Last updated: 2023-07-27

Checks: 7 0

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 05b0117. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Untracked files:
    Untracked:  gwas.RData
    Untracked:  ld_R_info.RData
    Untracked:  z_snp_pos_ebi-a-GCST004131.RData
    Untracked:  z_snp_pos_ebi-a-GCST004132.RData
    Untracked:  z_snp_pos_ebi-a-GCST004133.RData
    Untracked:  z_snp_pos_scz-2018.RData
    Untracked:  z_snp_pos_ukb-a-360.RData
    Untracked:  z_snp_pos_ukb-d-30780_irnt.RData

Unstaged changes:
    Modified:   analysis/variance_prior_testing.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30660_irnt_Liver_new.Rmd) and HTML (docs/ukb-d-30660_irnt_Liver_new.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 05b0117 wesleycrouse 2023-07-27 adding results for inv-gamma prior on variance
html 57fd2c7 wesleycrouse 2021-09-13 updating reports
html 7e22565 wesleycrouse 2021-09-13 updating reports
html db3f58c wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html a5fc17b wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
html 1b58868 wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html 28bdbcc wesleycrouse 2021-09-06 fixing thin argument for fixed pi results
html 47f58ac wesleycrouse 2021-09-06 fixing thin argument for fixed pi results
Rmd aa84813 wesleycrouse 2021-09-06 updating additional analyses
Rmd 209346f wesleycrouse 2021-09-06 updating additional analyses
html aa84813 wesleycrouse 2021-09-06 updating additional analyses
html 209346f wesleycrouse 2021-09-06 updating additional analyses
html 684574c wesleycrouse 2021-09-06 switching from render to wflow_build
html b14741c wesleycrouse 2021-09-06 switching from render to wflow_build
html a419d64 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html b2c823e wesleycrouse 2021-09-01 adding additional fixedsigma report
html 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
html 1452ca8 wesleycrouse 2021-08-30 fixing typo
html 2739f4f wesleycrouse 2021-08-30 fixing typo
html bf1f4e8 wesleycrouse 2021-08-30 fixing alignment on index
html b1e6b7e wesleycrouse 2021-08-30 fixing alignment on index
html b0c3887 wesleycrouse 2021-08-30 Adding detailed reports for 30660
html d7dfe76 wesleycrouse 2021-08-30 Adding detailed reports for 30660
Rmd 09f9d28 wesleycrouse 2021-08-30 Exploring fixed priors and trimming large z scores
Rmd ea2e654 wesleycrouse 2021-08-30 Exploring fixed priors and trimming large z scores

Overview

These are the results of a ctwas analysis of the UK Biobank trait Direct bilirubin (quantile) using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30660_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
1070  768  652  417  494  611  548  408  405  434  634  629  195  365  354  526 
  17   18   19   20   21   22 
 663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8365288

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
05b0117 wesleycrouse 2023-07-27
684574c wesleycrouse 2021-09-06
b14741c wesleycrouse 2021-09-06
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0166666915 0.0001731877 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
8.188773 6.042154 
#report sample size
print(sample_size)
[1] 292933
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10876 8681670
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.005067213 0.031013005 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.02515714 0.26383586

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
05b0117 wesleycrouse 2023-07-27
684574c wesleycrouse 2021-09-06
b14741c wesleycrouse 2021-09-06
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip   mu2     PVE     z
3212          CCND2       12_4     0.999 28.18 9.6e-05  5.34
12467 RP11-219B17.3      15_27     0.998 47.46 1.6e-04  7.18
1848          CD276      15_35     0.998 34.46 1.2e-04  6.13
7040          INHBB       2_70     0.995 23.55 8.0e-05  4.81
10667         HLA-G       6_24     0.975 38.44 1.3e-04 -6.69
11790        CYP2A6      19_28     0.960 22.30 7.3e-05 -4.73
1320        CWF19L1      10_64     0.958 30.61 1.0e-04 -7.09
12687   RP4-781K5.7      1_121     0.941 19.48 6.3e-05 -4.17
3562         ACVR1C       2_94     0.936 22.42 7.2e-05  4.62
10495         PRMT6       1_66     0.935 25.78 8.2e-05  5.14
5563          ABCG8       2_27     0.930 33.27 1.1e-04  5.88
2359          ABCC3      17_29     0.915 21.62 6.8e-05  4.38
2924          EFHD1      2_136     0.908 37.25 1.2e-04  6.05
7547           LIPC      15_26     0.892 19.62 6.0e-05  3.99
4269          ITGB4      17_42     0.854 21.77 6.3e-05 -4.91
1231         PABPC4       1_24     0.841 22.43 6.4e-05  4.52
6682         CYB5R1      1_102     0.840 19.39 5.6e-05 -3.95
10212          IL27      16_23     0.821 23.75 6.7e-05 -4.76
537           DGAT2      11_42     0.804 49.68 1.4e-04 -7.51
1120           CETP      16_31     0.758 22.52 5.8e-05 -4.03

