Last updated: 2021-09-09

Checks: 7 0

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Whole_Blood.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30660_irnt_Liver_fixedsigma_50_10.Rmd) and HTML (docs/ukb-d-30660_irnt_Liver_fixedsigma_50_10.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html 47f58ac wesleycrouse 2021-09-06 fixing thin argument for fixed pi results
Rmd 209346f wesleycrouse 2021-09-06 updating additional analyses
html 209346f wesleycrouse 2021-09-06 updating additional analyses
html b14741c wesleycrouse 2021-09-06 switching from render to wflow_build
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd dabaa15 wesleycrouse 2021-09-01 New fixed sigma result

Overview

These are the results of a ctwas analysis of the UK Biobank trait Direct bilirubin (quantile) using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30660_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1070  768  652  417  494  611  548  408  405  434  634  629  195  365  354 
  16   17   18   19   20   21   22 
 526  663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8366205

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas_fixedsigma_50_10.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas_fixedsigma_50_10.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas_fixedsigma_50_10.s2.susieIrssres.Rd"))

df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

#hardcode fixed sigma, paramters not stored as part of the analysis
group_prior_var_rec[1,] <- 50
group_prior_var_rec[2,] <- 10

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
b14741c wesleycrouse 2021-09-06
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0062514042 0.0001448313 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
gene  snp 
  50   10 
#report sample size
print(sample_size)
[1] 292933
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10901 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.01163177 0.04300114 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.01191521 0.48019989

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
b14741c wesleycrouse 2021-09-06
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip    mu2     PVE     z
12467 RP11-219B17.3      15_27     0.988  54.95 1.9e-04  7.18
3212          CCND2       12_4     0.982  32.46 1.1e-04  5.34
7040          INHBB       2_70     0.948  27.18 8.8e-05  4.81
5563          ABCG8       2_27     0.895  38.43 1.2e-04  5.88
1320        CWF19L1      10_64     0.895  33.84 1.0e-04 -7.09
3562         ACVR1C       2_94     0.876  25.90 7.7e-05  4.62
2359          ABCC3      17_29     0.825  23.86 6.7e-05  4.38
11790        CYP2A6      19_28     0.789  25.42 6.8e-05 -4.73
10667         HLA-G       6_24     0.781 287.01 7.7e-04 -6.69
1848          CD276      15_35     0.780  39.99 1.1e-04  6.13
7547           LIPC      15_26     0.758  24.65 6.4e-05  3.99
10212          IL27      16_23     0.758  27.82 7.2e-05 -4.76
537           DGAT2      11_42     0.735  58.00 1.5e-04 -7.51
2004          TGFB1      19_28     0.725  41.46 1.0e-04  5.64
4269          ITGB4      17_42     0.714  24.47 6.0e-05 -4.91
6682         CYB5R1      1_102     0.676  26.01 6.0e-05 -3.95
1231         PABPC4       1_24     0.647  26.02 5.7e-05  4.52
12687   RP4-781K5.7      1_121     0.628  22.98 4.9e-05 -4.17
1120           CETP      16_31     0.625  29.40 6.3e-05 -4.03
10495         PRMT6       1_66     0.606  31.38 6.5e-05  5.14

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
b14741c wesleycrouse 2021-09-06
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag susie_pip      mu2     PVE       z
11533   UGT1A4      2_137     0.000 23599.35 0.0e+00  232.75
11447   UGT1A1      2_137     0.000 22318.31 0.0e+00 -230.41
11489   UGT1A3      2_137     0.000 20201.28 0.0e+00  213.80
7732    UGT1A6      2_137     0.000 15757.53 0.0e+00  186.96
11522   UGT1A7      2_137     0.000  2757.23 0.0e+00  -71.90
12683    HCP5B       6_24     0.000  2265.61 9.9e-09   -3.52
10663   TRIM31       6_24     0.000  1159.83 1.1e-12    1.07
4833     FLOT1       6_24     0.000  1107.05 9.5e-13   -1.07
1088     USP40      2_137     0.000   837.22 0.0e+00  -46.64
10747  SLCO1B7      12_16     0.000   715.07 0.0e+00   12.26
10651    ABCF1       6_24     0.000   534.13 2.7e-10   -3.76
5766   PPP1R18       6_24     0.000   471.56 4.7e-10   -3.94
2584   SLCO1B3      12_16     0.000   324.95 0.0e+00    9.93
10667    HLA-G       6_24     0.781   287.01 7.7e-04   -6.69
4836       NRM       6_24     0.000   251.96 4.7e-14   -0.40
4482       SPX      12_16     0.000   180.88 0.0e+00    4.60
624      ZNRD1       6_24     0.000   178.49 3.8e-14    0.19
36       RECQL      12_16     0.000   148.06 0.0e+00    3.81
3400      IAPP      12_16     0.000   116.63 0.0e+00    5.16
8651      MSL2       3_84     0.016   107.80 5.8e-06   10.28

