Last updated: 2021-09-09

Checks: 7 0

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Whole_Blood.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30660_irnt_Liver_fixedsigma.Rmd) and HTML (docs/ukb-d-30660_irnt_Liver_fixedsigma.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html 47f58ac wesleycrouse 2021-09-06 fixing thin argument for fixed pi results
Rmd 209346f wesleycrouse 2021-09-06 updating additional analyses
html 209346f wesleycrouse 2021-09-06 updating additional analyses
html b14741c wesleycrouse 2021-09-06 switching from render to wflow_build
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
html 2739f4f wesleycrouse 2021-08-30 fixing typo
html b1e6b7e wesleycrouse 2021-08-30 fixing alignment on index
html d7dfe76 wesleycrouse 2021-08-30 Adding detailed reports for 30660
Rmd ea2e654 wesleycrouse 2021-08-30 Exploring fixed priors and trimming large z scores

Overview

These are the results of a ctwas analysis of the UK Biobank trait Direct bilirubin (quantile) using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30660_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1070  768  652  417  494  611  548  408  405  434  634  629  195  365  354 
  16   17   18   19   20   21   22 
 526  663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8366205

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas_fixedsigma.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas_fixedsigma.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas_fixedsigma.s2.susieIrssres.Rd"))

df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

#hardcode fixed sigma, paramters not stored as part of the analysis
group_prior_var_rec[1,] <- 25
group_prior_var_rec[2,] <- 25

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
b14741c wesleycrouse 2021-09-06
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
1.403410e-02 5.189707e-05 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
gene  snp 
  25   25 
#report sample size
print(sample_size)
[1] 292933
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10901 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.01305638 0.03852126 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.02927078 0.66913463

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
b14741c wesleycrouse 2021-09-06
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip     mu2     PVE     z
3212          CCND2       12_4     0.996   31.33 1.1e-04  5.34
12467 RP11-219B17.3      15_27     0.995   52.81 1.8e-04  7.18
7040          INHBB       2_70     0.988   26.35 8.9e-05  4.81
1320        CWF19L1      10_64     0.979   32.02 1.1e-04 -7.09
3562         ACVR1C       2_94     0.972   24.89 8.3e-05  4.62
5563          ABCG8       2_27     0.971   37.02 1.2e-04  5.88
11790        CYP2A6      19_28     0.959   24.54 8.0e-05 -4.73
4269          ITGB4      17_42     0.957   22.69 7.4e-05 -4.91
2359          ABCC3      17_29     0.951   22.33 7.2e-05  4.38
1848          CD276      15_35     0.925   39.20 1.2e-04  6.13
1120           CETP      16_31     0.908   20.46 6.3e-05 -4.03
10667         HLA-G       6_24     0.889 1334.32 4.0e-03 -6.69
12687   RP4-781K5.7      1_121     0.888   21.46 6.5e-05 -4.17
10495         PRMT6       1_66     0.887   29.83 9.0e-05  5.14
10212          IL27      16_23     0.874   26.19 7.8e-05 -4.76
2924          EFHD1      2_136     0.856   30.41 8.9e-05  6.05
1231         PABPC4       1_24     0.844   24.64 7.1e-05  4.52
5978        ZC3H12C      11_65     0.843   21.64 6.2e-05 -4.19
1146         DNMT3B      20_19     0.840   20.73 5.9e-05 -3.98
537           DGAT2      11_42     0.813   57.18 1.6e-04 -7.51
1153           TGDS      13_47     0.809   20.66 5.7e-05 -4.00
11669 RP11-452H21.4      11_43     0.805   36.15 9.9e-05  5.78