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
05b0117 wesleycrouse 2023-07-27
684574c wesleycrouse 2021-09-06
b14741c wesleycrouse 2021-09-06
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
           genename region_tag susie_pip   mu2     PVE     z
8651           MSL2       3_84     0.136 80.82 3.8e-05 10.28
537           DGAT2      11_42     0.804 49.68 1.4e-04 -7.51
3641        SLC17A1       6_20     0.036 47.50 5.8e-06  6.08
12467 RP11-219B17.3      15_27     0.998 47.46 1.6e-04  7.18
4962          EXOC6      10_59     0.057 47.22 9.2e-06 -6.37
823           TACR2      10_46     0.002 46.60 3.0e-07  3.90
2170            AHR       7_17     0.056 45.73 8.7e-06 -6.58
9850       HIST1H1C       6_20     0.028 41.16 3.9e-06  4.79
10214        ZNF165       6_22     0.307 41.08 4.3e-05  5.99
11290  MAPKAPK5-AS1      12_66     0.060 39.97 8.1e-06 -7.21
12379     U91328.22       6_20     0.025 39.61 3.4e-06 -4.74
5942       EIF4EBP2      10_46     0.042 38.61 5.5e-06 -3.06
10667         HLA-G       6_24     0.975 38.44 1.3e-04 -6.69
2541          ALDH2      12_66     0.047 37.76 6.0e-06  7.10
2924          EFHD1      2_136     0.908 37.25 1.2e-04  6.05
8505         HECTD4      12_66     0.105 35.90 1.3e-05  6.33
10734        NAP1L4       11_2     0.151 35.16 1.8e-05  3.47
1848          CD276      15_35     0.998 34.46 1.2e-04  6.13
1999          PRKD2      19_33     0.328 34.21 3.8e-05 -3.74
10425        AKR1C4       10_6     0.182 34.18 2.1e-05  6.16

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
           genename region_tag susie_pip   mu2     PVE     z
12467 RP11-219B17.3      15_27     0.998 47.46 1.6e-04  7.18
537           DGAT2      11_42     0.804 49.68 1.4e-04 -7.51
10667         HLA-G       6_24     0.975 38.44 1.3e-04 -6.69
2924          EFHD1      2_136     0.908 37.25 1.2e-04  6.05
1848          CD276      15_35     0.998 34.46 1.2e-04  6.13
5563          ABCG8       2_27     0.930 33.27 1.1e-04  5.88
1320        CWF19L1      10_64     0.958 30.61 1.0e-04 -7.09
3212          CCND2       12_4     0.999 28.18 9.6e-05  5.34
10000       ZKSCAN3       6_22     0.745 33.57 8.5e-05  3.82
10495         PRMT6       1_66     0.935 25.78 8.2e-05  5.14
7040          INHBB       2_70     0.995 23.55 8.0e-05  4.81
2004          TGFB1      19_28     0.730 32.03 8.0e-05  5.64
11669 RP11-452H21.4      11_43     0.683 31.13 7.3e-05  5.78
11790        CYP2A6      19_28     0.960 22.30 7.3e-05 -4.73
3562         ACVR1C       2_94     0.936 22.42 7.2e-05  4.62
2359          ABCC3      17_29     0.915 21.62 6.8e-05  4.38
10212          IL27      16_23     0.821 23.75 6.7e-05 -4.76
1231         PABPC4       1_24     0.841 22.43 6.4e-05  4.52
12687   RP4-781K5.7      1_121     0.941 19.48 6.3e-05 -4.17
8142         CNTROB       17_7     0.631 29.28 6.3e-05 -5.71

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip   mu2     PVE     z
8651           MSL2       3_84     0.136 80.82 3.8e-05 10.28
537           DGAT2      11_42     0.804 49.68 1.4e-04 -7.51
11290  MAPKAPK5-AS1      12_66     0.060 39.97 8.1e-06 -7.21
12467 RP11-219B17.3      15_27     0.998 47.46 1.6e-04  7.18
2541          ALDH2      12_66     0.047 37.76 6.0e-06  7.10
1320        CWF19L1      10_64     0.958 30.61 1.0e-04 -7.09
2536          SH2B3      12_66     0.016 31.54 1.8e-06  6.80
10667         HLA-G       6_24     0.975 38.44 1.3e-04 -6.69
2170            AHR       7_17     0.056 45.73 8.7e-06 -6.58
4962          EXOC6      10_59     0.057 47.22 9.2e-06 -6.37
8505         HECTD4      12_66     0.105 35.90 1.3e-05  6.33
1191          ERP29      12_66     0.088 32.09 9.6e-06  6.25
10370       TMEM116      12_66     0.088 32.09 9.6e-06 -6.25
9829        ZKSCAN4       6_22     0.036 22.64 2.8e-06 -6.24
10425        AKR1C4       10_6     0.182 34.18 2.1e-05  6.16
1848          CD276      15_35     0.998 34.46 1.2e-04  6.13
2544          NAA25      12_66     0.068 29.70 6.9e-06 -6.12
3641        SLC17A1       6_20     0.036 47.50 5.8e-06  6.08
11216       CYP21A2       6_26     0.105 32.77 1.2e-05 -6.07
2924          EFHD1      2_136     0.908 37.25 1.2e-04  6.05

