
2952    GTF3C2       2_16     0.017  9.09 5.0e-07  -2.75
2956     SNX17       2_16     0.039 83.76 1.0e-05  -9.16
7304    ZNF513       2_16     0.017 37.72 2.0e-06  -6.27
2953     NRBP1       2_16     0.043 97.49 1.3e-05 -10.09
5057    IFT172       2_16     0.022 14.62 1.0e-06   3.49
1087      GCKR       2_16     0.023 15.17 1.1e-06  -3.55
10613     GPN1       2_16     0.019 14.69 8.7e-07  -2.91
9018   CCDC121       2_16     0.036  9.35 1.1e-06   0.10
6660       BRE       2_16     0.022 11.99 8.6e-07  -2.77

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 11_2"
        genename region_tag susie_pip    mu2     PVE     z
969       TOLLIP       11_2     0.002   6.93 3.5e-08  0.78
9483        MOB2       11_2     0.003  10.51 8.6e-08 -1.26
9709       DUSP8       11_2     0.002   9.91 7.3e-08 -1.15
11638    IFITM10       11_2     0.001   4.62 1.8e-08 -0.32
3233        CTSD       11_2     0.001   5.91 2.7e-08 -0.71
4206       TNNI2       11_2     0.002   7.38 3.8e-08  0.99
4204        LSP1       11_2     0.001   5.14 2.2e-08  0.14
4205       TNNT3       11_2     0.002   8.50 5.5e-08 -0.79
12620      PRR33       11_2     0.002   6.71 3.4e-08  0.63
11337  LINC01150       11_2     0.002   7.83 4.7e-08  0.56
11078     MRPL23       11_2     0.005  16.89 2.5e-07 -1.96
7872        IGF2       11_2     0.919 101.36 3.0e-04 -9.28
9638       ASCL2       11_2     0.001   4.63 1.8e-08 -0.64
2557    C11orf21       11_2     0.001   5.18 2.2e-08 -0.16
588      TSPAN32       11_2     0.001   5.86 2.6e-08 -0.84
2555        CD81       11_2     0.002   7.84 4.4e-08 -0.94
9683       TSSC4       11_2     0.002   9.15 5.6e-08  1.26
4133      CDKN1C       11_2     0.001   5.36 2.1e-08 -0.87
2554    SLC22A18       11_2     0.078  32.29 8.0e-06  2.28
11813 SLC22A18AS       11_2     0.041  27.65 3.6e-06  2.14
9430      PHLDA2       11_2     0.001   4.77 1.9e-08 -0.11
10926     NAP1L4       11_2     0.001   4.79 1.9e-08  0.43
2553        CARS       11_2     0.004  14.78 1.8e-07  1.48
272       OSBPL5       11_2     0.001   5.63 2.4e-08  0.87
9688      MRGPRE       11_2     0.001   5.11 2.1e-08 -0.45
76        ZNF195       11_2     0.008  21.18 5.6e-07 -2.12

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 11_29"
     genename region_tag susie_pip   mu2     PVE     z
6066  ARFGAP2      11_29     0.024 12.36 9.5e-07  3.25
300     NR1H3      11_29     0.051 18.49 3.0e-06 -3.60
4610     ACP2      11_29     0.055 34.33 6.0e-06 -6.79
2550     MADD      11_29     0.991 42.25 1.3e-04  9.18
4609   MYBPC3      11_29     0.022  5.90 4.1e-07  0.19
7654    PSMC3      11_29     0.039 14.63 1.8e-06 -3.30
7653 SLC39A13      11_29     0.028 24.42 2.2e-06 -6.20
7655    RAPSN      11_29     0.041 15.78 2.0e-06 -3.30
2551   PTPMT1      11_29     0.018  6.68 3.8e-07 -1.73
3631   KBTBD4      11_29     0.024 28.80 2.2e-06 -7.05
8552  C1QTNF4      11_29     0.040 13.68 1.7e-06 -1.71
7656    AGBL2      11_29     0.021  5.78 3.9e-07  0.26
2497    FNBP4      11_29     0.019 24.80 1.5e-06  6.50
324    NUP160      11_29     0.027  9.29 7.9e-07 -2.16
6064    PTPRJ      11_29     0.021  7.24 4.9e-07  2.04

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                id region_tag susie_pip     mu2     PVE      z
54771   rs79687284      1_108     1.000  111.12 3.5e-04  12.08
75845     rs780093       2_16     1.000  190.20 6.0e-04  14.95
81784    rs2121564       2_28     1.000   60.29 1.9e-04   8.01
114586  rs12692596       2_96     1.000   46.08 1.5e-04   7.24
116878  rs11396827      2_102     1.000  209.10 6.6e-04  20.35
116880  rs71397673      2_102     1.000  477.91 1.5e-03  34.50
116881    rs537183      2_102     1.000  875.78 2.8e-03  52.66
116888    rs853789      2_102     1.000  903.71 2.9e-03  53.04
167265 rs148685409       3_57     1.000  907.17 2.9e-03   2.99
177379  rs72964564       3_76     1.000  237.79 7.6e-04 -16.88
197429   rs4234603      3_115     1.000   39.59 1.3e-04   5.05
324284  rs76623841        6_7     1.000   57.90 1.8e-04  -6.80
383850  rs10225316       7_15     1.000   45.31 1.4e-04   7.51
394087 rs138917529       7_32     1.000   78.46 2.5e-04 -10.45
433869   rs7012814       8_12     1.000   62.91 2.0e-04  -9.18
463448 rs146191002       8_70     1.000  641.34 2.0e-03  -0.15
