Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30690_irnt_Whole_Blood.Rmd) and HTML (docs/ukb-d-30690_irnt_Whole_Blood.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Cholesterol (quantile) using Whole_Blood gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30690_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Whole_Blood eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11095
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1129  747  624  400  479  621  560  383  404  430  682  652  192  362  331 
  16   17   18   19   20   21   22 
 551  725  159  911  313  130  310 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.762776

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0078757450 0.0001430904 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
31.01605 18.32981 
#report sample size
print(sample_size)
[1] 344278
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11095 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.007872202 0.066259029 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.0867693 0.5813093

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
      genename region_tag susie_pip      mu2     PVE      z
8166     PCSK9       1_34     1.000   138.54 4.0e-04  20.24
4564     PSRC1       1_67     1.000  1137.34 3.3e-03 -34.67
5665     CNIH4      1_114     1.000    63.59 1.8e-04   7.94
23        M6PR       12_9     1.000    86.41 2.5e-04   7.82
4151      LDLR       19_9     1.000   506.62 1.5e-03 -22.23
1980     FCGRT      19_34     1.000 21028.31 6.1e-02  -4.14
7462     DAGLB        7_9     0.996    64.97 1.9e-04   8.15
5839     TIMD4       5_92     0.995   298.14 8.6e-04  15.97
6892      PKN3       9_66     0.982    51.91 1.5e-04  -7.05
6064     PTPRJ      11_29     0.981    68.23 1.9e-04   6.86
7089      USP1       1_39     0.971   473.40 1.3e-03  22.52
128      TEAD3       6_29     0.954    27.07 7.5e-05  -4.03
6089     FADS1      11_34     0.943   244.57 6.7e-04 -17.38
11023    SIPA1      11_36     0.942    30.40 8.3e-05  -5.99
9073      HIC1       17_3     0.939    28.36 7.7e-05   5.03
3378      GPAM      10_70     0.880    47.01 1.2e-04   6.02
10343    ZFP28      19_38     0.829    25.79 6.2e-05  -4.70
697      HDAC4      2_143     0.794    23.57 5.4e-05  -4.39
3979      VIL1      2_129     0.792    35.43 8.2e-05   5.71
7128      ACP6       1_73     0.786    23.22 5.3e-05   4.06

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
         genename region_tag susie_pip      mu2     PVE      z
1980        FCGRT      19_34     1.000 21028.31 6.1e-02  -4.14
5520         RCN3      19_34     0.000  6729.77 0.0e+00  -4.59
168         SPRTN      1_118     0.000  4252.95 1.1e-11  -3.04
3138        EXOC8      1_118     0.000  3058.18 0.0e+00  -2.76
8165        CPT1C      19_34     0.000  1484.76 0.0e+00   2.95
4564        PSRC1       1_67     1.000  1137.34 3.3e-03 -34.67
3140        TSNAX      1_118     0.000   588.46 0.0e+00   0.16
4151         LDLR       19_9     1.000   506.62 1.5e-03 -22.23
7089         USP1       1_39     0.971   473.40 1.3e-03  22.52
11441       APOC2      19_31     0.423   446.14 5.5e-04  36.37
4137         MAU2      19_15     0.009   420.84 1.1e-05  20.65
3102        DOCK7       1_39     0.012   407.96 1.5e-05  20.88
571       SLC6A16      19_34     0.000   380.78 0.0e+00   1.38
4161       TOMM40      19_31     0.000   372.63 0.0e+00  -1.44
7145        DISC1      1_118     0.000   359.72 0.0e+00  -0.79
10492 CTC-301O7.4      19_34     0.000   354.86 0.0e+00   0.54
4159      NECTIN2      19_31     0.000   353.83 0.0e+00  13.29
12134       APOC4      19_31     0.000   349.63 0.0e+00  11.29
2131      ATP13A1      19_15     0.190   313.84 1.7e-04 -17.67
5839        TIMD4       5_92     0.995   298.14 8.6e-04  15.97

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
      genename region_tag susie_pip      mu2     PVE      z
1980     FCGRT      19_34     1.000 21028.31 6.1e-02  -4.14
4564     PSRC1       1_67     1.000  1137.34 3.3e-03 -34.67
4151      LDLR       19_9     1.000   506.62 1.5e-03 -22.23
7089      USP1       1_39     0.971   473.40 1.3e-03  22.52
5839     TIMD4       5_92     0.995   298.14 8.6e-04  15.97
6089     FADS1      11_34     0.943   244.57 6.7e-04 -17.38
11441    APOC2      19_31     0.423   446.14 5.5e-04  36.37
8166     PCSK9       1_34     1.000   138.54 4.0e-04  20.24
23        M6PR       12_9     1.000    86.41 2.5e-04   7.82
7462     DAGLB        7_9     0.996    64.97 1.9e-04   8.15
6064     PTPRJ      11_29     0.981    68.23 1.9e-04   6.86
5665     CNIH4      1_114     1.000    63.59 1.8e-04   7.94
2131   ATP13A1      19_15     0.190   313.84 1.7e-04 -17.67
5355     DHX38      16_38     0.674    75.06 1.5e-04   7.91
6892      PKN3       9_66     0.982    51.91 1.5e-04  -7.05
1366   CWF19L1      10_64     0.778    63.07 1.4e-04   7.96
6395   UBASH3B      11_74     0.622    72.18 1.3e-04  -8.46
3378      GPAM      10_70     0.880    47.01 1.2e-04   6.02
10847   TRIM15       6_26     0.422    81.18 1.0e-04   8.40
5318      USP3      15_29     0.681    46.91 9.3e-05   6.34

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
          genename region_tag susie_pip     mu2     PVE      z
11441        APOC2      19_31     0.423  446.14 5.5e-04  36.37
4564         PSRC1       1_67     1.000 1137.34 3.3e-03 -34.67
7089          USP1       1_39     0.971  473.40 1.3e-03  22.52
4151          LDLR       19_9     1.000  506.62 1.5e-03 -22.23
3102         DOCK7       1_39     0.012  407.96 1.5e-05  20.88
4137          MAU2      19_15     0.009  420.84 1.1e-05  20.65
8166         PCSK9       1_34     1.000  138.54 4.0e-04  20.24
7053          BSND       1_34     0.000  138.77 5.0e-11  19.00
2131       ATP13A1      19_15     0.190  313.84 1.7e-04 -17.67
6089         FADS1      11_34     0.943  244.57 6.7e-04 -17.38
5839         TIMD4       5_92     0.995  298.14 8.6e-04  15.97
331           SARS       1_67     0.038  246.30 2.7e-05 -15.58
12254 CTC-366B18.4       5_44     0.015  139.56 6.2e-06 -14.97
2793      COL4A3BP       5_44     0.019  134.61 7.2e-06  14.37
2496          ZPR1      11_70     0.098  161.61 4.6e-05 -13.84
4159       NECTIN2      19_31     0.000  353.83 0.0e+00  13.29
4636         FADS2      11_34     0.003  159.13 1.4e-06 -12.81
5562        CELSR2       1_67     0.010  142.87 4.3e-06  12.00
12134        APOC4      19_31     0.000  349.63 0.0e+00  11.29
5512         CARM1       19_9     0.000  114.65 0.0e+00 -10.98