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
05b0117 wesleycrouse 2023-07-27
684574c wesleycrouse 2021-09-06
b14741c wesleycrouse 2021-09-06
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
05b0117 wesleycrouse 2023-07-27
684574c wesleycrouse 2021-09-06
b14741c wesleycrouse 2021-09-06
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.005516734
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip   mu2     PVE     z
8651           MSL2       3_84     0.136 80.82 3.8e-05 10.28
537           DGAT2      11_42     0.804 49.68 1.4e-04 -7.51
11290  MAPKAPK5-AS1      12_66     0.060 39.97 8.1e-06 -7.21
12467 RP11-219B17.3      15_27     0.998 47.46 1.6e-04  7.18
2541          ALDH2      12_66     0.047 37.76 6.0e-06  7.10
1320        CWF19L1      10_64     0.958 30.61 1.0e-04 -7.09
2536          SH2B3      12_66     0.016 31.54 1.8e-06  6.80
10667         HLA-G       6_24     0.975 38.44 1.3e-04 -6.69
2170            AHR       7_17     0.056 45.73 8.7e-06 -6.58
4962          EXOC6      10_59     0.057 47.22 9.2e-06 -6.37
8505         HECTD4      12_66     0.105 35.90 1.3e-05  6.33
1191          ERP29      12_66     0.088 32.09 9.6e-06  6.25
10370       TMEM116      12_66     0.088 32.09 9.6e-06 -6.25
9829        ZKSCAN4       6_22     0.036 22.64 2.8e-06 -6.24
10425        AKR1C4       10_6     0.182 34.18 2.1e-05  6.16
1848          CD276      15_35     0.998 34.46 1.2e-04  6.13
2544          NAA25      12_66     0.068 29.70 6.9e-06 -6.12
3641        SLC17A1       6_20     0.036 47.50 5.8e-06  6.08
11216       CYP21A2       6_26     0.105 32.77 1.2e-05 -6.07
2924          EFHD1      2_136     0.908 37.25 1.2e-04  6.05

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 3_84"
     genename region_tag susie_pip   mu2     PVE     z
796   PPP2R3A       3_84     0.069 13.42 3.2e-06 -2.46
8651     MSL2       3_84     0.136 80.82 3.8e-05 10.28
2795     PCCB       3_84     0.030  5.57 5.7e-07  1.22
3148    STAG1       3_84     0.033  5.11 5.7e-07 -0.03
6584     NCK1       3_84     0.030  7.87 8.1e-07 -2.19

Version Author Date
05b0117 wesleycrouse 2023-07-27
684574c wesleycrouse 2021-09-06
b14741c wesleycrouse 2021-09-06
[1] "Region: 11_42"
           genename region_tag susie_pip   mu2     PVE     z
7611          XRRA1      11_42     0.031  8.09 8.5e-07 -1.00
3170          SPCS2      11_42     0.023  5.89 4.7e-07  0.73
6901           NEU3      11_42     0.021  4.64 3.3e-07  0.39
4848        SLCO2B1      11_42     0.021  4.65 3.3e-07 -0.22
12001         TPBGL      11_42     0.028  7.28 7.0e-07  0.68
6617          GDPD5      11_42     0.032 10.58 1.1e-06  1.95
8328           MAP6      11_42     0.025  6.11 5.2e-07  0.24
7603         MOGAT2      11_42     0.086 15.16 4.5e-06  0.85
537           DGAT2      11_42     0.804 49.68 1.4e-04 -7.51
10381         UVRAG      11_42     0.024  6.88 5.6e-07  1.62
1082          WNT11      11_42     0.030  7.98 8.0e-07  1.06
11773 RP11-619A14.3      11_42     0.024  5.82 4.7e-07  0.61
4849         THAP12      11_42     0.022  5.44 4.1e-07 -0.66
12265 RP11-111M22.5      11_42     0.025  6.37 5.4e-07  0.80
11766 RP11-111M22.3      11_42     0.021  4.69 3.3e-07  0.31
11751  RP11-672A2.4      11_42     0.022  5.37 4.1e-07  0.53
9350           TSKU      11_42     0.022  5.00 3.7e-07  0.25
905           ACER3      11_42     0.081 16.62 4.6e-06 -2.04
5976          CAPN5      11_42     0.056 13.67 2.6e-06  1.72

