Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30730_irnt_Liver.Rmd) and HTML (docs/ukb-d-30730_irnt_Liver.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd 627a4e1 wesleycrouse 2021-09-07 adding heritability
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Gamma glutamyltransferase (quantile) using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30730_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1070  768  652  417  494  611  548  408  405  434  634  629  195  365  354 
  16   17   18   19   20   21   22 
 526  663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8366205

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0212484510 0.0001986678 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
33.81137 16.70921 
#report sample size
print(sample_size)
[1] 344104
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10901 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.02275971 0.08390341 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.1009233 1.3435297

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip      mu2     PVE      z
1144          ASAP3       1_16     1.000    78.69 2.3e-04  10.00
3330         SEC16B       1_87     1.000    43.31 1.3e-04   7.15
12467 RP11-219B17.3      15_27     1.000   620.46 1.8e-03 -26.21
9482          ACTG1      17_46     1.000   536.51 1.6e-03  17.50
5389          RPS11      19_34     1.000 19117.39 5.6e-02  -4.87
6341           ENAH      1_115     0.999    71.69 2.1e-04  -7.24
3735         TRIP10       19_7     0.999    44.99 1.3e-04  -6.47
9942          PARVB      22_19     0.998    43.17 1.3e-04   6.22
6778           PKN3       9_66     0.996   192.98 5.6e-04 -14.01
10303       UGT2B17       4_48     0.994   126.59 3.7e-04  -9.36
4608          REPS1       6_92     0.993    56.16 1.6e-04   7.11
10432           TAT      16_38     0.993    31.84 9.2e-05   6.65
5769           MLIP       6_40     0.991   248.44 7.2e-04 -16.10
3212          CCND2       12_4     0.991    32.05 9.2e-05  -5.32
2546           LTBR       12_7     0.991    45.83 1.3e-04   5.57
9478          KMT5A      12_75     0.989   432.39 1.2e-03  -5.12
8128         ZNF747      16_24     0.989   118.20 3.4e-04 -11.14
4327          MYH10       17_8     0.987    30.03 8.6e-05  -5.15
1848          CD276      15_35     0.983   225.86 6.4e-04  15.12
6100           ALLC        2_2     0.982    92.12 2.6e-04   9.86
11478       HLA-DMB       6_27     0.981    48.57 1.4e-04  -9.33
11072     PTPRD-AS1        9_9     0.980    22.88 6.5e-05  -4.35
9855          PALM3      19_11     0.980    46.76 1.3e-04  -6.63
4078          FCHO1      19_14     0.979   109.20 3.1e-04 -10.53
8119         TM4SF4       3_92     0.976    37.24 1.1e-04   6.64
3501          CALD1       7_82     0.975    58.77 1.7e-04  -7.80
8531           TNKS       8_12     0.975    61.13 1.7e-04  10.57
4395         MICAL2       11_9     0.975   518.60 1.5e-03  14.49
4671          SCYL2      12_59     0.960    23.23 6.5e-05   4.66
2004          TGFB1      19_28     0.960   112.37 3.1e-04  10.45
6291          JAZF1       7_23     0.958    31.50 8.8e-05  -5.32
6171        ARL14EP      11_21     0.955    30.77 8.5e-05  -5.22
1925         NFKBIB      19_26     0.955    41.51 1.2e-04   6.24
8502           RELA      11_36     0.951    26.44 7.3e-05  -4.92
6936         RAVER2       1_41     0.950    21.57 6.0e-05   4.21
7656       CATSPER2      15_16     0.947    55.52 1.5e-04  -7.59
5748          TENM2       5_99     0.945    99.32 2.7e-04 -11.38
9985          LITAF      16_12     0.945   104.02 2.9e-04 -10.21
676           IFT80       3_99     0.940   117.20 3.2e-04  10.66
5521           HAX1       1_75     0.937    49.22 1.3e-04  -7.07
7040          INHBB       2_70     0.934    59.00 1.6e-04   8.39
11584         ADH1C       4_66     0.930    23.41 6.3e-05  -4.42
8148         SPDYE5       7_48     0.930    72.74 2.0e-04   8.51
3291           SLF2      10_64     0.926    49.89 1.3e-04   7.26
2373       SLC9A3R1      17_42     0.926    28.00 7.5e-05  -4.93
8007        TMEM129        4_3     0.925    54.30 1.5e-04  -6.97
9496         KCNJ12      17_16     0.919    30.36 8.1e-05  -5.14
8801           YES1       18_1     0.913    32.61 8.7e-05  -5.60
8803          DLEU1      13_21     0.910    26.11 6.9e-05   4.77
11564   RP11-7F17.5      14_36     0.903    21.89 5.7e-05  -4.21
8767          MLXIP      12_75     0.899    37.05 9.7e-05  -6.03
3562         ACVR1C       2_94     0.894    21.05 5.5e-05   4.07
11889 RP11-327J17.2      15_46     0.888    20.04 5.2e-05  -3.15
993          PHLPP1      18_35     0.886    20.40 5.3e-05   4.24
11698         TRNP1       1_18     0.885    26.04 6.7e-05  -3.67
2341           DDX5      17_37     0.881    19.87 5.1e-05   4.09
5362         IFITM3       11_1     0.874    25.35 6.4e-05  -4.30
12704       EXOC3L2      19_32     0.867    31.34 7.9e-05   5.47
12525 RP11-428O18.6       13_7     0.853    87.82 2.2e-04   9.59
2924          EFHD1      2_136     0.851   140.56 3.5e-04  11.92
10104         SULF2      20_29     0.851    32.05 7.9e-05  -4.92
10495         PRMT6       1_66     0.846    83.41 2.1e-04  -8.87
5221          FURIN      15_42     0.843    22.86 5.6e-05   4.14
6010       KIAA1755      20_22     0.843    19.85 4.9e-05   3.83
1268        TMEM101      17_26     0.820    26.42 6.3e-05  -4.86
5510        TP53BP2      1_114     0.817    64.12 1.5e-04  -7.95
2475        NECTIN1      11_72     0.803    19.86 4.6e-05  -3.83

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
            genename region_tag susie_pip      mu2     PVE     z
998           STRADB      2_119         0 25678.94 0.0e+00 -5.31
5389           RPS11      19_34         1 19117.39 5.6e-02 -4.87
4556          TMEM60       7_49         0 17638.76 0.0e+00  7.05
1227          FLT3LG      19_34         0 16507.24 2.0e-15  4.10
6422        ALS2CR12      2_119         0 15509.36 0.0e+00 -6.10
8342            BPTF      17_39         0  9530.93 2.2e-08 -7.29
10186          ZGPAT      20_38         0  8186.57 2.3e-08 -5.82
3715        SLC2A4RG      20_38         0  8126.18 1.6e-14 -5.75
1647          ARFRP1      20_38         0  7565.31 0.0e+00 -3.71
1418            GGT1       22_7         0  6470.91 0.0e+00 76.46
5393            RCN3      19_34         0  6217.46 5.8e-14  4.48
1931           FCGRT      19_34         0  5671.48 4.8e-15  3.70
9756        C17orf58      17_39         0  5411.82 1.9e-12 -7.37
10889          ARL16      17_46         0  4385.14 0.0e+00  3.24
12649 RP11-147L13.11      17_39         0  4277.32 0.0e+00 -5.28
12611 RP11-147L13.13      17_39         0  4077.30 0.0e+00  4.94
12496 RP11-147L13.12      17_39         0  3514.38 0.0e+00 -5.11
10903           APTR       7_49         0  3434.13 0.0e+00  3.77
3804           PRRG2      19_34         0  2762.16 2.4e-14  3.07
1641           GMEB2      20_38         0  2711.84 0.0e+00  2.48

