Last updated: 2021-09-09
Checks: 6 1
Knit directory: ctwas_applied/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210726)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Unstaged changes:
Modified: analysis/ukb-d-30500_irnt_Liver.Rmd
Modified: analysis/ukb-d-30600_irnt_Liver.Rmd
Modified: analysis/ukb-d-30610_irnt_Liver.Rmd
Modified: analysis/ukb-d-30620_irnt_Liver.Rmd
Modified: analysis/ukb-d-30630_irnt_Liver.Rmd
Modified: analysis/ukb-d-30640_irnt_Liver.Rmd
Modified: analysis/ukb-d-30650_irnt_Liver.Rmd
Modified: analysis/ukb-d-30660_irnt_Liver.Rmd
Modified: analysis/ukb-d-30670_irnt_Liver.Rmd
Modified: analysis/ukb-d-30680_irnt_Liver.Rmd
Modified: analysis/ukb-d-30690_irnt_Liver.Rmd
Modified: analysis/ukb-d-30700_irnt_Liver.Rmd
Modified: analysis/ukb-d-30710_irnt_Liver.Rmd
Modified: analysis/ukb-d-30720_irnt_Liver.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30720_irnt_Liver.Rmd
) and HTML (docs/ukb-d-30720_irnt_Liver.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | cbf7408 | wesleycrouse | 2021-09-08 | adding enrichment to reports |
html | cbf7408 | wesleycrouse | 2021-09-08 | adding enrichment to reports |
Rmd | 4970e3e | wesleycrouse | 2021-09-08 | updating reports |
html | 4970e3e | wesleycrouse | 2021-09-08 | updating reports |
Rmd | 627a4e1 | wesleycrouse | 2021-09-07 | adding heritability |
Rmd | dfd2b5f | wesleycrouse | 2021-09-07 | regenerating reports |
html | dfd2b5f | wesleycrouse | 2021-09-07 | regenerating reports |
Rmd | 61b53b3 | wesleycrouse | 2021-09-06 | updated PVE calculation |
html | 61b53b3 | wesleycrouse | 2021-09-06 | updated PVE calculation |
Rmd | 837dd01 | wesleycrouse | 2021-09-01 | adding additional fixedsigma report |
Rmd | d0a5417 | wesleycrouse | 2021-08-30 | adding new reports to the index |
Rmd | 0922de7 | wesleycrouse | 2021-08-18 | updating all reports with locus plots |
html | 0922de7 | wesleycrouse | 2021-08-18 | updating all reports with locus plots |
html | 1c62980 | wesleycrouse | 2021-08-11 | Updating reports |
Rmd | 5981e80 | wesleycrouse | 2021-08-11 | Adding more reports |
html | 5981e80 | wesleycrouse | 2021-08-11 | Adding more reports |
Rmd | 05a98b7 | wesleycrouse | 2021-08-07 | adding additional results |
html | 05a98b7 | wesleycrouse | 2021-08-07 | adding additional results |
html | 03e541c | wesleycrouse | 2021-07-29 | Cleaning up report generation |
Rmd | 276893d | wesleycrouse | 2021-07-29 | Updating reports |
html | 276893d | wesleycrouse | 2021-07-29 | Updating reports |
These are the results of a ctwas
analysis of the UK Biobank trait Cystatin C (quantile)
using Liver
gene weights.
The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30720_irnt
. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.
The weights are mashr GTEx v8 models on Liver
eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)
LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])
TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)
qclist_all <- list()
qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))
for (i in 1:length(qc_files)){
load(qc_files[i])
chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}
qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"
rm(qclist, wgtlist, z_gene_chr)
#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1070 768 652 417 494 611 548 408 405 434 634 629 195 365 354
16 17 18 19 20 21 22
526 663 160 859 306 114 289
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8366205
#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))
#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")
#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation
#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)
#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)
ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])
#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z
#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized
z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1
#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)
#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA
ctwas_res <- rbind(ctwas_gene_res,
ctwas_snp_res[,colnames(ctwas_gene_res)])
#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])
report_cols_snps <- c("id", report_cols[-1])
#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)
library(ggplot2)
library(cowplot)
********************************************************
Note: As of version 1.0.0, cowplot does not change the
default ggplot2 theme anymore. To recover the previous
behavior, execute:
theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
value = c(group_prior_rec[1,], group_prior_rec[2,]),
group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)
df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument
p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
geom_line(aes(color=group)) +
geom_point(aes(color=group)) +
xlab("Iteration") + ylab(bquote(pi)) +
ggtitle("Prior mean") +
theme_cowplot()
df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
geom_line(aes(color=group)) +
geom_point(aes(color=group)) +
xlab("Iteration") + ylab(bquote(sigma^2)) +
ggtitle("Prior variance") +
theme_cowplot()
plot_grid(p_pi, p_sigma2)
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
gene snp
0.0100629404 0.0002347885
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
gene snp
16.04307 20.45468
#report sample size