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.02442542
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
          genename region_tag susie_pip     mu2     PVE      z
11441        APOC2      19_31     0.423  446.14 5.5e-04  36.37
4564         PSRC1       1_67     1.000 1137.34 3.3e-03 -34.67
7089          USP1       1_39     0.971  473.40 1.3e-03  22.52
4151          LDLR       19_9     1.000  506.62 1.5e-03 -22.23
3102         DOCK7       1_39     0.012  407.96 1.5e-05  20.88
4137          MAU2      19_15     0.009  420.84 1.1e-05  20.65
8166         PCSK9       1_34     1.000  138.54 4.0e-04  20.24
7053          BSND       1_34     0.000  138.77 5.0e-11  19.00
2131       ATP13A1      19_15     0.190  313.84 1.7e-04 -17.67
6089         FADS1      11_34     0.943  244.57 6.7e-04 -17.38
5839         TIMD4       5_92     0.995  298.14 8.6e-04  15.97
331           SARS       1_67     0.038  246.30 2.7e-05 -15.58
12254 CTC-366B18.4       5_44     0.015  139.56 6.2e-06 -14.97
2793      COL4A3BP       5_44     0.019  134.61 7.2e-06  14.37
2496          ZPR1      11_70     0.098  161.61 4.6e-05 -13.84
4159       NECTIN2      19_31     0.000  353.83 0.0e+00  13.29
4636         FADS2      11_34     0.003  159.13 1.4e-06 -12.81
5562        CELSR2       1_67     0.010  142.87 4.3e-06  12.00
12134        APOC4      19_31     0.000  349.63 0.0e+00  11.29
5512         CARM1       19_9     0.000  114.65 0.0e+00 -10.98

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 19_31"
      genename region_tag susie_pip    mu2     PVE     z
6822    ZNF235      19_31     0.000  42.24 0.00000 -5.30
12136   ZNF285      19_31     0.000  13.46 0.00000 -0.09
7892    ZNF180      19_31     0.000  26.96 0.00000  1.26
820        PVR      19_31     0.000 165.29 0.00000 -8.31
11152   IGSF23      19_31     0.000  19.05 0.00000 -1.84
9941  CEACAM19      19_31     0.000  51.38 0.00000  6.75
4159   NECTIN2      19_31     0.000 353.83 0.00000 13.29
4161    TOMM40      19_31     0.000 372.63 0.00000 -1.44
12134    APOC4      19_31     0.000 349.63 0.00000 11.29
11441    APOC2      19_31     0.423 446.14 0.00055 36.37
1977    CLPTM1      19_31     0.000  26.78 0.00000 -3.78
8368    ZNF296      19_31     0.000  19.27 0.00000 -4.70
5505    GEMIN7      19_31     0.000   7.99 0.00000  3.43
1979   PPP1R37      19_31     0.000 146.88 0.00000 -3.47
10171  BLOC1S3      19_31     0.000  48.98 0.00000  3.08
116   TRAPPC6A      19_31     0.000 132.44 0.00000  2.54
12615  EXOC3L2      19_31     0.000  36.15 0.00000 -1.02
111      MARK4      19_31     0.000  10.21 0.00000 -2.01
1988      KLC3      19_31     0.000  10.63 0.00000 -3.03
1982  PPP1R13L      19_31     0.000  19.52 0.00000 -2.34
3230    CD3EAP      19_31     0.000  19.52 0.00000 -2.34
213      ERCC1      19_31     0.000  25.44 0.00000 -2.03
11059    PPM1N      19_31     0.000  20.29 0.00000 -2.54
3830      RTN2      19_31     0.000  12.46 0.00000  4.78
3831      VASP      19_31     0.000   5.97 0.00000  3.74

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 1_67"
          genename region_tag susie_pip     mu2     PVE      z
11280 RP11-356N1.2       1_67     0.012    9.26 3.1e-07  -1.63
1102      SLC25A24       1_67     0.010    6.08 1.7e-07   0.87
7095       FAM102B       1_67     0.026   26.19 2.0e-06  -3.88
7096        HENMT1       1_67     0.052   21.70 3.3e-06  -2.46
3080        STXBP3       1_67     0.010    8.64 2.6e-07   1.92
3522         GPSM2       1_67     0.014    8.76 3.5e-07   0.75
3521         CLCC1       1_67     0.012   15.03 5.1e-07  -3.11
10487        TAF13       1_67     0.014   43.32 1.8e-06  -5.81
11143     TMEM167B       1_67     0.026   12.84 9.6e-07   0.36
9291      C1orf194       1_67     0.011   10.55 3.3e-07  -0.64
1099         WDR47       1_67     0.011   11.07 3.4e-07  -0.89
3084      KIAA1324       1_67     0.014   29.70 1.2e-06   4.46
331           SARS       1_67     0.038  246.30 2.7e-05 -15.58
5562        CELSR2       1_67     0.010  142.87 4.3e-06  12.00
4564         PSRC1       1_67     1.000 1137.34 3.3e-03 -34.67
7099       ATXN7L2       1_67     0.009   10.77 2.8e-07   2.44
8776      CYB561D1       1_67     0.086   38.57 9.6e-06   4.42
9435        AMIGO1       1_67     0.011   26.68 8.3e-07  -4.60
617          GNAI3       1_67     0.011   25.57 7.9e-07   4.62
11016        GSTM2       1_67     0.012    7.32 2.5e-07  -0.90
8107         GSTM4       1_67     0.009   27.81 7.3e-07  -4.95
4559         GSTM1       1_67     0.010   14.55 4.1e-07   3.14
4561         GSTM5       1_67     0.010    8.25 2.5e-07   1.44
4562         GSTM3       1_67     0.010   20.90 6.1e-07  -4.02

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 1_39"
     genename region_tag susie_pip    mu2     PVE     z
7088    TM2D1       1_39     0.141  34.15 1.4e-05  3.25
4449     PATJ       1_39     0.009   5.33 1.4e-07 -0.59
7089     USP1       1_39     0.971 473.40 1.3e-03 22.52
3102    DOCK7       1_39     0.012 407.96 1.5e-05 20.88
3822    ATG4C       1_39     0.025  17.64 1.3e-06 -2.42