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
           genename region_tag susie_pip    mu2     PVE     z
10667         HLA-G       6_24     0.781 287.01 7.7e-04 -6.69
12467 RP11-219B17.3      15_27     0.988  54.95 1.9e-04  7.18
537           DGAT2      11_42     0.735  58.00 1.5e-04 -7.51
5563          ABCG8       2_27     0.895  38.43 1.2e-04  5.88
3212          CCND2       12_4     0.982  32.46 1.1e-04  5.34
1848          CD276      15_35     0.780  39.99 1.1e-04  6.13
1320        CWF19L1      10_64     0.895  33.84 1.0e-04 -7.09
2004          TGFB1      19_28     0.725  41.46 1.0e-04  5.64
10000       ZKSCAN3       6_22     0.603  46.85 9.6e-05  3.82
7040          INHBB       2_70     0.948  27.18 8.8e-05  4.81
3562         ACVR1C       2_94     0.876  25.90 7.7e-05  4.62
10212          IL27      16_23     0.758  27.82 7.2e-05 -4.76
11669 RP11-452H21.4      11_43     0.508  39.09 6.8e-05  5.78
11790        CYP2A6      19_28     0.789  25.42 6.8e-05 -4.73
2359          ABCC3      17_29     0.825  23.86 6.7e-05  4.38
10495         PRMT6       1_66     0.606  31.38 6.5e-05  5.14
7547           LIPC      15_26     0.758  24.65 6.4e-05  3.99
8142         CNTROB       17_7     0.561  33.40 6.4e-05 -5.71
1120           CETP      16_31     0.625  29.40 6.3e-05 -4.03
2924          EFHD1      2_136     0.509  35.87 6.2e-05  6.05

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip      mu2     PVE       z
11533        UGT1A4      2_137     0.000 23599.35 0.0e+00  232.75
11447        UGT1A1      2_137     0.000 22318.31 0.0e+00 -230.41
11489        UGT1A3      2_137     0.000 20201.28 0.0e+00  213.80
7732         UGT1A6      2_137     0.000 15757.53 0.0e+00  186.96
11522        UGT1A7      2_137     0.000  2757.23 0.0e+00  -71.90
1088          USP40      2_137     0.000   837.22 0.0e+00  -46.64
10747       SLCO1B7      12_16     0.000   715.07 0.0e+00   12.26
3556          HJURP      2_137     0.000   101.54 0.0e+00   10.96
8651           MSL2       3_84     0.016   107.80 5.8e-06   10.28
2584        SLCO1B3      12_16     0.000   324.95 0.0e+00    9.93
2586         GOLT1B      12_16     0.000    84.62 0.0e+00    7.53
537           DGAT2      11_42     0.735    58.00 1.5e-04   -7.51
11290  MAPKAPK5-AS1      12_67     0.015    52.80 2.7e-06   -7.21
12467 RP11-219B17.3      15_27     0.988    54.95 1.9e-04    7.18
2541          ALDH2      12_67     0.012    49.97 2.0e-06    7.10
1320        CWF19L1      10_64     0.895    33.84 1.0e-04   -7.09
2536          SH2B3      12_67     0.004    41.59 5.5e-07    6.80
10667         HLA-G       6_24     0.781   287.01 7.7e-04   -6.69
2170            AHR       7_17     0.007    48.66 1.1e-06   -6.58
4962          EXOC6      10_59     0.012    57.26 2.3e-06   -6.37

