Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30670_irnt_Whole_Blood.Rmd) and HTML (docs/ukb-d-30670_irnt_Whole_Blood.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Urea (quantile) using Whole_Blood gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30670_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Whole_Blood eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11095
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1129  747  624  400  479  621  560  383  404  430  682  652  192  362  331 
  16   17   18   19   20   21   22 
 551  725  159  911  313  130  310 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.762776

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0143107432 0.0001871761 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
     gene       snp 
 8.615354 12.971000 
#report sample size
print(sample_size)
[1] 344052
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11095 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.003975928 0.061374183 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.02276007 0.59631662

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
        genename region_tag susie_pip    mu2     PVE      z
9813        MUC1       1_77     1.000 282.14 8.2e-04 -23.03
5012      TRIM29      11_72     0.974  27.75 7.9e-05   5.21
5440     ANAPC11      17_46     0.968  22.93 6.5e-05  -4.49
982       CDC14A       1_61     0.960  34.09 9.5e-05  -5.99
6598        NRG1       8_31     0.890  22.74 5.9e-05  -4.58
6278      ZNF547      19_39     0.890  21.07 5.4e-05   4.38
5337      IQGAP1      15_43     0.883  30.59 7.9e-05   5.54
9002       WDR25      14_52     0.798  20.87 4.8e-05  -4.15
1863      CPPED1      16_13     0.793  27.67 6.4e-05   5.34
10459      HOXA4       7_23     0.790  24.70 5.7e-05   5.13
4564       PSRC1       1_67     0.778  18.98 4.3e-05   3.81
10505    UGT2B17       4_48     0.761  21.03 4.7e-05   4.47
6756        STC1       8_24     0.758  32.72 7.2e-05  -3.24
6404     PITPNC1      17_39     0.751  21.48 4.7e-05   4.35
8175       RAB24      5_106     0.730  31.56 6.7e-05  -6.62
9518   LINC00334      21_23     0.730  21.53 4.6e-05  -3.92
12342 TBC1D8-AS1       2_58     0.712  20.62 4.3e-05  -4.17
642        PRKCQ       10_7     0.706  23.41 4.8e-05   4.03
1043      NFE2L1      17_28     0.700  26.37 5.4e-05  -4.69
3752      KCNK17       6_30     0.691  22.86 4.6e-05  -4.23

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag susie_pip     mu2     PVE      z
168      SPRTN      1_118     0.000 5593.15 1.6e-16   4.83
3138     EXOC8      1_118     0.000 4019.99 0.0e+00   3.84
3232      RCN2      15_36     0.000 2381.27 0.0e+00   0.49
4687    TMEM60       7_49     0.000 2379.61 0.0e+00  -7.28
4733      AHI1       6_89     0.000 1260.30 0.0e+00  -1.51
5304      ETFA      15_36     0.000  988.58 0.0e+00   0.45
3140     TSNAX      1_118     0.000  770.24 0.0e+00   0.32
10381    ZGPAT      20_38     0.000  630.83 8.7e-07   2.49
1699    ARFRP1      20_38     0.000  569.33 4.7e-08  -0.69
5303   PSTPIP1      15_36     0.000  482.86 3.0e-18   6.33
10436    STMN3      20_38     0.000  482.64 3.9e-07   2.60
7145     DISC1      1_118     0.000  464.73 0.0e+00  -0.90
11094     APTR       7_49     0.001  450.59 1.1e-06  -3.43
5818     RPL37       5_27     0.043  415.37 5.2e-05  22.88
8411   TRMT61B       2_19     0.019  349.02 1.9e-05  -3.68
11039   PPP1CB       2_19     0.010  340.12 1.0e-05   3.43
1694     GMEB2      20_38     0.001  289.36 6.0e-07  -2.92
9813      MUC1       1_77     1.000  282.14 8.2e-04 -23.03
2782        C7       5_27     0.022  225.67 1.5e-05 -16.92
8177     THBS3       1_77     0.177  221.81 1.1e-04  21.52

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
      genename region_tag susie_pip    mu2     PVE      z
9813      MUC1       1_77     1.000 282.14 8.2e-04 -23.03
5657      ACP1        2_1     0.443  95.71 1.2e-04 -10.53
8177     THBS3       1_77     0.177 221.81 1.1e-04  21.52
982     CDC14A       1_61     0.960  34.09 9.5e-05  -5.99
5012    TRIM29      11_72     0.974  27.75 7.9e-05   5.21
5337    IQGAP1      15_43     0.883  30.59 7.9e-05   5.54
6756      STC1       8_24     0.758  32.72 7.2e-05  -3.24
11634    GSTA2       6_39     0.352  66.09 6.8e-05  -8.63
8175     RAB24      5_106     0.730  31.56 6.7e-05  -6.62
5440   ANAPC11      17_46     0.968  22.93 6.5e-05  -4.49
1863    CPPED1      16_13     0.793  27.67 6.4e-05   5.34
6598      NRG1       8_31     0.890  22.74 5.9e-05  -4.58
10459    HOXA4       7_23     0.790  24.70 5.7e-05   5.13
10905    PDE7A       8_50     0.488  39.80 5.6e-05  -5.60
1043    NFE2L1      17_28     0.700  26.37 5.4e-05  -4.69
6278    ZNF547      19_39     0.890  21.07 5.4e-05   4.38
5194     ZCRB1      12_27     0.482  37.92 5.3e-05  -6.39
3804     OPRL1      20_38     0.482  37.78 5.3e-05   4.51
5818     RPL37       5_27     0.043 415.37 5.2e-05  22.88
897       MCM6       2_80     0.502  34.89 5.1e-05  -5.66

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip    mu2     PVE      z
9813      MUC1       1_77     1.000 282.14 8.2e-04 -23.03
5818     RPL37       5_27     0.043 415.37 5.2e-05  22.88
8177     THBS3       1_77     0.177 221.81 1.1e-04  21.52
2782        C7       5_27     0.022 225.67 1.5e-05 -16.92
8670      MTX1       1_77     0.002 120.79 6.9e-07 -15.53
9050    FBXO46      19_32     0.036 220.94 2.3e-05 -15.44
2097    RASIP1      19_33     0.023 109.51 7.3e-06 -12.77
9034    MAMSTR      19_33     0.009  84.70 2.3e-06  11.55
4375    PRKAA1       5_27     0.034  97.72 9.5e-06 -11.01
8813      MSL2       3_84     0.093  79.92 2.2e-05 -10.57
5657      ACP1        2_1     0.443  95.71 1.2e-04 -10.53
7865    FBXO22      15_35     0.150  42.97 1.9e-05   9.88
2369     GOSR2      17_27     0.007  87.20 1.7e-06   9.52
8242      NRG4      15_35     0.006  87.70 1.4e-06  -9.50
8173     LMAN2      5_106     0.015  38.08 1.6e-06   9.33
10224   SEMA4A       1_77     0.023  65.14 4.3e-06  -8.70
11634    GSTA2       6_39     0.352  66.09 6.8e-05  -8.63
834    PPP2R3A       3_84     0.081  56.46 1.3e-05  -8.44
11629    GSTA1       6_39     0.047  67.28 9.2e-06  -8.33
5740     CNOT9      2_129     0.102  53.49 1.6e-05   7.98