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
           genename region_tag susie_pip      mu2     PVE      z
5389          RPS11      19_34     1.000 19117.39 0.05600  -4.87
12467 RP11-219B17.3      15_27     1.000   620.46 0.00180 -26.21
9482          ACTG1      17_46     1.000   536.51 0.00160  17.50
4395         MICAL2       11_9     0.975   518.60 0.00150  14.49
9478          KMT5A      12_75     0.989   432.39 0.00120  -5.12
5769           MLIP       6_40     0.991   248.44 0.00072 -16.10
1848          CD276      15_35     0.983   225.86 0.00064  15.12
6778           PKN3       9_66     0.996   192.98 0.00056 -14.01
3947          MYO1B      2_114     0.796   234.02 0.00054 -16.00
10303       UGT2B17       4_48     0.994   126.59 0.00037  -9.36
2924          EFHD1      2_136     0.851   140.56 0.00035  11.92
8128         ZNF747      16_24     0.989   118.20 0.00034 -11.14
2486         PTPMT1      11_29     0.430   267.27 0.00033   5.42
676           IFT80       3_99     0.940   117.20 0.00032  10.66
4078          FCHO1      19_14     0.979   109.20 0.00031 -10.53
2004          TGFB1      19_28     0.960   112.37 0.00031  10.45
9985          LITAF      16_12     0.945   104.02 0.00029 -10.21
10851       UGT2B11       4_48     0.556   176.27 0.00028  -5.47
5748          TENM2       5_99     0.945    99.32 0.00027 -11.38
6100           ALLC        2_2     0.982    92.12 0.00026   9.86

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip     mu2     PVE      z
1418           GGT1       22_7     0.000 6470.91 0.0e+00  76.46
4547          HNF1A      12_74     0.000 1561.75 4.2e-08  43.08
10731       EXOC3L4      14_54     0.013 1146.09 4.4e-05  42.97
8964        LRRC75B       22_7     0.000 1756.04 0.0e+00 -40.95
5400          EPHA2       1_11     0.017  964.65 4.9e-05 -32.40
12467 RP11-219B17.3      15_27     1.000  620.46 1.8e-03 -26.21
4319           RSG1       1_11     0.015  437.28 1.9e-05 -22.26
6086           DLG5      10_50     0.008  227.17 5.0e-06  20.44
8865           FUT2      19_33     0.002  178.11 1.0e-06 -18.56
1403           DDTL       22_7     0.040  333.09 3.9e-05  17.92
4364         GSTT2B       22_7     0.040  333.09 3.9e-05  17.92
11432           MIF       22_7     0.040  333.09 3.9e-05 -17.92
12376    KB-226F1.2       22_7     0.038  332.99 3.7e-05  17.92
9482          ACTG1      17_46     1.000  536.51 1.6e-03  17.50
9761          FSCN2      17_46     0.000  633.14 1.4e-10  16.41
7118         SLC2A2      3_104     0.032  253.20 2.4e-05 -16.31
2887          NRBP1       2_16     0.020  223.31 1.3e-05  16.14
1404            DDT       22_7     0.000  275.68 5.5e-18  16.11
5769           MLIP       6_40     0.991  248.44 7.2e-04 -16.10
3947          MYO1B      2_114     0.796  234.02 5.4e-04 -16.00

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.03485919
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip     mu2     PVE      z
1418           GGT1       22_7     0.000 6470.91 0.0e+00  76.46
4547          HNF1A      12_74     0.000 1561.75 4.2e-08  43.08
10731       EXOC3L4      14_54     0.013 1146.09 4.4e-05  42.97
8964        LRRC75B       22_7     0.000 1756.04 0.0e+00 -40.95
5400          EPHA2       1_11     0.017  964.65 4.9e-05 -32.40
12467 RP11-219B17.3      15_27     1.000  620.46 1.8e-03 -26.21
4319           RSG1       1_11     0.015  437.28 1.9e-05 -22.26
6086           DLG5      10_50     0.008  227.17 5.0e-06  20.44
8865           FUT2      19_33     0.002  178.11 1.0e-06 -18.56
1403           DDTL       22_7     0.040  333.09 3.9e-05  17.92
4364         GSTT2B       22_7     0.040  333.09 3.9e-05  17.92
11432           MIF       22_7     0.040  333.09 3.9e-05 -17.92
12376    KB-226F1.2       22_7     0.038  332.99 3.7e-05  17.92
9482          ACTG1      17_46     1.000  536.51 1.6e-03  17.50
9761          FSCN2      17_46     0.000  633.14 1.4e-10  16.41
7118         SLC2A2      3_104     0.032  253.20 2.4e-05 -16.31
2887          NRBP1       2_16     0.020  223.31 1.3e-05  16.14
1404            DDT       22_7     0.000  275.68 5.5e-18  16.11
5769           MLIP       6_40     0.991  248.44 7.2e-04 -16.10
3947          MYO1B      2_114     0.796  234.02 5.4e-04 -16.00

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 22_7"
        genename region_tag susie_pip     mu2     PVE      z
12371 KB-208E9.1       22_7     0.000   33.60 0.0e+00   2.27
9999      DRICH1       22_7     0.000   24.88 0.0e+00  -1.41
6697        RGL4       22_7     0.000   19.01 0.0e+00   2.39
9845       ZNF70       22_7     0.000   55.33 0.0e+00   1.78
3906      VPREB3       22_7     0.000   83.40 0.0e+00  -2.73
1398     SMARCB1       22_7     0.000   39.17 0.0e+00  -3.99
1400       DERL3       22_7     0.000   53.35 0.0e+00   1.75
12425 AP000350.5       22_7     0.000  248.09 0.0e+00 -15.71
1403        DDTL       22_7     0.040  333.09 3.9e-05  17.92
4364      GSTT2B       22_7     0.040  333.09 3.9e-05  17.92
11432        MIF       22_7     0.040  333.09 3.9e-05 -17.92
1404         DDT       22_7     0.000  275.68 5.5e-18  16.11
12376 KB-226F1.2       22_7     0.038  332.99 3.7e-05  17.92
1405      CABIN1       22_7     0.000  232.91 0.0e+00   7.92
1407       SUSD2       22_7     0.000  389.61 0.0e+00  -9.97
1409        GGT5       22_7     0.000  293.21 0.0e+00  -5.23
1412     SPECC1L       22_7     0.000   11.99 0.0e+00  -1.49
3912     ADORA2A       22_7     0.000  146.37 0.0e+00   3.78
1414        UPB1       22_7     0.000   74.56 0.0e+00  -3.05
8964     LRRC75B       22_7     0.000 1756.04 0.0e+00 -40.95
5058       GUCD1       22_7     0.000  174.57 0.0e+00   5.40
1418        GGT1       22_7     0.000 6470.91 0.0e+00  76.46
7713       SGSM1       22_7     0.000   12.42 0.0e+00   2.85
11544     CRYBB2       22_7     0.000    6.62 0.0e+00  -0.10
1426       LRP5L       22_7     0.000    6.21 0.0e+00  -1.18
1428        GRK3       22_7     0.000    6.02 0.0e+00  -0.09