Version Author Date
05b0117 wesleycrouse 2023-07-27
684574c wesleycrouse 2021-09-06
b14741c wesleycrouse 2021-09-06
[1] "Region: 12_66"
          genename region_tag susie_pip   mu2     PVE     z
5112          TCHP      12_66     0.217 16.64 1.2e-05  3.21
5111          GIT2      12_66     0.143 15.95 7.8e-06  3.36
8639      C12orf76      12_66     0.016  6.20 3.4e-07 -0.30
3515         IFT81      12_66     0.020 11.38 7.9e-07  2.50
10093       ANAPC7      12_66     0.020  9.13 6.3e-07  2.16
2531         ARPC3      12_66     0.019  7.35 4.9e-07  0.54
10684      FAM216A      12_66     0.018  9.95 6.0e-07  2.42
2532          GPN3      12_66     0.014  5.66 2.6e-07  1.40
2533         VPS29      12_66     0.014  5.73 2.7e-07 -1.41
10683        TCTN1      12_66     0.017  5.93 3.3e-07  0.02
3517         HVCN1      12_66     0.034 14.22 1.6e-06  2.67
9717        PPP1CC      12_66     0.034 14.14 1.6e-06 -2.65
10375      FAM109A      12_66     0.014  7.61 3.7e-07 -1.46
2536         SH2B3      12_66     0.016 31.54 1.8e-06  6.80
10680        ATXN2      12_66     0.017 20.43 1.2e-06  3.97
2541         ALDH2      12_66     0.047 37.76 6.0e-06  7.10
11290 MAPKAPK5-AS1      12_66     0.060 39.97 8.1e-06 -7.21
1191         ERP29      12_66     0.088 32.09 9.6e-06  6.25
10370      TMEM116      12_66     0.088 32.09 9.6e-06 -6.25
2544         NAA25      12_66     0.068 29.70 6.9e-06 -6.12
8505        HECTD4      12_66     0.105 35.90 1.3e-05  6.33
9084        PTPN11      12_66     0.016  6.36 3.5e-07 -0.78

Version Author Date
05b0117 wesleycrouse 2023-07-27
684574c wesleycrouse 2021-09-06
b14741c wesleycrouse 2021-09-06
[1] "Region: 15_27"
           genename region_tag susie_pip   mu2     PVE     z
5185          GCNT3      15_27     0.037  6.23 7.9e-07 -0.60
5186         GTF2A2      15_27     0.054  9.58 1.8e-06 -1.23
3965           ICE2      15_27     0.031  6.67 7.1e-07 -1.54
12467 RP11-219B17.3      15_27     0.998 47.46 1.6e-04  7.18

Version Author Date
05b0117 wesleycrouse 2023-07-27
684574c wesleycrouse 2021-09-06
b14741c wesleycrouse 2021-09-06
[1] "Region: 10_64"
           genename region_tag susie_pip   mu2     PVE     z
3299          CNNM1      10_64     0.041 17.81 2.5e-06  2.68
3307           GOT1      10_64     0.039 19.82 2.7e-06  3.38
11056 RP11-441O15.3      10_64     0.039 19.82 2.7e-06 -3.38
11947   RP11-85A1.3      10_64     0.015  7.57 3.8e-07 -0.63
10330        ENTPD7      10_64     0.012  6.60 2.7e-07  0.21
3296           CUTC      10_64     0.013  7.36 3.3e-07  0.46
228           COX15      10_64     0.011  5.10 2.0e-07  0.08
281           ABCC2      10_64     0.030 24.03 2.5e-06  5.05
2234          DNMBP      10_64     0.037 20.06 2.5e-06 -3.13
3308           CPN1      10_64     0.012 12.43 5.1e-07  5.05
2237         ERLIN1      10_64     0.019 13.48 8.9e-07 -2.74
10819          CHUK      10_64     0.014  7.59 3.5e-07 -1.62
1320        CWF19L1      10_64     0.958 30.61 1.0e-04 -7.09
10014       BLOC1S2      10_64     0.017 10.87 6.3e-07 -2.24
11326      OLMALINC      10_64     0.019 11.22 7.1e-07 -2.01
12405 RP11-285F16.1      10_64     0.013  5.91 2.7e-07 -0.59
7557         NDUFB8      10_64     0.015  6.55 3.3e-07 -0.61
3291           SLF2      10_64     0.012  5.01 2.0e-07 -0.49
1321         SEMA4G      10_64     0.022 10.30 7.9e-07 -1.03
2256          LZTS2      10_64     0.012  4.87 2.0e-07  0.03
9772          PDZD7      10_64     0.025 11.14 9.4e-07  1.21
2254           TLX1      10_64     0.021  9.99 7.1e-07  1.04

Version Author Date
05b0117 wesleycrouse 2023-07-27
684574c wesleycrouse 2021-09-06
b14741c wesleycrouse 2021-09-06