print(sample_size)
[1] 344264
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1] 10901 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
gene snp
0.005111955 0.121328819
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.0242494 1.8986803
#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
genename region_tag susie_pip mu2 PVE z
938 CDC14A 1_61 0.997 61.00 1.8e-04 -7.98
364 RAI14 5_23 0.984 25.67 7.3e-05 4.29
8192 MGMT 10_81 0.983 1046.45 3.0e-03 6.95
4644 LAMC1 1_91 0.982 43.14 1.2e-04 -6.41
6121 ZNF827 4_95 0.975 32.55 9.2e-05 5.26
8040 THBS3 1_76 0.952 70.69 2.0e-04 8.62
2824 UMPS 3_77 0.951 27.46 7.6e-05 6.02
8830 LPCAT4 15_10 0.945 23.48 6.4e-05 -4.76
11399 TNFSF12 17_7 0.940 40.47 1.1e-04 -6.76
6637 NPM2 8_23 0.922 30.62 8.2e-05 5.44
10715 E2F4 16_36 0.920 31.80 8.5e-05 -5.56
3168 KLF7 2_122 0.902 24.03 6.3e-05 4.71
3186 TCF21 6_88 0.897 29.79 7.8e-05 3.81
2283 TFAM 10_38 0.878 27.54 7.0e-05 -5.27
3708 SLC25A19 17_42 0.856 29.11 7.2e-05 5.36
6303 MSI2 17_33 0.846 21.02 5.2e-05 -4.05
7353 CHMP4C 8_58 0.833 26.90 6.5e-05 4.99
12583 AC142472.6 17_27 0.832 28.12 6.8e-05 -5.45
6643 ADAMTS4 1_79 0.829 45.15 1.1e-04 6.82
3881 VIL1 2_129 0.827 94.94 2.3e-04 9.95
1803 PIEZO1 16_53 0.806 25.92 6.1e-05 -4.22
#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
genename region_tag susie_pip mu2 PVE z
4556 TMEM60 7_49 0.000 40075.18 0.0e+00 -9.23
12199 RP11-218C14.8 20_17 0.000 19344.77 0.0e+00 143.75
11199 LINC00271 6_89 0.000 7877.35 0.0e+00 -3.41
10903 APTR 7_49 0.000 7796.95 0.0e+00 -1.84
4634 EGLN1 1_118 0.000 7265.79 1.7e-08 -2.95
3058 EXOC8 1_118 0.000 6073.92 3.7e-07 3.29
9811 RSBN1L 7_49 0.000 4253.55 0.0e+00 -1.54
4604 AHI1 6_89 0.000 2715.11 0.0e+00 -1.38
92 PHTF2 7_49 0.000 2511.42 0.0e+00 -1.36
10643 POU5F1 6_25 0.000 1276.24 0.0e+00 9.11
8192 MGMT 10_81 0.983 1046.45 3.0e-03 6.95
10646 PSORS1C1 6_25 0.000 799.91 0.0e+00 -6.44
3748 GZF1 20_17 0.000 648.04 0.0e+00 13.59
10645 PSORS1C2 6_25 0.000 605.06 0.0e+00 -2.15
12306 XXbac-BPG181B23.7 6_25 0.000 406.47 0.0e+00 5.98
10639 MICB 6_25 0.000 375.23 0.0e+00 3.04
11110 LTA 6_25 0.000 286.34 0.0e+00 0.52
4838 VARS2 6_25 0.000 242.96 0.0e+00 -10.23
5042 SHROOM3 4_52 0.074 217.14 4.7e-05 -18.36
9992 FAM47E 4_52 0.010 215.44 6.0e-06 -17.04
#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
genename region_tag susie_pip mu2 PVE z
8192 MGMT 10_81 0.983 1046.45 3.0e-03 6.95
3881 VIL1 2_129 0.827 94.94 2.3e-04 9.95
8040 THBS3 1_76 0.952 70.69 2.0e-04 8.62
938 CDC14A 1_61 0.997 61.00 1.8e-04 -7.98
10495 PRMT6 1_66 0.775 71.54 1.6e-04 -8.65
4644 LAMC1 1_91 0.982 43.14 1.2e-04 -6.41
12051 LINC00672 17_23 0.790 47.18 1.1e-04 6.99
6643 ADAMTS4 1_79 0.829 45.15 1.1e-04 6.82
11399 TNFSF12 17_7 0.940 40.47 1.1e-04 -6.76
11575 DNAJC3-AS1 13_48 0.655 53.05 1.0e-04 -7.35
5192 UBE2Q2 15_35 0.513 62.31 9.3e-05 -10.22
6121 ZNF827 4_95 0.975 32.55 9.2e-05 5.26
5207 CYP1A1 15_35 0.528 57.74 8.9e-05 -6.69
7235 APEH 3_35 0.551 52.82 8.5e-05 -7.39
10715 E2F4 16_36 0.920 31.80 8.5e-05 -5.56
6637 NPM2 8_23 0.922 30.62 8.2e-05 5.44
3186 TCF21 6_88 0.897 29.79 7.8e-05 3.81
2824 UMPS 3_77 0.951 27.46 7.6e-05 6.02
5436 PSMA5 1_67 0.715 36.04 7.5e-05 5.84
364 RAI14 5_23 0.984 25.67 7.3e-05 4.29
#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
genename region_tag susie_pip mu2 PVE z
12199 RP11-218C14.8 20_17 0.000 19344.77 0.0e+00 143.75
5042 SHROOM3 4_52 0.074 217.14 4.7e-05 -18.36
7163 CCDC158 4_52 0.008 174.32 4.3e-06 -18.07
9992 FAM47E 4_52 0.010 215.44 6.0e-06 -17.04
8037 LMAN2 5_106 0.013 153.80 5.6e-06 16.19
4292 NXT1 20_17 0.000 189.77 0.0e+00 -14.44
5773 CRIP3 6_33 0.004 141.79 1.7e-06 -13.77
3748 GZF1 20_17 0.000 648.04 0.0e+00 13.59
10544 METTL10 10_78 0.007 86.15 1.8e-06 -12.59
4547 HNF1A 12_74 0.016 145.55 6.7e-06 -12.32
10848 CLIC1 6_26 0.000 64.40 9.3e-08 -12.18
10680 ATXN2 12_67 0.104 133.11 4.0e-05 11.85
12454 RP11-758H9.2 17_35 0.003 111.69 9.8e-07 -11.70
10626 MPIG6B 6_26 0.001 70.66 2.7e-07 11.23
1191 ERP29 12_67 0.014 97.73 4.1e-06 10.54
10370 TMEM116 12_67 0.014 97.73 4.1e-06 -10.54
2544 NAA25 12_67 0.013 95.81 3.7e-06 -10.47
10625 MSH5 6_26 0.001 55.61 9.4e-08 -10.40
2308 TUBD1 17_35 0.044 54.76 6.9e-06 -10.40
8505 HECTD4 12_67 0.009 89.71 2.2e-06 10.36
#set nominal signifiance threshold for z scores
alpha <- 0.05
#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)
#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))
plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.03073113
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
genename region_tag susie_pip mu2 PVE z
12199 RP11-218C14.8 20_17 0.000 19344.77 0.0e+00 143.75
5042 SHROOM3 4_52 0.074 217.14 4.7e-05 -18.36
7163 CCDC158 4_52 0.008 174.32 4.3e-06 -18.07
9992 FAM47E 4_52 0.010 215.44 6.0e-06 -17.04
8037 LMAN2 5_106 0.013 153.80 5.6e-06 16.19
4292 NXT1 20_17 0.000 189.77 0.0e+00 -14.44
5773 CRIP3 6_33 0.004 141.79 1.7e-06 -13.77
3748 GZF1 20_17 0.000 648.04 0.0e+00 13.59
10544 METTL10 10_78 0.007 86.15 1.8e-06 -12.59
4547 HNF1A 12_74 0.016 145.55 6.7e-06 -12.32
10848 CLIC1 6_26 0.000 64.40 9.3e-08 -12.18
10680 ATXN2 12_67 0.104 133.11 4.0e-05 11.85
12454 RP11-758H9.2 17_35 0.003 111.69 9.8e-07 -11.70
10626 MPIG6B 6_26 0.001 70.66 2.7e-07 11.23
1191 ERP29 12_67 0.014 97.73 4.1e-06 10.54
10370 TMEM116 12_67 0.014 97.73 4.1e-06 -10.54
2544 NAA25 12_67 0.013 95.81 3.7e-06 -10.47
10625 MSH5 6_26 0.001 55.61 9.4e-08 -10.40