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 12_74"
            genename region_tag susie_pip     mu2     PVE      z
11059        TMEM233      12_74     0.050   29.47 4.3e-06   6.51
11597  RP11-768F21.1      12_74     0.548   32.78 5.2e-05   6.12
2588          PRKAB1      12_74     0.000   13.61 1.4e-10  -1.36
3514             CIT      12_74     0.000   11.20 7.2e-11   0.51
2591           RAB35      12_74     0.000   65.94 1.5e-08   4.77
1184            GCN1      12_74     0.000   16.01 7.2e-11   0.63
1185           RPLP0      12_74     0.000   24.02 4.8e-10  -1.53
1186             PXN      12_74     0.000   69.57 5.6e-08   2.01
1187           SIRT4      12_74     0.000   31.96 1.3e-10  -2.45
4546            MSI1      12_74     0.000    6.39 1.5e-11   3.04
2593          COX6A1      12_74     0.000   42.99 7.0e-10   3.79
8244          TRIAP1      12_74     0.000   67.65 5.6e-08   5.29
11829           GATC      12_74     0.000   29.35 1.2e-09   1.45
1170          DYNLL1      12_74     0.000   22.91 4.2e-10  -2.14
2504            COQ5      12_74     0.000   74.97 5.5e-08   6.30
7747            POP5      12_74     0.000   14.73 4.8e-11  -3.13
2510            MLEC      12_74     0.000   43.89 1.3e-10   2.26
12607  RP11-173P15.9      12_74     0.000   28.94 1.4e-10   2.01
12570 RP11-173P15.10      12_74     0.000  187.15 4.8e-10  -3.90
3516           ACADS      12_74     0.000   29.18 7.1e-11   6.37
4547           HNF1A      12_74     0.000 1561.75 4.2e-08  43.08
4549            OASL      12_74     0.000   44.34 5.0e-08  -3.95
1176           P2RX7      12_74     0.175   75.43 3.8e-05  -5.78
12471  RP11-340F14.6      12_74     0.000  110.74 2.0e-08   3.27
4550           P2RX4      12_74     0.005  217.26 3.2e-06 -13.22
2512          CAMKK2      12_74     0.000   37.65 9.4e-11  -7.96

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 14_54"
           genename region_tag susie_pip     mu2     PVE     z
1206          RCOR1      14_54     0.000   36.71 3.9e-08  2.29
7553            AMN      14_54     0.001   58.37 1.3e-07 -5.91
10452      CDC42BPB      14_54     0.000   20.29 3.2e-09 -6.71
10731       EXOC3L4      14_54     0.013 1146.09 4.4e-05 42.97
9589        TNFAIP2      14_54     0.000  343.00 1.4e-07 -2.84
11678     LINC00605      14_54     0.000   37.73 1.2e-08  1.18
840           MARK3      14_54     0.000   38.26 7.8e-09 -6.51
7563            CKB      14_54     0.000   30.34 7.2e-09 -4.60
7567           BAG5      14_54     0.000   15.27 2.3e-09 -4.24
3787           KLC1      14_54     0.000   35.55 4.6e-09 -7.12
11794        APOPT1      14_54     0.004   74.84 9.5e-07 -8.81
1562        ZFYVE21      14_54     0.000   62.20 8.5e-08  8.23
3788          XRCC3      14_54     0.000   22.26 3.8e-09  3.63
1157       PPP1R13B      14_54     0.000    6.38 8.3e-10  0.90
11859  CTD-2134A5.4      14_54     0.000   10.19 1.3e-09 -2.15
11876  CTD-2134A5.3      14_54     0.000    5.33 7.5e-10 -0.96
6470          TDRD9      14_54     0.000   20.77 4.1e-09 -4.05
6468        C14orf2      14_54     0.000    5.90 8.5e-10 -0.46
7570           ASPG      14_54     0.000    8.81 1.6e-09 -0.95
636          KIF26A      14_54     0.000    8.48 1.8e-09 -0.31
11875 RP11-260M19.2      14_54     0.000    7.93 1.5e-09 -0.30

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 1_11"
       genename region_tag susie_pip    mu2     PVE      z
8350     TMEM51       1_11     0.010   5.68 1.7e-07  -0.12
5402      EFHD2       1_11     0.010   5.21 1.5e-07  -0.01
5398     CELA2A       1_11     0.010   5.92 1.7e-07   0.75
4320      CASP9       1_11     0.013   7.37 2.7e-07  -0.03
3043      AGMAT       1_11     0.012   6.96 2.4e-07   0.44
3047    PLEKHM2       1_11     0.018  11.41 6.0e-07  -1.18
11270    UQCRHL       1_11     0.091  39.29 1.0e-05  -5.24
599        SPEN       1_11     0.068  34.99 6.9e-06  -4.97
3050     ZBTB17       1_11     0.023  43.83 3.0e-06  -6.16
9739     CLCNKA       1_11     0.010   5.98 1.7e-07   0.40
8571      HSPB7       1_11     0.010  25.05 7.2e-07  -5.53
9630    FAM131C       1_11     0.023  34.92 2.3e-06   5.26
5400      EPHA2       1_11     0.017 964.65 4.9e-05 -32.40
5401   ARHGEF19       1_11     0.014  27.65 1.1e-06  -4.35
4319       RSG1       1_11     0.015 437.28 1.9e-05 -22.26
352      FBXO42       1_11     0.010  64.38 1.8e-06   8.09
9800    SPATA21       1_11     0.010  25.18 7.3e-07  -4.80
6519     NECAP2       1_11     0.016  11.47 5.5e-07  -1.72
11088 LINC01772       1_11     0.012  35.63 1.3e-06  -5.63
10977     NBPF1       1_11     0.053  17.91 2.8e-06  -0.70
11259 LINC01783       1_11     0.011  20.09 6.4e-07  -3.97

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 15_27"
           genename region_tag susie_pip    mu2     PVE      z
5185          GCNT3      15_27     0.029   9.02 7.5e-07   0.93
5186         GTF2A2      15_27     0.021   6.41 3.8e-07  -0.62
3965           ICE2      15_27     0.020  49.28 2.8e-06   5.65
12467 RP11-219B17.3      15_27     1.000 620.46 1.8e-03 -26.21

