Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30700_irnt_Liver.Rmd) and HTML (docs/ukb-d-30700_irnt_Liver.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd 627a4e1 wesleycrouse 2021-09-07 adding heritability
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd da9f015 wesleycrouse 2021-08-07 adding more reports
html da9f015 wesleycrouse 2021-08-07 adding more reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Creatinine (quantile) using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30700_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1070  768  652  417  494  611  548  408  405  434  634  629  195  365  354 
  16   17   18   19   20   21   22 
 526  663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8366205

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0116880953 0.0002238787 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
21.18549 19.03291 
#report sample size
print(sample_size)
[1] 344104
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10901 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.007844383 0.107699634 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.07758519 2.67202283

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
      genename region_tag susie_pip      mu2     PVE      z
5436     PSMA5       1_67     1.000   172.50 5.0e-04  13.25
10513  L3MBTL3       6_86     0.999    95.04 2.8e-04   9.94
11515    GSTA1       6_39     0.993    57.78 1.7e-04   7.62
2313  CDK5RAP3      17_28     0.989    34.52 9.9e-05  -4.64
938     CDC14A       1_61     0.988    71.18 2.0e-04  -8.51
11790   CYP2A6      19_28     0.978    29.34 8.3e-05  -4.98
8040     THBS3       1_76     0.975    80.62 2.3e-04   4.15
2718       NNT       5_28     0.975    29.01 8.2e-05  -5.17
8192      MGMT      10_81     0.975  1288.04 3.6e-03   8.06
939    RAPGEF3      12_30     0.972    33.51 9.5e-05   5.88
3774    ZNF436       1_16     0.970    42.59 1.2e-04  -7.04
8615  CYB561D1       1_67     0.968    25.75 7.2e-05   4.09
8803     DLEU1      13_21     0.967    66.38 1.9e-04  -8.56
5389     RPS11      19_34     0.966 11861.95 3.3e-02   3.43
10338    PRIM1      12_35     0.964    27.74 7.8e-05   4.95
6403     PPM1J       1_69     0.956   175.92 4.9e-04 -13.57
4838     VARS2       6_25     0.956    41.77 1.2e-04  -6.46
4811     CNPY3       6_33     0.956    41.28 1.1e-04   6.13
4287      NIP7      16_37     0.956    28.22 7.8e-05   3.83
8531      TNKS       8_12     0.954    48.98 1.4e-04 -10.55
11399  TNFSF12       17_7     0.943    23.13 6.3e-05  -4.52
3426     CCRL2       3_32     0.934    24.48 6.6e-05  -4.21
2173  TMEM176B       7_93     0.932    30.95 8.4e-05   7.05
3716     PPDPF      20_37     0.927    55.50 1.5e-04  -7.43
7040     INHBB       2_70     0.914   128.35 3.4e-04  10.97
5415     SYTL1       1_19     0.909    31.55 8.3e-05   5.79
5658   ALDH1L1       3_78     0.907   102.85 2.7e-04   7.66
3439     GTDC1       2_86     0.892    23.84 6.2e-05  -4.43
4818   SLC22A7       6_33     0.854    61.75 1.5e-04  -7.94
6997    KIF26B      1_129     0.851    24.72 6.1e-05  -4.48
5268     MYOCD      17_11     0.849    23.52 5.8e-05  -4.51
10131     AMZ2      17_39     0.824    27.01 6.5e-05  -5.37

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
       genename region_tag susie_pip      mu2   PVE      z
4556     TMEM60       7_49     0.000 45632.09 0.000 -10.12
10186     ZGPAT      20_38     0.000 12729.24 0.000   6.48
3715   SLC2A4RG      20_38     0.000 12637.24 0.000   6.44
4634      EGLN1      1_118     0.000 12037.02 0.000  -4.02
5389      RPS11      19_34     0.966 11861.95 0.033   3.43
1647     ARFRP1      20_38     0.000 11818.42 0.000   4.88
10889     ARL16      17_46     0.458 10310.36 0.014   5.89
1227     FLT3LG      19_34     0.000 10242.78 0.000  -3.06
3058      EXOC8      1_118     0.000 10065.68 0.000   4.37
5799    SLC22A3      6_104     0.000  9457.08 0.000   2.61
10903      APTR       7_49     0.000  9075.51 0.000  -1.74
11199 LINC00271       6_89     0.000  8907.36 0.000  -2.01
3449        PLG      6_104     0.000  7724.17 0.000  -1.77
9811     RSBN1L       7_49     0.000  4897.21 0.000  -2.77
1641      GMEB2      20_38     0.000  4239.53 0.000  -4.41
11853     RTEL1      20_38     0.000  4208.54 0.000   0.68
5393       RCN3      19_34     0.000  3875.82 0.000  -3.15
1931      FCGRT      19_34     0.000  3551.91 0.000  -3.48
9342    TSPAN10      17_46     0.000  3354.33 0.000  -1.79
4604       AHI1       6_89     0.000  3075.19 0.000  -0.54

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
      genename region_tag susie_pip      mu2     PVE      z
5389     RPS11      19_34     0.966 11861.95 0.03300   3.43
10889    ARL16      17_46     0.458 10310.36 0.01400   5.89
8192      MGMT      10_81     0.975  1288.04 0.00360   8.06
8353  SPATA5L1      15_17     0.705   457.32 0.00094  26.03
5436     PSMA5       1_67     1.000   172.50 0.00050  13.25
6403     PPM1J       1_69     0.956   175.92 0.00049 -13.57
7040     INHBB       2_70     0.914   128.35 0.00034  10.97
10513  L3MBTL3       6_86     0.999    95.04 0.00028   9.94
5658   ALDH1L1       3_78     0.907   102.85 0.00027   7.66
8040     THBS3       1_76     0.975    80.62 0.00023   4.15
938     CDC14A       1_61     0.988    71.18 0.00020  -8.51
8803     DLEU1      13_21     0.967    66.38 0.00019  -8.56
3641   SLC17A1       6_20     0.773    75.78 0.00017  -9.04
11515    GSTA1       6_39     0.993    57.78 0.00017   7.62
4818   SLC22A7       6_33     0.854    61.75 0.00015  -7.94
3716     PPDPF      20_37     0.927    55.50 0.00015  -7.43
8531      TNKS       8_12     0.954    48.98 0.00014 -10.55
7196     SENP2      3_114     0.540    82.29 0.00013  -9.96
721      WIPI1      17_39     0.712    60.77 0.00013   7.59
1058      GCKR       2_16     0.480    87.73 0.00012  12.35