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                id region_tag susie_pip    mu2     PVE      z
330793  rs72834643       6_20     1.000  94.30 3.2e-04   9.73
330814 rs115740542       6_20     1.000 143.95 4.9e-04  12.66
376219  rs12208357      6_103     1.000  60.36 2.1e-04  -6.65
388005 rs542176135       7_17     1.000 100.83 3.4e-04  -8.38
539954   rs6480402      10_46     1.000 155.90 5.3e-04   8.90
549432 rs111286300      10_64     1.000  34.49 1.2e-04   6.73
811047  rs59616136      19_14     1.000  41.67 1.4e-04   7.00
136166   rs6731991      2_136     0.999  33.88 1.2e-04  -5.75
539953   rs4745982      10_46     0.999  60.61 2.1e-04  11.95
331984   rs3130253       6_23     0.998  34.34 1.2e-04  -6.63
819540 rs113345881      19_32     0.998  32.30 1.1e-04   6.12
515241 rs115478735       9_70     0.997  53.75 1.8e-04  -8.02
819538    rs814573      19_32     0.996  33.75 1.1e-04  -6.68
561859  rs76153913       11_2     0.994  41.04 1.4e-04   6.70
831269  rs34507316      20_13     0.991  27.41 9.3e-05   5.60
637833    rs653178      12_66     0.990 130.44 4.4e-04 -13.12
621249   rs7397189      12_35     0.987  29.65 1.0e-04   5.69
809276 rs141645070      19_10     0.977  26.33 8.8e-05  -5.27
756467   rs2608604      16_53     0.966  40.34 1.3e-04  -6.33
37561    rs2779116       1_78     0.963  58.83 1.9e-04  -8.25
819543  rs12721109      19_32     0.957  29.11 9.5e-05   6.44
716804   rs2070895      15_26     0.941  27.90 9.0e-05  -5.24
819474   rs1551891      19_32     0.935  33.76 1.1e-04   7.88
539974  rs73267649      10_46     0.932  63.74 2.0e-04  -3.84
811832   rs3794991      19_15     0.931 107.07 3.4e-04  11.64
611249  rs73080739      12_15     0.922  31.25 9.8e-05  -7.24
860343  rs34662558      22_10     0.907  26.45 8.2e-05  -5.19
515626  rs34755157       9_71     0.905  25.20 7.8e-05  -5.03
611244   rs7962574      12_15     0.903  42.83 1.3e-04  -8.40
566312  rs34623292      11_10     0.897  25.87 7.9e-05  -5.06
388027   rs4721597       7_17     0.896  47.67 1.5e-04   1.94
237701  rs17238095       4_72     0.886  26.69 8.1e-05   5.18
501160   rs9410381       9_45     0.872  63.49 1.9e-04   8.62
443676  rs12549737       8_24     0.845  26.32 7.6e-05   5.15
673588  rs35115456      13_53     0.815  24.34 6.8e-05  -4.47
863094   rs6000553      22_14     0.814  37.48 1.0e-04   6.47
611284  rs10770693      12_15     0.813  53.50 1.5e-04   8.86
299010   rs4566840       5_66     0.808  27.05 7.5e-05  -5.46
564881   rs4910498       11_8     0.803  43.52 1.2e-04   6.71