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip      mu2     PVE      z
25667     rs6680048       1_62     1.000   112.11 3.3e-04  10.97
31377    rs72692783       1_74     1.000    56.51 1.6e-04   7.33
33504    rs61804205       1_79     1.000   124.23 3.6e-04  11.85
68161   rs569546056       2_17     1.000   870.04 2.5e-03   3.10
73317    rs10604697       2_26     1.000   138.69 4.0e-04  -3.04
98402     rs3762466       2_79     1.000    94.79 2.8e-04  -9.99
108569    rs1862069      2_102     1.000    82.02 2.4e-04  10.89
181157  rs149368105      3_105     1.000    77.35 2.2e-04   9.83
203568   rs12639940       4_32     1.000    54.62 1.6e-04  -7.03
235485    rs4552481       4_95     1.000  1055.58 3.1e-03  33.83
280319     rs163895       5_63     1.000   145.39 4.2e-04 -12.32
359394  rs575426641      6_110     1.000    45.74 1.3e-04  -5.93
385663   rs13235543       7_47     1.000   391.94 1.1e-03 -20.17
386065   rs10277379       7_49     1.000 14666.34 4.3e-02  -7.47
386068  rs761767938       7_49     1.000 19050.63 5.5e-02  -6.77
386076    rs1544459       7_49     1.000 18759.16 5.5e-02  -6.92
415256  rs758184196       8_11     1.000   476.05 1.4e-03  -0.17
429404  rs140753685       8_42     1.000   162.57 4.7e-04  13.34
435881    rs2977929       8_55     1.000    54.58 1.6e-04  -5.71
491949  rs115478735       9_70     1.000   162.50 4.7e-04  13.37
506568    rs4934675      10_26     1.000    37.43 1.1e-04   5.41
510199    rs4935194      10_33     1.000    84.35 2.5e-04   6.38
510202   rs71508062      10_33     1.000    48.39 1.4e-04   2.83
510204   rs61856594      10_33     1.000   217.91 6.3e-04 -10.75
547661     rs286917      11_23     1.000    78.90 2.3e-04   1.17
570827   rs73018243      11_75     1.000    45.81 1.3e-04   6.76
579713   rs11056397      12_13     1.000    40.78 1.2e-04  -6.38
581392   rs66720652      12_15     1.000    49.24 1.4e-04  -6.92
603579   rs55692966      12_56     1.000    74.48 2.2e-04  -9.17
606343   rs10861545      12_63     1.000    63.26 1.8e-04   8.04
607903   rs75622376      12_67     1.000    84.76 2.5e-04   9.34
610907   rs80019595      12_74     1.000   263.42 7.7e-04   5.82
610908    rs1169286      12_74     1.000   783.86 2.3e-03 -39.32
610911    rs2393775      12_74     1.000  1923.35 5.6e-03  49.77
625736  rs566812111      13_25     1.000  2790.73 8.1e-03   2.60
625740   rs12430288      13_25     1.000  2818.31 8.2e-03   2.69
643858  rs151182529      13_59     1.000    73.93 2.1e-04  -7.82
655420    rs6572633      14_19     1.000    36.19 1.1e-04   4.05
655424    rs4900970      14_19     1.000    53.50 1.6e-04   6.28
705629   rs17616063      16_27     1.000   107.19 3.1e-04  10.67
713573   rs13334801      16_45     1.000   120.33 3.5e-04   9.06
713574   rs11645522      16_45     1.000   268.63 7.8e-04  15.59
725666   rs56032910      17_19     1.000   732.80 2.1e-03  -4.27
725667    rs3744618      17_19     1.000   764.10 2.2e-03  -2.97
735019    rs1477066      17_41     1.000   171.00 5.0e-04  12.06
736371     rs312827      17_43     1.000    86.89 2.5e-04   8.81
754151   rs62094231      18_31     1.000    99.00 2.9e-04  -9.99
754444   rs12373325      18_31     1.000   580.53 1.7e-03 -26.10
754475   rs77528544      18_31     1.000    60.38 1.8e-04 -10.10
762251     rs351988       19_2     1.000   180.86 5.3e-04  12.20
773581     rs601338      19_33     1.000   202.84 5.9e-04  20.14
773587   rs12978750      19_33     1.000   189.72 5.5e-04  19.76
807006   rs78946667       22_7     1.000   250.93 7.3e-04 -13.51
807116   rs73152503       22_7     1.000   175.56 5.1e-04  13.35
807141    rs5760492       22_7     1.000  7680.60 2.2e-02  87.08
893789    rs1260326       2_16     1.000   503.37 1.5e-03 -24.84
895696   rs11688682       2_70     1.000    51.70 1.5e-04  -8.07
904835  rs545223341      2_119     1.000 28498.07 8.3e-02   5.76
904836  rs147350044      2_119     1.000 28917.98 8.4e-02   5.48
904841   rs10931949      2_119     1.000 29086.60 8.5e-02   5.82
946696  rs201939100       4_48     1.000   474.31 1.4e-03  -2.15
954969    rs1229984       4_66     1.000    40.58 1.2e-04   6.11
963147    rs4074793       5_31     1.000   253.35 7.4e-04  16.63
982164  rs140852576       5_45     1.000  4037.20 1.2e-02  -4.33
1068712  rs10661403       11_9     1.000  5323.68 1.5e-02  -5.05
1078885   rs3072639      11_29     1.000  1341.08 3.9e-03   1.69
1134454 rs547584892      12_75     1.000   388.35 1.1e-03  -1.23
1158514  rs55975236      14_54     1.000   725.08 2.1e-03  28.50
1235742 rs764858365      17_39     1.000 14421.85 4.2e-02  -3.99
1250157  rs62080193      17_46     1.000  7483.92 2.2e-02  -3.12
1250165 rs113375436      17_46     1.000  7484.83 2.2e-02  -2.76
1303809   rs2387343      19_34     1.000    73.75 2.1e-04   8.66
1306435 rs113176985      19_34     1.000 18303.83 5.3e-02   4.87
1306438 rs374141296      19_34     1.000 18385.33 5.3e-02   4.29
1334825 rs202143810      20_38     1.000  7920.94 2.3e-02   5.34
1340734    rs957056      21_11     1.000  1790.50 5.2e-03   2.80
1340735 rs527413941      21_11     1.000  1780.49 5.2e-03   2.78
1354273 rs748492500      22_19     1.000   612.40 1.8e-03   3.37
140472  rs570964414       3_22     0.999    51.37 1.5e-04   6.10
249277   rs62336098      4_119     0.999    31.80 9.2e-05  -5.52
280295      rs25965       5_63     0.999    37.65 1.1e-04  -5.69
306518    rs6597256        6_7     0.999    37.23 1.1e-04  -6.62
430800    rs4738679       8_45     0.999    60.97 1.8e-04  -8.26
435877    rs2941459       8_55     0.999    38.85 1.1e-04  -4.00
531985   rs11199973      10_75     0.999    35.37 1.0e-04  -5.76
578549   rs12824533      12_11     0.999    32.24 9.4e-05   5.51
770918     rs889140      19_23     0.999    50.80 1.5e-04  -9.50
49339     rs1223802      1_108     0.998    38.31 1.1e-04  -5.62
608947    rs2287563      12_70     0.997    46.60 1.3e-04   6.83
1097835  rs12418845      11_36     0.997    37.71 1.1e-04  -5.98
1352919   rs6519133      22_15     0.997   134.95 3.9e-04  11.76
28245      rs325937       1_69     0.996    53.72 1.6e-04  -7.12
185859     rs237663      3_115     0.996    33.55 9.7e-05   5.87
764565     rs344576       19_6     0.996    33.04 9.6e-05  -4.98
397236   rs10435378       7_70     0.995    46.18 1.3e-04   9.15
762250     rs351992       19_2     0.995    51.77 1.5e-04   0.02
218173    rs1530923       4_60     0.994    40.10 1.2e-04   5.02
764223     rs778805       19_6     0.993    35.84 1.0e-04   6.40
803011    rs7281137      21_20     0.993    31.42 9.1e-05  -5.17
1256496  rs12454712      18_35     0.993    33.29 9.6e-05  -6.19
167054   rs67631613       3_77     0.992    46.41 1.3e-04  -8.43
371585     rs216748       7_24     0.992    31.69 9.1e-05  -5.45
1020392   rs7780562       7_23     0.991   201.60 5.8e-04  14.47
84132    rs77062045       2_49     0.990    32.66 9.4e-05  -5.53
221981   rs35518360       4_67     0.990    30.42 8.8e-05  -5.45
590907    rs1492237      12_33     0.989    54.47 1.6e-04  -7.43
359400   rs78380098      6_110     0.988    33.71 9.7e-05  -4.85
556854   rs10751299      11_44     0.988    85.29 2.4e-04  -8.66
713438  rs200735395      16_44     0.987    37.00 1.1e-04  -5.34
371679   rs60585163       7_24     0.986    30.40 8.7e-05  -6.05
805056     rs437773       22_2     0.986    28.42 8.1e-05   5.23
1114914   rs3782735       12_7     0.986    54.83 1.6e-04  -7.69
802789   rs28373070      21_20     0.985    34.45 9.9e-05   5.70
235277   rs11727676       4_94     0.981    29.32 8.4e-05   5.44
459149   rs10758593        9_4     0.981    49.54 1.4e-04  -6.27
591968    rs7397189      12_36     0.980    25.61 7.3e-05   4.71
720370    rs9904284       17_4     0.979    25.86 7.4e-05   4.81
311503   rs10946488       6_16     0.978   188.55 5.4e-04 -15.33
166833    rs9829784       3_77     0.976    38.46 1.1e-04  -5.55
188902    rs5855544      3_120     0.975    26.01 7.4e-05  -4.95
300664    rs2569215      5_103     0.975    37.86 1.1e-04  -6.09
131757   rs11920824        3_4     0.973    44.45 1.3e-04   8.63
73320     rs6728830       2_26     0.971    36.38 1.0e-04  -5.78
311504    rs9358470       6_16     0.970    37.18 1.0e-04   8.07
736365   rs12946105      17_43     0.970    27.36 7.7e-05  -5.33
631207    rs9592879      13_35     0.969    31.28 8.8e-05  -5.23
1315646 rs150622725       20_3     0.969   135.47 3.8e-04  11.22
419802    rs1495743       8_20     0.967    46.35 1.3e-04  -6.86
671866  rs142753671      14_53     0.967    27.69 7.8e-05   4.37
699198   rs12597581      16_11     0.967    26.24 7.4e-05  -4.43
189930    rs3748034        4_4     0.966    49.39 1.4e-04   7.87
52162    rs12405317      1_116     0.964    29.50 8.3e-05   5.28
257599    rs2624420       5_13     0.964    26.19 7.3e-05   4.90
519057  rs116260006      10_50     0.964    35.48 9.9e-05   4.27
1235747  rs11079703      17_39     0.962 14415.81 4.0e-02  -3.85
513401    rs3099367      10_39     0.961    28.15 7.9e-05  -5.10
189925   rs13116176        4_4     0.956    42.93 1.2e-04  -8.97
271830     rs853807       5_41     0.952    25.90 7.2e-05   4.85
489728   rs79964188       9_63     0.950    24.66 6.8e-05  -4.65
68164     rs4580350       2_17     0.949   869.51 2.4e-03  -3.20
393298  rs142762939       7_63     0.949    25.12 6.9e-05   4.70
360867   rs11768282        7_1     0.948    25.41 7.0e-05   4.61
75470     rs7575998       2_31     0.947    68.06 1.9e-04   8.45
465575    rs7868612       9_16     0.947    34.90 9.6e-05  -5.78
31785    rs12745423       1_77     0.946    25.03 6.9e-05   4.34
53886    rs12567597      1_119     0.946    30.37 8.4e-05  -4.96
72579    rs11124740       2_26     0.945    29.73 8.2e-05  -5.19
134632     rs709149        3_9     0.945    49.84 1.4e-04  -6.25
646875   rs77394539       14_3     0.945    25.64 7.0e-05  -4.65
140469    rs7624339       3_22     0.941    25.87 7.1e-05  -2.79
4149    rs371329832       1_12     0.940    27.46 7.5e-05  -5.40
68057     rs7606480       2_17     0.940    60.79 1.7e-04  -7.72
292253    rs2190787       5_85     0.939    24.33 6.6e-05  -4.50
448506    rs2432961       8_79     0.939    47.13 1.3e-04   6.56
318981    rs7757749       6_29     0.937    26.72 7.3e-05   4.81
532002   rs10886945      10_76     0.935    26.06 7.1e-05  -4.50
12128    rs56057935       1_33     0.934    25.18 6.8e-05   4.64
695077   rs78630004       16_2     0.934    37.85 1.0e-04  -5.79
167052   rs34151455       3_77     0.931    50.59 1.4e-04  -8.88
23346    rs80251022       1_56     0.930    23.65 6.4e-05  -4.16
773182    rs8182469      19_33     0.930    35.37 9.6e-05   6.02
524601   rs17109928      10_60     0.929    27.17 7.3e-05   5.69
771704    rs2251125      19_24     0.928    25.68 6.9e-05   4.22
606708  rs111260184      12_65     0.926    25.57 6.9e-05   4.51
121484   rs77451633      2_127     0.922    26.12 7.0e-05  -4.85
385664   rs12539160       7_47     0.922    25.42 6.8e-05  -2.63
46895     rs7522247      1_105     0.921    25.81 6.9e-05   4.80
296181   rs62383006       5_93     0.921   102.20 2.7e-04 -10.39
517624    rs7907410      10_47     0.920    24.48 6.5e-05   4.59
1113769 rs540208368       12_7     0.913    31.51 8.4e-05   3.85
166076    rs3732357       3_74     0.911    49.89 1.3e-04  -7.67
531992    rs2278202      10_76     0.911    31.10 8.2e-05   5.05
713541  rs140496642      16_45     0.910    23.76 6.3e-05   3.42
824598    rs1497406       1_11     0.909  1068.19 2.8e-03  35.65
766638    rs3794991      19_15     0.907    27.57 7.3e-05   5.00
999592    rs7383287       6_27     0.907    57.60 1.5e-04  -9.28
771526   rs12985670      19_24     0.901    27.01 7.1e-05  -4.93
721511    rs9891006       17_7     0.897    29.32 7.6e-05  -4.46
376799     rs758989       7_32     0.896    24.26 6.3e-05   4.06
682894     rs878958      15_25     0.896    27.64 7.2e-05   4.80
1104550     rs16761      11_38     0.896    32.19 8.4e-05  -5.68
175834   rs74965475       3_95     0.895    23.35 6.1e-05   4.33
581740    rs2291075      12_16     0.891    68.16 1.8e-04  11.57
671889   rs11626736      14_53     0.890    31.84 8.2e-05  -5.03
202858   rs62298204       4_31     0.888    34.70 9.0e-05   5.87
459044    rs6415788        9_4     0.888    26.24 6.8e-05  -2.77
982159   rs35628643       5_45     0.887  4022.42 1.0e-02  -4.15
386072   rs11972122       7_49     0.885 17450.77 4.5e-02  -7.51
721522  rs112315122       17_7     0.882    22.86 5.9e-05  -2.64
536496    rs2767419      10_85     0.876    23.34 5.9e-05  -4.21
556211   rs11236797      11_42     0.874    39.12 9.9e-05  -6.26
28728    rs77847499       1_69     0.870    27.15 6.9e-05   4.83
371678   rs73084217       7_24     0.868    28.84 7.3e-05   5.41
478650    rs1360200       9_45     0.868    30.61 7.7e-05   6.15
1243558 rs183491032      17_42     0.868    30.63 7.7e-05  -5.11
340821    rs9384679       6_73     0.865    25.74 6.5e-05  -4.78
493910   rs79308035       10_3     0.863    24.06 6.0e-05  -4.38
1068720   rs6485252       11_9     0.863  5304.92 1.3e-02  -5.22
262487   rs13172112       5_21     0.862    95.08 2.4e-04  13.63
669336   rs12432456      14_49     0.859    24.51 6.1e-05  -4.46
489608   rs10818810       9_63     0.858    24.92 6.2e-05   4.54
502464  rs141772897      10_18     0.857    24.04 6.0e-05  -4.39
108557   rs62171052      2_102     0.855    31.41 7.8e-05  -6.92
678141  rs149997567      15_14     0.854    24.54 6.1e-05   4.54
361106  rs577012471        7_3     0.853    35.00 8.7e-05   5.72
415272   rs13265731       8_11     0.852   446.77 1.1e-03   5.21
75618    rs77658297       2_31     0.850    24.52 6.1e-05  -4.27
523695   rs10648437      10_58     0.845    24.07 5.9e-05  -4.45
812227   rs61736524      22_17     0.843    25.21 6.2e-05  -4.48
443031    rs2844045       8_68     0.842    23.27 5.7e-05  -4.30
470481   rs11557154       9_26     0.842    23.88 5.8e-05   4.25
655489   rs72681869      14_20     0.841    27.07 6.6e-05  -4.95
719396    rs3760230       17_3     0.841    24.63 6.0e-05  -4.45
485263   rs77070310       9_55     0.838    35.37 8.6e-05  -6.80
599093    rs7305798      12_49     0.837    42.17 1.0e-04   6.39
622012  rs148480921      13_16     0.837    56.37 1.4e-04  -7.53
730478    rs8077316      17_29     0.836    26.16 6.4e-05  -4.65
44972    rs74490351      1_100     0.835    27.45 6.7e-05  -5.26
268251     rs173964       5_33     0.835    55.27 1.3e-04   5.52
705827   rs11642255      16_28     0.835    24.60 6.0e-05   4.45
793176  rs115012179      20_36     0.835    26.85 6.5e-05   4.83
176664    rs9817452       3_97     0.834    24.02 5.8e-05   4.38
181178     rs234043      3_106     0.834    24.67 6.0e-05   4.41
671738  rs149061976      14_53     0.832    26.11 6.3e-05   4.30
770789   rs17841839      19_23     0.831    67.71 1.6e-04   9.36
360889   rs13226702        7_2     0.830    83.82 2.0e-04 -10.06
633443    rs1327315      13_40     0.829    25.01 6.0e-05  -4.48
583015   rs17389465      12_18     0.824    45.99 1.1e-04  -6.78
764552    rs2642201       19_6     0.823    24.83 5.9e-05   4.13
787866    rs3212201      20_28     0.821    32.62 7.8e-05   5.46
150401    rs1482601       3_43     0.820    24.45 5.8e-05  -4.37
289065   rs72799445       5_80     0.815    34.14 8.1e-05  -6.86
316697    rs3128760       6_26     0.815    41.78 9.9e-05   6.52
260413   rs72745229       5_17     0.813    25.80 6.1e-05  -4.42
1027472 rs145743281       7_48     0.813    30.83 7.3e-05  -4.99
758258   rs17082441      18_40     0.808    24.04 5.6e-05   4.42
734978   rs79861549      17_41     0.807    31.55 7.4e-05  -3.07
751113    rs9953845      18_26     0.807    25.74 6.0e-05   4.66
725659    rs4794893      17_19     0.804   332.82 7.8e-04  -3.73
543126   rs12797612      11_14     0.802    31.01 7.2e-05   5.31
248319   rs13108469      4_118     0.801    36.36 8.5e-05   5.91
1068688  rs11022065       11_9     0.801  5272.93 1.2e-02  -5.22