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 19_9"
           genename region_tag susie_pip    mu2     PVE      z
4240         ZNF317       19_9         0   5.83 0.0e+00  -0.71
10208        ZNF699       19_9         0  29.95 0.0e+00  -2.00
10092        ZNF559       19_9         0   6.81 0.0e+00   0.92
8818         ZNF266       19_9         0   8.71 0.0e+00  -0.94
4245         ZNF426       19_9         0  15.67 0.0e+00  -1.09
12567  CTC-543D15.8       19_9         0  27.55 0.0e+00   1.92
10522        ZNF121       19_9         0  15.21 0.0e+00  -1.06
8463         ZNF561       19_9         0   5.16 0.0e+00  -0.40
8461         ZNF562       19_9         0  17.41 0.0e+00  -1.32
12539 CTD-3116E22.8       19_9         0   7.56 0.0e+00   0.34
10303        ZNF846       19_9         0   7.75 0.0e+00  -0.36
3954         FBXL12       19_9         0  13.59 0.0e+00   0.97
10572          UBL5       19_9         0  17.12 0.0e+00  -1.33
1004         COL5A3       19_9         0   9.51 0.0e+00   0.69
4243        ANGPTL6       19_9         0  12.93 0.0e+00  -1.17
11635        P2RY11       19_9         0   6.07 0.0e+00  -0.59
4241           PPAN       19_9         0  22.21 0.0e+00  -2.32
4244       C19orf66       19_9         0   8.93 0.0e+00   1.69
4242          EIF3G       19_9         0   7.29 0.0e+00   1.34
2062          MRPL4       19_9         0  19.46 0.0e+00  -0.15
1256          ICAM1       19_9         0  20.47 0.0e+00  -1.03
2068          ICAM5       19_9         0   9.26 0.0e+00  -1.29
11171         ZGLP1       19_9         0   7.51 0.0e+00  -0.79
12143          FDX2       19_9         0  40.23 0.0e+00  -4.64
6996         RAVER1       19_9         0  10.19 0.0e+00   1.46
913           ICAM3       19_9         0  25.81 0.0e+00  -0.82
2072           TYK2       19_9         0  96.91 1.8e-17   3.23
650           PDE4A       19_9         0  19.86 0.0e+00  -0.06
9357          S1PR5       19_9         0  20.48 0.0e+00   1.74
4228          ATG4D       19_9         0  42.20 0.0e+00  -4.81
4101           KRI1       19_9         0  11.40 0.0e+00   0.82
4104         CDKN2D       19_9         0  45.56 0.0e+00   3.26
4103          AP1M2       19_9         0 112.85 6.1e-17  -5.62
4102        SLC44A2       19_9         0 127.61 1.0e-13  -4.17
12119      ILF3-AS1       19_9         0  51.52 1.0e-19  -1.30
1398          TMED1       19_9         0  13.71 0.0e+00  -1.29
11089      C19orf38       19_9         0  13.71 0.0e+00  -1.29
5512          CARM1       19_9         0 114.65 0.0e+00 -10.98
5511         TIMM29       19_9         0 117.56 0.0e+00  -9.34
4227          YIPF2       19_9         0   7.68 0.0e+00  -2.10
3972        SMARCA4       19_9         0  10.63 0.0e+00   3.44
4151           LDLR       19_9         1 506.62 1.5e-03 -22.23
6998          SPC24       19_9         0  56.72 0.0e+00   7.84

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 19_15"
      genename region_tag susie_pip    mu2     PVE      z
4199      LSM4      19_15     0.006   5.76 9.4e-08  -0.25
4197    PGPEP1      19_15     0.007   7.14 1.4e-07   0.40
8907    LRRC25      19_15     0.005   6.03 9.0e-08  -1.27
4196     SSBP4      19_15     0.015  15.64 6.6e-07  -2.02
2112    ISYNA1      19_15     0.006   6.49 1.1e-07   1.08
2113       ELL      19_15     0.008  10.19 2.3e-07   2.13
2123      KXD1      19_15     0.005   5.66 9.0e-08   0.26
11192    UBA52      19_15     0.005   5.74 9.1e-08   0.32
7904    KLHL26      19_15     0.008   9.99 2.2e-07   1.27
52        UPF1      19_15     0.030  22.82 2.0e-06  -2.02
2115      COPE      19_15     0.007   9.12 2.0e-07  -0.64
2116     DDX49      19_15     0.007   8.10 1.7e-07  -0.21
2118     ARMC6      19_15     0.005   5.45 8.2e-08  -1.18
599      SUGP2      19_15     0.024  17.81 1.3e-06  -1.18
596   TMEM161A      19_15     0.037  26.08 2.8e-06  -2.58
11075    MEF2B      19_15     0.005  20.29 3.0e-07   5.03
11817   BORCS8      19_15     0.005  35.35 5.3e-07   6.79
595     RFXANK      19_15     0.006   6.72 1.1e-07   1.16
4137      MAU2      19_15     0.009 420.84 1.1e-05  20.65
7905   GATAD2A      19_15     0.014 115.04 4.7e-06 -10.20
9879   NDUFA13      19_15     0.012 112.86 3.8e-06 -10.17
9152     TSSK6      19_15     0.015  15.01 6.3e-07   1.87
11726   YJEFN3      19_15     0.008  82.06 1.8e-06  -8.71
6840     CILP2      19_15     0.013  14.46 5.3e-07  -1.97
2128      PBX4      19_15     0.010   9.20 2.6e-07  -0.74
597      LPAR2      19_15     0.005  24.22 3.7e-07  -4.75
1235      GMIP      19_15     0.006  24.15 3.9e-07  -4.41
2131   ATP13A1      19_15     0.190 313.84 1.7e-04 -17.67
9450    ZNF101      19_15     0.133  26.96 1.0e-05  -0.16
2126     ZNF14      19_15     0.053  42.69 6.6e-06   4.55