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
b14741c wesleycrouse 2021-09-06
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
b14741c wesleycrouse 2021-09-06
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.006696633
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip      mu2     PVE       z
11533        UGT1A4      2_137     0.000 23599.35 0.0e+00  232.75
11447        UGT1A1      2_137     0.000 22318.31 0.0e+00 -230.41
11489        UGT1A3      2_137     0.000 20201.28 0.0e+00  213.80
7732         UGT1A6      2_137     0.000 15757.53 0.0e+00  186.96
11522        UGT1A7      2_137     0.000  2757.23 0.0e+00  -71.90
1088          USP40      2_137     0.000   837.22 0.0e+00  -46.64
10747       SLCO1B7      12_16     0.000   715.07 0.0e+00   12.26
3556          HJURP      2_137     0.000   101.54 0.0e+00   10.96
8651           MSL2       3_84     0.016   107.80 5.8e-06   10.28
2584        SLCO1B3      12_16     0.000   324.95 0.0e+00    9.93
2586         GOLT1B      12_16     0.000    84.62 0.0e+00    7.53
537           DGAT2      11_42     0.735    58.00 1.5e-04   -7.51
11290  MAPKAPK5-AS1      12_67     0.015    52.80 2.7e-06   -7.21
12467 RP11-219B17.3      15_27     0.988    54.95 1.9e-04    7.18
2541          ALDH2      12_67     0.012    49.97 2.0e-06    7.10
1320        CWF19L1      10_64     0.895    33.84 1.0e-04   -7.09
2536          SH2B3      12_67     0.004    41.59 5.5e-07    6.80
10667         HLA-G       6_24     0.781   287.01 7.7e-04   -6.69
2170            AHR       7_17     0.007    48.66 1.1e-06   -6.58
4962          EXOC6      10_59     0.012    57.26 2.3e-06   -6.37

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 2_137"
        genename region_tag susie_pip      mu2 PVE       z
10567     GIGYF2      2_137         0    17.81   0   -5.12
9340     C2orf82      2_137         0     8.33   0    0.45
620         NGEF      2_137         0     9.62   0    2.52
8006      INPP5D      2_137         0    16.92   0    4.05
879         DGKD      2_137         0    43.46   0   -0.07
1088       USP40      2_137         0   837.22   0  -46.64
11522     UGT1A7      2_137         0  2757.23   0  -71.90
7732      UGT1A6      2_137         0 15757.53   0  186.96
11533     UGT1A4      2_137         0 23599.35   0  232.75
11489     UGT1A3      2_137         0 20201.28   0  213.80
11447     UGT1A1      2_137         0 22318.31   0 -230.41
3556       HJURP      2_137         0   101.54   0   10.96
11098 AC006037.2      2_137         0     5.32   0    1.50

Version Author Date
b14741c wesleycrouse 2021-09-06
[1] "Region: 12_16"
      genename region_tag susie_pip    mu2 PVE     z
2584   SLCO1B3      12_16         0 324.95   0  9.93
10747  SLCO1B7      12_16         0 715.07   0 12.26
3400      IAPP      12_16         0 116.63   0  5.16
3399   PYROXD1      12_16         0  13.15   0  0.89
36       RECQL      12_16         0 148.06   0  3.81
2586    GOLT1B      12_16         0  84.62   0  7.53
4482       SPX      12_16         0 180.88   0  4.60
2587      LDHB      12_16         0   9.74   0  0.07
3401     KCNJ8      12_16         0   6.99   0 -0.33
689      ABCC9      12_16         0   7.75   0  2.11
2590     C2CD5      12_16         0  12.90   0 -1.39
5073     ETNK1      12_16         0  10.39   0  0.30

Version Author Date
b14741c wesleycrouse 2021-09-06
[1] "Region: 3_84"
     genename region_tag susie_pip    mu2     PVE     z
796   PPP2R3A       3_84     0.015  17.35 9.0e-07 -2.46
8651     MSL2       3_84     0.016 107.80 5.8e-06 10.28
2795     PCCB       3_84     0.006   6.41 1.2e-07  1.22
3148    STAG1       3_84     0.006   5.50 1.1e-07 -0.03
6584     NCK1       3_84     0.006   9.53 1.8e-07 -2.19