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
05b0117 wesleycrouse 2023-07-27
684574c wesleycrouse 2021-09-06
b14741c wesleycrouse 2021-09-06
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip    mu2     PVE      z
539954   rs6480402      10_46     1.000 155.90 5.3e-04   8.90
181216    rs523118       3_84     0.501 151.15 2.6e-04 -14.52
181205   rs6779146       3_84     0.418 150.11 2.1e-04  14.49
181198   rs9865841       3_84     0.098 146.03 4.9e-05 -14.31
181193   rs9840812       3_84     0.114 145.74 5.7e-05 -14.35
330814 rs115740542       6_20     1.000 143.95 4.9e-04  12.66
181194   rs2400727       3_84     0.041 140.43 1.9e-05 -14.15
637833    rs653178      12_66     0.990 130.44 4.4e-04 -13.12
181224    rs576771       3_84     0.026 128.33 1.1e-05 -13.54
181208  rs61789561       3_84     0.036 127.11 1.5e-05  13.36
181274  rs12630999       3_84     0.026 121.61 1.1e-05 -13.15
637825  rs35350651      12_66     0.017 121.00 6.8e-06 -12.69
181222 rs372863955       3_84     0.022 113.69 8.5e-06 -12.73
181232    rs610860       3_84     0.017 113.45 6.8e-06 -12.86
181233      rs8045       3_84     0.020 109.26 7.6e-06  12.53
811832   rs3794991      19_15     0.931 107.07 3.4e-04  11.64
811858  rs73004951      19_15     0.084 104.92 3.0e-05  11.37
388005 rs542176135       7_17     1.000 100.83 3.4e-04  -8.38
181285   rs3856637       3_84     0.011  96.36 3.7e-06  11.91
388014  rs10950655       7_17     0.014  96.24 4.8e-06  -7.96
181234    rs667920       3_84     0.008  95.60 2.5e-06 -12.02
330793  rs72834643       6_20     1.000  94.30 3.2e-04   9.73
539959  rs35233497      10_46     0.467  85.72 1.4e-04  -4.24
539962  rs79086908      10_46     0.447  85.64 1.3e-04  -4.24
181237  rs35923792       3_84     0.006  82.56 1.6e-06 -11.33
539960 rs570124086      10_46     0.086  81.40 2.4e-05  -4.08
537908   rs7090758      10_42     0.521  78.71 1.4e-04   9.99
181207  rs35087366       3_84     0.017  76.02 4.4e-06  10.32
181300  rs71336078       3_84     0.016  75.76 4.2e-06  10.33
537911  rs10822186      10_42     0.084  73.81 2.1e-05  -9.73
537910 rs570234162      10_42     0.069  73.44 1.7e-05   9.70
537912   rs7895549      10_42     0.074  73.44 1.9e-05  -9.71
537811      rs1935      10_42     0.039  72.80 9.7e-06  -9.60
537806  rs35751397      10_42     0.038  72.77 9.4e-06  -9.59
537854  rs10822160      10_42     0.035  72.32 8.7e-06  -9.58
537903   rs2163188      10_42     0.048  72.29 1.2e-05   9.65
181318   rs1406539       3_84     0.018  72.25 4.4e-06 -10.01
181333 rs370148911       3_84     0.018  72.23 4.5e-06  -9.99
502009   rs7849152       9_46     0.610  71.78 1.5e-04   9.47
537822  rs10761729      10_42     0.030  71.71 7.4e-06  -9.55
537866  rs10822168      10_42     0.030  71.63 7.3e-06  -9.55
537860   rs7910927      10_42     0.027  71.25 6.6e-06  -9.54
537875   rs3956912      10_42     0.027  71.24 6.6e-06  -9.54
537842   rs5785566      10_42     0.022  70.50 5.3e-06  -9.50
537858   rs6479896      10_42     0.021  70.24 5.1e-06  -9.49
537868  rs10640079      10_42     0.020  70.10 4.8e-06  -9.49
502023 rs111550777       9_46     0.270  69.57 6.4e-05   9.36
537907   rs4746205      10_42     0.024  69.31 5.8e-06   9.56
549436  rs55672373      10_64     0.330  67.87 7.7e-05  -9.78
549437  rs55804858      10_64     0.330  67.86 7.6e-05  -9.78

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                id region_tag susie_pip    mu2     PVE      z
539954   rs6480402      10_46     1.000 155.90 5.3e-04   8.90
330814 rs115740542       6_20     1.000 143.95 4.9e-04  12.66
637833    rs653178      12_66     0.990 130.44 4.4e-04 -13.12
388005 rs542176135       7_17     1.000 100.83 3.4e-04  -8.38
811832   rs3794991      19_15     0.931 107.07 3.4e-04  11.64
330793  rs72834643       6_20     1.000  94.30 3.2e-04   9.73
181216    rs523118       3_84     0.501 151.15 2.6e-04 -14.52
181205   rs6779146       3_84     0.418 150.11 2.1e-04  14.49
376219  rs12208357      6_103     1.000  60.36 2.1e-04  -6.65
539953   rs4745982      10_46     0.999  60.61 2.1e-04  11.95
539974  rs73267649      10_46     0.932  63.74 2.0e-04  -3.84
37561    rs2779116       1_78     0.963  58.83 1.9e-04  -8.25
501160   rs9410381       9_45     0.872  63.49 1.9e-04   8.62
515241 rs115478735       9_70     0.997  53.75 1.8e-04  -8.02
388027   rs4721597       7_17     0.896  47.67 1.5e-04   1.94
502009   rs7849152       9_46     0.610  71.78 1.5e-04   9.47
611284  rs10770693      12_15     0.813  53.50 1.5e-04   8.86
537908   rs7090758      10_42     0.521  78.71 1.4e-04   9.99
539959  rs35233497      10_46     0.467  85.72 1.4e-04  -4.24
561859  rs76153913       11_2     0.994  41.04 1.4e-04   6.70
811047  rs59616136      19_14     1.000  41.67 1.4e-04   7.00
539962  rs79086908      10_46     0.447  85.64 1.3e-04  -4.24
611244   rs7962574      12_15     0.903  42.83 1.3e-04  -8.40
756467   rs2608604      16_53     0.966  40.34 1.3e-04  -6.33
136166   rs6731991      2_136     0.999  33.88 1.2e-04  -5.75
330632  rs75080831       6_19     0.707  50.03 1.2e-04   7.96
331984   rs3130253       6_23     0.998  34.34 1.2e-04  -6.63
549432 rs111286300      10_64     1.000  34.49 1.2e-04   6.73
561905  rs16929046       11_2     0.745  47.30 1.2e-04   7.10
564881   rs4910498       11_8     0.803  43.52 1.2e-04   6.71
819474   rs1551891      19_32     0.935  33.76 1.1e-04   7.88
819538    rs814573      19_32     0.996  33.75 1.1e-04  -6.68
819540 rs113345881      19_32     0.998  32.30 1.1e-04   6.12
621249   rs7397189      12_35     0.987  29.65 1.0e-04   5.69
863094   rs6000553      22_14     0.814  37.48 1.0e-04   6.47
611249  rs73080739      12_15     0.922  31.25 9.8e-05  -7.24
819543  rs12721109      19_32     0.957  29.11 9.5e-05   6.44
831269  rs34507316      20_13     0.991  27.41 9.3e-05   5.60
716804   rs2070895      15_26     0.941  27.90 9.0e-05  -5.24
376232   rs1443844      6_103     0.626  41.14 8.8e-05   4.37
809276 rs141645070      19_10     0.977  26.33 8.8e-05  -5.27
860343  rs34662558      22_10     0.907  26.45 8.2e-05  -5.19
237701  rs17238095       4_72     0.886  26.69 8.1e-05   5.18
547440 rs570762793      10_59     0.360  65.59 8.1e-05   9.01
334157   rs9267293       6_25     0.642  36.56 8.0e-05  -6.54
566312  rs34623292      11_10     0.897  25.87 7.9e-05  -5.06
515626  rs34755157       9_71     0.905  25.20 7.8e-05  -5.03
549436  rs55672373      10_64     0.330  67.87 7.7e-05  -9.78
555752   rs7078330      10_75     0.381  59.56 7.7e-05  -8.30
443676  rs12549737       8_24     0.845  26.32 7.6e-05   5.15