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE     z
904841  rs10931949      2_119         1 29086.60 8.5e-02  5.82
904826   rs6717641      2_119         0 29027.92 6.0e-06  5.77
904817   rs4129011      2_119         0 29023.19 1.9e-07  5.74
904816   rs4129010      2_119         0 29022.94 1.2e-07  5.74
904809   rs7603584      2_119         0 28986.22 7.1e-10  5.75
904836 rs147350044      2_119         1 28917.98 8.4e-02  5.48
904858   rs7573536      2_119         0 28685.68 0.0e+00  5.74
904868  rs10460403      2_119         0 28678.39 0.0e+00  5.73
904793   rs6755428      2_119         0 28675.29 0.0e+00  5.65
904859  rs12991600      2_119         0 28573.39 0.0e+00  5.77
904835 rs545223341      2_119         1 28498.07 8.3e-02  5.76
904840  rs10931948      2_119         0 26999.88 0.0e+00  6.27
904832   rs2287054      2_119         0 26993.82 0.0e+00  6.26
904842   rs6435084      2_119         0 26987.67 0.0e+00  6.25
904831   rs2270315      2_119         0 26953.79 0.0e+00  6.20
904806  rs10497868      2_119         0 26950.77 0.0e+00  6.21
904860   rs1019299      2_119         0 26940.83 0.0e+00  6.29
904875   rs2540441      2_119         0 26836.45 0.0e+00 -6.15
904758  rs10804115      2_119         0 26231.38 0.0e+00  4.82
904747  rs11690546      2_119         0 26222.49 0.0e+00  4.85
904744  rs11691865      2_119         0 26214.40 0.0e+00  4.82
904740  rs34625194      2_119         0 26212.38 0.0e+00  4.82
904743  rs11691859      2_119         0 26212.29 0.0e+00  4.82
904735  rs11691118      2_119         0 26210.21 0.0e+00  4.81
904709   rs7575721      2_119         0 26209.55 0.0e+00  4.92
904706    rs887995      2_119         0 26196.16 0.0e+00  4.95
904729   rs6751543      2_119         0 26190.33 0.0e+00  4.83
904713  rs12468504      2_119         0 26187.29 0.0e+00  4.89
904726   rs6761777      2_119         0 26185.80 0.0e+00  4.83
904712  rs11680694      2_119         0 26184.10 0.0e+00  4.86
904711   rs3815515      2_119         0 26183.77 0.0e+00  4.87
904716   rs7597850      2_119         0 26181.19 0.0e+00  4.83
904715  rs13001194      2_119         0 26181.18 0.0e+00  4.83
904717   rs7571761      2_119         0 26180.85 0.0e+00  4.83
904721  rs10931944      2_119         0 26179.49 0.0e+00  4.83
904722  rs11681526      2_119         0 26179.47 0.0e+00  4.83
904725   rs6732993      2_119         0 26179.42 0.0e+00  4.83
904702   rs2349079      2_119         0 26166.66 0.0e+00  4.92
904724  rs13022344      2_119         0 26165.32 0.0e+00  4.82
904704   rs2349082      2_119         0 26156.92 0.0e+00  4.91
904699   rs3214366      2_119         0 26151.77 0.0e+00  4.89
904698   rs2241118      2_119         0 26146.33 0.0e+00  4.94
904682  rs13027669      2_119         0 26145.12 0.0e+00  4.92
904683  rs12623282      2_119         0 26140.38 0.0e+00  4.91
904703   rs2349080      2_119         0 26139.15 0.0e+00  4.93
904684   rs7579617      2_119         0 26138.04 0.0e+00  4.90
904685   rs7579853      2_119         0 26133.57 0.0e+00  4.89
904676   rs3795966      2_119         0 26133.25 0.0e+00  4.88
904679  rs34926038      2_119         0 26129.24 0.0e+00  4.90
904727  rs10693704      2_119         0 26084.22 0.0e+00  4.82