Version Author Date
b14741c wesleycrouse 2021-09-06
[1] "Region: 11_42"
           genename region_tag susie_pip   mu2     PVE     z
7611          XRRA1      11_42     0.009  9.35 2.7e-07 -1.00
3170          SPCS2      11_42     0.006  6.60 1.4e-07  0.73
6901           NEU3      11_42     0.005  5.10 9.5e-08  0.39
4848        SLCO2B1      11_42     0.006  5.13 9.6e-08 -0.22
12001         TPBGL      11_42     0.008  8.50 2.3e-07  0.68
6617          GDPD5      11_42     0.008 11.91 3.3e-07  1.95
8328           MAP6      11_42     0.007  7.49 1.9e-07  0.24
7603         MOGAT2      11_42     0.033 19.53 2.2e-06  0.85
537           DGAT2      11_42     0.735 58.00 1.5e-04 -7.51
10381         UVRAG      11_42     0.006  7.49 1.6e-07  1.62
1082          WNT11      11_42     0.008  9.14 2.5e-07  1.06
11773 RP11-619A14.3      11_42     0.006  6.63 1.4e-07  0.61
4849         THAP12      11_42     0.006  6.04 1.2e-07 -0.66
12265 RP11-111M22.5      11_42     0.007  7.23 1.7e-07  0.80
11766 RP11-111M22.3      11_42     0.005  5.17 9.7e-08  0.31
11751  RP11-672A2.4      11_42     0.006  6.00 1.2e-07  0.53
9350           TSKU      11_42     0.006  5.62 1.1e-07  0.25
905           ACER3      11_42     0.025 19.70 1.7e-06 -2.04
5976          CAPN5      11_42     0.017 16.17 9.2e-07  1.72

Version Author Date
b14741c wesleycrouse 2021-09-06
[1] "Region: 12_67"
          genename region_tag susie_pip   mu2     PVE     z
5112          TCHP      12_67     0.087 18.95 5.6e-06  3.21
5111          GIT2      12_67     0.053 18.09 3.3e-06  3.36
8639      C12orf76      12_67     0.004  7.15 1.0e-07 -0.30
3515         IFT81      12_67     0.005 13.07 2.3e-07  2.50
10093       ANAPC7      12_67     0.005 11.10 2.0e-07  2.16
2531         ARPC3      12_67     0.005  8.92 1.6e-07  0.54
10684      FAM216A      12_67     0.004 11.28 1.6e-07  2.42
2532          GPN3      12_67     0.003  6.71 7.9e-08  1.40
2533         VPS29      12_67     0.003  6.80 8.1e-08 -1.41
10683        TCTN1      12_67     0.004  7.01 1.0e-07  0.02
3517         HVCN1      12_67     0.009 17.42 5.6e-07  2.67
9717        PPP1CC      12_67     0.009 17.33 5.5e-07 -2.65
10375      FAM109A      12_67     0.004  8.59 1.0e-07 -1.46
2536         SH2B3      12_67     0.004 41.59 5.5e-07  6.80
10680        ATXN2      12_67     0.004 22.35 2.8e-07  3.97
2541         ALDH2      12_67     0.012 49.97 2.0e-06  7.10
11290 MAPKAPK5-AS1      12_67     0.015 52.80 2.7e-06 -7.21
1191         ERP29      12_67     0.025 44.67 3.9e-06  6.25
10370      TMEM116      12_67     0.025 44.67 3.9e-06 -6.25
2544         NAA25      12_67     0.020 41.48 2.8e-06 -6.12
8505        HECTD4      12_67     0.031 48.79 5.1e-06  6.33
9084        PTPN11      12_67     0.004  7.73 1.1e-07 -0.78