2308 TUBD1 17_35 0.044 54.76 6.9e-06 -10.40
8505 HECTD4 12_67 0.009 89.71 2.2e-06 10.36
ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]
n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
ctwas_res_region <- ctwas_res[ctwas_res$region_tag==region_tag_plot,]
start <- min(ctwas_res_region$pos)
end <- max(ctwas_res_region$pos)
ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
#region name
print(paste0("Region: ", region_tag_plot))
#table of genes in region
print(ctwas_res_region_gene[,report_cols])
par(mfrow=c(4,1))
#gene z scores
plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
main=paste0("Region: ", region_tag_plot))
abline(h=sig_thresh,col="red",lty=2)
#significance threshold for SNPs
alpha_snp <- 5*10^(-8)
sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
#snp z scores
plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
abline(h=sig_thresh_snp,col="purple",lty=2)
#gene pips
plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
abline(h=0.8,col="blue",lty=2)
#snp pips
plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 20_17"
genename region_tag susie_pip mu2 PVE z
4292 NXT1 20_17 0 189.77 0 -14.44
3748 GZF1 20_17 0 648.04 0 13.59
12199 RP11-218C14.8 20_17 0 19344.77 0 143.75
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
[1] "Region: 4_52"
genename region_tag susie_pip mu2 PVE z
5038 SCARB2 4_52 0.006 13.65 2.5e-07 0.22
9992 FAM47E 4_52 0.010 215.44 6.0e-06 -17.04
7163 CCDC158 4_52 0.008 174.32 4.3e-06 -18.07
5042 SHROOM3 4_52 0.074 217.14 4.7e-05 -18.36
5036 SEPT11 4_52 0.003 6.52 6.2e-08 1.50
9710 SOWAHB 4_52 0.004 6.81 8.2e-08 -0.62
3202 CCNI 4_52 0.003 4.83 4.2e-08 0.74
5039 CCNG2 4_52 0.003 4.75 4.1e-08 -0.01
5040 CNOT6L 4_52 0.004 6.80 8.0e-08 -0.06
8048 MRPL1 4_52 0.005 9.04 1.3e-07 0.99
5037 FRAS1 4_52 0.003 5.17 4.7e-08 -0.54
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
[1] "Region: 5_106"
genename region_tag susie_pip mu2 PVE z
8146 SIMC1 5_106 0.011 14.00 4.6e-07 -1.68
3450 KIAA1191 5_106 0.011 13.52 4.4e-07 1.40
8737 ARL10 5_106 0.006 8.30 1.5e-07 0.98
5758 HIGD2A 5_106 0.004 4.94 6.3e-08 -0.39
8738 CLTB 5_106 0.004 5.17 6.6e-08 0.73
8046 GPRIN1 5_106 0.006 7.15 1.2e-07 0.52
403 TSPAN17 5_106 0.008 9.53 2.3e-07 -0.69
2780 UNC5A 5_106 0.004 5.51 7.0e-08 -1.24
6811 HK3 5_106 0.025 16.76 1.2e-06 1.46
1119 UIMC1 5_106 0.004 5.86 7.6e-08 -0.89
2779 ZNF346 5_106 0.005 5.98 8.5e-08 -0.39
6807 FGFR4 5_106 0.005 23.62 3.4e-07 -4.35
7484 NSD1 5_106 0.036 13.15 1.4e-06 1.71
8039 PRELID1 5_106 0.033 25.67 2.5e-06 5.38
10820 MXD3 5_106 0.005 5.95 8.7e-08 -2.06
8037 LMAN2 5_106 0.013 153.80 5.6e-06 16.19
10107 PFN3 5_106 0.005 30.55 4.2e-07 -5.09
4159 F12 5_106 0.010 51.24 1.4e-06 7.68
4160 PRR7 5_106 0.004 7.78 9.8e-08 -2.42
2778 DBN1 5_106 0.004 6.16 8.0e-08 1.66
10157 PDLIM7 5_106 0.017 36.54 1.8e-06 -5.90
12333 RP11-1277A3.3 5_106 0.009 16.84 4.5e-07 3.36
301 B4GALT7 5_106 0.007 12.64 2.6e-07 2.53
8144 FAM153A 5_106 0.004 5.12 6.4e-08 -0.91
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
[1] "Region: 6_33"
genename region_tag susie_pip mu2 PVE z
9875 C6orf132 6_33 0.013 18.91 7.2e-07 -1.95
2683 GUCA1B 6_33 0.075 28.84 6.3e-06 2.58
410 MRPS10 6_33 0.042 24.22 2.9e-06 2.33
3634 TRERF1 6_33 0.004 8.16 1.0e-07 0.82
2684 PRPH2 6_33 0.050 22.30 3.2e-06 4.81
3655 TBCC 6_33 0.004 8.01 9.6e-08 -0.74
2685 GLTSCR1L 6_33 0.004 6.33 6.4e-08 -1.27
3659 GNMT 6_33 0.038 26.56 2.9e-06 2.33
5776 RPL7L1 6_33 0.003 11.97 1.2e-07 3.32
10984 C6orf226 6_33 0.003 6.83 5.8e-08 1.69
4811 CNPY3 6_33 0.008 19.55 4.7e-07 3.94
3645 PEX6 6_33 0.020 26.55 1.5e-06 -3.48
2686 PPP2R5D 6_33 0.063 35.29 6.5e-06 3.51
3661 MEA1 6_33 0.764 25.23 5.6e-05 4.88
3658 KLHDC3 6_33 0.003 9.83 8.5e-08 2.46
4813 KLC4 6_33 0.003 6.26 5.8e-08 -1.13
388 CUL7 6_33 0.004 8.40 1.1e-07 0.65
2687 MRPL2 6_33 0.007 18.33 3.9e-07 2.68
2691 DNPH1 6_33 0.004 22.69 2.6e-07 -4.30
5774 TTBK1 6_33 0.003 17.81 1.5e-07 3.85
4818 SLC22A7 6_33 0.014 23.53 9.4e-07 0.92
5773 CRIP3 6_33 0.004 141.79 1.7e-06 -13.77
8316 ZNF318 6_33 0.006 21.17 3.4e-07 -3.60
3644 ABCC10 6_33 0.753 32.38 7.1e-05 -1.49
10559 LRRC73 6_33 0.003 6.33 5.8e-08 -1.09
4823 TJAP1 6_33 0.008 16.80 3.8e-07 -1.67
4819 YIPF3 6_33 0.017 22.42 1.1e-06 2.50
3643 XPO5 6_33 0.004 11.52 1.3e-07 0.96
8232 POLH 6_33 0.004 11.52 1.3e-07 -0.96
8437 GTPBP2 6_33 0.007 14.42 3.1e-07 0.78
3657 MAD2L1BP 6_33 0.003 7.58 7.6e-08 -1.41
1337 MRPS18A 6_33 0.025 21.85 1.6e-06 1.58
2697 VEGFA 6_33 0.005 9.97 1.5e-07 -0.33
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
[1] "Region: 10_78"
genename region_tag susie_pip mu2 PVE z
10544 METTL10 10_78 0.007 86.15 1.8e-06 -12.59
253 ZRANB1 10_78 0.019 18.60 1.0e-06 -2.76
8693 CTBP2 10_78 0.007 4.81 9.4e-08 -0.24
2271 BCCIP 10_78 0.008 6.23 1.4e-07 0.75
9944 UROS 10_78 0.008 6.23 1.4e-07 0.75
1205 DHX32 10_78 0.009 7.98 2.1e-07 1.03
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
id region_tag susie_pip mu2 PVE z
21524 rs71658797 1_48 1.000 73.47 2.1e-04 9.85
57639 rs766167074 1_118 1.000 8245.53 2.4e-02 -3.36
100598 rs141849010 2_69 1.000 112.54 3.3e-04 10.82
116626 rs863678 2_106 1.000 202.21 5.9e-04 12.03
123738 rs72926961 2_120 1.000 242.31 7.0e-04 15.67
194756 rs7642977 3_119 1.000 76.91 2.2e-04 8.90
222706 rs111470070 4_51 1.000 88.87 2.6e-04 7.90
259892 rs766378231 5_2 1.000 5375.59 1.6e-02 3.04
259894 rs544289197 5_2 1.000 5332.91 1.5e-02 2.95
276194 rs113088001 5_31 1.000 44.79 1.3e-04 -5.32