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip      mu2    PVE      z
904841   rs10931949      2_119     1.000 29086.60 0.0850   5.82
904836  rs147350044      2_119     1.000 28917.98 0.0840   5.48
904835  rs545223341      2_119     1.000 28498.07 0.0830   5.76
386068  rs761767938       7_49     1.000 19050.63 0.0550  -6.77
386076    rs1544459       7_49     1.000 18759.16 0.0550  -6.92
1306435 rs113176985      19_34     1.000 18303.83 0.0530   4.87
1306438 rs374141296      19_34     1.000 18385.33 0.0530   4.29
386072   rs11972122       7_49     0.885 17450.77 0.0450  -7.51
386065   rs10277379       7_49     1.000 14666.34 0.0430  -7.47
1235742 rs764858365      17_39     1.000 14421.85 0.0420  -3.99
1235747  rs11079703      17_39     0.962 14415.81 0.0400  -3.85
1334825 rs202143810      20_38     1.000  7920.94 0.0230   5.34
807141    rs5760492       22_7     1.000  7680.60 0.0220  87.08
1250157  rs62080193      17_46     1.000  7483.92 0.0220  -3.12
1250165 rs113375436      17_46     1.000  7484.83 0.0220  -2.76
1068712  rs10661403       11_9     1.000  5323.68 0.0150  -5.05
1068720   rs6485252       11_9     0.863  5304.92 0.0130  -5.22
982164  rs140852576       5_45     1.000  4037.20 0.0120  -4.33
1068688  rs11022065       11_9     0.801  5272.93 0.0120  -5.22
1334821 rs145835311      20_38     0.505  7981.86 0.0120   5.90
982159   rs35628643       5_45     0.887  4022.42 0.0100  -4.15
625740   rs12430288      13_25     1.000  2818.31 0.0082   2.69
625736  rs566812111      13_25     1.000  2790.73 0.0081   2.60
1334804  rs67468102      20_38     0.316  8032.72 0.0074   5.75
1334805   rs2750483      20_38     0.308  8033.33 0.0072   5.74
1334800   rs2315009      20_38     0.306  8031.78 0.0071   5.75
982155     rs246783       5_45     0.559  4019.77 0.0065   4.14
386073   rs11406602       7_49     0.115 17429.22 0.0058  -7.45
610911    rs2393775      12_74     1.000  1923.35 0.0056  49.77
1340734    rs957056      21_11     1.000  1790.50 0.0052   2.80
1340735 rs527413941      21_11     1.000  1780.49 0.0052   2.78
1334803  rs35201382      20_38     0.187  8032.34 0.0044   5.72
1078885   rs3072639      11_29     1.000  1341.08 0.0039   1.69
1235752   rs8079835      17_39     0.088 14405.98 0.0037  -3.81
1235730  rs12938098      17_39     0.081 14404.77 0.0034  -3.81
1334822   rs6089961      20_38     0.143  8033.05 0.0033   5.70
1334824   rs2738758      20_38     0.143  8033.05 0.0033   5.70
235485    rs4552481       4_95     1.000  1055.58 0.0031  33.83
1235732  rs11870061      17_39     0.075 14405.85 0.0031  -3.80
824598    rs1497406       1_11     0.909  1068.19 0.0028  35.65
1158463  rs10131298      14_54     0.557  1699.60 0.0027  45.28
68161   rs569546056       2_17     1.000   870.04 0.0025   3.10
68164     rs4580350       2_17     0.949   869.51 0.0024  -3.20
610908    rs1169286      12_74     1.000   783.86 0.0023 -39.32
725667    rs3744618      17_19     1.000   764.10 0.0022  -2.97
725666   rs56032910      17_19     1.000   732.80 0.0021  -4.27
1158514  rs55975236      14_54     1.000   725.08 0.0021  28.50
1354273 rs748492500      22_19     1.000   612.40 0.0018   3.37
754444   rs12373325      18_31     1.000   580.53 0.0017 -26.10
1235750   rs8075040      17_39     0.039 14406.86 0.0016  -3.81