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip    mu2     PVE      z
181216    rs523118       3_84     0.501 151.15 2.6e-04 -14.52
181205   rs6779146       3_84     0.418 150.11 2.1e-04  14.49
181193   rs9840812       3_84     0.114 145.74 5.7e-05 -14.35
181198   rs9865841       3_84     0.098 146.03 4.9e-05 -14.31
181194   rs2400727       3_84     0.041 140.43 1.9e-05 -14.15
181224    rs576771       3_84     0.026 128.33 1.1e-05 -13.54
181208  rs61789561       3_84     0.036 127.11 1.5e-05  13.36
181274  rs12630999       3_84     0.026 121.61 1.1e-05 -13.15
637833    rs653178      12_66     0.990 130.44 4.4e-04 -13.12
181232    rs610860       3_84     0.017 113.45 6.8e-06 -12.86
181222 rs372863955       3_84     0.022 113.69 8.5e-06 -12.73
637825  rs35350651      12_66     0.017 121.00 6.8e-06 -12.69
330814 rs115740542       6_20     1.000 143.95 4.9e-04  12.66
181233      rs8045       3_84     0.020 109.26 7.6e-06  12.53
181234    rs667920       3_84     0.008  95.60 2.5e-06 -12.02
539953   rs4745982      10_46     0.999  60.61 2.1e-04  11.95
181285   rs3856637       3_84     0.011  96.36 3.7e-06  11.91
811832   rs3794991      19_15     0.931 107.07 3.4e-04  11.64
811858  rs73004951      19_15     0.084 104.92 3.0e-05  11.37
181237  rs35923792       3_84     0.006  82.56 1.6e-06 -11.33
181300  rs71336078       3_84     0.016  75.76 4.2e-06  10.33
181207  rs35087366       3_84     0.017  76.02 4.4e-06  10.32
181318   rs1406539       3_84     0.018  72.25 4.4e-06 -10.01
330804   rs1800702       6_20     0.011  60.03 2.2e-06  10.00
181333 rs370148911       3_84     0.018  72.23 4.5e-06  -9.99
330801   rs7738854       6_20     0.010  59.34 2.1e-06   9.99
537908   rs7090758      10_42     0.521  78.71 1.4e-04   9.99
330799   rs9348706       6_20     0.010  58.09 1.9e-06   9.94
330786   rs2032449       6_20     0.009  56.41 1.7e-06   9.87
549436  rs55672373      10_64     0.330  67.87 7.7e-05  -9.78
549437  rs55804858      10_64     0.330  67.86 7.6e-05  -9.78
330793  rs72834643       6_20     1.000  94.30 3.2e-04   9.73
330795   rs2032446       6_20     0.008  54.13 1.4e-06   9.73
537911  rs10822186      10_42     0.084  73.81 2.1e-05  -9.73
537912   rs7895549      10_42     0.074  73.44 1.9e-05  -9.71
537910 rs570234162      10_42     0.069  73.44 1.7e-05   9.70
549440  rs17216212      10_64     0.150  65.59 3.4e-05  -9.67
537903   rs2163188      10_42     0.048  72.29 1.2e-05   9.65
537811      rs1935      10_42     0.039  72.80 9.7e-06  -9.60
537806  rs35751397      10_42     0.038  72.77 9.4e-06  -9.59
549439  rs72838143      10_64     0.097  64.34 2.1e-05  -9.59
549447 rs113354025      10_64     0.081  64.00 1.8e-05  -9.59
537854  rs10822160      10_42     0.035  72.32 8.7e-06  -9.58
537907   rs4746205      10_42     0.024  69.31 5.8e-06   9.56
537822  rs10761729      10_42     0.030  71.71 7.4e-06  -9.55
537866  rs10822168      10_42     0.030  71.63 7.3e-06  -9.55
537860   rs7910927      10_42     0.027  71.25 6.6e-06  -9.54
537875   rs3956912      10_42     0.027  71.24 6.6e-06  -9.54
537842   rs5785566      10_42     0.022  70.50 5.3e-06  -9.50
537858   rs6479896      10_42     0.021  70.24 5.1e-06  -9.49