Version Author Date
b14741c wesleycrouse 2021-09-06

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                id region_tag susie_pip      mu2     PVE      z
328040  rs72834643       6_20     1.000   106.48 3.6e-04   9.73
328061 rs115740542       6_20     1.000   160.00 5.5e-04  12.66
372492  rs12208357      6_103     1.000    68.76 2.3e-04  -6.65
384278 rs542176135       7_17     1.000   123.44 4.2e-04  -8.38
536243   rs6480402      10_46     1.000   226.82 7.7e-04   8.90
606967  rs11045819      12_16     1.000  1856.07 6.3e-03 -14.34
606984   rs4363657      12_16     1.000  1486.76 5.1e-03  43.78
805825  rs59616136      19_14     1.000    44.78 1.5e-04   7.00
813971 rs113345881      19_32     1.000    36.54 1.2e-04   6.12
890179  rs13031505      2_136     1.000    53.91 1.8e-04  -8.07
893719   rs1976391      2_137     1.000 27927.25 9.5e-02 268.40
895635   rs1611236       6_24     1.000  4012.69 1.4e-02  -3.60
329231   rs3130253       6_23     0.999    36.87 1.3e-04  -6.63
557539  rs76153913       11_2     0.999    52.65 1.8e-04   6.70
511528 rs115478735       9_70     0.998    57.97 2.0e-04  -8.02
813969    rs814573      19_32     0.998    34.01 1.2e-04  -6.68
536242   rs4745982      10_46     0.995    58.34 2.0e-04  11.95
890116  rs34247311      2_136     0.995    34.59 1.2e-04   4.44
617657   rs7397189      12_36     0.994    31.94 1.1e-04   5.69
825702  rs34507316      20_13     0.994    28.59 9.7e-05   5.60
634243    rs653178      12_67     0.993   144.66 4.9e-04 -13.12
804054 rs141645070      19_10     0.991    27.74 9.4e-05  -5.27
557544   rs2519158       11_2     0.983    33.90 1.1e-04   5.74
813974  rs12721109      19_32     0.977    29.67 9.9e-05   6.44
384300   rs4721597       7_17     0.976    64.38 2.1e-04   1.94
36885    rs2779116       1_78     0.971    63.50 2.1e-04  -8.25
557537  rs10832897       11_2     0.964    29.80 9.8e-05  -2.62
751839   rs2608604      16_53     0.963    50.17 1.6e-04  -6.33
713221   rs2070895      15_26     0.953    29.70 9.7e-05  -5.24
813905   rs1551891      19_32     0.944    33.76 1.1e-04   7.88
806610   rs3794991      19_15     0.943   118.76 3.8e-04  11.64
234941  rs17238095       4_72     0.931    27.62 8.8e-05   5.18
606687  rs73080739      12_15     0.930    31.63 1.0e-04  -7.24
854778  rs34662558      22_10     0.924    27.91 8.8e-05  -5.19
511913  rs34755157       9_71     0.919    26.56 8.3e-05  -5.03
561992  rs34623292      11_10     0.917    27.27 8.5e-05  -5.06
606682   rs7962574      12_15     0.916    43.97 1.4e-04  -8.40
497446   rs9410381       9_45     0.893    68.36 2.1e-04   8.62
439954  rs12549737       8_24     0.890    27.33 8.3e-05   5.15
817150  rs71185869      19_36     0.882    24.36 7.3e-05   4.56
296256   rs4566840       5_66     0.839    29.07 8.3e-05  -5.46
277741  rs79086423       5_29     0.836    24.25 6.9e-05   4.53
670004  rs35115456      13_53     0.834    24.97 7.1e-05  -4.47
760017  rs62640050      17_17     0.832    24.30 6.9e-05  -4.59
65060   rs12239046      1_131     0.829    25.06 7.1e-05  -4.57
606722  rs10770693      12_15     0.829    55.90 1.6e-04   8.86
560561   rs4910498       11_8     0.827    48.19 1.4e-04   6.71
857529   rs6000553      22_14     0.827    39.94 1.1e-04   6.47
749728  rs11641197      16_49     0.819    25.05 7.0e-05  -4.43
34678   rs12124727       1_73     0.816    25.34 7.1e-05  -4.54
255620  rs12651414      4_113     0.802    26.00 7.1e-05   4.71
506145  rs10759697       9_59     0.802    27.81 7.6e-05  -5.05