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip    mu2     PVE      z
8353  SPATA5L1      15_17     0.705 457.32 9.4e-04  26.03
7163   CCDC158       4_52     0.086 155.34 3.9e-05 -18.00
5042   SHROOM3       4_52     0.018 178.58 9.6e-06 -17.46
3731      MED1      17_23     0.034 171.73 1.7e-05 -15.67
9992    FAM47E       4_52     0.005 135.03 2.0e-06 -14.18
3385      TBX2      17_36     0.003 103.07 9.1e-07  13.91
6403     PPM1J       1_69     0.956 175.92 4.9e-04 -13.57
5436     PSMA5       1_67     1.000 172.50 5.0e-04  13.25
1058      GCKR       2_16     0.480  87.73 1.2e-04  12.35
10987  C2orf16       2_16     0.480  87.73 1.2e-04  12.35
6970   ATXN7L2       1_67     0.015 129.93 5.5e-06  12.22
2297    FBXL20      17_23     0.001  93.05 1.4e-07  12.12
5580    DUSP11       2_48     0.013 122.83 4.7e-06  11.55
4435     PSRC1       1_67     0.017 144.00 7.0e-06  11.18
6849     PGAP3      17_23     0.001  87.70 1.8e-07 -11.15
8054     SNUPN      15_35     0.000 145.02 3.5e-08  11.14
3440    ACVR2A       2_88     0.098  78.19 2.2e-05  11.05
1684  MAP1LC3A      20_21     0.012  78.00 2.7e-06  10.97
7040     INHBB       2_70     0.914 128.35 3.4e-04  10.97
10624     MBD5       2_88     0.015  68.81 3.0e-06  10.74

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.03311623
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip    mu2     PVE      z
8353  SPATA5L1      15_17     0.705 457.32 9.4e-04  26.03
7163   CCDC158       4_52     0.086 155.34 3.9e-05 -18.00
5042   SHROOM3       4_52     0.018 178.58 9.6e-06 -17.46
3731      MED1      17_23     0.034 171.73 1.7e-05 -15.67
9992    FAM47E       4_52     0.005 135.03 2.0e-06 -14.18
3385      TBX2      17_36     0.003 103.07 9.1e-07  13.91
6403     PPM1J       1_69     0.956 175.92 4.9e-04 -13.57
5436     PSMA5       1_67     1.000 172.50 5.0e-04  13.25
1058      GCKR       2_16     0.480  87.73 1.2e-04  12.35
10987  C2orf16       2_16     0.480  87.73 1.2e-04  12.35
6970   ATXN7L2       1_67     0.015 129.93 5.5e-06  12.22
2297    FBXL20      17_23     0.001  93.05 1.4e-07  12.12
5580    DUSP11       2_48     0.013 122.83 4.7e-06  11.55
4435     PSRC1       1_67     0.017 144.00 7.0e-06  11.18
6849     PGAP3      17_23     0.001  87.70 1.8e-07 -11.15
8054     SNUPN      15_35     0.000 145.02 3.5e-08  11.14
3440    ACVR2A       2_88     0.098  78.19 2.2e-05  11.05
1684  MAP1LC3A      20_21     0.012  78.00 2.7e-06  10.97
7040     INHBB       2_70     0.914 128.35 3.4e-04  10.97
10624     MBD5       2_88     0.015  68.81 3.0e-06  10.74

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 15_17"
          genename region_tag susie_pip    mu2     PVE     z
7651         CASC4      15_17     0.004  10.12 1.2e-07  2.21
4888       CTDSPL2      15_17     0.003   5.00 4.1e-08 -0.30
9097     EIF3J-AS1      15_17     0.005  10.14 1.5e-07 -1.73
1861         SPG11      15_17     0.004   6.90 7.6e-08  0.81
11177        PATL2      15_17     0.003   4.91 4.1e-08 -0.20
9670        TRIM69      15_17     0.003   5.91 4.9e-08  1.14
12567 CTD-2008A1.3      15_17     0.015  19.92 9.0e-07  0.93
7711         TERB2      15_17     0.030  18.07 1.6e-06  0.32
4906         DUOX1      15_17     0.005  17.56 2.7e-07 -5.32
5177        DUOXA1      15_17     0.004  19.24 2.3e-07 -5.21
5006           SHF      15_17     0.003  45.21 4.4e-07 -4.08
4907       SLC28A2      15_17     0.065  33.79 6.4e-06  4.51
8353      SPATA5L1      15_17     0.705 457.32 9.4e-04 26.03
8354          GATM      15_17     0.005  27.02 4.2e-07  4.77
7692      C15orf48      15_17     0.003  50.85 4.8e-07 -3.23
4887         SQRDL      15_17     0.003   6.26 5.3e-08  1.57
12543 RP11-96O20.5      15_17     0.003   4.98 4.2e-08  0.64

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 4_52"
     genename region_tag susie_pip    mu2     PVE      z
5038   SCARB2       4_52     0.015  16.36 7.2e-07  -0.23
9992   FAM47E       4_52     0.005 135.03 2.0e-06 -14.18
7163  CCDC158       4_52     0.086 155.34 3.9e-05 -18.00
5042  SHROOM3       4_52     0.018 178.58 9.6e-06 -17.46
5036   SEPT11       4_52     0.007   6.54 1.2e-07   0.07
9710   SOWAHB       4_52     0.005   5.00 7.3e-08   0.39
3202     CCNI       4_52     0.013  15.49 5.8e-07   2.03
5039    CCNG2       4_52     0.008   8.51 1.9e-07  -0.85
5040   CNOT6L       4_52     0.012  12.67 4.5e-07   2.44
8048    MRPL1       4_52     0.008   9.14 2.2e-07   1.02
5037    FRAS1       4_52     0.011  11.41 3.6e-07   1.29

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 17_23"
           genename region_tag susie_pip    mu2     PVE      z
12452          EPOP      17_23     0.001  13.92 5.4e-08  -1.18
12620         PSMB3      17_23     0.001   5.07 7.6e-09   0.36
12575       PIP4K2B      17_23     0.001  14.06 5.4e-08  -1.33
12450         CWC25      17_23     0.001   5.39 8.1e-09   0.23
16            LASP1      17_23     0.001   6.75 1.1e-08  -1.52
12051     LINC00672      17_23     0.778  33.56 7.6e-05   6.23
6848         PLXDC1      17_23     0.000   5.26 7.5e-09  -0.44
2297         FBXL20      17_23     0.001  93.05 1.4e-07  12.12
3731           MED1      17_23     0.034 171.73 1.7e-05 -15.67
4202         STARD3      17_23     0.001  20.70 4.2e-08   4.32
8601           TCAP      17_23     0.001  13.39 3.4e-08   2.43
5343           PNMT      17_23     0.001  12.59 3.1e-08  -2.01
6849          PGAP3      17_23     0.001  87.70 1.8e-07 -11.15
5341          ERBB2      17_23     0.001  18.63 3.5e-08  -4.74
5342           GRB7      17_23     0.006  17.05 2.8e-07   0.16
6850          IKZF3      17_23     0.001  17.34 2.8e-08   4.71
8390         ORMDL3      17_23     0.008  17.92 4.4e-07   0.15
12065 RP11-387H17.4      17_23     0.001  31.94 1.3e-07   4.86
7860          GSDMA      17_23     0.017  25.64 1.3e-06  -1.64
2299           CSF3      17_23     0.007  27.82 5.9e-07   4.24
3800          NR1D1      17_23     0.019  27.55 1.5e-06   3.34
9964           MSL1      17_23     0.001  12.05 3.9e-08  -1.51
2300       RAPGEFL1      17_23     0.107  38.02 1.2e-05   3.83
8318          WIPF2      17_23     0.002  17.41 8.3e-08  -2.75
1306           CDC6      17_23     0.001   7.69 2.0e-08   0.96
5344         IGFBP4      17_23     0.002  15.96 8.5e-08  -1.35
4201           TNS4      17_23     0.013  28.91 1.1e-06   2.82
12085  RP5-1028K7.2      17_23     0.001   9.42 2.2e-08   0.37
3799           CCR7      17_23     0.001  13.39 5.4e-08  -0.83
793         SMARCE1      17_23     0.001  10.28 2.7e-08   0.73
10827        KRT222      17_23     0.002  15.36 7.5e-08  -1.20