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.0126183
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip    mu2     PVE      z
9813      MUC1       1_77     1.000 282.14 8.2e-04 -23.03
5818     RPL37       5_27     0.043 415.37 5.2e-05  22.88
8177     THBS3       1_77     0.177 221.81 1.1e-04  21.52
2782        C7       5_27     0.022 225.67 1.5e-05 -16.92
8670      MTX1       1_77     0.002 120.79 6.9e-07 -15.53
9050    FBXO46      19_32     0.036 220.94 2.3e-05 -15.44
2097    RASIP1      19_33     0.023 109.51 7.3e-06 -12.77
9034    MAMSTR      19_33     0.009  84.70 2.3e-06  11.55
4375    PRKAA1       5_27     0.034  97.72 9.5e-06 -11.01
8813      MSL2       3_84     0.093  79.92 2.2e-05 -10.57
5657      ACP1        2_1     0.443  95.71 1.2e-04 -10.53
7865    FBXO22      15_35     0.150  42.97 1.9e-05   9.88
2369     GOSR2      17_27     0.007  87.20 1.7e-06   9.52
8242      NRG4      15_35     0.006  87.70 1.4e-06  -9.50
8173     LMAN2      5_106     0.015  38.08 1.6e-06   9.33
10224   SEMA4A       1_77     0.023  65.14 4.3e-06  -8.70
11634    GSTA2       6_39     0.352  66.09 6.8e-05  -8.63
834    PPP2R3A       3_84     0.081  56.46 1.3e-05  -8.44
11629    GSTA1       6_39     0.047  67.28 9.2e-06  -8.33
5740     CNOT9      2_129     0.102  53.49 1.6e-05   7.98

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 1_77"
          genename region_tag susie_pip    mu2     PVE      z
7201          PMVK       1_77     0.020  37.48 2.2e-06  -3.92
7202        PBXIP1       1_77     0.011  32.33 1.1e-06  -3.71
6909          SHC1       1_77     0.001   6.04 1.6e-08   2.05
8673         CKS1B       1_77     0.001   6.14 1.6e-08  -2.06
6907        ZBTB7B       1_77     0.002  10.35 6.4e-08   0.04
7204         DCST2       1_77     0.001  21.59 9.3e-08  -0.61
7205         DCST1       1_77     0.001  21.59 9.3e-08   0.61
5634        ADAM15       1_77     0.001   9.94 2.7e-08   2.78
5644         EFNA3       1_77     0.002   8.44 4.0e-08   0.34
8179         EFNA1       1_77     0.001  13.41 3.7e-08   1.08
8178       SLC50A1       1_77     0.002  20.57 1.3e-07  -3.57
8670          MTX1       1_77     0.002 120.79 6.9e-07 -15.53
9813          MUC1       1_77     1.000 282.14 8.2e-04 -23.03
8177         THBS3       1_77     0.177 221.81 1.1e-04  21.52
9103           GBA       1_77     0.001   7.23 2.4e-08   1.39
6918       FAM189B       1_77     0.001   7.97 2.1e-08  -3.99
5649          HCN3       1_77     0.002  25.96 1.4e-07   6.92
6917          FDPS       1_77     0.002  23.46 1.1e-07   6.50
4425          DAP3       1_77     0.001   5.99 1.8e-08   1.68
7207        YY1AP1       1_77     0.002  15.37 1.1e-07   4.33
4434         SYT11       1_77     0.001  29.77 7.7e-08   7.31
5648          RIT1       1_77     0.002  20.55 1.4e-07   3.17
4426      KIAA0907       1_77     0.007  17.38 3.6e-07  -0.28
3099       ARHGEF2       1_77     0.001  15.32 4.6e-08   5.04
7227          SSR2       1_77     0.001   7.74 2.6e-08   1.46
3100       LAMTOR2       1_77     0.001   5.44 1.6e-08  -2.18
4430         RAB25       1_77     0.001  21.16 8.3e-08   4.74
10224       SEMA4A       1_77     0.023  65.14 4.3e-06  -8.70
6920          PMF1       1_77     0.001   5.19 1.4e-08   0.31
11586        BGLAP       1_77     0.010  23.84 6.7e-07  -1.73
6919         PAQR6       1_77     0.001   9.07 3.8e-08  -0.77
7226        TMEM79       1_77     0.001   9.55 3.1e-08  -1.88
10714         SMG5       1_77     0.001  10.90 4.0e-08  -2.07
10641         GLMP       1_77     0.001  11.00 4.1e-08  -2.08
7224         TSACC       1_77     0.002   9.48 6.4e-08   0.45
7225          CCT3       1_77     0.001   5.27 1.6e-08  -1.13
3101         MEF2D       1_77     0.002  10.65 5.2e-08  -1.19
9652        IQGAP3       1_77     0.001   4.64 1.2e-08  -0.21
10047        TTC24       1_77     0.006  18.63 3.4e-07  -2.09
7210          NAXE       1_77     0.001   7.17 2.7e-08   0.90
4428          BCAN       1_77     0.004  15.40 1.6e-07  -1.76
5586        RRNAD1       1_77     0.001   5.37 1.6e-08  -0.53
5588       ISG20L2       1_77     0.001   5.37 1.6e-08   0.53
5590          HDGF       1_77     0.009  23.95 6.0e-07   2.24
10592        NTRK1       1_77     0.005  18.99 2.8e-07  -1.97
314         SH2D2A       1_77     0.001   6.84 2.4e-08  -0.80
10039        PEAR1       1_77     0.006  16.84 3.1e-07  -2.10
4429      ARHGEF11       1_77     0.001   4.54 1.2e-08   0.02
12235 RP11-85G21.3       1_77     0.001   4.64 1.2e-08  -0.21
5585         FCRL5       1_77     0.001   4.48 1.2e-08  -0.03
6928         FCRL3       1_77     0.001   4.72 1.3e-08  -0.24
4432         FCRL2       1_77     0.001   6.91 2.3e-08   0.76
7243         FCRL1       1_77     0.001   8.13 3.1e-08   0.94

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 5_27"
     genename region_tag susie_pip    mu2     PVE      z
2832    TTC33       5_27     0.061  30.20 5.4e-06   5.06
4375   PRKAA1       5_27     0.034  97.72 9.5e-06 -11.01
5818    RPL37       5_27     0.043 415.37 5.2e-05  22.88
4376    CARD6       5_27     0.027   7.32 5.8e-07   1.19
2782       C7       5_27     0.022 225.67 1.5e-05 -16.92
1062    OXCT1       5_27     0.033   8.43 8.1e-07   1.17