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
b14741c wesleycrouse 2021-09-06
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE      z
893719   rs1976391      2_137         1 27927.25 9.5e-02 268.40
893728    rs887829      2_137         0 27748.16 8.9e-16 267.84
893737   rs4148325      2_137         0 27577.86 0.0e+00 267.14
893733   rs6742078      2_137         0 27576.43 0.0e+00 267.16
893735   rs4148324      2_137         0 27573.07 0.0e+00 267.15
893729  rs34983651      2_137         0 27275.91 0.0e+00 265.62
893480  rs17863787      2_137         0 24129.83 0.0e+00 252.20
893482   rs7567229      2_137         0 23874.95 0.0e+00 251.23
893465  rs28899170      2_137         0 22896.22 0.0e+00 247.07
893712   rs6714634      2_137         0 21849.64 0.0e+00 240.76
893718  rs10929302      2_137         0 21841.51 0.0e+00 240.75
893698   rs2885296      2_137         0 21840.50 0.0e+00 240.61
893709   rs6747843      2_137         0 21837.35 0.0e+00 240.71
893628   rs7567468      2_137         0 21645.52 0.0e+00 239.52
893670  rs17864701      2_137         0 21628.96 0.0e+00 239.62
893679  rs11695484      2_137         0 21627.98 0.0e+00 239.66
893656  rs34352510      2_137         0 21624.98 0.0e+00 239.54
893651  rs17862875      2_137         0 21623.10 0.0e+00 239.53
893736   rs3771341      2_137         0 21616.55 0.0e+00 239.79
893643   rs6722076      2_137         0 21493.41 0.0e+00 238.91
893587 rs112132688      2_137         0 21420.56 0.0e+00 238.55
893383  rs11692664      2_137         0 21240.53 0.0e+00 238.08
893377   rs7571915      2_137         0 21230.78 0.0e+00 238.05
893457   rs2070959      2_137         0 21223.97 0.0e+00 238.14
893436  rs10173355      2_137         0 21211.16 0.0e+00 238.10
893435  rs10168416      2_137         0 21211.15 0.0e+00 238.10
893585 rs202203863      2_137         0 21199.15 0.0e+00 237.52
893386  rs10202865      2_137         0 21110.10 0.0e+00 237.49
893539   rs6744284      2_137         0 20291.87 0.0e+00 232.75
893456   rs1105880      2_137         0 19883.77 0.0e+00 232.16
893458   rs1105879      2_137         0 19844.61 0.0e+00 231.91
893391  rs35984508      2_137         0 19812.85 0.0e+00 231.56
893390  rs75444879      2_137         0 19784.52 0.0e+00 231.44
893389  rs77070100      2_137         0 19765.89 0.0e+00 231.38
893470   rs6715829      2_137         0 19317.56 0.0e+00 229.45
893745    rs929596      2_137         0 19037.92 0.0e+00 227.71
893360   rs2602376      2_137         0 18760.44 0.0e+00 227.08
893350   rs2741046      2_137         0 18753.27 0.0e+00 227.06
893349   rs2741045      2_137         0 18716.79 0.0e+00 226.92
893344   rs2741044      2_137         0 18686.69 0.0e+00 226.76
893630   rs7576166      2_137         0 17952.36 0.0e+00 213.95
893650   rs2018985      2_137         0 17946.94 0.0e+00 213.92
893632   rs4477910      2_137         0 17924.80 0.0e+00 213.81
893697  rs12987866      2_137         0 17782.48 0.0e+00 220.81
893611   rs6431625      2_137         0 17765.43 0.0e+00 212.64
893603   rs1983023      2_137         0 17760.45 0.0e+00 212.90
893583   rs6750992      2_137         0 17687.89 0.0e+00 212.83
893667  rs13009407      2_137         0 17662.19 0.0e+00 220.02
893531   rs6749496      2_137         0 16941.36 0.0e+00 208.13
893642  rs17862873      2_137         0 16921.52 0.0e+00 215.62

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE      z
893719   rs1976391      2_137     1.000 27927.25 0.09500 268.40
893693   rs7604115      2_137     0.343 14168.33 0.01700 187.81
893686  rs11888459      2_137     0.322 14158.90 0.01600 187.72
895635   rs1611236       6_24     1.000  4012.69 0.01400  -3.60
893690  rs10178992      2_137     0.238 14170.56 0.01200 187.81
895647   rs1611241       6_24     0.517  3999.61 0.00710  -3.84
606967  rs11045819      12_16     1.000  1856.07 0.00630 -14.34
606984   rs4363657      12_16     1.000  1486.76 0.00510  43.78
606868  rs12366506      12_16     0.697  1832.47 0.00440  23.44
893707  rs11673726      2_137     0.091 14187.10 0.00440 187.95
606874  rs11045612      12_16     0.538  1830.88 0.00340  23.44
893704  rs17862878      2_137     0.538  1185.09 0.00220 -11.26
893685  rs12466997      2_137     0.410  1183.03 0.00170 -11.17
606885  rs73062442      12_16     0.224  1830.04 0.00140  23.39
606877  rs11513221      12_16     0.209  1829.98 0.00130  23.38
895553   rs1633033       6_24     0.078  4011.80 0.00110  -3.63
895701   rs9258382       6_24     0.083  4002.92 0.00110  -3.69
895658   rs1611248       6_24     0.072  4011.84 0.00099  -3.63
895916   rs1633001       6_24     0.070  4010.11 0.00096  -3.64
895566   rs2844838       6_24     0.060  4011.54 0.00082  -3.63
895614   rs2508055       6_24     0.060  4011.62 0.00082  -3.62
895617 rs111734624       6_24     0.060  4011.62 0.00082  -3.62
895662   rs1611252       6_24     0.059  4011.63 0.00081  -3.62
895679   rs1611260       6_24     0.059  4011.62 0.00081  -3.62
895685   rs1611265       6_24     0.059  4011.62 0.00081  -3.62
536243   rs6480402      10_46     1.000   226.82 0.00077   8.90
895888   rs3129185       6_24     0.056  4010.33 0.00076  -3.63
896092   rs1632980       6_24     0.054  4009.68 0.00074  -3.63
895589   rs1614309       6_24     0.053  4008.66 0.00072  -3.63
895903   rs1736999       6_24     0.051  4010.11 0.00069  -3.63
895570   rs1633032       6_24     0.048  4011.14 0.00066  -3.62
895561   rs2844840       6_24     0.047  4010.17 0.00064  -3.62
895621   rs1611228       6_24     0.044  4011.33 0.00060  -3.62
895687   rs1611267       6_24     0.043  4011.31 0.00059  -3.62
328061 rs115740542       6_20     1.000   160.00 0.00055  12.66
895689   rs2394171       6_24     0.040  4011.26 0.00055  -3.61
895691   rs2893981       6_24     0.040  4011.25 0.00055  -3.61
895656   rs1611246       6_24     0.038  4009.43 0.00052  -3.62
634243    rs653178      12_67     0.993   144.66 0.00049 -13.12
895604   rs1633020       6_24     0.035  4010.68 0.00047  -3.61
606778   rs3060461      12_16     0.314   429.45 0.00046 -21.86
384278 rs542176135       7_17     1.000   123.44 0.00042  -8.38
895493   rs1610726       6_24     0.030  4010.14 0.00041  -3.61
895659   rs1611249       6_24     0.031  3936.54 0.00041  -4.10
806610   rs3794991      19_15     0.943   118.76 0.00038  11.64
895610   rs1737020       6_24     0.028  4010.90 0.00038  -3.60
895611   rs1737019       6_24     0.028  4010.90 0.00038  -3.60
606782  rs35290079      12_16     0.251   427.23 0.00037 -21.76
328040  rs72834643       6_20     1.000   106.48 0.00036   9.73
895633   rs1611234       6_24     0.024  4010.18 0.00033  -3.60