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip      mu2     PVE      z
54358     rs2807848      1_112     1.000    57.12 1.7e-04  -7.85
56710   rs766167074      1_118     1.000  4324.39 1.3e-02   2.58
69585    rs11679386       2_12     1.000   113.04 3.3e-04  10.53
69634     rs1042034       2_13     1.000   121.49 3.5e-04  10.94
69640      rs934197       2_13     1.000   348.05 1.0e-03  29.22
69643      rs548145       2_13     1.000   578.96 1.7e-03  30.76
69720     rs1848922       2_13     1.000   196.52 5.7e-04  23.18
71370      rs780093       2_16     1.000   237.52 6.9e-04 -18.39
77299   rs139029940       2_27     1.000    42.45 1.2e-04   6.98
77435    rs72800939       2_28     1.000    48.51 1.4e-04  -7.11
162092  rs768688512       3_58     1.000   493.98 1.4e-03   2.57
196292   rs36205397        4_4     1.000    86.84 2.5e-04   7.28
228814   rs35518360       4_67     1.000    67.62 2.0e-04  -8.24
228880   rs13140033       4_68     1.000    53.20 1.5e-04  -7.51
319908   rs11376017       6_13     1.000    59.91 1.7e-04  -7.80
323637  rs115740542       6_20     1.000   154.72 4.5e-04 -11.58
349106    rs9496567       6_67     1.000    43.47 1.3e-04  -6.54
366881  rs191555775      6_104     1.000    69.89 2.0e-04  -7.78
387062     rs217396       7_32     1.000    62.87 1.8e-04  -8.00
426753    rs7012814       8_12     1.000   159.35 4.6e-04  14.05
431271    rs1495743       8_20     1.000    67.26 2.0e-04  -8.40
441544  rs140753685       8_42     1.000    62.35 1.8e-04   8.10
442940    rs4738679       8_45     1.000   129.55 3.8e-04 -12.10
462603   rs13252684       8_83     1.000   293.99 8.5e-04  12.43
496153    rs2777798       9_52     1.000    82.07 2.4e-04   8.30
496173    rs2297400       9_53     1.000   103.63 3.0e-04  10.41
496200    rs2437818       9_53     1.000   175.39 5.1e-04  11.08
504417  rs115478735       9_70     1.000   319.14 9.3e-04  18.70
529084  rs569165969      10_46     1.000   986.62 2.9e-03   3.04
529132    rs6480402      10_46     1.000    87.02 2.5e-04  -4.33
623241     rs653178      12_67     1.000   147.60 4.3e-04  12.87
627331   rs11057830      12_76     1.000    41.97 1.2e-04   4.54
701861   rs28594460      15_27     1.000    88.07 2.6e-04   9.89
701877   rs62000868      15_27     1.000   158.67 4.6e-04  12.87
701883    rs2070895      15_27     1.000   432.77 1.3e-03  21.94
729423   rs66495554      16_31     1.000    68.70 2.0e-04  -2.33
733597    rs9938506      16_38     1.000   139.67 4.1e-04   6.55
758375    rs1801689      17_38     1.000    47.97 1.4e-04   6.91
759291  rs113408695      17_39     1.000   114.09 3.3e-04  10.72
759317    rs8070232      17_39     1.000   148.08 4.3e-04  -6.91
800601   rs62115478      19_30     1.000   128.73 3.7e-04 -11.69
800884  rs116881820      19_31     1.000  1347.60 3.9e-03  21.90
800888   rs34878901      19_31     1.000  9484.32 2.8e-02  13.17
800889     rs405509      19_31     1.000  9438.02 2.7e-02 -24.81
800893     rs814573      19_31     1.000  2152.57 6.3e-03  47.81
801233  rs150262789      19_32     1.000    70.68 2.1e-04  -9.46
811093   rs34507316      20_13     1.000    68.90 2.0e-04  -5.79
851628   rs11591147       1_34     1.000  1072.63 3.1e-03 -35.66
1025523  rs10422256       19_9     1.000   182.34 5.3e-04  10.63
1025859    rs379309      19_11     1.000    69.33 2.0e-04  -8.17
1026265 rs148356565      19_11     1.000    83.82 2.4e-04  -9.42
1049475 rs374141296      19_34     1.000 20340.77 5.9e-02   3.89
323616   rs72834643       6_20     0.999    39.45 1.1e-04  -5.12
366863  rs117733303      6_104     0.999    80.12 2.3e-04   8.54
476026     rs677622       9_13     0.999    54.57 1.6e-04   7.68
496167    rs7024300       9_53     0.999    42.07 1.2e-04   6.43
627324    rs3782287      12_76     0.999    35.46 1.0e-04  -5.97
662756    rs3934835      13_62     0.999    70.48 2.0e-04   8.78
778097  rs118043171      18_27     0.999    98.08 2.8e-04  13.33
815280   rs73124945      20_24     0.999    38.80 1.1e-04  -8.30
851691     rs499883       1_34     0.999   104.16 3.0e-04  14.81
946730     rs662138      6_103     0.999   111.97 3.2e-04  10.69
496184   rs62568181       9_53     0.998    77.29 2.2e-04 -13.33
762450    rs4969183      17_44     0.998    83.94 2.4e-04   9.38
811092    rs6075251      20_13     0.998    49.64 1.4e-04  -2.26
7468      rs2742962       1_16     0.997    48.99 1.4e-04   6.94
733310    rs4396539      16_37     0.997    34.03 9.9e-05  -5.09
801181  rs111543904      19_32     0.997    51.21 1.5e-04  -7.22
462592   rs79658059       8_83     0.996   336.42 9.7e-04 -15.46
739029    rs2255451      16_49     0.996    35.99 1.0e-04  -5.89
801217   rs58701309      19_32     0.996    71.53 2.1e-04   1.99
281359    rs7701166       5_44     0.995    33.59 9.7e-05  -2.06
470656    rs7024888        9_3     0.995    30.20 8.7e-05  -5.31
634710   rs79490353       13_7     0.995    29.57 8.5e-05  -5.26
138844     rs709149        3_9     0.994    55.01 1.6e-04  -8.29
198517    rs2002574       4_10     0.994    29.76 8.6e-05  -5.24
800556   rs73036721      19_30     0.994    30.79 8.9e-05  -5.27
145854    rs9834932       3_24     0.993    63.01 1.8e-04  -8.06
583014   rs75542613      11_70     0.993    82.90 2.4e-04  -8.87
244713  rs114756490      4_100     0.992    28.63 8.3e-05   5.19
379260   rs56130071       7_19     0.992    86.58 2.5e-04  10.10
403441    rs3197597       7_61     0.992    36.95 1.1e-04  -4.86
946662   rs12208357      6_103     0.991   169.62 4.9e-04  11.52
815227    rs6029132      20_24     0.989    43.90 1.3e-04  -6.82
794005    rs2302209      19_14     0.988    37.55 1.1e-04   6.01
194505    rs5855544      3_120     0.987    27.67 7.9e-05  -5.02
426764   rs13265179       8_12     0.987   100.23 2.9e-04 -12.30
1016957   rs2908806       17_7     0.987    43.43 1.2e-04  -6.83
815276   rs76981217      20_24     0.981    35.20 1.0e-04   7.65
1049463  rs61371437      19_34     0.978 20154.50 5.7e-02   3.94
843248  rs145678077      22_17     0.977    27.02 7.7e-05  -5.39
77312    rs13430143       2_27     0.976    85.98 2.4e-04  -3.60
95924     rs1002015       2_66     0.974    28.86 8.2e-05  -4.75
778316   rs74461650      18_28     0.971    30.47 8.6e-05   5.38
478522    rs1556516       9_16     0.970    71.74 2.0e-04  -8.64
221983    rs1458038       4_54     0.969    51.20 1.4e-04  -7.15
495636  rs150108287       9_52     0.969    25.97 7.3e-05   4.62
611021  rs148481241      12_44     0.968    26.05 7.3e-05   4.78
387112  rs141379002       7_33     0.966    26.45 7.4e-05   4.89
641641     rs201796      13_21     0.966    29.13 8.2e-05  -5.29
752632   rs55764662      17_26     0.966    26.24 7.4e-05  -4.77
71371     rs6744393       2_16     0.964    62.62 1.8e-04 -10.58
621334    rs1196760      12_63     0.963    27.78 7.8e-05  -4.99
426722  rs117037226       8_11     0.961    35.14 9.8e-05   5.56
549493   rs10741735       11_2     0.961    28.39 7.9e-05   4.04
555371    rs7943121      11_13     0.959    39.38 1.1e-04   6.27
778112   rs62101781      18_27     0.958    80.57 2.2e-04   9.64
1049472 rs113176985      19_34     0.956 20209.48 5.6e-02   4.13
63609    rs10183939        2_2     0.949    25.66 7.1e-05  -4.81
496193    rs2777788       9_53     0.948   140.17 3.9e-04 -10.71
831160    rs2835302      21_16     0.948    27.94 7.7e-05  -4.92
801216   rs34942359      19_32     0.936   149.64 4.1e-04  -8.08
912360    rs9884390       4_48     0.936   113.71 3.1e-04  11.39
720874   rs35782593      16_12     0.934    27.31 7.4e-05  -4.89
733536    rs8046916      16_38     0.934    60.98 1.7e-04  -2.41
803694     rs397558      19_37     0.934    51.64 1.4e-04   7.13
366906  rs374071816      6_104     0.932   127.49 3.5e-04  14.36
77315     rs4076834       2_27     0.929   404.97 1.1e-03 -18.81
802153     rs838145      19_33     0.926   123.96 3.3e-04 -12.50
170848     rs189174       3_74     0.921    62.38 1.7e-04   8.04
323455   rs75080831       6_19     0.920    55.21 1.5e-04  -7.48
733575    rs9652628      16_38     0.918   152.75 4.1e-04  11.48
586085   rs74612335      11_77     0.913    92.94 2.5e-04  10.00
579278  rs201912654      11_59     0.907    55.87 1.5e-04  -7.45
627166   rs35480942      12_75     0.905    26.86 7.1e-05  -4.85
927888  rs376448220       6_23     0.903    47.04 1.2e-04  -6.87
636218    rs1012130      13_10     0.896    35.02 9.1e-05  -2.49
815246    rs6129631      20_24     0.895    93.63 2.4e-04 -10.50
583009    rs3135506      11_70     0.893   166.71 4.3e-04  14.25
804548   rs34003091      19_39     0.891    88.57 2.3e-04  -9.39
39085     rs1795240       1_84     0.884    29.75 7.6e-05  -5.20
814021   rs11167269      20_21     0.881    77.05 2.0e-04  -8.89
778093    rs7241918      18_27     0.876   133.51 3.4e-04  14.61
228096  rs148447389       4_67     0.874    24.90 6.3e-05   4.50
233879  rs138204164       4_77     0.874    32.33 8.2e-05  -5.41
549503    rs2519158       11_2     0.872    30.79 7.8e-05  -4.24
156666    rs6762369       3_47     0.869    33.49 8.5e-05   5.52
23616    rs11161548       1_52     0.863    26.36 6.6e-05  -4.87
281323    rs3843482       5_44     0.860   462.00 1.2e-03  24.18
299494  rs546280079       5_79     0.859    28.82 7.2e-05  -4.96
832297  rs149577713      21_19     0.858    36.85 9.2e-05   3.86
13613   rs138863615       1_29     0.848    25.77 6.4e-05   4.53
1037740  rs58542926      19_15     0.848   652.21 1.6e-03 -26.55
823917   rs62219001       21_2     0.847    24.70 6.1e-05  -4.40
924870   rs34723862       6_21     0.842    38.72 9.5e-05  -7.26
536664   rs10882161      10_59     0.840    28.95 7.1e-05  -5.27
729386    rs8064102      16_31     0.835    32.44 7.9e-05   3.63
8327     rs79598313       1_18     0.832    25.24 6.1e-05   4.53
403432   rs11761624       7_61     0.829    27.60 6.6e-05  -3.22
851622   rs17111503       1_34     0.829    90.21 2.2e-04  14.67
69637    rs78610189       2_13     0.826    55.37 1.3e-04  -8.16
915026  rs115725579       4_48     0.826    30.35 7.3e-05  -2.68
701882  rs139823028      15_27     0.818    42.51 1.0e-04   4.52
748833  rs117859452      17_18     0.815    26.95 6.4e-05  -4.15
946766    rs2297374      6_103     0.808   102.88 2.4e-04 -10.73
805970  rs796704474       20_5     0.803    28.82 6.7e-05   4.86
496036   rs34849882       9_52     0.802    28.86 6.7e-05   3.39