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 17_36"
      genename region_tag susie_pip    mu2     PVE     z
3385      TBX2      17_36     0.003 103.07 9.1e-07 13.91
11704    NACA2      17_36     0.003   5.53 4.3e-08 -0.77
4727     BRIP1      17_36     0.004   6.29 7.1e-08  0.31
2319     MED13      17_36     0.057  19.70 3.3e-06 -2.90
1138   METTL2A      17_36     0.017  22.70 1.1e-06 -2.40
5829      TLK2      17_36     0.016  14.06 6.7e-07  3.67
173       MRC2      17_36     0.003   5.39 4.6e-08 -0.82
8257     TANC2      17_36     0.003   4.80 3.6e-08 -0.06

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 1_69"
          genename region_tag susie_pip    mu2     PVE      z
7972        AHCYL1       1_69     0.006  17.12 3.0e-07  -1.78
5435        STRIP1       1_69     0.002   5.60 3.0e-08   0.58
3012         KCNC4       1_69     0.002   5.12 2.6e-08   0.63
6991         RBM15       1_69     0.005  14.58 2.0e-07   1.63
4439       LAMTOR5       1_69     0.006  16.48 2.9e-07   2.01
11908 RP11-284N8.3       1_69     0.003  10.84 1.0e-07   1.36
5438          CD53       1_69     0.002   4.87 2.4e-08   0.17
3435         LRIF1       1_69     0.002   8.56 6.2e-08  -0.88
6452         DRAM2       1_69     0.103  40.36 1.2e-05   3.35
4442         CEPT1       1_69     0.026  28.33 2.2e-06   2.76
6992       DENND2D       1_69     0.003   8.54 6.4e-08   1.31
1072         OVGP1       1_69     0.002   7.06 4.4e-08  -0.79
5437      C1orf162       1_69     0.003   9.42 7.3e-08   1.06
12689       ADORA3       1_69     0.007  17.14 3.5e-07  -2.04
3436        TMIGD3       1_69     0.006  15.76 2.6e-07   1.16
10298      FAM212B       1_69     0.017  25.99 1.3e-06  -2.06
11207    LINC01750       1_69     0.003   8.66 6.9e-08   0.54
4437         WNT2B       1_69     0.002   5.43 2.7e-08   0.84
113           ST7L       1_69     0.002   9.87 5.3e-08   2.65
3017        CAPZA1       1_69     0.002  23.39 1.7e-07   4.72
6402         MOV10       1_69     0.018  28.61 1.5e-06  -2.99
6403         PPM1J       1_69     0.956 175.92 4.9e-04 -13.57