280707 rs11743158 5_41 1.000 88.88 2.6e-04 9.57
314011 rs7447593 5_106 1.000 183.37 5.3e-04 18.10
316108 rs7763581 6_2 1.000 40.29 1.2e-04 -5.67
318233 rs630258 6_7 1.000 103.88 3.0e-04 11.48
332309 rs7742789 6_33 1.000 208.92 6.1e-04 -14.41
345069 rs194944 6_56 1.000 118.51 3.4e-04 10.92
360313 rs199804242 6_89 1.000 36498.11 1.1e-01 4.44
372742 rs78148157 7_2 1.000 117.80 3.4e-04 -7.23
372743 rs13241427 7_2 1.000 159.00 4.6e-04 11.36
390126 rs700752 7_34 1.000 138.70 4.0e-04 11.82
399183 rs10277379 7_49 1.000 36256.27 1.1e-01 10.56
399186 rs761767938 7_49 1.000 47103.94 1.4e-01 9.38
399191 rs11406602 7_49 1.000 42919.02 1.2e-01 9.38
399194 rs1544459 7_49 1.000 46512.21 1.4e-01 9.72
413175 rs3757387 7_78 1.000 212.02 6.2e-04 16.58
421568 rs11767572 7_97 1.000 48.30 1.4e-04 6.26
434803 rs4871905 8_24 1.000 288.11 8.4e-04 19.28
492198 rs1360200 9_45 1.000 48.38 1.4e-04 -7.01
502100 rs141350020 9_62 1.000 41.56 1.2e-04 -6.65
506641 rs113790047 10_2 1.000 120.64 3.5e-04 11.91
560785 rs369062552 11_21 1.000 300.13 8.7e-04 14.85
560795 rs34830202 11_21 1.000 325.65 9.5e-04 -15.76
566437 rs11381239 11_29 1.000 53.66 1.6e-04 6.71
597234 rs11616030 12_11 1.000 61.96 1.8e-04 -7.93
598259 rs11056397 12_13 1.000 79.04 2.3e-04 -8.54
610955 rs6581124 12_35 1.000 42.91 1.2e-04 -6.34
610974 rs7397189 12_36 1.000 101.80 3.0e-04 -10.66
613031 rs61931197 12_39 1.000 35.30 1.0e-04 5.70
627234 rs7970581 12_68 1.000 40.98 1.2e-04 -6.35
630001 rs1169300 12_74 1.000 169.11 4.9e-04 13.19
645081 rs141110756 13_21 1.000 160.04 4.6e-04 -13.98
646980 rs7999449 13_25 1.000 21536.77 6.3e-02 3.82
646982 rs775834524 13_25 1.000 21482.34 6.2e-02 3.86
710010 rs145727191 15_35 1.000 47.59 1.4e-04 8.96
711557 rs7174325 15_38 1.000 77.95 2.3e-04 4.22
731111 rs12927956 16_27 1.000 129.01 3.7e-04 9.45
771135 rs162000 18_14 1.000 47.15 1.4e-04 6.99
796302 rs771303621 19_19 1.000 3176.19 9.2e-03 -2.34
801757 rs814573 19_32 1.000 68.59 2.0e-04 -9.01
801839 rs346738 19_32 1.000 38.18 1.1e-04 -6.49
814540 rs80346074 20_14 1.000 35.64 1.0e-04 -5.75
814700 rs6113933 20_16 1.000 279.73 8.1e-04 -22.57
814757 rs2050735 20_16 1.000 252.51 7.3e-04 -19.85
814775 rs6137887 20_16 1.000 786.01 2.3e-03 -33.20
814866 rs113822376 20_17 1.000 350.31 1.0e-03 26.33
814895 rs73102315 20_17 1.000 3420.32 9.9e-03 -43.87
814897 rs3827142 20_17 1.000 19753.52 5.7e-02 -143.60
815374 rs73101426 20_18 1.000 68.98 2.0e-04 -8.63
815529 rs13039195 20_18 1.000 80.71 2.3e-04 -8.00
815581 rs6076340 20_19 1.000 58.31 1.7e-04 1.18
815624 rs117932602 20_19 1.000 67.09 1.9e-04 7.57
815749 rs6084065 20_19 1.000 96.74 2.8e-04 -9.53
822299 rs209955 20_32 1.000 96.89 2.8e-04 11.08
822303 rs2585441 20_32 1.000 53.18 1.5e-04 7.34
833250 rs2834321 21_15 1.000 74.37 2.2e-04 10.08
918918 rs1050420 6_25 1.000 247.08 7.2e-04 -15.26
923409 rs112436252 6_25 1.000 18790.11 5.5e-02 -8.48
923416 rs7739521 6_25 1.000 18536.17 5.4e-02 -5.75
966355 rs201524046 10_81 1.000 13387.49 3.9e-02 -6.04
966374 rs568584257 10_81 1.000 13340.31 3.9e-02 -1.38
973254 rs200003388 13_48 1.000 6788.65 2.0e-02 1.25
1039982 rs71176182 19_23 1.000 2152.81 6.3e-03 3.69
28365 rs12407689 1_62 0.999 45.61 1.3e-04 6.66
40166 rs9425587 1_84 0.999 60.52 1.8e-04 7.69
73318 rs780093 2_16 0.999 52.76 1.5e-04 8.48
127635 rs2068218 2_128 0.999 32.29 9.4e-05 -5.41
334933 rs76572975 6_38 0.999 38.48 1.1e-04 -6.96
704859 rs57194033 15_25 0.999 48.00 1.4e-04 -6.65
717523 rs8037855 15_48 0.999 67.13 1.9e-04 11.40
729194 rs76597446 16_23 0.999 45.78 1.3e-04 6.80
730945 rs7205341 16_27 0.999 70.66 2.1e-04 8.38
753043 rs3760511 17_22 0.999 32.21 9.3e-05 5.67
834098 rs219783 21_17 0.999 58.55 1.7e-04 -8.10
71332 rs3771257 2_12 0.998 33.85 9.8e-05 -5.51
80778 rs77981979 2_30 0.998 32.19 9.3e-05 5.54
238630 rs115336319 4_83 0.998 31.01 9.0e-05 -4.40
324742 rs1980449 6_19 0.998 43.69 1.3e-04 -6.51
324917 rs115740542 6_20 0.998 34.74 1.0e-04 5.96
325402 rs187257713 6_21 0.998 34.27 9.9e-05 -6.33
326585 rs2248162 6_24 0.998 111.02 3.2e-04 -10.90
506161 rs12380852 9_73 0.998 32.97 9.6e-05 6.56
538864 rs117081694 10_64 0.998 32.88 9.5e-05 -5.62
550559 rs186376420 11_2 0.998 43.38 1.3e-04 -6.85
550607 rs10832888 11_2 0.998 35.46 1.0e-04 -5.99
664843 rs630943 13_59 0.998 31.18 9.0e-05 -5.30
704830 rs7162116 15_25 0.998 51.90 1.5e-04 8.38
720007 rs138922864 16_3 0.998 35.83 1.0e-04 5.77
743440 rs4843216 16_52 0.998 31.79 9.2e-05 4.09
814921 rs6515382 20_17 0.998 1439.34 4.2e-03 52.69
822326 rs6068816 20_32 0.998 36.62 1.1e-04 -5.82
837673 rs73907568 21_23 0.998 31.33 9.1e-05 5.42
100590 rs142743147 2_69 0.997 31.35 9.1e-05 5.33
325721 rs138975185 6_22 0.997 32.78 9.5e-05 -5.94
710039 rs2955742 15_36 0.997 58.63 1.7e-04 7.22
814680 rs112734453 20_16 0.997 157.80 4.6e-04 -16.69
350069 rs9496567 6_67 0.996 30.00 8.7e-05 5.30
461899 rs376277175 8_79 0.996 39.73 1.1e-04 -7.81
434793 rs310311 8_24 0.995 121.30 3.5e-04 -14.62
726978 rs7203451 16_19 0.995 259.48 7.5e-04 -12.43
318266 rs3799511 6_7 0.994 40.87 1.2e-04 -4.52
421552 rs288762 7_97 0.994 113.13 3.3e-04 12.52
214949 rs723585 4_40 0.993 75.06 2.2e-04 -8.70
421819 rs12697965 7_98 0.993 36.96 1.1e-04 8.26
485459 rs117451470 9_30 0.993 28.74 8.3e-05 -4.89
627122 rs35287743 12_66 0.993 33.27 9.6e-05 6.11
630954 rs1055941 12_75 0.993 38.37 1.1e-04 6.36
704876 rs11071331 15_25 0.993 42.06 1.2e-04 2.82
31430 rs11102041 1_69 0.992 80.41 2.3e-04 -6.06