529445  rs61856594      10_33     1.000   38.41 1.2e-04  -6.23
549258  rs12244851      10_70     1.000  294.45 9.4e-04  16.46
559313   rs3750952       11_7     1.000   52.32 1.7e-04  -7.40
645076    rs576674      13_10     1.000  105.10 3.3e-04 -10.82
694074  rs35889227      14_45     1.000  116.43 3.7e-04 -11.34
865929   rs1611236       6_26     1.000 4824.25 1.5e-02   3.25
288819  rs12189028       5_45     0.999   34.80 1.1e-04  -5.08
478405  rs10758593        9_4     0.999   71.27 2.3e-04   8.64
54780    rs3754140      1_108     0.998   58.70 1.9e-04 -10.01
116860  rs11676084      2_102     0.998  127.50 4.0e-04 -23.20
236488  rs11728350       4_69     0.997   42.57 1.3e-04   6.68
512031 rs115478735       9_70     0.997   82.62 2.6e-04   9.52
560735  rs34718245       11_9     0.997   32.29 1.0e-04  -5.37
757231  rs28489441      17_15     0.997   32.63 1.0e-04  -5.83
324303  rs55792466        6_7     0.994   98.16 3.1e-04  -9.67
485647 rs572168822       9_16     0.993   41.18 1.3e-04  -6.61
659724   rs1327315      13_40     0.992   34.84 1.1e-04  -7.02
636194   rs4765221      12_76     0.989   33.66 1.1e-04   5.80
394067  rs17769733       7_32     0.986  134.24 4.2e-04  -7.76
548710  rs11195508      10_70     0.986   60.91 1.9e-04 -10.76
836100   rs6026545      20_34     0.985   35.46 1.1e-04   5.72
411067   rs4729755       7_63     0.984   26.54 8.3e-05   4.96
476363   rs4977218       8_94     0.979   29.83 9.3e-05  -5.34
705074  rs12912777      15_13     0.977   25.47 7.9e-05   3.77
485642   rs1333045       9_16     0.974   40.85 1.3e-04   6.62
627692   rs6538805      12_58     0.973   32.06 9.9e-05  -6.74
900411    rs231362       11_2     0.971   48.07 1.5e-04   6.83
755     rs60330317        1_2     0.969   36.84 1.1e-04  -6.18
192270  rs10653660      3_104     0.969  351.02 1.1e-03 -23.54
643386  rs60353775       13_7     0.968   82.69 2.5e-04   9.78
175412   rs9875598       3_73     0.963   27.30 8.3e-05  -5.10
467109   rs4433184       8_78     0.962   53.14 1.6e-04   4.78
671654  rs80081165      13_62     0.956   25.21 7.7e-05   4.82
893019  rs11257655      10_10     0.950   72.24 2.2e-04   9.12
34661     rs893230       1_72     0.948   39.75 1.2e-04  -7.56
394079  rs10259649       7_32     0.948  397.09 1.2e-03  28.65
513321  rs28624681       9_73     0.942   52.20 1.6e-04   7.55
701551  rs35767992       15_4     0.940   24.63 7.4e-05   4.72
454712  rs10957704       8_54     0.931   24.45 7.2e-05   4.68
758740 rs543720569      17_18     0.931   45.59 1.3e-04  -7.03
334606  rs62396405       6_30     0.930   25.29 7.5e-05  -4.78
571670 rs117396352      11_28     0.930   27.25 8.1e-05   4.93
574874   rs7941126      11_36     0.912   31.50 9.1e-05  -5.63
357128 rs118126621       6_73     0.906   24.98 7.2e-05   4.67
572690 rs182512331      11_31     0.901   27.67 7.9e-05  -5.05
571867   rs7111517      11_28     0.899   39.18 1.1e-04  -6.64
170183  rs62276527       3_63     0.897   33.73 9.6e-05   5.85
363608 rs112388031       6_87     0.896   24.52 7.0e-05  -4.65
561667 rs117720468      11_11     0.892   44.58 1.3e-04   6.82
288880   rs6887019       5_45     0.884   26.65 7.5e-05   5.23
155694   rs3172494       3_34     0.881   26.79 7.5e-05  -5.09
796854  rs41404946      18_44     0.876   24.22 6.7e-05   4.56
639226   rs1882297      12_82     0.865   38.60 1.1e-04   6.47
572272 rs139913257      11_30     0.858   31.56 8.6e-05  -5.63
258624  rs62332172      4_113     0.852   24.65 6.7e-05   4.54
660075  rs79317015      13_40     0.849   24.17 6.5e-05   4.40
800071  rs10410896       19_4     0.825   28.22 7.4e-05   5.04
396423  rs11763778       7_36     0.823   44.87 1.2e-04  -7.61
116936 rs112308555      2_103     0.820   24.85 6.5e-05   4.32
196969  rs73185688      3_114     0.815   25.17 6.5e-05   4.69
328895   rs2206734       6_15     0.811   64.37 1.7e-04   8.26
712481  rs11637069      15_29     0.809   28.58 7.3e-05   5.00
576904  rs11603349      11_41     0.808   45.18 1.2e-04  -6.78

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip     mu2     PVE    z
865929   rs1611236       6_26     1.000 4824.25 1.5e-02 3.25
865911   rs2508055       6_26     0.121 4795.98 1.8e-03 3.28
865914 rs111734624       6_26     0.120 4795.98 1.8e-03 3.28