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip      mu2     PVE      z
8152     rs79598313       1_18     1.000    55.79 1.6e-04  -7.91
39317     rs9425587       1_84     1.000    39.01 1.1e-04   6.25
42879    rs79091515       1_92     1.000    79.33 2.3e-04   9.80
56359    rs71180790      1_116     1.000   421.08 1.2e-03  -3.16
57319   rs766167074      1_118     1.000 13236.24 3.8e-02  -4.30
72537      rs780093       2_16     1.000   166.36 4.8e-04  17.73
72838   rs569546056       2_17     1.000   622.73 1.8e-03  -2.59
79387    rs11689011       2_29     1.000    37.87 1.1e-04  -5.98
97737    rs11123169       2_67     1.000    71.36 2.1e-04  -8.05
99817   rs141849010       2_69     1.000    54.45 1.6e-04   7.31
113117    rs7565788      2_103     1.000    64.99 1.9e-04   9.30
115472     rs863678      2_106     1.000   166.03 4.8e-04  11.18
124844   rs11887861      2_124     1.000   301.73 8.8e-04 -11.03
190069  rs146797780      3_110     1.000  9837.89 2.9e-02   2.47
190070    rs7636471      3_110     1.000  9855.72 2.9e-02   2.53
194690    rs7642977      3_119     1.000    51.97 1.5e-04   7.37
213680   rs66998340       4_36     1.000  1218.38 3.5e-03  -3.18
260411     rs386057        5_1     1.000    58.31 1.7e-04  -7.24
260557   rs62331274        5_2     1.000    44.10 1.3e-04   6.71
281256   rs11743158       5_41     1.000   109.74 3.2e-04  10.79
314557   rs35716097      5_106     1.000   177.80 5.2e-04  18.22
314560    rs7447593      5_106     1.000   213.02 6.2e-04  19.58
318263   rs13193887        6_7     1.000    98.98 2.9e-04  10.02
328253   rs56144236       6_27     1.000    47.21 1.4e-04  -4.54
331520    rs9471632       6_32     1.000    66.09 1.9e-04  -9.23
331636   rs10223666       6_34     1.000   253.25 7.4e-04  16.43
334158   rs76572975       6_38     1.000    40.23 1.2e-04  -7.13
358716  rs199804242       6_89     1.000 40055.20 1.2e-01   5.05
366568     rs629849      6_103     1.000    48.72 1.4e-04  -1.34
366589    rs1867350      6_103     1.000    48.77 1.4e-04   4.95
366642    rs3119311      6_104     1.000 43131.61 1.3e-01  16.16
366683   rs60425481      6_104     1.000 58747.63 1.7e-01   2.37
371145   rs78148157        7_2     1.000   212.20 6.2e-04 -11.39
371146   rs13241427        7_2     1.000   194.03 5.6e-04  12.32
387731     rs700752       7_34     1.000   125.50 3.6e-04  10.76
396788   rs10277379       7_49     1.000 40640.62 1.2e-01  12.60
396791  rs761767938       7_49     1.000 52520.77 1.5e-01  11.05
396799    rs1544459       7_49     1.000 51917.53 1.5e-01  11.28
410780    rs3757387       7_78     1.000    50.86 1.5e-04   8.53
431732    rs4871905       8_24     1.000   228.68 6.6e-04  16.47
443337   rs17397411       8_50     1.000    42.81 1.2e-04   6.28
461915    rs6996786       8_84     1.000  3441.00 1.0e-02   1.60
461922  rs200311702       8_84     1.000  3360.05 9.8e-03   3.90
467392   rs72693377       8_94     1.000    49.46 1.4e-04   7.24
504385    rs1886296       9_73     1.000    45.52 1.3e-04  -3.91
504398   rs12380852       9_73     1.000    44.02 1.3e-04   4.33
504878  rs113790047       10_2     1.000   138.23 4.0e-04  12.47
521385   rs35182775      10_33     1.000   104.24 3.0e-04 -10.82
537642    rs1408345      10_64     1.000    36.32 1.1e-04   5.68
549383     rs231889       11_2     1.000    59.11 1.7e-04  -8.73
559607  rs369062552      11_21     1.000   317.74 9.2e-04  15.06
559617   rs34830202      11_21     1.000   351.77 1.0e-03 -16.29
570120   rs72917317      11_38     1.000    70.82 2.1e-04  -7.67
595762   rs11616030      12_11     1.000    57.87 1.7e-04  -7.64
596787   rs11056397      12_13     1.000    47.71 1.4e-04  -6.76
608044    rs2682323      12_33     1.000    59.29 1.7e-04  -7.02
608692    rs7397189      12_36     1.000    74.36 2.2e-04  -8.81
673083   rs72681869      14_20     1.000    63.34 1.8e-04  -8.12
706200    rs2472297      15_35     1.000   119.10 3.5e-04 -11.99
706442  rs145727191      15_35     1.000    79.24 2.3e-04  11.21
706471    rs2955742      15_36     1.000    63.03 1.8e-04   8.90
707989    rs7174325      15_38     1.000    36.95 1.1e-04   5.72
726669   rs12927956      16_27     1.000   116.61 3.4e-04   9.37
732235    rs7187317      16_39     1.000    50.85 1.5e-04   5.50
745424  rs139356332      17_16     1.000    51.96 1.5e-04   8.03
745436    rs7222869      17_16     1.000    43.30 1.3e-04  -8.09
749083   rs12453645      17_23     1.000    84.15 2.4e-04  13.02
754278    rs3032584      17_35     1.000   245.54 7.1e-04  16.69
754336   rs11650989      17_36     1.000   243.42 7.1e-04 -19.89
767350     rs162000      18_14     1.000    58.81 1.7e-04   7.75
773724    rs2878889      18_27     1.000    44.92 1.3e-04  -6.53
794978   rs11084684      19_23     1.000    86.08 2.5e-04   9.12
796031    rs1137844      19_24     1.000    63.77 1.9e-04  -8.09
798234     rs814573      19_32     1.000    72.38 2.1e-04  -8.73
817239     rs209955      20_32     1.000    63.48 1.8e-04   8.91
817243    rs2585441      20_32     1.000    82.55 2.4e-04   9.27
817266    rs6068816      20_32     1.000    43.03 1.3e-04  -6.75
818454    rs6025623      20_33     1.000    48.59 1.4e-04   7.26
836030    rs2103861       22_9     1.000    34.80 1.0e-04  -5.69
893349   rs61114860       3_78     1.000  2188.49 6.4e-03   2.67
946073     rs667890       6_88     1.000 28879.64 8.4e-02   7.43
946075  rs148389913       6_88     1.000 29211.19 8.5e-02   7.02
946079     rs561826       6_88     1.000 28756.48 8.4e-02   7.06
967798  rs758184196       8_11     1.000   464.88 1.4e-03   2.64
974345  rs201524046      10_81     1.000 15840.10 4.6e-02  -6.50
974364  rs568584257      10_81     1.000 15784.68 4.6e-02  -2.04
990522  rs577954961      13_21     1.000   494.82 1.4e-03  -1.94
1017252 rs113956264       16_2     1.000    56.04 1.6e-04  -8.01
1061897  rs62080193      17_46     1.000 18469.38 5.4e-02  -4.07
1061905 rs113375436      17_46     1.000 18482.75 5.4e-02  -3.98
1078454 rs374141296      19_34     1.000 12084.60 3.5e-02  -3.31
1099298 rs202143810      20_38     1.000 13305.06 3.9e-02  -6.50
127641  rs112068790      2_129     0.999    37.63 1.1e-04  -7.53
200232    rs4533774       4_11     0.999    46.22 1.3e-04   6.65
222640  rs111470070       4_51     0.999    50.94 1.5e-04   5.66
231597    rs2903386       4_69     0.999    42.72 1.2e-04  -5.51
366580   rs12208357      6_103     0.999    49.68 1.4e-04  -2.51
798498   rs34783010      19_32     0.999    35.66 1.0e-04   5.84
828364     rs219783      21_17     0.999    54.50 1.6e-04  -7.26
924303  rs116339629       6_25     0.999    42.09 1.2e-04  -5.78
28190    rs12407689       1_62     0.998    33.23 9.6e-05   5.50
151354    rs6808104       3_35     0.998    56.89 1.6e-04  -3.74
504393   rs72773787       9_73     0.998    41.55 1.2e-04   4.15
527567   rs72797524      10_46     0.997    30.89 8.9e-05  -5.41
549180   rs17885785       11_2     0.997    86.03 2.5e-04   8.76
549381  rs186376420       11_2     0.997    47.28 1.4e-04  -7.99
990792    rs1885724      13_21     0.997   518.23 1.5e-03  -4.46
16649     rs2474382       1_38     0.996    29.28 8.5e-05  -5.51
569279    rs4601790      11_36     0.996    52.36 1.5e-04   2.39
836754     rs740219      22_10     0.996    35.84 1.0e-04  -3.87
1078451 rs113176985      19_34     0.996 12013.34 3.5e-02  -3.09
56353      rs287613      1_116     0.995   418.41 1.2e-03  -3.26
198571  rs115976359        4_8     0.995    29.69 8.6e-05  -5.34
272539    rs4703440       5_23     0.995    53.60 1.5e-04   7.02
732221   rs62053193      16_39     0.995    35.82 1.0e-04   4.57
750576    rs2074292      17_27     0.995    31.57 9.1e-05  -5.39
127650    rs6747041      2_129     0.994    96.36 2.8e-04 -11.00
418833     rs288762       7_97     0.994   114.88 3.3e-04  10.61
697406   rs74009639      15_17     0.994   177.26 5.1e-04  11.23
831939   rs73907568      21_23     0.994    28.97 8.4e-05   5.34
274051   rs17395128       5_26     0.992    34.97 1.0e-04  -5.73
322804    rs3763278       6_15     0.992    34.50 9.9e-05   5.03
688681   rs75432828      14_52     0.992    55.24 1.6e-04   7.71
812114   rs34106705      20_20     0.992    40.09 1.2e-04   6.72
192501   rs13069721      3_115     0.991    41.90 1.2e-04  -6.50
425214   rs10093915       8_13     0.989    61.88 1.8e-04   9.30
195452   rs13059257      3_120     0.988    72.20 2.1e-04   7.67
368865    rs1445288      6_108     0.988    30.94 8.9e-05   5.37
678006    rs1997896      14_32     0.988    39.52 1.1e-04  -5.79
790638   rs35218652      19_15     0.988    39.00 1.1e-04   5.10
212033   rs11732881       4_34     0.987    39.41 1.1e-04  -5.92
326934    rs2736429       6_26     0.987    57.70 1.7e-04   8.56
818396    rs6099616      20_33     0.987    29.81 8.5e-05   5.82
1017842 rs147350387       16_2     0.987    41.52 1.2e-04  -4.92
31795     rs3949262       1_72     0.986    36.68 1.1e-04  -5.91
503137  rs115478735       9_70     0.986    52.55 1.5e-04  -7.15
272649   rs11740818       5_23     0.985    32.30 9.2e-05  -5.28
276743  rs113088001       5_31     0.985    56.28 1.6e-04  -9.88
56370     rs1150916      1_116     0.984   253.33 7.2e-04  -4.05
104022    rs7602029       2_81     0.984    42.17 1.2e-04   6.84
243963  rs115900720       4_94     0.984    27.97 8.0e-05  -4.91
1068304  rs35601737      19_10     0.984    32.83 9.4e-05   5.87
167563    rs7640740       3_66     0.983    33.76 9.6e-05  -5.61
434470   rs12544558       8_31     0.983    58.05 1.7e-04  -6.14
745450   rs56700256      17_16     0.983    26.49 7.6e-05   4.85
799484     rs281380      19_33     0.981    50.06 1.4e-04  -6.97
404997     rs543883       7_65     0.980    26.89 7.7e-05   4.94
751075  rs137906947      17_27     0.980    29.39 8.4e-05   5.17
149475     rs811970       3_28     0.977    29.78 8.5e-05  -5.18
366593    rs1443844      6_103     0.977   165.77 4.7e-04   9.26
446210    rs2672853       8_55     0.976    29.35 8.3e-05  -4.11
592617   rs12370932       12_3     0.976    33.15 9.4e-05  -4.53
722540    rs9933330      16_19     0.976   538.20 1.5e-03 -24.08
740697    rs4790812       17_2     0.975    27.22 7.7e-05   5.01
54192    rs61830291      1_112     0.973    73.52 2.1e-04  -8.72
82508     rs3106204       2_36     0.973    57.03 1.6e-04   7.63
481171   rs11557154       9_26     0.973    34.77 9.8e-05  -6.02
701287   rs11855136      15_25     0.972    27.23 7.7e-05   4.96
842194   rs28477160      22_20     0.972    26.76 7.6e-05   4.16
489340    rs1360200       9_45     0.970    29.61 8.3e-05  -5.32
615171    rs1848968      12_48     0.969    39.33 1.1e-04  -6.17
411128   rs11764066       7_79     0.968    27.01 7.6e-05   5.31
674340   rs66913363      14_23     0.966    32.57 9.1e-05   5.22
276742    rs1694060       5_31     0.965    49.72 1.4e-04  -7.45
778326  rs532969215      18_35     0.965    25.66 7.2e-05  -4.81
452887   rs28628213       8_67     0.964    26.14 7.3e-05   4.73
418894    rs6459970       7_97     0.962    31.15 8.7e-05   5.84
685955    rs8013584      14_47     0.961    27.84 7.8e-05   5.85
15039     rs1331858       1_35     0.960    57.79 1.6e-04  -7.81
662482     rs750598      13_59     0.960    59.85 1.7e-04   7.90
542710    rs1932558      10_73     0.959    25.95 7.2e-05   4.86
113147    rs7594986      2_103     0.958    46.85 1.3e-04   8.14
117413   rs11690832      2_110     0.957    35.06 9.7e-05   6.62
360628   rs12216122       6_94     0.957    28.01 7.8e-05   4.96
498452   rs10817912       9_60     0.957    65.70 1.8e-04  -7.47
78251    rs13428381       2_27     0.956    63.03 1.8e-04  -8.30
386093   rs11761217       7_30     0.956    25.54 7.1e-05   4.63
840718   rs13055886      22_18     0.956    58.19 1.6e-04   6.98
516000   rs11007559      10_21     0.953    34.42 9.5e-05   5.82
796753    rs2228068      19_26     0.952    31.04 8.6e-05  -3.70
746478  rs117859452      17_17     0.950    25.02 6.9e-05   4.54
111582    rs4667700       2_99     0.949    26.14 7.2e-05  -4.74
331514    rs1015149       6_32     0.949    30.27 8.3e-05  -6.59
23069     rs6661091       1_50     0.948    78.46 2.2e-04   8.98
468545    rs1538532        9_3     0.948    25.78 7.1e-05   4.74
381227   rs67971665       7_23     0.945    43.51 1.2e-04  -6.48
579953   rs10892860      11_57     0.944    26.72 7.3e-05   4.92
274303    rs4957118       5_26     0.941    40.36 1.1e-04   7.31
318169    rs9378483        6_7     0.940    24.99 6.8e-05  -3.71
446236    rs2941452       8_55     0.939    38.46 1.0e-04  -5.34
564405   rs10219383      11_28     0.939    25.90 7.1e-05  -4.87
971908   rs34655427       8_12     0.937    31.36 8.5e-05  -3.01
127072    rs2068218      2_128     0.935    24.33 6.6e-05  -4.13
1018626  rs11546345       16_2     0.935    38.43 1.0e-04   6.18
840588   rs12484310      22_18     0.934    26.41 7.2e-05   4.72
274463  rs149976817       5_27     0.933    24.55 6.7e-05   4.32
260414  rs185228153        5_1     0.932    27.17 7.4e-05   3.20
806113    rs7264882       20_8     0.929    28.99 7.8e-05   5.18
790875    rs3794991      19_15     0.926    47.33 1.3e-04   7.01
53914      rs884127      1_112     0.925    27.40 7.4e-05  -4.85
490529    rs2185973       9_47     0.925    26.96 7.2e-05  -4.82
716953  rs148361522       16_6     0.924    24.09 6.5e-05  -4.50
285322  rs115912456       5_49     0.922    23.38 6.3e-05   4.43
358732    rs6923513       6_89     0.922 40129.02 1.1e-01   5.13
482682    rs2151421       9_30     0.922   192.08 5.1e-04 -14.63
974348   rs74160216      10_81     0.921 15779.22 4.2e-02  -2.10
111553   rs75483173       2_98     0.920    25.31 6.8e-05  -4.66
593041   rs78470967       12_5     0.920    25.25 6.8e-05  -5.22
305288    rs1800888       5_87     0.918    23.60 6.3e-05  -4.09
607125    rs1878234      12_31     0.918    27.68 7.4e-05  -4.48
77264    rs13418726       2_26     0.915    33.90 9.0e-05  -5.70
540344    rs2050996      10_69     0.915    35.56 9.5e-05   5.81
706472  rs143214734      15_36     0.912    25.09 6.7e-05   4.16
466304   rs56114972       8_92     0.911    24.18 6.4e-05  -4.15
187451    rs6770214      3_105     0.909    24.57 6.5e-05  -4.59
589406    rs3935795      11_80     0.909    26.65 7.0e-05   5.10
419154    rs2530736       7_98     0.908    37.36 9.9e-05   5.99
722533    rs9923532      16_19     0.907   194.37 5.1e-04  10.53
739783   rs34404057      16_54     0.907    86.75 2.3e-04   8.82
287421    rs3952745       5_53     0.905    25.31 6.7e-05  -5.13
357962    rs7753497       6_87     0.905    37.46 9.9e-05   7.44
739668  rs117652610      16_54     0.905    35.05 9.2e-05  -5.48
592681   rs79997404       12_3     0.904   110.03 2.9e-04  10.75
708388   rs28587782      15_38     0.904    45.72 1.2e-04   7.38
211372     rs278933       4_33     0.903    25.81 6.8e-05   4.71
351506    rs9285397       6_73     0.903    77.46 2.0e-04  -9.26
151195   rs73083115       3_33     0.899    25.47 6.7e-05   2.94
745448    rs7224838      17_16     0.898    38.74 1.0e-04   6.57
244922   rs10013413       4_96     0.896    32.37 8.4e-05  -5.40
318308    rs2842369        6_7     0.896    28.31 7.4e-05   5.18
419095  rs118063067       7_98     0.896    62.76 1.6e-04  -7.44
696025   rs62006522      15_13     0.895    24.61 6.4e-05  -3.68
363646    rs6939382       6_99     0.887    24.03 6.2e-05   4.35
589372    rs6590328      11_80     0.886    35.87 9.2e-05  -5.90
560435    rs7938708      11_22     0.882    24.56 6.3e-05   4.40
639262    rs1539547      13_13     0.880    23.54 6.0e-05  -4.39
82413    rs10182366       2_35     0.879    57.45 1.5e-04  -7.54
431722     rs310311       8_24     0.879    88.52 2.3e-04 -11.91
492688    rs1226592       9_50     0.875    27.05 6.9e-05   4.34
26685   rs138475481       1_58     0.874    37.25 9.5e-05   6.48
396225      rs17685       7_48     0.874    85.98 2.2e-04  -9.47
740835    rs3760230       17_3     0.873    33.73 8.6e-05   5.63
97672     rs3811056       2_66     0.872    28.07 7.1e-05   4.73
61853     rs1148917      1_130     0.869    25.44 6.4e-05   4.68
115532   rs72940807      2_106     0.869    39.87 1.0e-04   8.03
302629   rs62383025       5_82     0.869    29.97 7.6e-05   5.45
482601  rs117451470       9_30     0.869    25.68 6.5e-05  -4.67
480844   rs10971408       9_25     0.868    26.84 6.8e-05  -3.31
713948   rs59646751      15_48     0.868    67.29 1.7e-04   8.23
129753   rs13029395      2_133     0.867    30.27 7.6e-05  -5.65
350116    rs6571142       6_70     0.867    23.99 6.0e-05  -4.35
580537     rs625505      11_58     0.867    24.27 6.1e-05  -4.42
528343   rs11594851      10_47     0.866    24.65 6.2e-05  -4.49
870310   rs78366259       1_69     0.865    33.19 8.3e-05   4.65
205258   rs61359609       4_20     0.863    39.59 9.9e-05  -6.41
666658    rs2378813       14_7     0.857    24.77 6.2e-05   4.41
726503    rs7205341      16_27     0.856    39.06 9.7e-05   5.97
79161    rs74449116       2_28     0.855    25.57 6.4e-05   4.55
144125     rs697025       3_17     0.854    25.21 6.3e-05  -4.67
469504   rs10974435        9_4     0.854    33.44 8.3e-05  -6.63
696400   rs75855252      15_14     0.852    23.82 5.9e-05  -4.04
113179    rs6433115      2_103     0.848    29.05 7.2e-05  -5.77
964871    rs3918226       7_93     0.846    30.05 7.4e-05   5.57
30754   rs142669954       1_70     0.845    27.79 6.8e-05   5.24
72841     rs4580350       2_17     0.844   621.18 1.5e-03   2.57
785262   rs34188292       19_2     0.844    31.63 7.8e-05   6.17
49289    rs12024377      1_104     0.843    33.36 8.2e-05  -5.36
628223   rs80019595      12_74     0.843    53.20 1.3e-04   7.36
151820  rs146456061       3_35     0.842    30.85 7.5e-05  -4.46
172659    rs1501899       3_75     0.842    32.18 7.9e-05  -4.62
47833   rs145759918      1_101     0.839    25.96 6.3e-05  -4.94
616015    rs7137360      12_50     0.839    44.49 1.1e-04   6.48
238055   rs10031936       4_81     0.837    23.84 5.8e-05  -4.32
305262    rs6885118       5_87     0.825    25.26 6.1e-05   4.24
433838  rs139800483       8_29     0.825    25.63 6.1e-05  -4.62
329980   rs10947659       6_29     0.824    25.57 6.1e-05   4.50
614332    rs1690139      12_46     0.822    25.37 6.1e-05  -4.26
92985   rs146133332       2_55     0.821    24.39 5.8e-05  -4.30
99903     rs4241160       2_69     0.821    26.72 6.4e-05   4.31
695117   rs12908082      15_11     0.820    25.35 6.0e-05  -4.42
696575    rs4419033      15_15     0.820   118.03 2.8e-04  10.88
827516    rs2834321      21_15     0.817    88.68 2.1e-04   9.57
762242     rs940131       18_4     0.815    71.97 1.7e-04   8.61
61744     rs2171975      1_128     0.814    74.46 1.8e-04  -8.72
233161    rs6533522       4_72     0.813    26.41 6.2e-05  -4.53
463505   rs57286830       8_87     0.812    24.75 5.8e-05  -4.38
730696    rs7204242      16_35     0.810    25.94 6.1e-05   4.75
595623   rs12824533      12_11     0.809    25.46 6.0e-05  -4.56
187770   rs59976239      3_105     0.806    24.78 5.8e-05  -4.41
549176    rs7115054       11_2     0.805    88.42 2.1e-04   8.84
153610   rs35364740       3_39     0.801    27.93 6.5e-05   5.00