259960 rs62331274 5_2 0.992 60.97 1.8e-04 5.92
717512 rs11634241 15_48 0.992 165.39 4.8e-04 15.47
757763 rs139064373 17_36 0.992 27.97 8.1e-05 -3.98
31428 rs201469841 1_69 0.991 48.13 1.4e-04 -0.98
40768 rs34484492 1_85 0.991 32.86 9.5e-05 -5.95
332498 rs9357429 6_34 0.991 29.71 8.6e-05 -5.21
379939 rs17644994 7_17 0.991 36.24 1.0e-04 6.34
506148 rs1886296 9_73 0.991 29.64 8.5e-05 6.18
593758 rs723672 12_2 0.990 28.86 8.3e-05 5.20
31259 rs78852738 1_67 0.989 28.21 8.1e-05 -5.62
98518 rs11123169 2_67 0.989 54.90 1.6e-04 -7.35
114301 rs7594986 2_103 0.989 61.11 1.8e-04 7.46
235099 rs10024666 4_75 0.987 27.29 7.8e-05 4.93
875475 rs17050272 2_70 0.987 112.22 3.2e-04 10.62
578936 rs57569860 11_52 0.986 26.66 7.6e-05 4.87
421871 rs11761498 7_98 0.985 58.26 1.7e-04 7.88
717499 rs75422555 15_47 0.985 33.93 9.7e-05 -6.70
311671 rs1422755 5_102 0.984 34.95 1.0e-04 5.71
322772 rs3763278 6_15 0.984 30.03 8.6e-05 4.39
826650 rs78581838 21_2 0.984 38.29 1.1e-04 -6.35
971148 rs3184504 12_67 0.984 786.70 2.2e-03 -27.94
638515 rs79490353 13_7 0.982 27.39 7.8e-05 4.58
32876 rs149803516 1_71 0.981 31.04 8.8e-05 -5.35
93036 rs11686739 2_54 0.981 27.57 7.9e-05 4.82
314867 rs4701140 5_108 0.981 27.14 7.7e-05 4.90
352206 rs12196331 6_71 0.981 29.81 8.5e-05 5.73
446408 rs17397411 8_50 0.981 27.95 8.0e-05 5.08
57677 rs1769794 1_118 0.980 4592.09 1.3e-02 5.93
79901 rs588206 2_28 0.980 39.72 1.1e-04 6.25
286872 rs3952745 5_53 0.980 28.16 8.0e-05 -5.36
690625 rs72698888 14_48 0.979 26.70 7.6e-05 4.87
328597 rs56144236 6_27 0.978 28.88 8.2e-05 -5.74
549092 rs75184896 10_84 0.977 26.91 7.6e-05 4.92
610229 rs113897279 12_33 0.977 26.92 7.6e-05 4.77
326087 rs3130253 6_23 0.976 39.17 1.1e-04 -5.88
2539 rs61772085 1_6 0.975 32.95 9.3e-05 5.72
926075 rs148684631 6_61 0.975 76.17 2.2e-04 9.21
332411 rs10223666 6_34 0.973 229.53 6.5e-04 15.67
551352 rs1983100 11_3 0.972 36.19 1.0e-04 5.82
229718 rs6532770 4_66 0.971 36.37 1.0e-04 6.09
608464 rs11830037 12_30 0.971 29.44 8.3e-05 5.71
693060 rs55964922 14_53 0.971 27.18 7.7e-05 -5.26
788827 rs8108787 19_2 0.971 30.85 8.7e-05 -5.38
523150 rs4935194 10_33 0.970 31.73 8.9e-05 6.79
833244 rs2154568 21_15 0.970 37.12 1.0e-04 7.63
476658 rs16931379 9_12 0.967 29.10 8.2e-05 -5.17
816173 rs142348466 20_19 0.967 40.71 1.1e-04 -5.72
111366 rs1980154 2_96 0.966 33.63 9.4e-05 6.27
814352 rs6112780 20_14 0.966 26.30 7.4e-05 4.36
1046592 rs71336771 20_15 0.966 49.73 1.4e-04 -7.59
26806 rs9432440 1_58 0.964 33.12 9.3e-05 5.86
139639 rs59302296 3_7 0.964 28.99 8.1e-05 5.13
692591 rs34804741 14_52 0.964 27.54 7.7e-05 -5.54
660217 rs565714342 13_49 0.962 31.23 8.7e-05 5.46
466368 rs10094480 8_87 0.961 32.04 8.9e-05 -5.39
735812 rs244423 16_37 0.961 79.12 2.2e-04 -10.67
390233 rs113473694 7_35 0.960 26.37 7.4e-05 -4.71
64128 rs4335411 1_131 0.959 25.35 7.1e-05 -4.73
531514 rs1649987 10_50 0.958 26.17 7.3e-05 -4.86
276216 rs255749 5_31 0.957 32.90 9.1e-05 4.79
329153 rs493871 6_28 0.954 31.76 8.8e-05 5.07
3355 rs205474 1_8 0.950 29.41 8.1e-05 -5.34
143537 rs711731 3_15 0.944 24.99 6.8e-05 4.67
302983 rs12109255 5_84 0.944 26.98 7.4e-05 -4.96
971210 rs150383897 12_67 0.944 93.70 2.6e-04 6.13
456323 rs1786344 8_69 0.943 26.67 7.3e-05 4.66
3329 rs284317 1_7 0.942 25.53 7.0e-05 -4.00
706768 rs8041454 15_29 0.942 61.28 1.7e-04 -9.80
790829 rs146992497 19_6 0.939 23.58 6.4e-05 4.47
582359 rs117680242 11_59 0.938 25.51 7.0e-05 4.54
814310 rs61571241 20_14 0.938 25.35 6.9e-05 4.03
517763 rs11007559 10_21 0.936 29.41 8.0e-05 5.17
58860 rs113358743 1_121 0.935 25.09 6.8e-05 4.60
79032 rs13428381 2_27 0.935 33.90 9.2e-05 -6.15
344600 rs2444819 6_55 0.935 47.67 1.3e-04 7.14
222684 rs10006482 4_51 0.933 38.04 1.0e-04 2.54
259882 rs10040050 5_2 0.929 4947.59 1.3e-02 3.65
259814 rs386057 5_1 0.928 45.55 1.2e-04 -6.21
845197 rs71195055 22_15 0.928 36.47 9.8e-05 6.17
236172 rs17296659 4_78 0.927 33.59 9.0e-05 -5.66
776360 rs12954053 18_24 0.927 30.68 8.3e-05 4.84
710848 rs3128 15_37 0.926 26.28 7.1e-05 3.93
272900 rs3096211 5_26 0.925 30.71 8.2e-05 3.95
331858 rs1015149 6_32 0.925 26.92 7.2e-05 -5.21
814377 rs6046722 20_14 0.924 25.68 6.9e-05 -4.63
645410 rs77871802 13_21 0.923 35.37 9.5e-05 -5.49
421817 rs6967289 7_98 0.920 45.89 1.2e-04 7.69
704880 rs7166305 15_25 0.919 57.04 1.5e-04 -4.72
588543 rs73018243 11_75 0.918 24.05 6.4e-05 -4.45
731136 rs72803263 16_27 0.918 25.72 6.9e-05 3.06
789294 rs1064543 19_2 0.918 26.34 7.0e-05 4.75
276026 rs9716017 5_31 0.916 30.10 8.0e-05 -4.77
15345 rs2780869 1_35 0.915 31.27 8.3e-05 -5.45
302229 rs156094 5_83 0.914 27.30 7.2e-05 -5.14
463686 rs4604455 8_83 0.913 26.13 6.9e-05 -5.41
33715 rs1975283 1_72 0.912 57.65 1.5e-04 -7.61
748852 rs1005395 17_13 0.911 24.02 6.4e-05 4.42
494055 rs141649706 9_48 0.909 26.01 6.9e-05 -5.14
371498 rs9456260 6_110 0.908 25.71 6.8e-05 4.93
712157 rs62027546 15_38 0.908 26.35 7.0e-05 4.75
412800 rs57707296 7_78 0.907 30.45 8.0e-05 -2.95
509253 rs78836918 10_7 0.905 23.93 6.3e-05 -4.43
23244 rs6661091 1_50 0.903 55.48 1.5e-04 7.49
734379 rs79574106 16_33 0.903 24.90 6.5e-05 4.64
550354 rs7115054 11_2 0.898 107.07 2.8e-04 9.67
818151 rs6029393 20_24 0.898 40.36 1.1e-04 -6.18
318199 rs10458103 6_7 0.896 52.19 1.4e-04 9.14
373165 rs62442558 7_4 0.896 25.87 6.7e-05 4.86
927534 rs9359877 6_61 0.896 31.30 8.1e-05 5.68
711555 rs12442871 15_38 0.894 60.56 1.6e-04 -1.35
838319 rs34526805 22_1 0.894 26.53 6.9e-05 4.94
794620 rs3794991 19_15 0.892 37.80 9.8e-05 5.98