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 19_32"
      genename region_tag susie_pip    mu2     PVE      z
9085      GPR4      19_32     0.023   8.52 5.7e-07  -1.00
177       GIPR      19_32     0.017   5.96 3.0e-07   0.66
207      QPCTL      19_32     0.017   6.91 3.5e-07  -0.99
9050    FBXO46      19_32     0.036 220.94 2.3e-05 -15.44
1996      DMPK      19_32     0.019   8.91 4.9e-07  -2.52
9850      DMWD      19_32     0.015   5.21 2.3e-07   0.15
3832     SYMPK      19_32     0.043  46.58 5.9e-06   6.94
8356   IRF2BP1      19_32     0.017   8.95 4.5e-07  -1.60
8976     MYPOP      19_32     0.028  14.71 1.2e-06  -3.02
2011    CCDC61      19_32     0.017   9.16 4.4e-07   1.91
147    PGLYRP1      19_32     0.027  10.61 8.2e-07  -1.49
3715     HIF3A      19_32     0.182  25.42 1.3e-05   2.67
208      PPP5C      19_32     0.026   9.79 7.3e-07  -1.73
10871   PNMAL2      19_32     0.051  15.45 2.3e-06   2.14
6827     CALM3      19_32     0.028   9.85 8.1e-07  -0.96
6826     PTGIR      19_32     0.027   9.61 7.6e-07  -1.00

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 19_33"
      genename region_tag susie_pip    mu2     PVE      z
2050     PRKD2      19_33     0.012   7.30 2.5e-07   0.98
1257     STRN4      19_33     0.023  12.91 8.5e-07  -1.50
9389      FKRP      19_33     0.012   7.86 2.8e-07   0.96
400      AP2S1      19_33     0.013   8.79 3.3e-07   1.21
6825  ARHGAP35      19_33     0.011   7.07 2.2e-07   0.96
5502      SAE1      19_33     0.009   5.02 1.3e-07  -0.20
2055      BBC3      19_33     0.008   4.49 1.1e-07   0.06
2053     CCDC9      19_33     0.084  24.84 6.1e-06   2.66
11894   INAFM1      19_33     0.010   6.19 1.8e-07  -0.47
4639     C5AR2      19_33     0.056  21.19 3.4e-06  -2.21
4635     DHX34      19_33     0.009   5.20 1.3e-07   0.73
2077     MEIS3      19_33     0.222  32.32 2.1e-05   3.05
2074      NAPA      19_33     0.009   4.99 1.3e-07   0.28
3238    ZNF541      19_33     0.015   9.54 4.2e-07   1.13
572    GLTSCR1      19_33     0.008   4.73 1.2e-07  -0.19
294       EHD2      19_33     0.019  12.00 6.5e-07   1.52
2066   GLTSCR2      19_33     0.008   4.63 1.1e-07  -0.14
2073   SULT2A1      19_33     0.008   4.64 1.1e-07  -0.35
2089   PLA2G4C      19_33     0.008   4.51 1.1e-07   0.21
2086      LIG1      19_33     0.008   4.68 1.1e-07   0.38
9808  C19orf68      19_33     0.009   5.96 1.6e-07  -0.81
2091     CABP5      19_33     0.008   4.60 1.1e-07   0.49
2085     CARD8      19_33     0.011   6.91 2.2e-07  -0.68
5501      EMP3      19_33     0.014   8.23 3.3e-07  -0.31
2084   CCDC114      19_33     0.010   5.82 1.7e-07  -0.24
2081     GRWD1      19_33     0.081  26.93 6.3e-06   3.41
2080     CYTH2      19_33     0.105  30.15 9.2e-06  -3.73
9493    KCNJ14      19_33     0.023  15.82 1.1e-06  -2.72
5504     LMTK3      19_33     0.021  15.98 9.9e-07  -2.52
1173   SULT2B1      19_33     0.009   4.96 1.3e-07   0.07
573      SPHK2      19_33     0.022  25.84 1.6e-06   4.77
574       CA11      19_33     0.016  24.69 1.2e-06   4.93
5503      NTN5      19_33     0.048  43.71 6.1e-06   6.41
9034    MAMSTR      19_33     0.009  84.70 2.3e-06  11.55
2097    RASIP1      19_33     0.023 109.51 7.3e-06 -12.77

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 3_84"
     genename region_tag susie_pip   mu2     PVE      z
834   PPP2R3A       3_84     0.081 56.46 1.3e-05  -8.44
8813     MSL2       3_84     0.093 79.92 2.2e-05 -10.57
2863     PCCB       3_84     0.038 25.43 2.8e-06   5.32
3234    STAG1       3_84     0.037  6.24 6.6e-07  -1.26
6668     NCK1       3_84     0.073 16.75 3.5e-06  -3.19