865951   rs1611252       6_26     0.113 4795.93 1.7e-03 3.28
865965   rs1611260       6_26     0.111 4795.91 1.7e-03 3.28
865970   rs1611265       6_26     0.110 4795.90 1.7e-03 3.28
865947   rs1611248       6_26     0.106 4795.88 1.6e-03 3.28
865972   rs1611267       6_26     0.091 4795.69 1.4e-03 3.27
865908   rs1737020       6_26     0.094 4795.68 1.4e-03 3.27
865909   rs1737019       6_26     0.094 4795.68 1.4e-03 3.27
865870   rs2844838       6_26     0.094 4795.66 1.4e-03 3.27
865973   rs2394171       6_26     0.085 4795.64 1.3e-03 3.27
865916   rs1611228       6_26     0.086 4795.62 1.3e-03 3.27
865975   rs2893981       6_26     0.085 4795.62 1.3e-03 3.27
865874   rs1633032       6_26     0.101 4795.44 1.5e-03 3.28
865861   rs1633033       6_26     0.062 4795.36 9.5e-04 3.26
865906   rs1633018       6_26     0.094 4795.13 1.4e-03 3.27
865903   rs1633020       6_26     0.090 4795.12 1.4e-03 3.27
865815   rs1610726       6_26     0.128 4794.89 1.9e-03 3.29
865868   rs2844840       6_26     0.101 4794.24 1.5e-03 3.28
865927   rs1611234       6_26     0.040 4794.15 6.1e-04 3.24
866101   rs3129185       6_26     0.077 4793.96 1.2e-03 3.27
865945   rs1611246       6_26     0.154 4793.87 2.3e-03 3.30
866225   rs1632980       6_26     0.124 4793.55 1.9e-03 3.29
866108   rs1736999       6_26     0.055 4793.48 8.3e-04 3.26
866116   rs1633001       6_26     0.066 4793.27 1.0e-03 3.27
865893   rs1614309       6_26     0.061 4791.72 9.2e-04 3.27
865892   rs1633030       6_26     0.142 4789.05 2.2e-03 3.31
865983   rs9258382       6_26     0.026 4782.71 4.0e-04 3.26
865980   rs9258379       6_26     0.091 4776.89 1.4e-03 3.34
865939   rs1611241       6_26     0.095 4772.39 1.4e-03 3.37
865895   rs1633028       6_26     0.001 4762.19 1.8e-05 3.22
865941   rs1611244       6_26     0.000 4744.42 4.2e-06 3.23
865904   rs2735042       6_26     0.000 4736.29 2.6e-06 3.20
865971   rs1611266       6_26     0.052 4710.22 7.8e-04 3.56
865948   rs1611249       6_26     0.002 4688.22 2.4e-05 3.50
865920   rs1611230       6_26     0.002 4677.86 2.5e-05 3.53
865962 rs145043018       6_26     0.002 4676.89 2.3e-05 3.53
865969 rs147376303       6_26     0.002 4676.87 2.3e-05 3.53
865978   rs9258376       6_26     0.002 4676.81 2.3e-05 3.53
865984   rs1633016       6_26     0.002 4676.76 2.3e-05 3.53
865884   rs1618670       6_26     0.001 4676.25 2.1e-05 3.53
865856   rs1633035       6_26     0.001 4676.24 1.4e-05 3.52
866021   rs1633014       6_26     0.001 4676.10 1.6e-05 3.52
865905   rs1633019       6_26     0.001 4675.96 2.0e-05 3.53
866091   rs1633010       6_26     0.001 4674.93 1.9e-05 3.54
866134   rs1736991       6_26     0.002 4674.59 3.1e-05 3.56
866182   rs1610713       6_26     0.002 4674.48 2.6e-05 3.55
866157    rs909722       6_26     0.002 4674.43 2.3e-05 3.55
866175   rs1610653       6_26     0.002 4674.06 2.6e-05 3.55

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                id region_tag susie_pip     mu2     PVE      z
865929   rs1611236       6_26     1.000 4824.25 0.01500   3.25
116888    rs853789      2_102     1.000  903.71 0.00290  53.04
167265 rs148685409       3_57     1.000  907.17 0.00290   2.99
116881    rs537183      2_102     1.000  875.78 0.00280  52.66
865945   rs1611246       6_26     0.154 4793.87 0.00230   3.30
865892   rs1633030       6_26     0.142 4789.05 0.00220   3.31
463448 rs146191002       8_70     1.000  641.34 0.00200  -0.15
865815   rs1610726       6_26     0.128 4794.89 0.00190   3.29
866225   rs1632980       6_26     0.124 4793.55 0.00190   3.29
865911   rs2508055       6_26     0.121 4795.98 0.00180   3.28
865914 rs111734624       6_26     0.120 4795.98 0.00180   3.28
865951   rs1611252       6_26     0.113 4795.93 0.00170   3.28
865965   rs1611260       6_26     0.111 4795.91 0.00170   3.28
865970   rs1611265       6_26     0.110 4795.90 0.00170   3.28
463439  rs72681356       8_70     0.796  635.51 0.00160   4.78
865947   rs1611248       6_26     0.106 4795.88 0.00160   3.28
116880  rs71397673      2_102     1.000  477.91 0.00150  34.50
167267   rs1436648       3_57     0.507  929.81 0.00150  -3.09
167268   rs7619398       3_57     0.522  930.03 0.00150  -3.08