329848 rs9462097 6_29 0.890 27.48 7.1e-05 -5.27
816457 rs138112660 20_20 0.890 24.76 6.4e-05 -4.35
815394 rs147493439 20_18 0.889 28.61 7.4e-05 1.72
561203 rs10835944 11_22 0.887 26.12 6.7e-05 -4.50
579695 rs7934169 11_54 0.887 23.69 6.1e-05 -4.37
792706 rs144089403 19_10 0.887 25.03 6.4e-05 -4.53
80347 rs935375 2_29 0.886 25.44 6.5e-05 -4.77
571340 rs12420758 11_38 0.886 35.50 9.1e-05 -6.35
47910 rs72739200 1_100 0.884 25.57 6.6e-05 4.65
372739 rs4487642 7_2 0.884 51.68 1.3e-04 -3.40
706570 rs4569205 15_28 0.884 31.95 8.2e-05 5.55
808148 rs1887854 20_3 0.884 23.98 6.2e-05 -4.49
35074 rs148295181 1_74 0.883 23.14 5.9e-05 -4.25
698685 rs12908082 15_11 0.872 24.72 6.3e-05 -4.47
561136 rs6484575 11_22 0.870 27.91 7.1e-05 3.73
300380 rs12153431 5_79 0.869 36.77 9.3e-05 5.44
114787 rs139389756 2_104 0.868 24.69 6.2e-05 4.55
13118 rs115398900 1_30 0.865 24.23 6.1e-05 -4.44
631136 rs11057830 12_76 0.865 24.22 6.1e-05 4.39
112928 rs7607980 2_100 0.857 38.39 9.6e-05 6.04
549146 rs2767419 10_85 0.852 24.25 6.0e-05 -4.45
640906 rs57217617 13_13 0.852 24.77 6.1e-05 4.59
137633 rs4621315 3_4 0.850 26.99 6.7e-05 4.78
436909 rs139800483 8_29 0.850 25.84 6.4e-05 -4.70
439005 rs6474516 8_34 0.850 24.94 6.2e-05 -4.50
257738 rs181147923 4_120 0.849 26.85 6.6e-05 4.66
330324 rs10947659 6_29 0.848 25.91 6.4e-05 4.63
360312 rs2327654 6_89 0.848 36555.79 9.0e-02 4.57
226662 rs9996470 4_60 0.846 27.12 6.7e-05 -4.86
739622 rs9928026 16_44 0.840 76.81 1.9e-04 -8.23
816668 rs111791178 20_21 0.840 28.40 6.9e-05 5.59
133980 rs12623661 2_141 0.838 23.92 5.8e-05 -4.32
803049 rs116922356 19_34 0.837 26.95 6.6e-05 -4.61
571050 rs75592015 11_37 0.836 26.82 6.5e-05 4.90
744018 rs9928396 16_54 0.836 47.58 1.2e-04 -8.57
38434 rs72691538 1_82 0.835 26.54 6.4e-05 -4.60
121090 rs10207044 2_113 0.833 26.56 6.4e-05 5.12
966358 rs74160216 10_81 0.833 13333.32 3.2e-02 -1.37
805825 rs371808578 19_38 0.831 30.71 7.4e-05 5.34
192112 rs822362 3_114 0.829 79.52 1.9e-04 9.06
700661 rs2016840 15_17 0.829 25.80 6.2e-05 -4.68
32600 rs6679677 1_70 0.826 25.10 6.0e-05 4.46
326055 rs1233385 6_23 0.823 75.41 1.8e-04 9.07
710215 rs529538402 15_36 0.820 24.59 5.9e-05 0.14
145100 rs11711833 3_18 0.818 67.59 1.6e-04 -8.28
365342 rs4870114 6_99 0.816 28.55 6.8e-05 5.06
711915 rs28587326 15_38 0.816 32.70 7.8e-05 5.45
33448 rs3949262 1_72 0.813 29.39 6.9e-05 -5.07
116686 rs72940807 2_106 0.812 30.97 7.3e-05 6.69
246911 rs78038533 4_101 0.810 25.08 5.9e-05 -4.76
232632 rs56011514 4_72 0.809 27.67 6.5e-05 4.81
273303 rs149976817 5_27 0.809 23.61 5.5e-05 4.11
259741 rs142220278 5_1 0.808 26.92 6.3e-05 3.95
283965 rs17263175 5_47 0.804 23.98 5.6e-05 4.31
743381 rs56286510 16_52 0.804 25.18 5.9e-05 -3.05
195518 rs13059257 3_120 0.803 32.15 7.5e-05 5.38
#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
id region_tag susie_pip mu2 PVE z
399186 rs761767938 7_49 1.000 47103.94 1.4e-01 9.38
399194 rs1544459 7_49 1.000 46512.21 1.4e-01 9.72
399190 rs11972122 7_49 0.000 42936.39 1.3e-06 9.25
399191 rs11406602 7_49 1.000 42919.02 1.2e-01 9.38
399195 rs1544458 7_49 0.000 42311.24 0.0e+00 9.45
399185 rs6465794 7_49 0.000 41630.90 0.0e+00 8.90
399184 rs6465793 7_49 0.000 41630.26 0.0e+00 8.90
399215 rs10272350 7_49 0.000 41564.31 0.0e+00 9.12
399219 rs2463008 7_49 0.000 39540.07 0.0e+00 9.80
399225 rs10267180 7_49 0.000 39521.92 0.0e+00 9.74
399165 rs13240016 7_49 0.000 39386.76 0.0e+00 8.60
399174 rs7799383 7_49 0.000 38449.85 0.0e+00 8.13
360312 rs2327654 6_89 0.848 36555.79 9.0e-02 4.57
360329 rs6923513 6_89 0.631 36554.22 6.7e-02 4.56
360313 rs199804242 6_89 1.000 36498.11 1.1e-01 4.44
360316 rs113527452 6_89 0.000 36362.44 6.8e-14 4.54
399183 rs10277379 7_49 1.000 36256.27 1.1e-01 10.56
360321 rs200796875 6_89 0.000 36145.85 0.0e+00 4.41
360334 rs7756915 6_89 0.000 35915.65 0.0e+00 4.41
399177 rs7795371 7_49 0.000 35748.18 0.0e+00 10.68
360327 rs6570040 6_89 0.000 34475.24 0.0e+00 4.50
360314 rs6570031 6_89 0.000 34393.91 0.0e+00 4.51
360315 rs9389323 6_89 0.000 34375.06 0.0e+00 4.46
399239 rs848470 7_49 0.000 32612.24 0.0e+00 -7.24
360331 rs9321531 6_89 0.000 30183.74 0.0e+00 4.48
360304 rs9321528 6_89 0.000 29813.68 0.0e+00 5.03
360332 rs9494389 6_89 0.000 28336.04 0.0e+00 4.10
360336 rs5880262 6_89 0.000 28268.41 0.0e+00 3.92
360310 rs2208574 6_89 0.000 27357.20 0.0e+00 4.35
360309 rs1033755 6_89 0.000 27346.90 0.0e+00 4.19
399133 rs9640663 7_49 0.000 27102.90 0.0e+00 7.45
399129 rs2868787 7_49 0.000 27100.95 0.0e+00 7.42
360307 rs2038551 6_89 0.000 26864.98 0.0e+00 5.03
360318 rs9494377 6_89 0.000 26845.53 0.0e+00 4.07
360305 rs2038550 6_89 0.000 26791.90 0.0e+00 4.97
399144 rs4727451 7_49 0.000 26704.33 0.0e+00 7.20
399163 rs58729654 7_49 0.000 26613.65 0.0e+00 8.05
399157 rs6465771 7_49 0.000 26051.71 0.0e+00 7.31
399249 rs34022094 7_49 0.000 25436.74 0.0e+00 -6.60
399247 rs848458 7_49 0.000 25420.14 0.0e+00 -6.51
399123 rs1972568 7_49 0.000 24142.99 0.0e+00 7.28
399114 rs7788492 7_49 0.000 24135.77 0.0e+00 7.20
399116 rs67630171 7_49 0.000 24122.18 0.0e+00 7.17
399115 rs4729540 7_49 0.000 24108.83 0.0e+00 7.22
399121 rs7806750 7_49 0.000 24087.23 0.0e+00 7.25
399111 rs7357107 7_49 0.000 24084.90 0.0e+00 7.22
399203 rs4729772 7_49 0.000 22694.57 0.0e+00 8.90
360294 rs6570026 6_89 0.000 22217.44 0.0e+00 4.28
360290 rs6926161 6_89 0.000 21932.90 0.0e+00 4.25
360299 rs6930773 6_89 0.000 21568.69 0.0e+00 5.04