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                id region_tag susie_pip      mu2     PVE      z
58111  rs766167074      1_118     1.000  6468.79 1.9e-02  -4.11
73790     rs780093       2_16     1.000    87.35 2.5e-04 -10.49
74091  rs569546056       2_19     1.000   610.21 1.8e-03  -2.90
93466    rs4441469       2_54     1.000    35.89 1.0e-04   6.44
99000    rs4849177       2_67     1.000   100.40 2.9e-04  10.12
101070 rs141849010       2_69     1.000    35.79 1.0e-04   5.91
117266    rs847164      2_106     1.000    55.19 1.6e-04   9.07
126634  rs11887861      2_124     1.000    75.01 2.2e-04   7.60
146663   rs7619139       3_18     1.000    79.48 2.3e-04   9.30
159086  rs13066345       3_45     1.000   156.73 4.6e-04  12.30
195357  rs16862782      3_115     1.000   362.07 1.1e-03 -21.08
206177  rs62411644       4_17     1.000    35.79 1.0e-04  -5.87
213877  rs12639940       4_32     1.000    58.67 1.7e-04   8.08
214239  rs11729899       4_33     1.000    49.37 1.4e-04   7.45
275501  rs11740818       5_23     1.000    50.96 1.5e-04  -7.09
312134  rs17645325       5_93     1.000    36.48 1.1e-04  -6.45
366476 rs199804242       6_89     1.000  6095.57 1.8e-02   3.25
376593    rs300143      6_108     1.000   224.35 6.5e-04 -15.74
378905  rs78148157        7_3     1.000   230.25 6.7e-04 -12.26
378906  rs13241427        7_3     1.000   185.06 5.4e-04  11.86
405346  rs10277379       7_49     1.000  4352.72 1.3e-02   6.01
405349 rs761767938       7_49     1.000  5021.16 1.5e-02   3.82
405357   rs1544459       7_49     1.000  4933.79 1.4e-02   4.42
411928  rs10276555       7_63     1.000    68.32 2.0e-04   6.61
441588   rs1397799       8_24     1.000   122.62 3.6e-04  11.95
469682   rs9720968       8_83     1.000   111.17 3.2e-04  10.36
469687  rs10505503       8_83     1.000    48.48 1.4e-04   6.02
485393    rs476924       9_17     1.000  4694.66 1.4e-02  -3.29
485396 rs141465689       9_17     1.000  4677.19 1.4e-02  -3.26
567903 rs369062552      11_21     1.000   148.95 4.3e-04  14.22
567913  rs34830202      11_21     1.000   254.58 7.4e-04 -14.10
616915   rs2657880      12_35     1.000   122.30 3.6e-04  11.72
617070   rs7397189      12_36     1.000   134.26 3.9e-04 -12.27
712679   rs3803487      15_27     1.000    64.42 1.9e-04   8.25
716454   rs2472297      15_35     1.000    62.54 1.8e-04  -9.67
716696 rs145727191      15_35     1.000    90.03 2.6e-04  11.74
735990  rs12927956      16_27     1.000    52.76 1.5e-04   6.72
759690   rs1058166      17_22     1.000    75.51 2.2e-04   9.53
759719   rs4794765      17_22     1.000    61.49 1.8e-04  -8.54
762030 rs137906947      17_27     1.000   145.62 4.2e-04  -9.70
779645    rs162000      18_14     1.000    44.02 1.3e-04   6.80
784968   rs4890562      18_25     1.000    64.37 1.9e-04   9.64
784971  rs12458806      18_25     1.000    80.93 2.4e-04   0.67
784976  rs12964854      18_25     1.000   114.03 3.3e-04   9.21
785755   rs9953845      18_26     1.000    72.99 2.1e-04   9.08
811822    rs814573      19_31     1.000    39.63 1.2e-04  -6.35
812086  rs34783010      19_32     1.000   250.04 7.3e-04 -15.84
813074  rs12978750      19_33     1.000   178.00 5.2e-04 -16.37
832162   rs6123359      20_32     1.000    38.57 1.1e-04   6.89
832168   rs2585441      20_32     1.000    40.23 1.2e-04   6.39
833883  rs62205363      20_34     1.000    67.85 2.0e-04   6.34
843679    rs219783      21_16     1.000   133.63 3.9e-04 -11.90
877251   rs3010096      1_102     1.000    41.91 1.2e-04   5.66
923528 rs752726045      15_36     1.000 11248.42 3.3e-02  -4.84
957459 rs202143810      20_38     1.000   941.02 2.7e-03  -2.44
98992  rs567964928       2_67     0.999    32.31 9.4e-05   5.14
275391   rs4703440       5_23     0.999    64.02 1.9e-04   7.92
604355  rs11056397      12_13     0.999    33.03 9.6e-05  -5.38
833341  rs12481011      20_33     0.999    33.72 9.8e-05   4.92
318017  rs12654812      5_106     0.998    65.75 1.9e-04  10.89
318023   rs7447593      5_106     0.998    61.46 1.8e-04  10.76
197542   rs7642977      3_118     0.997    37.09 1.1e-04   6.09
280206 rs113088001       5_31     0.997    39.41 1.1e-04  -5.94
376625   rs1445288      6_108     0.997    32.05 9.3e-05   5.23
386126 rs542176135       7_17     0.997    45.00 1.3e-04  -6.93
615130    rs863226      12_31     0.997    31.68 9.2e-05   4.54
762029  rs60372268      17_27     0.997    54.94 1.6e-04  -8.11
784829  rs72902699      18_24     0.997    44.09 1.3e-04  -6.89
399614   rs2709273       7_39     0.996    30.28 8.8e-05   5.43
836306    rs926167       21_2     0.996    41.63 1.2e-04   5.45
659189   rs9543236      13_35     0.995    31.43 9.1e-05  -5.34
378895   rs4724786        7_3     0.994    60.05 1.7e-04   3.34
545611   rs1408345      10_64     0.994    29.27 8.5e-05   5.37
426344  rs10224210       7_94     0.992   330.88 9.5e-04  19.30
615137   rs1878234      12_31     0.991    36.45 1.0e-04   4.94
767419  rs11079697      17_39     0.990    29.28 8.4e-05  -5.44
227524  rs13124978       4_56     0.989    26.38 7.6e-05  -4.87
699644  rs10141666      14_53     0.988    35.54 1.0e-04  -5.98
328211    rs793705       6_18     0.987    34.49 9.9e-05  -6.01
322243  rs13193887        6_7     0.985    28.46 8.1e-05   4.93
568955   rs2476504      11_23     0.985    27.11 7.8e-05  -4.83
923583   rs2456070      15_36     0.984 11245.22 3.2e-02  -4.74
233674  rs35518360       4_67     0.983    29.25 8.4e-05  -5.20
276939 rs115634741       5_26     0.983    33.68 9.6e-05  -7.51
411932   rs6968978       7_63     0.983    28.49 8.1e-05  -3.55
741303  rs59156463      16_37     0.983    42.27 1.2e-04  -8.30
396289    rs700752       7_34     0.981    43.32 1.2e-04   6.48
760781  rs12948083      17_25     0.980    30.00 8.5e-05   5.32
722395  rs59646751      15_48     0.978    76.26 2.2e-04   9.08
557477   rs2239681       11_2     0.976    34.85 9.9e-05  -6.81
285456   rs4302565       5_43     0.975    26.79 7.6e-05   4.21
597613 rs148884160      11_80     0.968    25.72 7.2e-05   4.82
762872    rs890398      17_29     0.968    26.78 7.5e-05   5.08
708394   rs8030172      15_19     0.967    24.61 6.9e-05   4.70
810674  rs12982615      19_30     0.966    28.77 8.1e-05  -5.22
485394  rs34033213       9_17     0.963  4617.81 1.3e-02  -3.16
813093    rs495315      19_33     0.963    55.73 1.6e-04  10.55
60546   rs17520491      1_123     0.961    26.30 7.3e-05   4.97
101428   rs1975379       2_70     0.960    30.04 8.4e-05  -6.71
773795   rs4513192       18_3     0.956    34.49 9.6e-05  -5.15
867837 rs111552903       1_77     0.955    45.37 1.3e-04  -3.27
779604    rs527616      18_14     0.954    26.00 7.2e-05  -5.24
842825   rs2154568      21_15     0.951    43.77 1.2e-04   6.46
74094    rs4580350       2_19     0.942   609.98 1.7e-03   2.96
617051   rs6581124      12_35     0.941    26.54 7.3e-05  -4.95
833326   rs1884500      20_33     0.941    28.16 7.7e-05   2.53
326580  rs41271299       6_15     0.940    25.00 6.8e-05   4.68
671887   rs7987209      13_59     0.936    59.13 1.6e-04   7.64
741474 rs139861017      16_37     0.933    26.61 7.2e-05   4.78
372855   rs1449674      6_101     0.930    25.37 6.9e-05  -4.77
820452   rs6040069       20_8     0.927    24.32 6.6e-05  -4.67
833885   rs1407040      20_34     0.925    45.09 1.2e-04  -3.89
512847 rs113790047       10_3     0.923    39.75 1.1e-04   6.42
511106 rs115478735       9_70     0.921    47.47 1.3e-04   6.96
337444   rs7742789       6_33     0.916    45.98 1.2e-04  -7.14
22359   rs60824360       1_48     0.913    25.92 6.9e-05  -4.68
290833  rs61552236       5_53     0.911    46.54 1.2e-04  -6.85
762730   rs9895945      17_28     0.910    40.67 1.1e-04   6.52
578521  rs10796869      11_38     0.909    46.81 1.2e-04   7.75
568286  rs11031796      11_22     0.907    29.47 7.8e-05   5.12
523653  rs79545879      10_20     0.903    25.00 6.6e-05   4.24
748243  rs34341288      16_50     0.898    25.81 6.7e-05  -4.80
533278  rs10821950      10_42     0.894    39.17 1.0e-04  -6.19
741587 rs192776582      16_38     0.884    25.86 6.6e-05   5.14
489757  rs34223057       9_27     0.883    27.02 6.9e-05   4.97
195372  rs62278004      3_115     0.882   105.50 2.7e-04  15.80
529356   rs4935194      10_33     0.881    24.11 6.2e-05   4.40
320390   rs1272694        6_3     0.876    33.29 8.5e-05  -5.73
389785  rs67971665       7_23     0.872    29.86 7.6e-05  -5.52
347021   rs2815715       6_50     0.871    24.86 6.3e-05   4.71
10043   rs56307352       1_21     0.870    26.20 6.6e-05  -4.83
154139  rs62259692       3_36     0.869    27.18 6.9e-05   4.72
809550 rs117236730      19_25     0.865    24.08 6.1e-05   4.72
722437  rs45506098      15_48     0.863    23.93 6.0e-05   4.42
195355   rs2679508      3_115     0.858    65.75 1.6e-04  -3.66
284719  rs11743158       5_41     0.850    32.82 8.1e-05   5.38
50082  rs113608553      1_104     0.849    32.58 8.0e-05  -5.54
757568 rs112861323      17_18     0.849    26.80 6.6e-05  -4.71
285449    rs745063       5_43     0.846   141.48 3.5e-04  13.29
721491   rs4335732      15_46     0.842    25.96 6.3e-05  -4.79
158395  rs28599817       3_43     0.840   132.89 3.2e-04  12.33
263409  rs62331274        5_2     0.840    23.95 5.8e-05   4.36
813105    rs837647      19_34     0.839    31.74 7.7e-05  -5.52
328929 rs115740542       6_20     0.838    25.01 6.1e-05   4.42
3331   rs115560453        1_7     0.836    25.15 6.1e-05   4.67
332456   rs4509168       6_26     0.831    34.29 8.3e-05   5.69
693673  rs17796675      14_41     0.825    24.24 5.8e-05   4.45
824169  rs10854249      20_15     0.825    29.15 7.0e-05  -5.10
198304  rs13059257      3_120     0.821    42.96 1.0e-04   6.50
658793   rs5804585      13_35     0.811   103.74 2.4e-04 -10.42
762532   rs3809778      17_28     0.811    30.63 7.2e-05  -5.73
946338 rs117643180       17_6     0.808    50.28 1.2e-04   7.00
195373  rs12634556      3_115     0.807   314.87 7.4e-04 -22.53
229226 rs149027545       4_59     0.806    26.58 6.2e-05  -4.90
527612  rs56059584      10_29     0.802    24.11 5.6e-05   4.44
868166   rs6676150       1_77     0.802   224.00 5.2e-04  20.90
159053  rs11707171       3_45     0.801    35.80 8.3e-05  -3.27