865868   rs2844840       6_26     0.101 4794.24 0.00150   3.28
865874   rs1633032       6_26     0.101 4795.44 0.00150   3.28
865870   rs2844838       6_26     0.094 4795.66 0.00140   3.27
865903   rs1633020       6_26     0.090 4795.12 0.00140   3.27
865906   rs1633018       6_26     0.094 4795.13 0.00140   3.27
865908   rs1737020       6_26     0.094 4795.68 0.00140   3.27
865909   rs1737019       6_26     0.094 4795.68 0.00140   3.27
865939   rs1611241       6_26     0.095 4772.39 0.00140   3.37
865972   rs1611267       6_26     0.091 4795.69 0.00140   3.27
865980   rs9258379       6_26     0.091 4776.89 0.00140   3.34
394092    rs917793       7_32     0.583  708.36 0.00130  33.28
865916   rs1611228       6_26     0.086 4795.62 0.00130   3.27
865973   rs2394171       6_26     0.085 4795.64 0.00130   3.27
865975   rs2893981       6_26     0.085 4795.62 0.00130   3.27
394079  rs10259649       7_32     0.948  397.09 0.00120  28.65
866101   rs3129185       6_26     0.077 4793.96 0.00120   3.27
167269   rs2256473       3_57     0.366  929.35 0.00110  -3.06
192270  rs10653660      3_104     0.969  351.02 0.00110 -23.54
866116   rs1633001       6_26     0.066 4793.27 0.00100   3.27
463441  rs72681364       8_70     0.483  633.93 0.00097   4.74
865861   rs1633033       6_26     0.062 4795.36 0.00095   3.26
549258  rs12244851      10_70     1.000  294.45 0.00094  16.46
167266   rs2575789       3_57     0.311  929.24 0.00092  -3.06
865893   rs1614309       6_26     0.061 4791.72 0.00092   3.27
866108   rs1736999       6_26     0.055 4793.48 0.00083   3.26
865971   rs1611266       6_26     0.052 4710.22 0.00078   3.56
177379  rs72964564       3_76     1.000  237.79 0.00076 -16.88
116878  rs11396827      2_102     1.000  209.10 0.00066  20.35
865927   rs1611234       6_26     0.040 4794.15 0.00061   3.24
75845     rs780093       2_16     1.000  190.20 0.00060  14.95
394096   rs2908282       7_32     0.257  706.28 0.00058  33.26

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip    mu2     PVE      z
116888    rs853789      2_102     1.000 903.71 2.9e-03  53.04
116881    rs537183      2_102     1.000 875.78 2.8e-03  52.66
116882    rs518598      2_102     0.000 829.26 3.8e-08  52.13
116884    rs485094      2_102     0.000 725.02 1.3e-10  51.04
116886   rs2544360      2_102     0.000 573.16 1.6e-10  39.60
116887    rs853791      2_102     0.000 543.15 7.9e-11  39.21
116890    rs853785      2_102     0.000 413.09 1.8e-11  37.45
116889    rs860510      2_102     0.000 400.58 1.9e-11  37.03
116883    rs579275      2_102     0.000 416.54 1.7e-11  36.60
116880  rs71397673      2_102     1.000 477.91 1.5e-03  34.50
394092    rs917793       7_32     0.583 708.36 1.3e-03  33.28
394096   rs2908282       7_32     0.257 706.28 5.8e-04  33.26
394086   rs4607517       7_32     0.159 706.24 3.6e-04  33.23
394098    rs732360       7_32     0.000 695.17 8.8e-07  32.89
394079  rs10259649       7_32     0.948 397.09 1.2e-03  28.65
394077   rs2908294       7_32     0.052 387.36 6.4e-05  28.27
116874  rs62176784      2_102     0.001 136.22 3.7e-07 -25.09
116876    rs549410      2_102     0.000 188.39 3.1e-08 -23.64
192270  rs10653660      3_104     0.969 351.02 1.1e-03 -23.54
192280   rs8192675      3_104     0.035 343.83 3.8e-05 -23.31
116860  rs11676084      2_102     0.998 127.50 4.0e-04 -23.20
116878  rs11396827      2_102     1.000 209.10 6.6e-04  20.35
116861   rs2140046      2_102     0.000  66.41 3.5e-09 -18.78
192278  rs11920090      3_104     0.233 161.93 1.2e-04 -18.33
192264  rs12492910      3_104     0.183 160.97 9.3e-05 -18.32
192277  rs11923694      3_104     0.161 160.50 8.2e-05 -18.31
192267  rs12496506      3_104     0.172 160.59 8.8e-05 -18.30
192281  rs11928798      3_104     0.121 158.98 6.1e-05 -18.26
192282   rs6785803      3_104     0.124 158.98 6.3e-05 -18.25
192257  rs56351320      3_104     0.002 214.32 1.2e-06 -17.54
192242   rs6792607      3_104     0.005 202.53 3.5e-06 -17.19
549266  rs12260037      10_70     0.000 251.89 7.5e-10  17.19
116879  rs13430620      2_102     0.000  90.17 8.3e-11 -16.98
383910   rs1974619       7_15     0.608 243.14 4.7e-04  16.89
177379  rs72964564       3_76     1.000 237.79 7.6e-04 -16.88
383908  rs10228796       7_15     0.220 240.65 1.7e-04  16.82