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE     z
366679   rs3106169      6_104     0.722 58815.42 1.2e-01 10.90
366688   rs3106167      6_104     0.705 58815.13 1.2e-01 10.90
366680   rs3127598      6_104     0.135 58814.10 2.3e-02 10.89
366672  rs11755965      6_104     0.001 58795.53 1.4e-04 10.88
366683  rs60425481      6_104     1.000 58747.63 1.7e-01  2.37
366663  rs12194962      6_104     0.000 58670.08 0.0e+00 10.83
366681   rs3127597      6_104     0.000 58626.50 1.1e-16 10.77
396791 rs761767938       7_49     1.000 52520.77 1.5e-01 11.05
396799   rs1544459       7_49     1.000 51917.53 1.5e-01 11.28
396795  rs11972122       7_49     0.000 47342.11 1.4e-10 10.18
396796  rs11406602       7_49     0.000 47304.19 3.7e-07 10.20
396800   rs1544458       7_49     0.000 46487.06 0.0e+00 10.31
396790   rs6465794       7_49     0.000 45887.31 4.4e-17 10.03
396789   rs6465793       7_49     0.000 45886.69 5.9e-17 10.03
396820  rs10272350       7_49     0.000 45788.53 0.0e+00  9.89
396824   rs2463008       7_49     0.000 43648.16 0.0e+00 10.84
396830  rs10267180       7_49     0.000 43634.83 0.0e+00 10.79
396770  rs13240016       7_49     0.000 43402.80 0.0e+00  9.61
366642   rs3119311      6_104     1.000 43131.61 1.3e-01 16.16
396779   rs7799383       7_49     0.000 42348.78 0.0e+00  9.62
396788  rs10277379       7_49     1.000 40640.62 1.2e-01 12.60
358732   rs6923513       6_89     0.922 40129.02 1.1e-01  5.13
358715   rs2327654       6_89     0.485 40125.40 5.7e-02  5.11
358716 rs199804242       6_89     1.000 40055.20 1.2e-01  5.05
396782   rs7795371       7_49     0.000 39976.74 3.8e-13 12.47
358719 rs113527452       6_89     0.000 39915.74 1.5e-15  5.09
358724 rs200796875       6_89     0.000 39678.77 0.0e+00  4.95
358737   rs7756915       6_89     0.000 39436.09 0.0e+00  5.15
358730   rs6570040       6_89     0.000 37837.76 0.0e+00  4.88
358717   rs6570031       6_89     0.000 37741.52 0.0e+00  4.82
358718   rs9389323       6_89     0.000 37724.42 0.0e+00  4.80
396844    rs848470       7_49     0.000 35841.55 0.0e+00 -8.16
358734   rs9321531       6_89     0.000 33112.24 0.0e+00  4.53
358707   rs9321528       6_89     0.000 32710.24 0.0e+00  5.35
366636   rs3127579      6_104     0.000 31596.01 0.0e+00 17.91
358735   rs9494389       6_89     0.000 31093.10 0.0e+00  4.31
358739   rs5880262       6_89     0.000 31043.45 0.0e+00  4.66
396738   rs9640663       7_49     0.000 30333.36 0.0e+00  8.74
396734   rs2868787       7_49     0.000 30332.82 0.0e+00  8.72
358713   rs2208574       6_89     0.000 30012.60 0.0e+00  4.50
358712   rs1033755       6_89     0.000 29996.48 0.0e+00  4.27
396768  rs58729654       7_49     0.000 29854.37 0.0e+00 10.11
396749   rs4727451       7_49     0.000 29817.15 0.0e+00  8.48
358710   rs2038551       6_89     0.000 29470.18 0.0e+00  5.25
358721   rs9494377       6_89     0.000 29458.44 0.0e+00  4.32
358708   rs2038550       6_89     0.000 29391.21 0.0e+00  5.22
946075 rs148389913       6_88     1.000 29211.19 8.5e-02  7.02
946073    rs667890       6_88     1.000 28879.64 8.4e-02  7.43
946079    rs561826       6_88     1.000 28756.48 8.4e-02  7.06
396762   rs6465771       7_49     0.000 28679.65 0.0e+00  7.64