#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
id region_tag susie_pip mu2 PVE z
399186 rs761767938 7_49 1.000 47103.94 0.1400 9.38
399194 rs1544459 7_49 1.000 46512.21 0.1400 9.72
399191 rs11406602 7_49 1.000 42919.02 0.1200 9.38
360313 rs199804242 6_89 1.000 36498.11 0.1100 4.44
399183 rs10277379 7_49 1.000 36256.27 0.1100 10.56
360312 rs2327654 6_89 0.848 36555.79 0.0900 4.57
360329 rs6923513 6_89 0.631 36554.22 0.0670 4.56
646980 rs7999449 13_25 1.000 21536.77 0.0630 3.82
646982 rs775834524 13_25 1.000 21482.34 0.0620 3.86
814897 rs3827142 20_17 1.000 19753.52 0.0570 -143.60
923409 rs112436252 6_25 1.000 18790.11 0.0550 -8.48
923416 rs7739521 6_25 1.000 18536.17 0.0540 -5.75
966355 rs201524046 10_81 1.000 13387.49 0.0390 -6.04
966374 rs568584257 10_81 1.000 13340.31 0.0390 -1.38
966358 rs74160216 10_81 0.833 13333.32 0.0320 -1.37
57639 rs766167074 1_118 1.000 8245.53 0.0240 -3.36
923915 rs577861830 6_25 0.500 16709.59 0.0240 -6.53
923916 rs560154168 6_25 0.500 16709.59 0.0240 -6.53
973254 rs200003388 13_48 1.000 6788.65 0.0200 1.25
259892 rs766378231 5_2 1.000 5375.59 0.0160 3.04
259894 rs544289197 5_2 1.000 5332.91 0.0150 2.95
57677 rs1769794 1_118 0.980 4592.09 0.0130 5.93
259882 rs10040050 5_2 0.929 4947.59 0.0130 3.65
814895 rs73102315 20_17 1.000 3420.32 0.0099 -43.87
796302 rs771303621 19_19 1.000 3176.19 0.0092 -2.34
57636 rs10489611 1_118 0.324 8230.31 0.0078 -3.63
973261 rs4073353 13_48 0.359 6791.51 0.0071 5.66
57630 rs2256908 1_118 0.293 8229.85 0.0070 -3.64
57637 rs2486737 1_118 0.271 8230.20 0.0065 -3.63
57633 rs2790891 1_118 0.269 8229.81 0.0064 -3.63
57634 rs2491405 1_118 0.269 8229.81 0.0064 -3.63
796304 rs111064632 19_19 0.698 3171.53 0.0064 -2.24
1039982 rs71176182 19_23 1.000 2152.81 0.0063 3.69
57638 rs971534 1_118 0.237 8230.13 0.0057 -3.62
973260 rs67878607 13_48 0.243 6791.62 0.0048 5.65
966357 rs117610876 10_81 0.115 13330.80 0.0044 -1.38
814921 rs6515382 20_17 0.998 1439.34 0.0042 52.69
973257 rs9584309 13_48 0.214 6792.12 0.0042 5.65
796308 rs12151080 19_19 0.408 3163.29 0.0038 -2.30
973151 rs7336153 13_48 0.633 2036.62 0.0037 7.96
796306 rs6511437 19_19 0.375 3169.14 0.0035 -2.28
1039944 rs10414879 19_23 0.402 2220.71 0.0026 3.88
814775 rs6137887 20_16 1.000 786.01 0.0023 -33.20
971148 rs3184504 12_67 0.984 786.70 0.0022 -27.94
973152 rs4098441 13_48 0.347 2023.17 0.0020 7.91
222825 rs17253722 4_52 0.793 651.87 0.0015 29.86
1039942 rs28633567 19_23 0.228 2221.51 0.0015 3.84
973253 rs7321862 13_48 0.069 6787.40 0.0014 5.64
57626 rs1076804 1_118 0.055 8217.64 0.0013 -3.63
57646 rs2211176 1_118 0.056 8225.35 0.0013 -3.59
#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
id region_tag susie_pip mu2 PVE z
814897 rs3827142 20_17 1.000 19753.52 5.7e-02 -143.60
814898 rs5030707 20_17 0.000 19614.98 0.0e+00 -142.96
814893 rs13039536 20_17 0.000 19577.77 0.0e+00 -142.76
814889 rs8121283 20_17 0.000 19084.00 0.0e+00 -140.90
814891 rs8121405 20_17 0.000 19061.59 0.0e+00 -140.84
814890 rs8115417 20_17 0.000 19054.13 0.0e+00 -140.80
814886 rs57549987 20_17 0.000 19053.80 0.0e+00 -140.79
814885 rs1555355 20_17 0.000 19050.79 0.0e+00 -140.78
814888 rs6036471 20_17 0.000 19034.06 0.0e+00 -140.73
814883 rs56077567 20_17 0.000 18975.74 0.0e+00 -140.52
814887 rs6036470 20_17 0.000 18938.72 0.0e+00 -140.48
814882 rs13043266 20_17 0.000 18874.84 0.0e+00 -140.24
814877 rs4815223 20_17 0.000 18428.19 0.0e+00 -138.69
814879 rs34792920 20_17 0.000 18353.43 0.0e+00 -138.52
814878 rs6048925 20_17 0.000 18462.98 0.0e+00 -138.45
814900 rs199651024 20_17 0.000 14059.48 0.0e+00 -128.69
814876 rs200582457 20_17 0.000 10399.68 0.0e+00 -99.72
814938 rs4629231 20_17 0.000 6464.14 0.0e+00 -90.22
814916 rs77770287 20_17 0.000 6311.18 0.0e+00 -89.45
814918 rs2226058 20_17 0.000 6273.16 0.0e+00 -89.20
814892 rs200585819 20_17 0.000 9401.03 0.0e+00 -84.58
814880 rs726217 20_17 0.000 9332.86 0.0e+00 84.19
814911 rs2983605 20_17 0.000 8439.12 0.0e+00 78.56
814921 rs6515382 20_17 0.998 1439.34 4.2e-03 52.69
814920 rs1538909 20_17 0.000 2003.69 0.0e+00 -52.55
814923 rs7263473 20_17 0.002 1422.11 9.7e-06 52.49
814937 rs75841856 20_17 0.000 1403.26 3.1e-12 52.15
814922 rs6036488 20_17 0.000 1961.36 0.0e+00 -52.06
814939 rs6083243 20_17 0.000 1401.72 0.0e+00 -45.68
814928 rs62208893 20_17 0.000 1396.50 0.0e+00 -45.65
814927 rs6132654 20_17 0.000 1396.26 0.0e+00 -45.64
814942 rs11087433 20_17 0.000 1394.76 0.0e+00 -45.64
814945 rs6049062 20_17 0.000 1393.01 0.0e+00 -45.59
814954 rs35488686 20_17 0.000 1293.38 0.0e+00 45.52
814895 rs73102315 20_17 1.000 3420.32 9.9e-03 -43.87
814884 rs62208864 20_17 0.000 848.40 0.0e+00 43.59
814935 rs35783127 20_17 0.000 1030.48 0.0e+00 41.94
814929 rs35627338 20_17 0.000 1022.34 0.0e+00 41.79
814941 rs4380313 20_17 0.000 1021.83 0.0e+00 41.78
814933 rs8121966 20_17 0.000 1020.32 0.0e+00 41.77
814943 rs60609640 20_17 0.000 1020.06 0.0e+00 41.74
814917 rs10854252 20_17 0.000 652.03 0.0e+00 40.06
814958 rs6114276 20_17 0.000 1383.76 0.0e+00 -39.78
814969 rs6114287 20_17 0.000 1381.70 0.0e+00 -39.66
814980 rs72490829 20_17 0.000 1386.17 0.0e+00 -39.66
814994 rs6106724 20_17 0.000 1381.53 0.0e+00 -39.62
814995 rs8115480 20_17 0.000 1381.71 0.0e+00 -39.62
814989 rs6106721 20_17 0.000 1379.42 0.0e+00 -39.61
815005 rs6114316 20_17 0.000 1381.98 0.0e+00 -39.61
814972 rs144538582 20_17 0.000 1090.64 0.0e+00 36.48
#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ...