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
b14741c wesleycrouse 2021-09-06
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag susie_pip      mu2     PVE       z
11533   UGT1A4      2_137     0.000 36556.51 0.0e+00  232.75
11447   UGT1A1      2_137     0.000 32669.69 0.0e+00 -230.41
11489   UGT1A3      2_137     0.000 25276.37 0.0e+00  213.80
7732    UGT1A6      2_137     0.000 18932.93 0.0e+00  186.96
12683    HCP5B       6_24     0.000 12085.12 1.0e-07   -3.52
10663   TRIM31       6_24     0.000  6301.01 1.1e-11    1.07
4833     FLOT1       6_24     0.000  5989.52 9.6e-12   -1.07
11522   UGT1A7      2_137     0.000  3491.57 0.0e+00  -71.90
10651    ABCF1       6_24     0.000  2758.70 1.9e-09   -3.76
5766   PPP1R18       6_24     0.000  2404.67 3.3e-09   -3.94
4836       NRM       6_24     0.000  1343.59 5.4e-13   -0.40
10667    HLA-G       6_24     0.889  1334.32 4.0e-03   -6.69
1088     USP40      2_137     0.000  1095.76 0.0e+00  -46.64
624      ZNRD1       6_24     0.000   946.03 4.6e-13    0.19
10747  SLCO1B7      12_16     0.000   784.97 0.0e+00   12.26
10661   TRIM10       6_24     0.000   401.91 1.7e-13   -0.49
2584   SLCO1B3      12_16     0.000   360.97 0.0e+00    9.93
4482       SPX      12_16     0.000   189.40 0.0e+00    4.60
10648 C6orf136       6_24     0.000   179.57 7.5e-14    0.11
11136    HCG20       6_24     0.000   175.76 4.8e-13   -1.98

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
           genename region_tag susie_pip     mu2     PVE     z
10667         HLA-G       6_24     0.889 1334.32 4.0e-03 -6.69
12467 RP11-219B17.3      15_27     0.995   52.81 1.8e-04  7.18
537           DGAT2      11_42     0.813   57.18 1.6e-04 -7.51
5563          ABCG8       2_27     0.971   37.02 1.2e-04  5.88
1848          CD276      15_35     0.925   39.20 1.2e-04  6.13
1320        CWF19L1      10_64     0.979   32.02 1.1e-04 -7.09
3212          CCND2       12_4     0.996   31.33 1.1e-04  5.34
11669 RP11-452H21.4      11_43     0.805   36.15 9.9e-05  5.78
2004          TGFB1      19_28     0.742   38.56 9.8e-05  5.64
10495         PRMT6       1_66     0.887   29.83 9.0e-05  5.14
7040          INHBB       2_70     0.988   26.35 8.9e-05  4.81
2924          EFHD1      2_136     0.856   30.41 8.9e-05  6.05
3562         ACVR1C       2_94     0.972   24.89 8.3e-05  4.62
11790        CYP2A6      19_28     0.959   24.54 8.0e-05 -4.73
10212          IL27      16_23     0.874   26.19 7.8e-05 -4.76
8142         CNTROB       17_7     0.671   33.12 7.6e-05 -5.71
4269          ITGB4      17_42     0.957   22.69 7.4e-05 -4.91
2359          ABCC3      17_29     0.951   22.33 7.2e-05  4.38
1231         PABPC4       1_24     0.844   24.64 7.1e-05  4.52
6093        CSNK1G3       5_75     0.759   25.56 6.6e-05  4.74

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip      mu2     PVE       z
11533        UGT1A4      2_137     0.000 36556.51 0.0e+00  232.75
11447        UGT1A1      2_137     0.000 32669.69 0.0e+00 -230.41
11489        UGT1A3      2_137     0.000 25276.37 0.0e+00  213.80
7732         UGT1A6      2_137     0.000 18932.93 0.0e+00  186.96
11522        UGT1A7      2_137     0.000  3491.57 0.0e+00  -71.90
1088          USP40      2_137     0.000  1095.76 0.0e+00  -46.64
10747       SLCO1B7      12_16     0.000   784.97 0.0e+00   12.26
3556          HJURP      2_137     0.000   122.43 0.0e+00   10.96
8651           MSL2       3_84     0.022   104.80 7.9e-06   10.28
2584        SLCO1B3      12_16     0.000   360.97 0.0e+00    9.93
2586         GOLT1B      12_16     0.000    78.22 0.0e+00    7.53
537           DGAT2      11_42     0.813    57.18 1.6e-04   -7.51
11290  MAPKAPK5-AS1      12_67     0.040    54.00 7.3e-06   -7.21
12467 RP11-219B17.3      15_27     0.995    52.81 1.8e-04    7.18
2541          ALDH2      12_67     0.031    51.20 5.5e-06    7.10
1320        CWF19L1      10_64     0.979    32.02 1.1e-04   -7.09
2536          SH2B3      12_67     0.011    42.12 1.6e-06    6.80
10667         HLA-G       6_24     0.889  1334.32 4.0e-03   -6.69
2170            AHR       7_17     0.013    39.39 1.7e-06   -6.58
4962          EXOC6      10_59     0.024    54.35 4.4e-06   -6.37