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE     z
923528 rs752726045      15_36     1.000 11248.42 3.3e-02 -4.84
923583   rs2456070      15_36     0.984 11245.22 3.2e-02 -4.74
923522   rs2456040      15_36     0.238 11233.82 7.8e-03 -4.69
923512   rs2959846      15_36     0.000 11102.10 2.7e-10 -4.73
923511   rs2456042      15_36     0.000 11101.78 1.7e-10 -4.72
923683   rs2456067      15_36     0.000 11099.46 2.2e-10 -4.75
923672   rs2469214      15_36     0.000 11055.22 2.8e-12 -4.78
923627   rs2456074      15_36     0.000 11015.84 1.1e-12 -4.89
923691   rs2456066      15_36     0.000 11010.72 4.4e-13 -4.89
923665   rs2469538      15_36     0.000 11009.88 1.7e-13 -4.87
923738   rs2460158      15_36     0.000 11004.12 4.1e-15 -4.78
923651   rs2469539      15_36     0.000 10997.94 1.4e-14 -4.84
923669   rs8042255      15_36     0.000 10971.66 7.8e-15 -4.92
923735   rs2469211      15_36     0.000 10956.03 7.1e-18 -4.80
923734   rs2956875      15_36     0.000 10956.00 1.4e-17 -4.81
923722   rs2456063      15_36     0.000 10947.45 1.1e-16 -4.89
923662  rs35360285      15_36     0.000 10935.09 2.3e-15 -4.97
923740   rs2469573      15_36     0.000 10930.68 3.5e-17 -4.91
923741   rs2469212      15_36     0.000 10929.90 2.1e-17 -4.89
923490   rs2469564      15_36     0.000 10910.30 0.0e+00 -4.74
923486   rs2460153      15_36     0.000 10910.13 0.0e+00 -4.74
923586  rs71140202      15_36     0.000 10901.71 0.0e+00  4.82
923475   rs2456047      15_36     0.000 10898.61 0.0e+00 -4.75
923776   rs2469216      15_36     0.000 10739.50 0.0e+00 -4.93
923452   rs2469568      15_36     0.000 10658.58 0.0e+00 -4.68
923773   rs2469215      15_36     0.000 10652.80 0.0e+00 -5.04
923778   rs2469552      15_36     0.000 10651.98 0.0e+00 -5.07
923780   rs2456033      15_36     0.000 10640.65 0.0e+00 -5.05
923774   rs6495200      15_36     0.000 10638.35 0.0e+00  5.07
923435   rs2456054      15_36     0.000 10602.38 0.0e+00 -4.66
923431   rs2469559      15_36     0.000 10591.56 0.0e+00 -4.64
923802   rs4886490      15_36     0.000  9988.17 0.0e+00  5.31
923813    rs874224      15_36     0.000  9985.01 0.0e+00 -5.36
923792  rs11858964      15_36     0.000  9971.92 0.0e+00  5.44
923817   rs1810348      15_36     0.000  9969.37 0.0e+00  5.33
923811   rs4489970      15_36     0.000  9962.21 0.0e+00  5.35
923812    rs874223      15_36     0.000  9959.80 0.0e+00  5.35
923818   rs7180257      15_36     0.000  9906.33 0.0e+00  5.22
923540  rs77815174      15_36     0.000  9033.28 0.0e+00 -1.81
923591  rs77633900      15_36     0.000  9029.54 0.0e+00 -1.81
923590  rs77387260      15_36     0.000  9027.81 0.0e+00 -1.82
923678   rs2291449      15_36     0.000  8871.29 0.0e+00 -1.81
923676   rs1801591      15_36     0.000  8867.19 0.0e+00 -1.82
923717  rs74805465      15_36     0.000  8756.52 0.0e+00 -1.92
923495  rs79495512      15_36     0.000  8696.06 0.0e+00 -1.88
923769  rs78185702      15_36     0.000  8536.37 0.0e+00 -2.03
923446  rs17456573      15_36     0.000  8392.80 0.0e+00 -1.78
923893  rs78181637      15_36     0.000  7812.12 2.1e-14 -7.13
923832   rs2469535      15_36     0.000  7722.11 2.6e-14 -7.15
923834   rs2460161      15_36     0.000  7720.71 2.5e-14 -7.15