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                 id region_tag susie_pip      mu2     PVE    z
1049475 rs374141296      19_34     1.000 20340.77 5.9e-02 3.89
1049472 rs113176985      19_34     0.956 20209.48 5.6e-02 4.13
1049465  rs35295508      19_34     0.000 20162.81 1.7e-07 4.12
1049463  rs61371437      19_34     0.978 20154.50 5.7e-02 3.94
1049479   rs2946865      19_34     0.000 20147.90 6.3e-16 4.14
1049470  rs73056069      19_34     0.000 20097.82 2.8e-06 4.26
1049453    rs739349      19_34     0.010 20072.85 5.6e-04 3.93
1049454    rs756628      19_34     0.007 20072.67 3.9e-04 3.92
1049467   rs2878354      19_34     0.000 20046.35 1.7e-07 4.22
1049450    rs739347      19_34     0.000 20031.70 7.6e-07 3.86
1049451   rs2073614      19_34     0.000 20007.76 1.7e-08 3.84
1049456   rs2077300      19_34     0.006 19959.90 3.2e-04 4.04
1049460  rs73056059      19_34     0.000 19922.26 3.6e-06 4.01
1049446   rs4802613      19_34     0.000 19920.28 6.7e-10 3.88
1049480  rs60815603      19_34     0.000 19820.46 3.2e-17 4.05
1049483   rs1316885      19_34     0.000 19764.74 0.0e+00 4.10
1049488   rs2946863      19_34     0.000 19730.86 0.0e+00 4.14
1049485  rs60746284      19_34     0.000 19703.62 1.6e-14 4.24
1049481  rs35443645      19_34     0.000 19703.01 0.0e+00 3.99
1049444  rs10403394      19_34     0.000 19648.02 8.9e-16 3.91
1049445  rs17555056      19_34     0.000 19635.32 6.3e-18 3.86
1049461  rs73056062      19_34     0.000 19397.59 0.0e+00 3.52
1049491 rs553431297      19_34     0.000 19144.73 0.0e+00 3.71
1049474 rs112283514      19_34     0.000 19101.94 0.0e+00 4.15
1049476  rs11270139      19_34     0.000 18967.95 0.0e+00 3.88
1049441  rs10421294      19_34     0.000 17755.20 0.0e+00 3.91
1049440   rs8108175      19_34     0.000 17752.63 0.0e+00 3.91
1049433  rs59192944      19_34     0.000 17720.04 0.0e+00 3.95
1049439   rs1858742      19_34     0.000 17715.36 0.0e+00 3.93
1049430  rs55991145      19_34     0.000 17705.13 0.0e+00 3.93
1049425   rs3786567      19_34     0.000 17698.17 0.0e+00 3.93
1049421   rs2271952      19_34     0.000 17691.22 0.0e+00 3.93
1049424   rs4801801      19_34     0.000 17690.68 0.0e+00 3.96
1049420   rs2271953      19_34     0.000 17669.87 0.0e+00 3.92
1049422   rs2271951      19_34     0.000 17668.74 0.0e+00 3.90
1049411  rs60365978      19_34     0.000 17655.13 0.0e+00 3.93
1049417   rs4802612      19_34     0.000 17591.43 0.0e+00 4.15
1049427   rs2517977      19_34     0.000 17558.86 0.0e+00 3.77
1049414  rs55893003      19_34     0.000 17540.52 0.0e+00 4.03
1049406  rs55992104      19_34     0.000 17109.96 0.0e+00 3.29
1049400  rs60403475      19_34     0.000 17108.16 0.0e+00 3.34
1049403   rs4352151      19_34     0.000 17104.18 0.0e+00 3.33
1049397  rs11878448      19_34     0.000 17092.14 0.0e+00 3.34
1049391   rs9653100      19_34     0.000 17087.23 0.0e+00 3.31
1049387   rs4802611      19_34     0.000 17076.33 0.0e+00 3.32
1049379   rs7251338      19_34     0.000 17050.44 0.0e+00 3.33
1049378  rs59269605      19_34     0.000 17048.45 0.0e+00 3.33
1049399   rs1042120      19_34     0.000 17008.76 0.0e+00 3.51
1049395 rs113220577      19_34     0.000 16993.50 0.0e+00 3.50
1049389   rs9653118      19_34     0.000 16966.42 0.0e+00 3.48