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
#number of genes for gene set enrichment
length(genes)
[1] 21
if (length(genes)>0){
GO_enrichment <- enrichr(genes, dbs)
for (db in dbs){
print(db)
df <- GO_enrichment[[db]]
df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
print(df)
}
#DisGeNET enrichment
# devtools::install_bitbucket("ibi_group/disgenet2r")
library(disgenet2r)
disgenet_api_key <- get_disgenet_api_key(
email = "wesleycrouse@gmail.com",
password = "uchicago1" )
Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
database = "CURATED" )
df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio", "BgRatio")]
print(df)
#WebGestalt enrichment
library(WebGestaltR)
background <- ctwas_gene_res$genename
#listGeneSet()
databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
interestGene=genes, referenceGene=background,
enrichDatabase=databases, interestGeneType="genesymbol",
referenceGeneType="genesymbol", isOutput=F)
print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
Term Overlap Adjusted.P.value
1 epithelial cell differentiation (GO:0030855) 3/101 0.03936883
Genes
1 VIL1;TCF21;E2F4
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
ZNF827 gene(s) from the input list not found in DisGeNET CURATEDADAMTS4 gene(s) from the input list not found in DisGeNET CURATEDNPM2 gene(s) from the input list not found in DisGeNET CURATEDMSI2 gene(s) from the input list not found in DisGeNET CURATEDLPCAT4 gene(s) from the input list not found in DisGeNET CURATEDAC142472.6 gene(s) from the input list not found in DisGeNET CURATEDRAI14 gene(s) from the input list not found in DisGeNET CURATED
Description
43 Hereditary orotic aciduria
47 Orotic aciduria
48 Hereditary orotic aciduria, type 1
85 DEAFNESS, AUTOSOMAL RECESSIVE 32
86 MICROCEPHALY, AMISH TYPE (disorder)
87 Dehydrated Hereditary Stomatocytosis, Pseudohyperkalemia, and Perinatal Edema
93 Progressive polyneuropathy with bilateral striatal necrosis
99 LYMPHATIC MALFORMATION 6
100 MITOCHONDRIAL DNA DEPLETION SYNDROME 15 (HEPATOCEREBRAL TYPE)
101 DEHYDRATED HEREDITARY STOMATOCYTOSIS 1 WITH OR WITHOUT PSEUDOHYPERKALEMIA AND/OR PERINATAL EDEMA
FDR Ratio BgRatio
43 0.01486291 1/14 1/9703
47 0.01486291 1/14 1/9703
48 0.01486291 1/14 1/9703
85 0.01486291 1/14 1/9703
86 0.01486291 1/14 1/9703
87 0.01486291 1/14 1/9703
93 0.01486291 1/14 1/9703
99 0.01486291 1/14 1/9703
100 0.01486291 1/14 1/9703
101 0.01486291 1/14 1/9703
******************************************
* *
* Welcome to WebGestaltR ! *
* *
******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0 cowplot_1.0.0
[5] ggplot2_3.3.3
loaded via a namespace (and not attached):
[1] bitops_1.0-6 matrixStats_0.57.0
[3] fs_1.3.1 bit64_4.0.5
[5] doParallel_1.0.16 progress_1.2.2
[7] httr_1.4.1 rprojroot_2.0.2
[9] GenomeInfoDb_1.20.0 doRNG_1.8.2
[11] tools_3.6.1 utf8_1.2.1
[13] R6_2.5.0 DBI_1.1.1
[15] BiocGenerics_0.30.0 colorspace_1.4-1
[17] withr_2.4.1 tidyselect_1.1.0
[19] prettyunits_1.0.2 bit_4.0.4
[21] curl_3.3 compiler_3.6.1
[23] git2r_0.26.1 Biobase_2.44.0
[25] DelayedArray_0.10.0 rtracklayer_1.44.0
[27] labeling_0.3 scales_1.1.0
[29] readr_1.4.0 apcluster_1.4.8
[31] stringr_1.4.0 digest_0.6.20
[33] Rsamtools_2.0.0 svglite_1.2.2
[35] rmarkdown_1.13 XVector_0.24.0
[37] pkgconfig_2.0.3 htmltools_0.3.6
[39] fastmap_1.1.0 BSgenome_1.52.0
[41] rlang_0.4.11 RSQLite_2.2.7
[43] generics_0.0.2 farver_2.1.0
[45] jsonlite_1.6 BiocParallel_1.18.0
[47] dplyr_1.0.7 VariantAnnotation_1.30.1
[49] RCurl_1.98-1.1 magrittr_2.0.1
[51] GenomeInfoDbData_1.2.1 Matrix_1.2-18
[53] Rcpp_1.0.6 munsell_0.5.0
[55] S4Vectors_0.22.1 fansi_0.5.0
[57] gdtools_0.1.9 lifecycle_1.0.0
[59] stringi_1.4.3 whisker_0.3-2
[61] yaml_2.2.0 SummarizedExperiment_1.14.1
[63] zlibbioc_1.30.0 plyr_1.8.4
[65] grid_3.6.1 blob_1.2.1
[67] parallel_3.6.1 promises_1.0.1
[69] crayon_1.4.1 lattice_0.20-38
[71] Biostrings_2.52.0 GenomicFeatures_1.36.3
[73] hms_1.1.0 knitr_1.23
[75] pillar_1.6.1 igraph_1.2.4.1
[77] GenomicRanges_1.36.0 rjson_0.2.20
[79] rngtools_1.5 codetools_0.2-16
[81] reshape2_1.4.3 biomaRt_2.40.1
[83] stats4_3.6.1 XML_3.98-1.20
[85] glue_1.4.2 evaluate_0.14
[87] data.table_1.14.0 foreach_1.5.1
[89] vctrs_0.3.8 httpuv_1.5.1
[91] gtable_0.3.0 purrr_0.3.4
[93] assertthat_0.2.1 cachem_1.0.5
[95] xfun_0.8 later_0.8.0
[97] tibble_3.1.2 iterators_1.0.13
[99] GenomicAlignments_1.20.1 AnnotationDbi_1.46.0
[101] memoise_2.0.0 IRanges_2.18.1
[103] workflowr_1.6.2 ellipsis_0.3.2