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE      z
923528 rs752726045      15_36     1.000 11248.42 0.03300  -4.84
923583   rs2456070      15_36     0.984 11245.22 0.03200  -4.74
58111  rs766167074      1_118     1.000  6468.79 0.01900  -4.11
366476 rs199804242       6_89     1.000  6095.57 0.01800   3.25
405349 rs761767938       7_49     1.000  5021.16 0.01500   3.82
366475   rs2327654       6_89     0.782  6116.70 0.01400   2.70
405357   rs1544459       7_49     1.000  4933.79 0.01400   4.42
485393    rs476924       9_17     1.000  4694.66 0.01400  -3.29
485396 rs141465689       9_17     1.000  4677.19 0.01400  -3.26
405346  rs10277379       7_49     1.000  4352.72 0.01300   6.01
485394  rs34033213       9_17     0.963  4617.81 0.01300  -3.16
366492   rs6923513       6_89     0.687  6116.49 0.01200   2.70
923522   rs2456040      15_36     0.238 11233.82 0.00780  -4.69
58098    rs1076804      1_118     0.283  6404.49 0.00530  -4.28
58118    rs2211176      1_118     0.277  6411.14 0.00520  -4.25
58119    rs2790882      1_118     0.277  6411.14 0.00520  -4.25
58102    rs2256908      1_118     0.255  6412.62 0.00470  -4.24
58108   rs10489611      1_118     0.252  6412.98 0.00470  -4.23
58110     rs971534      1_118     0.252  6413.02 0.00470  -4.23
58109    rs2486737      1_118     0.223  6412.92 0.00420  -4.23
58105    rs2790891      1_118     0.218  6412.48 0.00410  -4.23
58106    rs2491405      1_118     0.218  6412.48 0.00410  -4.23
58117    rs2248646      1_118     0.205  6410.63 0.00380  -4.24
58120    rs1416913      1_118     0.200  6403.73 0.00370  -4.26
957459 rs202143810      20_38     1.000   941.02 0.00270  -2.44
74091  rs569546056       2_19     1.000   610.21 0.00180  -2.90
74094    rs4580350       2_19     0.942   609.98 0.00170   2.96
195357  rs16862782      3_115     1.000   362.07 0.00110 -21.08
277366  rs11956741       5_27     0.715   533.48 0.00110 -24.85
426344  rs10224210       7_94     0.992   330.88 0.00095  19.30
366479 rs113527452       6_89     0.053  6087.00 0.00094   2.74
58099     rs910824      1_118     0.041  6387.93 0.00077  -4.26
195373  rs12634556      3_115     0.807   314.87 0.00074 -22.53
567913  rs34830202      11_21     1.000   254.58 0.00074 -14.10
812086  rs34783010      19_32     1.000   250.04 0.00073 -15.84
378905  rs78148157        7_3     1.000   230.25 0.00067 -12.26
376593    rs300143      6_108     1.000   224.35 0.00065 -15.74
378906  rs13241427        7_3     1.000   185.06 0.00054  11.86
813074  rs12978750      19_33     1.000   178.00 0.00052 -16.37
868166   rs6676150       1_77     0.802   224.00 0.00052  20.90
405332  rs17156706       7_49     0.353   498.79 0.00051  -3.20
58123    rs2790874      1_118     0.026  6401.13 0.00049  -4.19
957456   rs6089961      20_38     0.181   930.68 0.00049  -2.60
957458   rs2738758      20_38     0.181   930.68 0.00049  -2.60
159086  rs13066345       3_45     1.000   156.73 0.00046  12.30
277361  rs28856650       5_27     0.294   531.76 0.00046 -24.81
923396  rs77476788      15_36     0.750   202.09 0.00044  10.93
567903 rs369062552      11_21     1.000   148.95 0.00043  14.22
762030 rs137906947      17_27     1.000   145.62 0.00042  -9.70
74093    rs2169748       2_19     0.225   603.43 0.00039  -2.89