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip      mu2    PVE     z
366683   rs60425481      6_104     1.000 58747.63 0.1700  2.37
396791  rs761767938       7_49     1.000 52520.77 0.1500 11.05
396799    rs1544459       7_49     1.000 51917.53 0.1500 11.28
366642    rs3119311      6_104     1.000 43131.61 0.1300 16.16
358716  rs199804242       6_89     1.000 40055.20 0.1200  5.05
366679    rs3106169      6_104     0.722 58815.42 0.1200 10.90
366688    rs3106167      6_104     0.705 58815.13 0.1200 10.90
396788   rs10277379       7_49     1.000 40640.62 0.1200 12.60
358732    rs6923513       6_89     0.922 40129.02 0.1100  5.13
946075  rs148389913       6_88     1.000 29211.19 0.0850  7.02
946073     rs667890       6_88     1.000 28879.64 0.0840  7.43
946079     rs561826       6_88     1.000 28756.48 0.0840  7.06
358715    rs2327654       6_89     0.485 40125.40 0.0570  5.11
1061897  rs62080193      17_46     1.000 18469.38 0.0540 -4.07
1061905 rs113375436      17_46     1.000 18482.75 0.0540 -3.98
974345  rs201524046      10_81     1.000 15840.10 0.0460 -6.50
974364  rs568584257      10_81     1.000 15784.68 0.0460 -2.04
974348   rs74160216      10_81     0.921 15779.22 0.0420 -2.10
1099298 rs202143810      20_38     1.000 13305.06 0.0390 -6.50
57319   rs766167074      1_118     1.000 13236.24 0.0380 -4.30
1078451 rs113176985      19_34     0.996 12013.34 0.0350 -3.09
1078454 rs374141296      19_34     1.000 12084.60 0.0350 -3.31
190069  rs146797780      3_110     1.000  9837.89 0.0290  2.47
190070    rs7636471      3_110     1.000  9855.72 0.0290  2.53
1099295   rs6089961      20_38     0.659 13131.44 0.0250 -6.78
1099297   rs2738758      20_38     0.659 13131.44 0.0250 -6.78
366680    rs3127598      6_104     0.135 58814.10 0.0230 10.89
57316    rs10489611      1_118     0.456 13150.75 0.0170 -4.67
1061986  rs57707013      17_46     0.503 11137.05 0.0160 -5.84
57310     rs2256908      1_118     0.363 13149.83 0.0140 -4.67
1099278   rs2750483      20_38     0.360 13127.25 0.0140 -6.79
57318      rs971534      1_118     0.285 13150.51 0.0110 -4.65
57317     rs2486737      1_118     0.266 13150.46 0.0100 -4.65
461915    rs6996786       8_84     1.000  3441.00 0.0100  1.60
461922  rs200311702       8_84     1.000  3360.05 0.0098  3.90
57313     rs2790891      1_118     0.251 13149.59 0.0096 -4.66
57314     rs2491405      1_118     0.251 13149.59 0.0096 -4.66
1099276  rs35201382      20_38     0.247 13127.33 0.0094 -6.77
1099277  rs67468102      20_38     0.248 13125.46 0.0094 -6.78
57326     rs2211176      1_118     0.231 13145.30 0.0088 -4.66
57327     rs2790882      1_118     0.231 13145.30 0.0088 -4.66
1099273   rs2315009      20_38     0.192 13123.23 0.0073 -6.79
893349   rs61114860       3_78     1.000  2188.49 0.0064  2.67
1078458   rs2946865      19_34     0.178 11949.98 0.0062 -3.17
57325     rs2248646      1_118     0.157 13144.52 0.0060 -4.65
57306     rs1076804      1_118     0.130 13130.83 0.0050 -4.68
1078449  rs73056069      19_34     0.108 11942.27 0.0037 -3.20
213680   rs66998340       4_36     1.000  1218.38 0.0035 -3.18
1078444  rs35295508      19_34     0.092 11982.46 0.0032 -3.15
213683     rs728294       4_36     0.771  1249.53 0.0028 -3.21