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE      z
893719   rs1976391      2_137         1 27927.25 9.5e-02 268.40
893728    rs887829      2_137         0 27748.16 8.9e-16 267.84
893733   rs6742078      2_137         0 27576.43 0.0e+00 267.16
893735   rs4148324      2_137         0 27573.07 0.0e+00 267.15
893737   rs4148325      2_137         0 27577.86 0.0e+00 267.14
893729  rs34983651      2_137         0 27275.91 0.0e+00 265.62
893480  rs17863787      2_137         0 24129.83 0.0e+00 252.20
893482   rs7567229      2_137         0 23874.95 0.0e+00 251.23
893465  rs28899170      2_137         0 22896.22 0.0e+00 247.07
893712   rs6714634      2_137         0 21849.64 0.0e+00 240.76
893718  rs10929302      2_137         0 21841.51 0.0e+00 240.75
893709   rs6747843      2_137         0 21837.35 0.0e+00 240.71
893698   rs2885296      2_137         0 21840.50 0.0e+00 240.61
893736   rs3771341      2_137         0 21616.55 0.0e+00 239.79
893679  rs11695484      2_137         0 21627.98 0.0e+00 239.66
893670  rs17864701      2_137         0 21628.96 0.0e+00 239.62
893656  rs34352510      2_137         0 21624.98 0.0e+00 239.54
893651  rs17862875      2_137         0 21623.10 0.0e+00 239.53
893628   rs7567468      2_137         0 21645.52 0.0e+00 239.52
893643   rs6722076      2_137         0 21493.41 0.0e+00 238.91
893587 rs112132688      2_137         0 21420.56 0.0e+00 238.55
893457   rs2070959      2_137         0 21223.97 0.0e+00 238.14
893435  rs10168416      2_137         0 21211.15 0.0e+00 238.10
893436  rs10173355      2_137         0 21211.16 0.0e+00 238.10
893383  rs11692664      2_137         0 21240.53 0.0e+00 238.08
893377   rs7571915      2_137         0 21230.78 0.0e+00 238.05
893585 rs202203863      2_137         0 21199.15 0.0e+00 237.52
893386  rs10202865      2_137         0 21110.10 0.0e+00 237.49
893539   rs6744284      2_137         0 20291.87 0.0e+00 232.75
893456   rs1105880      2_137         0 19883.77 0.0e+00 232.16
893458   rs1105879      2_137         0 19844.61 0.0e+00 231.91
893391  rs35984508      2_137         0 19812.85 0.0e+00 231.56
893390  rs75444879      2_137         0 19784.52 0.0e+00 231.44
893389  rs77070100      2_137         0 19765.89 0.0e+00 231.38
893470   rs6715829      2_137         0 19317.56 0.0e+00 229.45
893745    rs929596      2_137         0 19037.92 0.0e+00 227.71
893360   rs2602376      2_137         0 18760.44 0.0e+00 227.08
893350   rs2741046      2_137         0 18753.27 0.0e+00 227.06
893349   rs2741045      2_137         0 18716.79 0.0e+00 226.92
893344   rs2741044      2_137         0 18686.69 0.0e+00 226.76
893697  rs12987866      2_137         0 17782.48 0.0e+00 220.81
893667  rs13009407      2_137         0 17662.19 0.0e+00 220.02
893642  rs17862873      2_137         0 16921.52 0.0e+00 215.62
893630   rs7576166      2_137         0 17952.36 0.0e+00 213.95
893650   rs2018985      2_137         0 17946.94 0.0e+00 213.92
893632   rs4477910      2_137         0 17924.80 0.0e+00 213.81
893603   rs1983023      2_137         0 17760.45 0.0e+00 212.90
893583   rs6750992      2_137         0 17687.89 0.0e+00 212.83
893611   rs6431625      2_137         0 17765.43 0.0e+00 212.64
893531   rs6749496      2_137         0 16941.36 0.0e+00 208.13