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /software/R-4.1.0-no-openblas-el7-x86_64/lib64/R/lib/libRblas.so
LAPACK: /software/R-4.1.0-no-openblas-el7-x86_64/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
 [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
 [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
[10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] cowplot_1.1.1 ggplot2_3.4.0

loaded via a namespace (and not attached):
  [1] bitops_1.0-7                matrixStats_0.63.0         
  [3] fs_1.5.2                    bit64_4.0.5                
  [5] filelock_1.0.2              progress_1.2.2             
  [7] httr_1.4.4                  rprojroot_2.0.3            
  [9] GenomeInfoDb_1.30.1         tools_4.1.0                
 [11] bslib_0.4.1                 utf8_1.2.2                 
 [13] R6_2.5.1                    colorspace_2.0-3           
 [15] DBI_1.1.3                   BiocGenerics_0.40.0        
 [17] withr_2.5.0                 tidyselect_1.2.0           
 [19] prettyunits_1.1.1           bit_4.0.5                  
 [21] curl_4.3.3                  compiler_4.1.0             
 [23] git2r_0.30.1                cli_3.4.1                  
 [25] Biobase_2.54.0              xml2_1.3.3                 
 [27] DelayedArray_0.20.0         labeling_0.4.2             
 [29] rtracklayer_1.54.0          sass_0.4.4                 
 [31] scales_1.2.1                rappdirs_0.3.3             
 [33] stringr_1.5.0               digest_0.6.31              
 [35] Rsamtools_2.10.0            rmarkdown_2.18             
 [37] XVector_0.34.0              pkgconfig_2.0.3            
 [39] htmltools_0.5.4             MatrixGenerics_1.6.0       
 [41] highr_0.9                   dbplyr_2.2.1               
 [43] fastmap_1.1.0               BSgenome_1.62.0            
 [45] rlang_1.0.6                 rstudioapi_0.14            
 [47] RSQLite_2.2.19              farver_2.1.1               
 [49] jquerylib_0.1.4             BiocIO_1.4.0               
 [51] generics_0.1.3              jsonlite_1.8.4             
 [53] BiocParallel_1.28.3         dplyr_1.0.10               
 [55] VariantAnnotation_1.40.0    RCurl_1.98-1.9             
 [57] magrittr_2.0.3              GenomeInfoDbData_1.2.7     
 [59] Matrix_1.5-3                munsell_0.5.0              
 [61] Rcpp_1.0.9                  S4Vectors_0.32.4           
 [63] fansi_1.0.3                 lifecycle_1.0.3            
 [65] stringi_1.7.8               whisker_0.4.1              
 [67] yaml_2.3.6                  SummarizedExperiment_1.24.0
 [69] zlibbioc_1.40.0             BiocFileCache_2.2.1        
 [71] grid_4.1.0                  blob_1.2.3                 
 [73] parallel_4.1.0              promises_1.2.0.1           
 [75] crayon_1.5.2                lattice_0.20-45            
 [77] Biostrings_2.62.0           GenomicFeatures_1.46.5     
 [79] hms_1.1.2                   KEGGREST_1.34.0            
 [81] knitr_1.41                  pillar_1.8.1               
 [83] GenomicRanges_1.46.1        rjson_0.2.21               
 [85] biomaRt_2.50.3              stats4_4.1.0               
 [87] XML_3.99-0.13               glue_1.6.2                 
 [89] evaluate_0.18               data.table_1.14.6          
 [91] png_0.1-8                   vctrs_0.5.1                
 [93] httpuv_1.6.6                gtable_0.3.1               
 [95] assertthat_0.2.1            cachem_1.0.6               
 [97] xfun_0.35                   restfulr_0.0.15            
 [99] later_1.3.0                 tibble_3.1.8               
[101] GenomicAlignments_1.30.0    AnnotationDbi_1.56.2       
[103] memoise_2.0.1               IRanges_2.28.0             
[105] workflowr_1.7.0             ellipsis_0.3.2