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip      mu2     PVE      z
1049475 rs374141296      19_34     1.000 20340.77 0.05900   3.89
1049463  rs61371437      19_34     0.978 20154.50 0.05700   3.94
1049472 rs113176985      19_34     0.956 20209.48 0.05600   4.13
800888   rs34878901      19_31     1.000  9484.32 0.02800  13.17
800889     rs405509      19_31     1.000  9438.02 0.02700 -24.81
56710   rs766167074      1_118     1.000  4324.39 0.01300   2.58
800893     rs814573      19_31     1.000  2152.57 0.00630  47.81
800884  rs116881820      19_31     1.000  1347.60 0.00390  21.90
56722     rs2790874      1_118     0.267  4349.11 0.00340   2.76
851628   rs11591147       1_34     1.000  1072.63 0.00310 -35.66
56697     rs1076804      1_118     0.231  4349.39 0.00290   2.75
529084  rs569165969      10_46     1.000   986.62 0.00290   3.04
56707    rs10489611      1_118     0.185  4354.42 0.00230   2.71
56719     rs1416913      1_118     0.180  4348.86 0.00230   2.74
1025483  rs12151108       19_9     0.368  2115.71 0.00230 -44.76
56701     rs2256908      1_118     0.170  4354.18 0.00220   2.71
529085    rs7909631      10_46     0.740  1028.02 0.00220   2.48
56709      rs971534      1_118     0.163  4354.36 0.00210   2.70
56708     rs2486737      1_118     0.150  4354.31 0.00190   2.70
56704     rs2790891      1_118     0.141  4354.08 0.00180   2.70
56705     rs2491405      1_118     0.141  4354.08 0.00180   2.70
1025484  rs73015024       19_9     0.294  2115.21 0.00180 -44.75
69643      rs548145       2_13     1.000   578.96 0.00170  30.76
1037740  rs58542926      19_15     0.848   652.21 0.00160 -26.55
162092  rs768688512       3_58     1.000   493.98 0.00140   2.57
701883    rs2070895      15_27     1.000   432.77 0.00130  21.94
1025494   rs6511720       19_9     0.204  2116.26 0.00130 -44.78
281323    rs3843482       5_44     0.860   462.00 0.00120  24.18
77315     rs4076834       2_27     0.929   404.97 0.00110 -18.81
56717     rs2211176      1_118     0.079  4352.83 0.00100   2.69
56718     rs2790882      1_118     0.079  4352.83 0.00100   2.69
69640      rs934197       2_13     1.000   348.05 0.00100  29.22
462592   rs79658059       8_83     0.996   336.42 0.00097 -15.46
504417  rs115478735       9_70     1.000   319.14 0.00093  18.70
462603   rs13252684       8_83     1.000   293.99 0.00085  12.43
56716     rs2248646      1_118     0.063  4352.55 0.00079   2.69
529083    rs7084697      10_46     0.254  1027.24 0.00076   2.43
800898   rs12721109      19_31     0.577   441.15 0.00074 -37.23
71370      rs780093       2_16     1.000   237.52 0.00069 -18.39
729418     rs821840      16_31     0.678   328.82 0.00065  16.71
1025485 rs147985405       19_9     0.095  2113.25 0.00059 -44.73
69720     rs1848922       2_13     1.000   196.52 0.00057  23.18
162088   rs73141241       3_58     0.381   508.07 0.00056   2.73
1049453    rs739349      19_34     0.010 20072.85 0.00056   3.93
1025523  rs10422256       19_9     1.000   182.34 0.00053  10.63
496200    rs2437818       9_53     1.000   175.39 0.00051  11.08
946662   rs12208357      6_103     0.991   169.62 0.00049  11.52
1025656   rs2738464       19_9     0.576   287.31 0.00048   5.62
426753    rs7012814       8_12     1.000   159.35 0.00046  14.05
701877   rs62000868      15_27     1.000   158.67 0.00046  12.87

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                 id region_tag susie_pip     mu2     PVE      z
800893     rs814573      19_31     1.000 2152.57 6.3e-03  47.81
1025494   rs6511720       19_9     0.204 2116.26 1.3e-03 -44.78
1025483  rs12151108       19_9     0.368 2115.71 2.3e-03 -44.76
1025484  rs73015024       19_9     0.294 2115.21 1.8e-03 -44.75
1025485 rs147985405       19_9     0.095 2113.25 5.9e-04 -44.73
1025487  rs17248727       19_9     0.034 2110.75 2.1e-04 -44.70
1025493  rs57217136       19_9     0.004 2107.23 2.4e-05 -44.67
1025469  rs73015020       19_9     0.000 2102.74 2.5e-06 -44.63
1025486  rs17248720       19_9     0.000 2098.22 4.1e-08 -44.61
1025467  rs61194703       19_9     0.000 2099.69 6.1e-07 -44.60
1025449 rs138175288       19_9     0.000 2098.03 2.8e-07 -44.58
1025450 rs112107114       19_9     0.000 2097.98 2.8e-07 -44.58
1025451 rs115594766       19_9     0.000 2097.97 2.7e-07 -44.58
1025460  rs73015013       19_9     0.000 2098.22 3.2e-07 -44.58
1025471  rs77140532       19_9     0.000 2096.70 1.2e-07 -44.58
1025473  rs73015021       19_9     0.000 2096.43 1.0e-07 -44.58
1025448 rs114821903       19_9     0.000 2097.47 2.1e-07 -44.57
1025466 rs138294113       19_9     0.000 2096.01 1.2e-07 -44.56
1025447  rs73015011       19_9     0.000 2094.99 6.8e-08 -44.55
1025458 rs142130958       19_9     0.000 2094.94 7.2e-08 -44.55
1025481   rs8106503       19_9     0.000 2091.58 1.9e-09 -44.55
1025465  rs10402112       19_9     0.000 2093.34 2.9e-08 -44.53
1025475 rs112552009       19_9     0.000 2095.56 1.2e-07 -44.53
1025476  rs10412048       19_9     0.000 2092.20 1.3e-08 -44.53
1025444 rs113722226       19_9     0.000 2089.06 3.8e-09 -44.48
1025443 rs148898583       19_9     0.000 2087.62 2.0e-09 -44.47
1025461 rs114846969       19_9     0.000 2082.69 8.3e-11 -44.46
1025463  rs73015016       19_9     0.000 2083.08 2.0e-10 -44.44
1025452 rs112032422       19_9     0.000 2084.57 4.9e-10 -44.43
1025442 rs112374545       19_9     0.000 2084.41 3.8e-10 -44.42
1025441 rs112898275       19_9     0.000 2082.87 1.9e-10 -44.41
1025439  rs56125973       19_9     0.000 2077.29 1.2e-11 -44.36
1025437  rs55997232       19_9     0.000 2076.27 8.1e-12 -44.35
1025438  rs55791371       19_9     0.000 2076.88 1.1e-11 -44.35
1025462 rs151113958       19_9     0.000 2070.15 1.2e-13 -44.34
1025433 rs143020224       19_9     0.000 2074.28 2.9e-12 -44.32
1025436 rs111989435       19_9     0.000 2074.46 3.1e-12 -44.32
1025440  rs56289821       19_9     0.000 2074.97 4.3e-12 -44.32
1025435 rs112736558       19_9     0.000 2072.89 1.5e-12 -44.31
1025434 rs144826254       19_9     0.000 2071.33 7.4e-13 -44.30
1025454 rs142158911       19_9     0.000 2067.78 4.5e-14 -44.30
1025472 rs375484700       19_9     0.000 2060.68 1.9e-15 -44.23
1025453  rs77265569       19_9     0.000 2036.81 0.0e+00 -43.85
1025457 rs139853365       19_9     0.000 1872.85 0.0e+00 -41.85
1025455 rs118068660       19_9     0.000 1863.97 0.0e+00 -41.77
1025456 rs145960625       19_9     0.000 1863.35 0.0e+00 -41.75
1025500  rs17242395       19_9     0.000 1564.98 0.0e+00 -37.59
1025499  rs17242381       19_9     0.000 1563.28 0.0e+00 -37.58
1025508 rs141820146       19_9     0.000 1565.77 0.0e+00 -37.58
1025503 rs117423069       19_9     0.000 1560.32 0.0e+00 -37.52