383909   rs2191349       7_15     0.172 240.16 1.3e-04  16.80
116885 rs114932341      2_102     0.000 185.76 4.1e-10  16.61
383911 rs188745922       7_15     0.009 234.23 6.8e-06  16.59
549258  rs12244851      10_70     1.000 294.45 9.4e-04  16.46
192234  rs11919048      3_104     0.015 136.31 6.4e-06 -16.13
177377  rs34642857       3_76     0.005 216.60 3.6e-06 -16.11
192249  rs79560566      3_104     0.001 127.99 4.3e-07 -15.48
383906   rs6461153       7_15     0.002 207.12 1.4e-06  15.42
383905  rs10266209       7_15     0.002 206.75 1.4e-06  15.41
383904  rs10249299       7_15     0.004 207.33 2.4e-06 -15.31
75845     rs780093       2_16     1.000 190.20 6.0e-04  14.95
192272 rs143791579      3_104     0.001  97.73 3.4e-07 -14.91
383899   rs4721398       7_15     0.002 190.52 1.2e-06 -14.88
192265  rs73167792      3_104     0.001  94.78 3.6e-07 -14.81

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 4
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
                                                                                                            Term
1                                                       negative regulation of cell differentiation (GO:0045596)
2                    cellular response to granulocyte macrophage colony-stimulating factor stimulus (GO:0097011)
3                                      response to granulocyte macrophage colony-stimulating factor (GO:0097012)
4                                                     regulation of Rab protein signal transduction (GO:0032483)
5                                                                            definitive hemopoiesis (GO:0060216)
6                                                 regulation of glycogen (starch) synthase activity (GO:2000465)
7                                                negative regulation of cell cycle phase transition (GO:1901988)
8                                                negative regulation of muscle cell differentiation (GO:0051148)
9                                                                                genetic imprinting (GO:0071514)
10                                              regulation of gene expression by genetic imprinting (GO:0006349)
11                                                 negative regulation of stem cell differentiation (GO:2000737)
12                                   positive regulation of vascular endothelial cell proliferation (GO:1905564)
13                                        positive regulation of insulin receptor signaling pathway (GO:0046628)
14                                                               regulation of histone modification (GO:0031056)
15                                             positive regulation of glycogen biosynthetic process (GO:0045725)
16                                                             regulation of chromatin organization (GO:1902275)
17                                     positive regulation of cellular response to insulin stimulus (GO:1900078)
18                                                                 T cell differentiation in thymus (GO:0033077)
19                                                positive regulation of glycogen metabolic process (GO:0070875)
20 positive regulation of nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay (GO:1900153)
21          regulation of nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay (GO:1900151)
22                                                             3'-UTR-mediated mRNA destabilization (GO:0061158)
23                                                     cellular response to corticosteroid stimulus (GO:0071384)
24                                                     cellular response to glucocorticoid stimulus (GO:0071385)
25                                                             regulation of B cell differentiation (GO:0045577)
26                                            regulation of vascular endothelial cell proliferation (GO:1905562)
27                                            positive regulation of activated T cell proliferation (GO:0042104)
28                                                         regulation of lymphocyte differentiation (GO:0045619)