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip    mu2     PVE      z
697396   rs1145077      15_17     0.373 447.75 4.9e-04  27.01
697393   rs1153855      15_17     0.313 447.14 4.1e-04  27.00
697398   rs1346267      15_17     0.229 446.31 3.0e-04  26.98
697392  rs35410548      15_17     0.088 442.15 1.1e-04  26.89
222759  rs17253722       4_52     0.697 504.83 1.0e-03  26.25
222758  rs60529470       4_52     0.305 502.99 4.5e-04  26.19
697400   rs1145074      15_17     0.161 455.96 2.1e-04  26.09
697395   rs2114501      15_17     0.048 452.16 6.3e-05  26.00
697388   rs4775909      15_17     0.028 450.52 3.7e-05  25.98
697390   rs4625670      15_17     0.024 449.96 3.2e-05  25.96
697389  rs77940260      15_17     0.017 448.86 2.2e-05  25.91
697391   rs3047503      15_17     0.017 448.78 2.2e-05  25.91
697386 rs143910737      15_17     0.006 445.43 7.2e-06  25.78
697397   rs1153852      15_17     0.001 409.81 1.5e-06  25.47
697384  rs35715322      15_17     0.001 390.61 6.7e-07  25.39
697403   rs2433616      15_17     0.001 390.28 1.0e-06  24.72
697385   rs1613559      15_17     0.001 409.68 7.2e-07  24.70
697383  rs12593370      15_17     0.001 403.84 6.9e-07  24.56
222772  rs13146163       4_52     0.008 401.16 9.8e-06  24.33
697382  rs66893308      15_17     0.001 363.34 8.2e-07  24.15
722540   rs9933330      16_19     0.976 538.20 1.5e-03 -24.08
722538  rs28544423      16_19     0.024 530.71 3.6e-05 -23.84
722534  rs35830321      16_19     0.000 517.55 6.9e-10 -23.73
417240  rs10224210       7_94     0.659 520.03 1.0e-03  23.69
417242  rs10224002       7_94     0.346 520.49 5.2e-04  23.66
722535  rs12934320      16_19     0.000 521.78 5.5e-07 -23.62
722537  rs28640218      16_19     0.000 517.23 1.2e-08 -23.54
697381   rs2015295      15_17     0.001 306.13 6.5e-07  22.29
697379  rs11636114      15_17     0.001 299.80 7.0e-07 -22.11
697376  rs77342224      15_17     0.001 296.32 7.3e-07 -21.99
697373  rs12909625      15_17     0.001 275.29 8.9e-07 -21.16
697374  rs12909883      15_17     0.001 275.35 8.9e-07 -21.16
697375   rs8041874      15_17     0.001 274.91 9.0e-07 -21.15
697369  rs11854325      15_17     0.001 268.54 8.9e-07 -20.90
697370  rs11632778      15_17     0.001 268.26 9.0e-07 -20.89
222734  rs72657813       4_52     0.003 278.92 2.4e-06  20.55
222775   rs2068062       4_52     0.004 276.45 2.9e-06  20.55
222776  rs13106227       4_52     0.003 275.29 2.8e-06  20.53
222777  rs11730486       4_52     0.003 274.78 2.7e-06  20.52
222727   rs3839121       4_52     0.003 276.67 2.2e-06  20.51
222778   rs4859683       4_52     0.003 273.86 2.7e-06  20.50
697372  rs12910143      15_17     0.001 291.75 8.0e-07 -20.47
417238  rs66497154       7_94     0.002 380.62 2.2e-06  20.35
222743  rs59795151       4_52     0.002 259.80 1.5e-06  20.13
222779   rs4493564       4_52     0.002 258.32 1.8e-06  20.12
754336  rs11650989      17_36     1.000 243.42 7.1e-04 -19.89
722539   rs7193058      16_19     0.000 421.77 3.1e-10  19.85
274011    rs700231       5_26     0.587 206.74 3.5e-04  19.81
274013    rs700237       5_26     0.405 205.61 2.4e-04  19.79
314560   rs7447593      5_106     1.000 213.02 6.2e-04  19.58