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 17
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
                                                                                                 Term
1                                  positive regulation of triglyceride metabolic process (GO:0090208)
2                                                     negative regulation of cell growth (GO:0030308)
3                                                          negative regulation of growth (GO:0045926)
4                                                      phospholipid biosynthetic process (GO:0008654)
5                                                   organophosphate biosynthetic process (GO:0090407)
6                                                                           neurogenesis (GO:0022008)
7                                                              regulation of cell growth (GO:0001558)
8                                               unsaturated fatty acid metabolic process (GO:0033559)
9                                                            icosanoid metabolic process (GO:0006690)
10                                                  cellular response to nutrient levels (GO:0031669)
11                                                               cholesterol homeostasis (GO:0042632)
12                                                                    sterol homeostasis (GO:0055092)
13                                                        phospholipid metabolic process (GO:0006644)
14                                                            lipid biosynthetic process (GO:0008610)
15                                               long-chain fatty acid metabolic process (GO:0001676)
16            regulation of Fc-gamma receptor signaling pathway involved in phagocytosis (GO:1905449)
17                                                   alditol phosphate metabolic process (GO:0052646)
18                       positive regulation of protein catabolic process in the vacuole (GO:1904352)
19                                                    regulation of astrocyte activation (GO:0061888)
20             regulation of low-density lipoprotein particle receptor catabolic process (GO:0032803)
21                                                         cannabinoid signaling pathway (GO:0038171)
22                                      negative regulation of astrocyte differentiation (GO:0048712)
23                                                                         sterol import (GO:0035376)
24                                                                    cholesterol import (GO:0070508)
25                                                                    contact inhibition (GO:0060242)
26                                                glycerol-3-phosphate metabolic process (GO:0006072)
27                                 negative regulation of lipoprotein particle clearance (GO:0010985)
28                                            monoubiquitinated protein deubiquitination (GO:0035520)
29                                               regulation of primary metabolic process (GO:0080090)
30                                                           regulation of cell adhesion (GO:0030155)
31                                     positive regulation of receptor catabolic process (GO:2000646)
32                                                         chylomicron remnant clearance (GO:0034382)
33                                     regulation of lysosomal protein catabolic process (GO:1905165)
34                      negative regulation of low-density lipoprotein receptor activity (GO:1905598)
35                                                         receptor-mediated endocytosis (GO:0006898)
36                                 positive regulation of triglyceride catabolic process (GO:0010898)
37                                                   diacylglycerol biosynthetic process (GO:0006651)
38                                     negative regulation of microglial cell activation (GO:1903979)
39                                     regulation of nitrogen compound metabolic process (GO:0051171)
40                            negative regulation of nitrogen compound metabolic process (GO:0051172)
41                                           unsaturated fatty acid biosynthetic process (GO:0006636)
42                                             phosphatidylglycerol biosynthetic process (GO:0006655)
43                                                     intestinal cholesterol absorption (GO:0030299)
44                                                       cellular response to starvation (GO:0009267)
45                             negative regulation of sodium ion transmembrane transport (GO:1902306)
46                  negative regulation of sodium ion transmembrane transporter activity (GO:2000650)
47                           low-density lipoprotein particle receptor catabolic process (GO:0032802)
48                           low-density lipoprotein receptor particle metabolic process (GO:0032799)
49                              regulation of low-density lipoprotein particle clearance (GO:0010988)
50                                               negative regulation of receptor binding (GO:1900121)
51                              positive regulation of triglyceride biosynthetic process (GO:0010867)
52      negative regulation of platelet-derived growth factor receptor signaling pathway (GO:0010642)
53                                                           intestinal lipid absorption (GO:0098856)
54                                          negative regulation of vascular permeability (GO:0043116)
55                                          regulation of triglyceride catabolic process (GO:0010896)
56                                       negative regulation of amyloid fibril formation (GO:1905907)
57                                                alpha-linolenic acid metabolic process (GO:0036109)
58                                                  carboxylic acid biosynthetic process (GO:0046394)
59               regulation of platelet-derived growth factor receptor signaling pathway (GO:0010640)
60                                               negative regulation of cellular process (GO:0048523)
61                                negative regulation of macromolecule metabolic process (GO:0010605)
62                        cellular response to low-density lipoprotein particle stimulus (GO:0071404)
63                                                negative regulation of cell activation (GO:0050866)
64                                                 neurotransmitter biosynthetic process (GO:0042136)
65                                     negative regulation of neuroinflammatory response (GO:0150079)
66                                G protein-coupled glutamate receptor signaling pathway (GO:0007216)
67                                                regulation of amyloid fibril formation (GO:1905906)
68 positive regulation of DNA damage response, signal transduction by p53 class mediator (GO:0043517)
69                                       regulation of triglyceride biosynthetic process (GO:0010866)
70                                              regulation of microglial cell activation (GO:1903978)
71                                                       prostanoid biosynthetic process (GO:0046457)
72                                                        icosanoid biosynthetic process (GO:0046456)
73                                                   intracellular cholesterol transport (GO:0032367)
74                                          negative regulation of macrophage activation (GO:0043031)
75                             platelet-derived growth factor receptor signaling pathway (GO:0048008)
76                                                      regulation of receptor recycling (GO:0001919)
77      positive regulation of cyclin-dependent protein serine/threonine kinase activity (GO:0045737)
78                                                                protein autoprocessing (GO:0016540)