29                                                                            ERK1 and ERK2 cascade (GO:0070371)
30                                                                   in utero embryonic development (GO:0001701)
31                                                      regulation of glycogen biosynthetic process (GO:0005979)
32                                                          positive regulation of nuclear division (GO:0051785)
33                                                                       response to glucocorticoid (GO:0051384)
34                                                                  regulation of B cell activation (GO:0050864)
35                                            cellular response to epidermal growth factor stimulus (GO:0071364)
36                                                     regulation of activated T cell proliferation (GO:0046006)
37                                                        regulation of muscle cell differentiation (GO:0051147)
38                                                  negative regulation of fat cell differentiation (GO:0045599)
39                                                  positive regulation of mitotic nuclear division (GO:0045840)
40                                                                             mRNA destabilization (GO:0061157)
41                                                        regulation of apoptotic signaling pathway (GO:2001233)
42                                                        positive regulation of catalytic activity (GO:0043085)
43                                                                           T cell differentiation (GO:0030217)
44                   regulation of extrinsic apoptotic signaling pathway via death domain receptors (GO:1902041)
45                                                                           mRNA catabolic process (GO:0006402)
46                                                    positive regulation of mRNA catabolic process (GO:0061014)
47                                                 regulation of insulin receptor signaling pathway (GO:0046626)
48                                                        negative regulation of mitotic cell cycle (GO:0045930)
49                                                                            RNA catabolic process (GO:0006401)
50                                                       regulation of protein modification process (GO:0031399)
51                                                           regulation of mitotic nuclear division (GO:0007088)
52                                                                   chordate embryonic development (GO:0043009)
53                                   regulation of tumor necrosis factor-mediated signaling pathway (GO:0010803)
54                                              regulation of extrinsic apoptotic signaling pathway (GO:2001236)
55                                                      positive regulation of T cell proliferation (GO:0042102)
56                                                               insulin receptor signaling pathway (GO:0008286)
57                                                regulation of cytokine-mediated signaling pathway (GO:0001959)
58                                            positive regulation of endothelial cell proliferation (GO:0001938)
59                                                           regulation of fat cell differentiation (GO:0045598)
60                                                        regulation of gene expression, epigenetic (GO:0040029)
61                                                    regulation of Ras protein signal transduction (GO:0046578)
62                                                          regulation of stem cell differentiation (GO:2000736)
63                                           cellular response to fibroblast growth factor stimulus (GO:0044344)
64                                       negative regulation of mitotic cell cycle phase transition (GO:1901991)
65                                                  regulation of peptidyl-tyrosine phosphorylation (GO:0050730)