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 32
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
SLC22A7 gene(s) from the input list not found in DisGeNET CURATEDCYB561D1 gene(s) from the input list not found in DisGeNET CURATEDSYTL1 gene(s) from the input list not found in DisGeNET CURATEDRPS11 gene(s) from the input list not found in DisGeNET CURATEDKIF26B gene(s) from the input list not found in DisGeNET CURATEDPPM1J gene(s) from the input list not found in DisGeNET CURATEDCDK5RAP3 gene(s) from the input list not found in DisGeNET CURATEDGTDC1 gene(s) from the input list not found in DisGeNET CURATEDTMEM176B gene(s) from the input list not found in DisGeNET CURATEDPRIM1 gene(s) from the input list not found in DisGeNET CURATEDTNKS gene(s) from the input list not found in DisGeNET CURATEDDLEU1 gene(s) from the input list not found in DisGeNET CURATEDAMZ2 gene(s) from the input list not found in DisGeNET CURATEDPPDPF gene(s) from the input list not found in DisGeNET CURATED
                                                                 Description
38                                                           Opisthorchiasis
45                                                     Rickettsia Infections
58                                                     Tick-Borne Infections
59                                                       Tick-Borne Diseases
80                                           Opisthorchis felineus Infection
81                                          Opisthorchis viverrini Infection
94                                                 Dilatation of the bladder
125                                         DEAFNESS, AUTOSOMAL RECESSIVE 32
134 GLUCOCORTICOID DEFICIENCY 4 WITH OR WITHOUT MINERALOCORTICOID DEFICIENCY
138                         COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY 20
           FDR Ratio BgRatio
38  0.02445606  1/18  1/9703
45  0.02445606  1/18  1/9703
58  0.02445606  1/18  1/9703
59  0.02445606  1/18  1/9703
80  0.02445606  1/18  1/9703
81  0.02445606  1/18  1/9703
94  0.02445606  1/18  1/9703
125 0.02445606  1/18  1/9703
134 0.02445606  1/18  1/9703
138 0.02445606  1/18  1/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2