79                                                    regulation of spindle organization (GO:0090224)
80                                                     triglyceride biosynthetic process (GO:0019432)
81                                                                   positive chemotaxis (GO:0050918)
82                              negative regulation of T cell receptor signaling pathway (GO:0050860)
83                                                                      long-term memory (GO:0007616)
84                             positive regulation of cellular protein catabolic process (GO:1903364)
85                                        positive regulation of focal adhesion assembly (GO:0051894)
86                                                    prostaglandin biosynthetic process (GO:0001516)
   Overlap Adjusted.P.value             Genes
1     2/19       0.01385147        DAGLB;LDLR
2    3/126       0.01385147 PSRC1;PTPRJ;SIPA1
3    3/126       0.01385147 PSRC1;PTPRJ;SIPA1
4     2/37       0.02641461        GPAM;FADS1
5     2/39       0.02641461        GPAM;FADS1
6     2/44       0.02803184       PCSK9;DAGLB
7    3/217       0.02920128 PSRC1;PTPRJ;SIPA1
8     2/54       0.03132443       DAGLB;FADS1
9     2/57       0.03132443       DAGLB;FADS1
10    2/66       0.03734396       PCSK9;FADS1
11    2/71       0.03734396        PCSK9;LDLR
12    2/72       0.03734396        PCSK9;LDLR
13    2/76       0.03835971        GPAM;FADS1
14    2/80       0.03941539        GPAM;FADS1
15    2/83       0.03955736       DAGLB;FADS1
16     1/5       0.04522642             PTPRJ
17     1/5       0.04522642              GPAM
18     1/5       0.04522642              LDLR
19     1/5       0.04522642              LDLR
20     1/5       0.04522642             PCSK9
21     1/5       0.04522642             DAGLB
22     1/6       0.04522642              LDLR
23     1/6       0.04522642              LDLR
24     1/6       0.04522642              LDLR
25     1/6       0.04522642             PTPRJ
26     1/6       0.04522642              GPAM
27     1/6       0.04522642             PCSK9
28     1/6       0.04522642              USP1
29   2/130       0.04522642         GPAM;LDLR
30   2/133       0.04522642       PTPRJ;SIPA1
31     1/7       0.04522642             PCSK9
32     1/7       0.04522642              LDLR
33     1/7       0.04522642              LDLR
34     1/7       0.04522642             PCSK9
35   2/143       0.04522642         M6PR;LDLR
36     1/8       0.04522642             DAGLB
37     1/8       0.04522642              GPAM
38     1/8       0.04522642              LDLR
39     1/8       0.04522642              LDLR
40     1/8       0.04522642              LDLR
41     1/9       0.04522642             FADS1
42     1/9       0.04522642              GPAM
43     1/9       0.04522642              LDLR
44   2/158       0.04522642       PCSK9;FADS1
45    1/10       0.04522642             PCSK9
46    1/10       0.04522642             PCSK9
47    1/10       0.04522642             PCSK9
48    1/10       0.04522642             PCSK9
49    1/10       0.04522642             PCSK9
50    1/10       0.04522642             PCSK9
51    1/11       0.04637282              LDLR
52    1/11       0.04637282             PTPRJ
53    1/11       0.04637282              LDLR
54    1/12       0.04637282             PTPRJ
55    1/12       0.04637282             DAGLB
56    1/12       0.04637282              LDLR
57    1/13       0.04637282             FADS1
58    1/13       0.04637282             FADS1
59    1/13       0.04637282             PTPRJ
60   3/566       0.04637282 PSRC1;PTPRJ;SIPA1
61   2/194       0.04637282        PCSK9;LDLR
62    1/14       0.04637282              LDLR
63    1/14       0.04637282              LDLR
64    1/14       0.04637282             DAGLB
65    1/14       0.04637282              LDLR
66    1/15       0.04637282             DAGLB
67    1/15       0.04637282              LDLR
68    1/15       0.04637282              HIC1
69    1/15       0.04637282              LDLR
70    1/15       0.04637282              LDLR
71    1/15       0.04637282             DAGLB
72    1/15       0.04637282             FADS1
73    1/15       0.04637282              LDLR
74    1/16       0.04812607              LDLR
75    1/16       0.04812607             PTPRJ
76    1/17       0.04914763             PCSK9
77    1/17       0.04914763             PSRC1
78    1/17       0.04914763             PCSK9
79    1/18       0.04978020             PSRC1
80    1/18       0.04978020              GPAM
81    1/18       0.04978020             PTPRJ
82    1/19       0.04978020             PTPRJ
83    1/19       0.04978020              LDLR
84    1/19       0.04978020             PCSK9
85    1/19       0.04978020             PTPRJ
86    1/19       0.04978020             DAGLB
[1] "GO_Cellular_Component_2021"
                                                                   Term
1                                    endolysosome membrane (GO:0036020)
2                                             endolysosome (GO:0036019)
3               clathrin-coated endocytic vesicle membrane (GO:0030669)
4                        clathrin-coated endocytic vesicle (GO:0045334)
5                                       lysosomal membrane (GO:0005765)
6                         clathrin-coated vesicle membrane (GO:0030665)
7  extrinsic component of external side of plasma membrane (GO:0031232)
8                                                 lysosome (GO:0005764)
9                               endocytic vesicle membrane (GO:0030666)
10                                           late endosome (GO:0005770)
   Overlap Adjusted.P.value            Genes
1     2/17      0.003855166       PCSK9;LDLR
2     2/25      0.004235077       PCSK9;LDLR
3     2/69      0.018244377        M6PR;LDLR
4     2/85      0.018244377        M6PR;LDLR
5    3/330      0.018244377 PCSK9;DAGLB;LDLR
6     2/90      0.018244377        M6PR;LDLR
7      1/8      0.036411600            PCSK9
8    3/477      0.036411600 PCSK9;DAGLB;LDLR
9    2/158      0.036411600        M6PR;LDLR
10   2/189      0.046221302       PCSK9;LDLR
[1] "GO_Molecular_Function_2021"
                                                   Term Overlap
1 low-density lipoprotein particle binding (GO:0030169)    2/17
2             lipoprotein particle binding (GO:0071813)    2/24
  Adjusted.P.value      Genes
1      0.004773062 PCSK9;LDLR
2      0.004826363 PCSK9;LDLR
DAGLB gene(s) from the input list not found in DisGeNET CURATEDPSRC1 gene(s) from the input list not found in DisGeNET CURATEDZFP28 gene(s) from the input list not found in DisGeNET CURATEDUSP1 gene(s) from the input list not found in DisGeNET CURATEDTEAD3 gene(s) from the input list not found in DisGeNET CURATEDFCGRT gene(s) from the input list not found in DisGeNET CURATEDPKN3 gene(s) from the input list not found in DisGeNET CURATEDCNIH4 gene(s) from the input list not found in DisGeNET CURATED
                                    Description         FDR Ratio BgRatio
19               Hypercholesterolemia, Familial 0.009758215   2/9 18/9703
18                         Hypercholesterolemia 0.019480519   2/9 39/9703
28                                       polyps 0.019480519   1/9  1/9703
73  HYPERCHOLESTEROLEMIA, AUTOSOMAL DOMINANT, 3 0.019480519   1/9  1/9703
9                     Coronary Arteriosclerosis 0.021615291   2/9 65/9703
74                      Coronary Artery Disease 0.021615291   2/9 65/9703
16                   Gastrointestinal Neoplasms 0.032414022   1/9  4/9703
30                                      Q Fever 0.032414022   1/9  5/9703
46                                Acute Q fever 0.032414022   1/9  5/9703
49 Malignant neoplasm of gastrointestinal tract 0.032414022   1/9  4/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
       description size overlap          FDR       database
1    Dyslipidaemia   81       5 0.0005195842 disease_GLAD4U
2 Coronary Disease  185       5 0.0155720736 disease_GLAD4U
                        userId
1 PCSK9;PSRC1;TIMD4;FADS1;LDLR
2 PCSK9;PSRC1;TIMD4;FADS1;LDLR

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2