66                                                                                      hemopoiesis (GO:0030097)
67                                                                           mRNA metabolic process (GO:0016071)
68                                                        positive regulation of cell cycle process (GO:0090068)
69                                                                response to tumor necrosis factor (GO:0034612)
70                                    cellular response to transforming growth factor beta stimulus (GO:0071560)
71                                                             regulation of mRNA catabolic process (GO:0061013)
72                                                                           platelet degranulation (GO:0002576)
73                                                            cellular response to insulin stimulus (GO:0032869)
74                                        positive regulation of macromolecule biosynthetic process (GO:0010557)
75                                         positive regulation of peptidyl-tyrosine phosphorylation (GO:0050731)
76                                                                     regulation of mRNA stability (GO:0043488)
77                                                      positive regulation of transferase activity (GO:0051347)
78                                                               regulation of cell differentiation (GO:0045595)
79                                                      cellular response to growth factor stimulus (GO:0071363)
80                                                                      skeletal system development (GO:0001501)
81                                                positive regulation of protein kinase B signaling (GO:0051897)
82                                                                       regulation of MAPK cascade (GO:0043408)
83                                             positive regulation of cellular biosynthetic process (GO:0031328)
84                                                                             regulated exocytosis (GO:0045055)
85                                                regulation of mitotic cell cycle phase transition (GO:1901990)
   Overlap Adjusted.P.value        Genes
1    2/191       0.01576426 IGF2;ZFP36L2
2      1/6       0.01576426      ZFP36L2
3      1/6       0.01576426      ZFP36L2
4      1/7       0.01576426         MADD
5      1/7       0.01576426      ZFP36L2
6      1/7       0.01576426         IGF2
7      1/7       0.01576426      ZFP36L2
8      1/8       0.01576426         IGF2
9     1/10       0.01576426         IGF2
10    1/11       0.01576426         IGF2
11    1/13       0.01576426      ZFP36L2
12    1/13       0.01576426         IGF2
13    1/13       0.01576426         IGF2
14    1/13       0.01576426         IGF2
15    1/14       0.01576426         IGF2
16    1/14       0.01576426         IGF2
17    1/14       0.01576426         IGF2
18    1/14       0.01576426      ZFP36L2
19    1/15       0.01576426         IGF2
20    1/15       0.01576426      ZFP36L2
21    1/15       0.01576426      ZFP36L2
22    1/16       0.01576426      ZFP36L2
23    1/16       0.01576426      ZFP36L2
24    1/18       0.01576426      ZFP36L2
25    1/18       0.01576426      ZFP36L2
26    1/18       0.01576426         IGF2
27    1/20       0.01626228         IGF2
28    1/20       0.01626228      ZFP36L2
29    1/23       0.01805269      ZFP36L2
30    1/25       0.01820286         IGF2
31    1/26       0.01820286         IGF2
32    1/27       0.01820286         IGF2
33    1/27       0.01820286      ZFP36L2
34    1/28       0.01820286      ZFP36L2
35    1/28       0.01820286      ZFP36L2
36    1/34       0.02099072         IGF2
37    1/35       0.02099072         IGF2
38    1/36       0.02099072      ZFP36L2
39    1/36       0.02099072         IGF2
40    1/38       0.02107289      ZFP36L2
41    1/38       0.02107289         MADD
42    1/40       0.02165060         IGF2
43    1/41       0.02167416      ZFP36L2
44    1/42       0.02169656         MADD
45    1/44       0.02173822      ZFP36L2
46    1/44       0.02173822      ZFP36L2
47    1/45       0.02175761         IGF2