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] cowplot_1.0.0 ggplot2_3.3.3

loaded via a namespace (and not attached):
 [1] Biobase_2.44.0              httr_1.4.1                 
 [3] bit64_4.0.5                 assertthat_0.2.1           
 [5] stats4_3.6.1                blob_1.2.1                 
 [7] BSgenome_1.52.0             GenomeInfoDbData_1.2.1     
 [9] Rsamtools_2.0.0             yaml_2.2.0                 
[11] progress_1.2.2              pillar_1.6.1               
[13] RSQLite_2.2.7               lattice_0.20-38            
[15] glue_1.4.2                  digest_0.6.20              
[17] GenomicRanges_1.36.0        promises_1.0.1             
[19] XVector_0.24.0              colorspace_1.4-1           
[21] htmltools_0.3.6             httpuv_1.5.1               
[23] Matrix_1.2-18               XML_3.98-1.20              
[25] pkgconfig_2.0.3             biomaRt_2.40.1             
[27] zlibbioc_1.30.0             purrr_0.3.4                
[29] scales_1.1.0                whisker_0.3-2              
[31] later_0.8.0                 BiocParallel_1.18.0        
[33] git2r_0.26.1                tibble_3.1.2               
[35] farver_2.1.0                generics_0.0.2             
[37] IRanges_2.18.1              ellipsis_0.3.2             
[39] withr_2.4.1                 cachem_1.0.5               
[41] SummarizedExperiment_1.14.1 GenomicFeatures_1.36.3     
[43] BiocGenerics_0.30.0         magrittr_2.0.1             
[45] crayon_1.4.1                memoise_2.0.0              
[47] evaluate_0.14               fs_1.3.1                   
[49] fansi_0.5.0                 tools_3.6.1                
[51] data.table_1.14.0           prettyunits_1.0.2          
[53] hms_1.1.0                   lifecycle_1.0.0            
[55] matrixStats_0.57.0          stringr_1.4.0              
[57] S4Vectors_0.22.1            munsell_0.5.0              
[59] DelayedArray_0.10.0         AnnotationDbi_1.46.0       
[61] Biostrings_2.52.0           compiler_3.6.1             
[63] GenomeInfoDb_1.20.0         rlang_0.4.11               
[65] grid_3.6.1                  RCurl_1.98-1.1             
[67] VariantAnnotation_1.30.1    labeling_0.3               
[69] bitops_1.0-6                rmarkdown_1.13             
[71] gtable_0.3.0                DBI_1.1.1                  
[73] R6_2.5.0                    GenomicAlignments_1.20.1   
[75] dplyr_1.0.7                 knitr_1.23                 
[77] rtracklayer_1.44.0          utf8_1.2.1                 
[79] fastmap_1.1.0               bit_4.0.4                  
[81] workflowr_1.6.2             rprojroot_2.0.2            
[83] stringi_1.4.3               parallel_3.6.1             
[85] Rcpp_1.0.6                  vctrs_0.3.8                
[87] tidyselect_1.1.0            xfun_0.8