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip    mu2     PVE      z
277366  rs11956741       5_27     0.715 533.48 1.1e-03 -24.85
277361  rs28856650       5_27     0.294 531.76 4.6e-04 -24.81
277338  rs11955175       5_27     0.012 521.16 1.8e-05 -24.60
195373  rs12634556      3_115     0.807 314.87 7.4e-04 -22.53
195375  rs11924549      3_115     0.193 310.13 1.7e-04 -22.45
868275    rs760077       1_77     0.008 237.98 5.7e-06 -21.52
868286   rs2990223       1_77     0.002 235.07 1.7e-06 -21.47
195357  rs16862782      3_115     1.000 362.07 1.1e-03 -21.08
868166   rs6676150       1_77     0.802 224.00 5.2e-04  20.90
195382   rs1027498      3_115     0.000 221.00 1.4e-10 -20.38
868299 rs139558368       1_77     0.000 209.13 3.1e-08  20.25
868119   rs9330264       1_77     0.010 200.74 5.6e-06 -19.37
426344  rs10224210       7_94     0.992 330.88 9.5e-04  19.30
426346  rs10224002       7_94     0.011 323.83 1.0e-05  19.03
868262    rs423144       1_77     0.000 184.99 5.8e-09 -18.28
868260   rs7366775       1_77     0.000 183.97 5.7e-09 -18.25
868245   rs4971101       1_77     0.000 179.07 5.3e-09 -18.10
868246   rs2070803       1_77     0.000 178.87 5.3e-09 -18.10
868269   rs2075571       1_77     0.000 177.32 5.1e-09 -18.09
868242   rs4971100       1_77     0.000 177.06 5.2e-09 -18.03
868233   rs9426886       1_77     0.000 174.61 5.1e-09 -17.94
868239 rs541049493       1_77     0.000 173.45 5.1e-09 -17.87
868232  rs11264341       1_77     0.000 172.24 5.0e-09 -17.85
195368  rs73188608      3_115     0.000 167.82 4.3e-15 -17.82
195369  rs73188616      3_115     0.000 167.72 4.3e-15 -17.82
195374   rs4686916      3_115     0.000 167.58 4.3e-15 -17.82
195376  rs73188638      3_115     0.000 166.63 4.2e-15 -17.79
868197 rs141625351       1_77     0.000 146.48 5.0e-09  17.71
868912  rs12134456       1_77     0.000 162.84 7.4e-09  17.63
868289   rs1057941       1_77     0.000 171.88 5.5e-09 -17.62
195371  rs12233463      3_115     0.000 155.46 2.2e-15 -17.60
868240   rs4971099       1_77     0.000 165.91 5.3e-09 -17.04
426342  rs66497154       7_94     0.002 247.34 1.3e-06  16.71
868254   rs4072037       1_77     0.000 127.43 4.1e-09 -16.46
868231   rs3814316       1_77     0.000 147.88 5.0e-09 -16.45
868259   rs2974937       1_77     0.000 126.38 4.2e-09 -16.43
813074  rs12978750      19_33     1.000 178.00 5.2e-04 -16.37
868252  rs12743084       1_77     0.000 126.28 4.0e-09 -16.34
868230   rs4971059       1_77     0.000 140.77 4.3e-09 -16.33
868265   rs2066981       1_77     0.000 120.71 5.1e-09 -16.21
868271    rs370545       1_77     0.000 120.63 5.1e-09 -16.20
868272    rs914615       1_77     0.000 120.59 5.1e-09 -16.20
868255  rs12411216       1_77     0.000 122.30 4.2e-09  16.17
868223   rs4971091       1_77     0.000 126.15 3.6e-09 -15.89
868225   rs4971093       1_77     0.000 125.27 3.5e-09 -15.86
812086  rs34783010      19_32     1.000 250.04 7.3e-04 -15.84
813082    rs838145      19_33     0.047 188.80 2.6e-05  15.82
195372  rs62278004      3_115     0.882 105.50 2.7e-04  15.80
716672  rs28607641      15_35     0.553 225.41 3.6e-04  15.78
716673   rs7177266      15_35     0.447 224.93 2.9e-04  15.76