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                 id region_tag susie_pip     mu2     PVE      z
807141    rs5760492       22_7     1.000 7680.60 2.2e-02  87.08
807142    rs2017869       22_7     0.000 7371.66 0.0e+00  84.88
807144    rs5760499       22_7     0.000 4619.58 0.0e+00  65.47
807145   rs62231240       22_7     0.000 4182.68 0.0e+00  61.69
610911    rs2393775      12_74     1.000 1923.35 5.6e-03  49.77
610910    rs7979478      12_74     0.000 1897.18 2.0e-08  49.42
1158463  rs10131298      14_54     0.557 1699.60 2.7e-03  45.28
1158461  rs11624282      14_54     0.107 1695.99 5.3e-04  45.23
1158465  rs77071436      14_54     0.302 1698.45 1.5e-03  45.23
1158462 rs550999044      14_54     0.003 1690.27 1.6e-05  45.19
1158469 rs151184170      14_54     0.008 1690.63 3.9e-05  45.17
1158457   rs2297067      14_54     0.011 1690.82 5.2e-05  45.16
1158447  rs59643720      14_54     0.005 1689.52 2.5e-05  45.15
1158449  rs61462345      14_54     0.005 1689.37 2.4e-05  45.15
1158460  rs61418148      14_54     0.000 1674.56 6.7e-08  45.14
1158446  rs61007561      14_54     0.000 1685.18 2.3e-06  45.12
1158455  rs62006947      14_54     0.002 1687.03 1.0e-05  45.12
1158473   rs7150997      14_54     0.000 1683.15 1.2e-06  45.09
1158448  rs17101241      14_54     0.000 1670.54 4.3e-08  45.07
1158474    rs944002      14_54     0.000 1682.35 5.8e-07  45.07
1158468  rs72706640      14_54     0.000 1667.63 3.5e-08  45.04
1158451  rs56956502      14_54     0.000 1671.97 6.0e-08  44.81
1158452  rs36027406      14_54     0.000 1649.77 3.6e-08  44.69
1158458   rs2297066      14_54     0.000 1639.95 2.3e-08  44.56
1158456   rs7151779      14_54     0.000 1603.61 2.8e-08  44.24
1158470 rs147121761      14_54     0.000 1422.51 1.2e-08  43.58
610921    rs1169311      12_74     0.000 1491.12 5.5e-09 -43.34
610917    rs1169300      12_74     0.000 1172.48 1.4e-09 -43.29
610898    rs2701194      12_74     0.000 1133.28 2.8e-09  43.08
1158464  rs10142200      14_54     0.000 1081.69 4.6e-07  42.97
1158441  rs11628185      14_54     0.000 1072.29 4.2e-07  42.68
1158442  rs11624069      14_54     0.000 1061.95 3.0e-07  42.68
1158440   rs8017161      14_54     0.000 1031.50 5.8e-07  41.72
1158478   rs2274685      14_54     0.000  931.37 4.5e-08  41.14
1158480 rs113431001      14_54     0.000 1369.92 5.4e-09  41.07
1158481 rs149136706      14_54     0.000 1380.94 5.7e-09  41.06
1158471   rs9324058      14_54     0.000 1004.83 3.0e-07  40.78
610925    rs2258287      12_74     0.000 1055.19 2.9e-09 -40.69
1158476  rs10144543      14_54     0.000  952.52 5.5e-08  40.39
1158483 rs138371522      14_54     0.000 1284.25 3.5e-09  39.83
610908    rs1169286      12_74     1.000  783.86 2.3e-03 -39.32
1158432  rs57913635      14_54     0.000 1116.64 2.6e-09  38.36
1158482 rs145260258      14_54     0.000 1119.24 2.2e-09  37.69
824598    rs1497406       1_11     0.909 1068.19 2.8e-03  35.65
824617   rs36086195       1_11     0.092 1064.07 2.8e-04  35.58
1158431  rs34976218      14_54     0.000  686.26 4.6e-09 -35.49
1158427  rs12894515      14_54     0.000  678.35 4.6e-09 -35.25
824629     rs924204       1_11     0.001 1010.64 2.2e-06  34.30
235485    rs4552481       4_95     1.000 1055.58 3.1e-03  33.83
610923    rs2258043      12_74     0.000  913.95 4.9e-07 -33.58