48    1/48       0.02271781      ZFP36L2
49    1/49       0.02271781      ZFP36L2
50    1/51       0.02316869         IGF2
51    1/57       0.02484423         IGF2
52    1/58       0.02484423         IGF2
53    1/58       0.02484423         MADD
54    1/64       0.02689455         MADD
55    1/66       0.02722665         IGF2
56    1/73       0.02943806         IGF2
57    1/74       0.02943806         MADD
58    1/77       0.03009660         IGF2
59    1/80       0.03073229      ZFP36L2
60    1/82       0.03097094         IGF2
61    1/86       0.03193965         MADD
62    1/91       0.03205092      ZFP36L2
63    1/92       0.03205092      ZFP36L2
64    1/92       0.03205092      ZFP36L2
65    1/92       0.03205092         IGF2
66    1/94       0.03210089      ZFP36L2
67    1/95       0.03210089      ZFP36L2
68   1/101       0.03361129         IGF2
69   1/110       0.03605148      ZFP36L2
70   1/114       0.03681764      ZFP36L2
71   1/122       0.03882306      ZFP36L2
72   1/125       0.03921643         IGF2
73   1/129       0.03936571         IGF2
74   1/129       0.03936571         IGF2
75   1/134       0.04033116         IGF2
76   1/146       0.04332566      ZFP36L2
77   1/148       0.04334228         IGF2
78   1/156       0.04450223         IGF2
79   1/158       0.04450223      ZFP36L2
80   1/158       0.04450223         IGF2
81   1/161       0.04477728         IGF2
82   1/166       0.04558773         IGF2
83   1/180       0.04820481         IGF2
84   1/180       0.04820481         IGF2
85   1/188       0.04972504      ZFP36L2
[1] "GO_Cellular_Component_2021"
                                       Term Overlap Adjusted.P.value Genes
1 platelet alpha granule lumen (GO:0031093)    1/67       0.04470013  IGF2
2       platelet alpha granule (GO:0031091)    1/90       0.04470013  IGF2
[1] "GO_Molecular_Function_2021"
                                                              Term Overlap
1                   protein kinase activator activity (GO:0030295)    2/63
2         insulin-like growth factor receptor binding (GO:0005159)    1/14
3                              death receptor binding (GO:0005123)    1/15
4                  mRNA 3'-UTR AU-rich region binding (GO:0035925)    1/22
5  tumor necrosis factor receptor superfamily binding (GO:0032813)    1/28
6                           kinase activator activity (GO:0019209)    1/31
7  protein serine/threonine kinase activator activity (GO:0043539)    1/37
8                                 mRNA 3'-UTR binding (GO:0003730)    1/85
9                              growth factor activity (GO:0008083)    1/87
10                  protein kinase regulator activity (GO:0019887)    1/98
11         guanyl-nucleotide exchange factor activity (GO:0005085)   1/149
   Adjusted.P.value     Genes
1      0.0008169314 MADD;IGF2
2      0.0139850795      IGF2
3      0.0139850795      MADD
4      0.0144339668   ZFP36L2
5      0.0144339668      MADD
6      0.0144339668      MADD
7      0.0147599130      IGF2
8      0.0268923548   ZFP36L2
9      0.0268923548      IGF2
10     0.0272407938      MADD
11     0.0375080843      MADD
MADD gene(s) from the input list not found in DisGeNET CURATEDC15orf52 gene(s) from the input list not found in DisGeNET CURATED
                                           Description         FDR Ratio
13                                Colorectal Neoplasms 0.005679508   2/2
18                                      Polyhydramnios 0.005679508   1/2
26                                  Placenta Disorders 0.005679508   1/2
39                          Congenital hemihypertrophy 0.005679508   1/2
42              Radiolabeled somatostatin analog study 0.005679508   1/2
53  MENTAL RETARDATION, X-LINKED, SNYDER-ROBINSON TYPE 0.005679508   1/2
55                     Fetus Small for Gestational Age 0.005679508   1/2
56                           HEMIHYPERPLASIA, ISOLATED 0.005679508   1/2
61 GROWTH RESTRICTION, SEVERE, WITH DISTINCTIVE FACIES 0.005679508   1/2
45                           prenatal alcohol exposure 0.006389117   1/2
    BgRatio
13 277/9703
18   1/9703
26   4/9703
39   4/9703
42   3/9703
53   4/9703
55   2/9703
56   4/9703
61   1/9703
45   5/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2