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 7
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
                                                                                                                           Term
1                                                                                  regulation of exit from mitosis (GO:0007096)
2                                                                                           ERBB signaling pathway (GO:0038127)
3                                                                                 regulation of mitotic cell cycle (GO:0007346)
4                                                                         cardiac endothelial cell differentiation (GO:0003348)
5                                                                     cardiac muscle cell myoblast differentiation (GO:0060379)
6                                                                                 endocardial cell differentiation (GO:0060956)
7                                                                regulation of mitotic cell cycle phase transition (GO:1901990)
8                                            activation of transmembrane receptor protein tyrosine kinase activity (GO:0007171)
9                                                                    positive regulation of histone H4 acetylation (GO:0090240)
10                                                              regulation of striated muscle cell differentiation (GO:0051153)
11                                                                          glomerular epithelial cell development (GO:0072310)
12                                                                 glomerular visceral epithelial cell development (GO:0072015)
13                                                                  ventricular trabecula myocardium morphogenesis (GO:0003222)
14                                                                            regulation of histone H4 acetylation (GO:0090239)
15                                                 regulation of DNA-templated transcription in response to stress (GO:0043620)
16                                                       negative regulation of cell adhesion mediated by integrin (GO:0033629)
17                                            negative regulation of transcription by competitive promoter binding (GO:0010944)
18 DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator (GO:0006978)
19                                             DNA damage response, signal transduction resulting in transcription (GO:0042772)
20                                                                                      cardiocyte differentiation (GO:0035051)
21                                                             glomerular visceral epithelial cell differentiation (GO:0072112)
22                                              positive regulation of metaphase/anaphase transition of cell cycle (GO:1902101)
23                                                    positive regulation of mitotic metaphase/anaphase transition (GO:0045842)
24                                                      positive regulation of mitotic sister chromatid separation (GO:1901970)
25                                                                                        regulation of cell cycle (GO:0051726)
26    negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator (GO:1902166)
27                                                                                negative regulation of secretion (GO:0051048)
28             regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator (GO:1902165)
29                                                                                         regulation of secretion (GO:0051046)
30                                                                                        myoblast differentiation (GO:0045445)
31                              negative regulation of intrinsic apoptotic signaling pathway by p53 class mediator (GO:1902254)
32                                                                                           stem cell development (GO:0048864)
33                                                                                   heart trabecula morphogenesis (GO:0061384)
34                                                                            striated muscle cell differentiation (GO:0051146)
35                                                                               neural crest cell differentiation (GO:0014033)
36                                                                                    mesenchymal cell development (GO:0014031)
37                                                                      positive regulation of histone acetylation (GO:0035066)
38                      positive regulation of transcription from RNA polymerase II promoter in response to stress (GO:0036003)
39                                                                             cardiac muscle cell differentiation (GO:0055007)
40                                                                                       mammary gland development (GO:0030879)
41                                                             regulation of mitotic metaphase/anaphase transition (GO:0030071)
42                          negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage (GO:1902230)
43                                                     positive regulation of striated muscle cell differentiation (GO:0051155)
44                                                              positive regulation of muscle cell differentiation (GO:0051149)
45                                                           cellular response to epidermal growth factor stimulus (GO:0071364)
46                                                                               protein K11-linked ubiquitination (GO:0070979)
47                                                                         activation of protein kinase B activity (GO:0032148)
48                                                                                         ERBB2 signaling pathway (GO:0038128)
49                                                                                     neuron projection extension (GO:1990138)
50                                                                regulation of cell adhesion mediated by integrin (GO:0033628)
51                                                                 ventricular cardiac muscle tissue morphogenesis (GO:0055010)
52                                                                 positive regulation of mitotic nuclear division (GO:0045840)
53                                                                              positive regulation of cytokinesis (GO:0032467)
54                                                        positive regulation of intracellular signal transduction (GO:1902533)
55                                                                            positive regulation of cell division (GO:0051781)
56                                                                                   neural crest cell development (GO:0014032)
57                                                              epidermal growth factor receptor signaling pathway (GO:0007173)
58                                                                       regulation of cellular component movement (GO:0051270)
59                                                                                negative regulation of transport (GO:0051051)
60                                                                               cardiac muscle tissue development (GO:0048738)
61                   DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest (GO:0006977)
62                                                      positive regulation of mitotic cell cycle phase transition (GO:1901992)
63                                                                                             O-glycan processing (GO:0016266)
64                                                                      mitotic G1 DNA damage checkpoint signaling (GO:0031571)
65                                                                                cellular response to calcium ion (GO:0071277)
66                                                                                                   wound healing (GO:0042060)
67                                                                                               gland development (GO:0048732)
68                                                                            negative regulation of cell adhesion (GO:0007162)
69                                                                      regulation of actin filament-based process (GO:0032970)
70                                                  DNA damage response, signal transduction by p53 class mediator (GO:0030330)
   Overlap Adjusted.P.value          Genes
1     2/39      0.009975182 CDC14A;ANAPC11
2     2/66      0.014373002    NRG1;IQGAP1
3    2/178      0.022521751 IQGAP1;ANAPC11
4      1/5      0.022521751           NRG1
5      1/5      0.022521751           NRG1
6      1/5      0.022521751           NRG1
7    2/188      0.022521751 CDC14A;ANAPC11
8      1/6      0.022521751           NRG1
9      1/7      0.022521751           MUC1
10     1/7      0.022521751           NRG1
11     1/7      0.022521751         IQGAP1
12     1/7      0.022521751         IQGAP1
13     1/8      0.022521751           NRG1
14     1/9      0.022521751           MUC1
15     1/9      0.022521751           MUC1
16    1/10      0.022521751           MUC1
17    1/10      0.022521751           MUC1
18    1/10      0.022521751           MUC1
19    1/11      0.022521751           MUC1
20    1/12      0.022521751           NRG1
21    1/12      0.022521751         IQGAP1
22    1/12      0.022521751        ANAPC11
23    1/12      0.022521751        ANAPC11
24    1/12      0.022521751        ANAPC11
25   2/296      0.022521751  IQGAP1;CDC14A
26    1/13      0.022527343           MUC1
27    1/14      0.022527343           NRG1
28    1/14      0.022527343           MUC1
29    1/15      0.022527343           NRG1
30    1/15      0.022527343           NRG1
31    1/17      0.023764627           MUC1
32    1/17      0.023764627           NRG1
33    1/19      0.023764627           NRG1
34    1/19      0.023764627           NRG1
35    1/19      0.023764627           NRG1
36    1/19      0.023764627           NRG1
37    1/23      0.026996407           MUC1
38    1/24      0.026996407           MUC1
39    1/24      0.026996407           NRG1
40    1/24      0.026996407           NRG1
41    1/26      0.027597558        ANAPC11
42    1/26      0.027597558           MUC1
43    1/27      0.027597558           NRG1
44    1/27      0.027597558           NRG1
45    1/28      0.027979505         IQGAP1
46    1/29      0.028344553        ANAPC11
47    1/31      0.029645800           NRG1
48    1/32      0.029951107           NRG1
49    1/33      0.029951107         IQGAP1
50    1/34      0.029951107           MUC1
51    1/34      0.029951107           NRG1
52    1/36      0.031093755        ANAPC11
53    1/37      0.031349802         CDC14A
54   2/546      0.034072454    NRG1;IQGAP1
55    1/44      0.035887521         CDC14A
56    1/45      0.036042332           NRG1
57    1/47      0.036972709         IQGAP1
58    1/50      0.038637149           NRG1
59    1/51      0.038736124           NRG1
60    1/53      0.039572408           NRG1
61    1/56      0.041108427           MUC1
62    1/58      0.041877316        ANAPC11
63    1/61      0.043324807           MUC1
64    1/65      0.045417213           MUC1
65    1/69      0.047210138         IQGAP1
66    1/70      0.047210138           NRG1
67    1/71      0.047210138           NRG1
68    1/73      0.047210138           MUC1
69    1/73      0.047210138         IQGAP1
70    1/74      0.047210138           MUC1
[1] "GO_Cellular_Component_2021"
                               Term Overlap Adjusted.P.value  Genes
1 filtration diaphragm (GO:0036056)     1/5       0.02623375 IQGAP1
2       slit diaphragm (GO:0036057)     1/5       0.02623375 IQGAP1
[1] "GO_Molecular_Function_2021"
                                                                             Term
1                                  protein kinase activator activity (GO:0030295)
2                                      ErbB-3 class receptor binding (GO:0043125)
3  transmembrane receptor protein tyrosine kinase activator activity (GO:0030297)
4                                ubiquitin-ubiquitin ligase activity (GO:0034450)
5                                       MAP-kinase scaffold activity (GO:0005078)
6                                          GTPase inhibitor activity (GO:0005095)
7                                                   cadherin binding (GO:0045296)
8                    cadherin binding involved in cell-cell adhesion (GO:0098641)
9                         protein tyrosine kinase activator activity (GO:0030296)
10                                           chemorepellent activity (GO:0045499)
11                  phosphatidylinositol-3,4,5-trisphosphate binding (GO:0005547)
12                protein serine/threonine kinase activator activity (GO:0043539)
13                              cell-cell adhesion mediator activity (GO:0098632)
   Overlap Adjusted.P.value         Genes
1     2/63      0.007510719   NRG1;IQGAP1
2      1/5      0.027190168          NRG1
3      1/7      0.027190168          NRG1
4     1/11      0.027190168       ANAPC11
5     1/11      0.027190168        IQGAP1
6     1/13      0.027190168        IQGAP1
7    2/322      0.027190168 TRIM29;IQGAP1
8     1/18      0.027264844        TRIM29
9     1/19      0.027264844          NRG1
10    1/25      0.032258316          NRG1
11    1/35      0.039713799        IQGAP1
12    1/37      0.039713799        IQGAP1
13    1/42      0.041581635        TRIM29
ANAPC11 gene(s) from the input list not found in DisGeNET CURATEDZNF547 gene(s) from the input list not found in DisGeNET CURATED
                         Description        FDR Ratio  BgRatio
74  DEAFNESS, AUTOSOMAL RECESSIVE 32 0.02241806   1/5   1/9703
75 Medullary cystic kidney disease 1 0.02241806   1/5   1/9703
4                Cannabis Dependence 0.04962313   1/5  17/9703
5     Neoplastic Cell Transformation 0.04962313   2/5 139/9703
7                Prelingual Deafness 0.04962313   1/5  20/9703
26                      Oligospermia 0.04962313   1/5  12/9703
28              Peritoneal Neoplasms 0.04962313   1/5  10/9703
33                     Gastric ulcer 0.04962313   1/5  18/9703
35            Aganglionosis, Colonic 0.04962313   1/5  15/9703
36             Hearing Loss, Extreme 0.04962313   1/5  20/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2