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 67
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
                                  Term Overlap Adjusted.P.value
1          focal adhesion (GO:0005925)   7/387       0.01339616
2 cell-substrate junction (GO:0030055)   7/394       0.01339616
                                      Genes
1 ENAH;ARL14EP;YES1;ASAP3;PARVB;RPS11;ACTG1
2 ENAH;ARL14EP;YES1;ASAP3;PARVB;RPS11;ACTG1
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
KMT5A gene(s) from the input list not found in DisGeNET CURATEDPTPRD-AS1 gene(s) from the input list not found in DisGeNET CURATEDFCHO1 gene(s) from the input list not found in DisGeNET CURATEDTRNP1 gene(s) from the input list not found in DisGeNET CURATEDMLXIP gene(s) from the input list not found in DisGeNET CURATEDSLF2 gene(s) from the input list not found in DisGeNET CURATEDRP11-7F17.5 gene(s) from the input list not found in DisGeNET CURATEDTRIP10 gene(s) from the input list not found in DisGeNET CURATEDNFKBIB gene(s) from the input list not found in DisGeNET CURATEDSPDYE5 gene(s) from the input list not found in DisGeNET CURATEDMICAL2 gene(s) from the input list not found in DisGeNET CURATEDRP11-219B17.3 gene(s) from the input list not found in DisGeNET CURATEDTNKS gene(s) from the input list not found in DisGeNET CURATEDPKN3 gene(s) from the input list not found in DisGeNET CURATEDZNF747 gene(s) from the input list not found in DisGeNET CURATEDMLIP gene(s) from the input list not found in DisGeNET CURATEDDLEU1 gene(s) from the input list not found in DisGeNET CURATEDRP11-327J17.2 gene(s) from the input list not found in DisGeNET CURATEDTMEM129 gene(s) from the input list not found in DisGeNET CURATEDHLA-DMB gene(s) from the input list not found in DisGeNET CURATEDPALM3 gene(s) from the input list not found in DisGeNET CURATEDTMEM101 gene(s) from the input list not found in DisGeNET CURATEDKIAA1755 gene(s) from the input list not found in DisGeNET CURATEDPARVB gene(s) from the input list not found in DisGeNET CURATEDALLC gene(s) from the input list not found in DisGeNET CURATEDKCNJ12 gene(s) from the input list not found in DisGeNET CURATEDRP11-428O18.6 gene(s) from the input list not found in DisGeNET CURATEDRAVER2 gene(s) from the input list not found in DisGeNET CURATEDRPS11 gene(s) from the input list not found in DisGeNET CURATED
                             Description        FDR Ratio  BgRatio
11                              Asphyxia 0.03005328  1/38   1/9703
31        Neoplastic Cell Transformation 0.03005328  4/38 139/9703
83                         Hydrocephalus 0.03005328  2/38   9/9703
135                     Peyronie Disease 0.03005328  1/38   1/9703
162                 Ureteral obstruction 0.03005328  2/38  24/9703
201                 Renal Cell Dysplasia 0.03005328  1/38   1/9703
210                  Short upturned nose 0.03005328  1/38   1/9703
229 Charcot-Marie-Tooth disease, Type 1C 0.03005328  1/38   1/9703
258                  Peritoneal Fibrosis 0.03005328  1/38   1/9703
268                         Anhydramnios 0.03005328  1/38   1/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2