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
b14741c wesleycrouse 2021-09-06
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
b14741c wesleycrouse 2021-09-06
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.006696633
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip      mu2     PVE       z
11533        UGT1A4      2_137     0.000 36556.51 0.0e+00  232.75
11447        UGT1A1      2_137     0.000 32669.69 0.0e+00 -230.41
11489        UGT1A3      2_137     0.000 25276.37 0.0e+00  213.80
7732         UGT1A6      2_137     0.000 18932.93 0.0e+00  186.96
11522        UGT1A7      2_137     0.000  3491.57 0.0e+00  -71.90
1088          USP40      2_137     0.000  1095.76 0.0e+00  -46.64
10747       SLCO1B7      12_16     0.000   784.97 0.0e+00   12.26
3556          HJURP      2_137     0.000   122.43 0.0e+00   10.96
8651           MSL2       3_84     0.022   104.80 7.9e-06   10.28
2584        SLCO1B3      12_16     0.000   360.97 0.0e+00    9.93
2586         GOLT1B      12_16     0.000    78.22 0.0e+00    7.53
537           DGAT2      11_42     0.813    57.18 1.6e-04   -7.51
11290  MAPKAPK5-AS1      12_67     0.040    54.00 7.3e-06   -7.21
12467 RP11-219B17.3      15_27     0.995    52.81 1.8e-04    7.18
2541          ALDH2      12_67     0.031    51.20 5.5e-06    7.10
1320        CWF19L1      10_64     0.979    32.02 1.1e-04   -7.09
2536          SH2B3      12_67     0.011    42.12 1.6e-06    6.80
10667         HLA-G       6_24     0.889  1334.32 4.0e-03   -6.69
2170            AHR       7_17     0.013    39.39 1.7e-06   -6.58
4962          EXOC6      10_59     0.024    54.35 4.4e-06   -6.37

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 2_137"
        genename region_tag susie_pip      mu2 PVE       z
10567     GIGYF2      2_137         0    19.52   0   -5.12
9340     C2orf82      2_137         0     5.77   0    0.45
620         NGEF      2_137         0     9.06   0    2.52
8006      INPP5D      2_137         0    12.51   0    4.05
879         DGKD      2_137         0    30.48   0   -0.07
1088       USP40      2_137         0  1095.76   0  -46.64
11522     UGT1A7      2_137         0  3491.57   0  -71.90
7732      UGT1A6      2_137         0 18932.93   0  186.96
11533     UGT1A4      2_137         0 36556.51   0  232.75
11489     UGT1A3      2_137         0 25276.37   0  213.80
11447     UGT1A1      2_137         0 32669.69   0 -230.41
3556       HJURP      2_137         0   122.43   0   10.96
11098 AC006037.2      2_137         0     5.39   0    1.50

Version Author Date
b14741c wesleycrouse 2021-09-06
[1] "Region: 12_16"
      genename region_tag susie_pip    mu2 PVE     z
2584   SLCO1B3      12_16         0 360.97   0  9.93
10747  SLCO1B7      12_16         0 784.97   0 12.26
3400      IAPP      12_16         0 120.32   0  5.16
3399   PYROXD1      12_16         0  14.39   0  0.89
36       RECQL      12_16         0 161.81   0  3.81
2586    GOLT1B      12_16         0  78.22   0  7.53
4482       SPX      12_16         0 189.40   0  4.60
2587      LDHB      12_16         0  10.00   0  0.07
3401     KCNJ8      12_16         0   7.08   0 -0.33
689      ABCC9      12_16         0   8.22   0  2.11
2590     C2CD5      12_16         0  12.46   0 -1.39
5073     ETNK1      12_16         0  10.83   0  0.30

Version Author Date
b14741c wesleycrouse 2021-09-06
[1] "Region: 3_84"
     genename region_tag susie_pip    mu2     PVE     z
796   PPP2R3A       3_84     0.041  18.33 2.6e-06 -2.46
8651     MSL2       3_84     0.022 104.80 7.9e-06 10.28
2795     PCCB       3_84     0.014   6.33 3.1e-07  1.22
3148    STAG1       3_84     0.015   5.19 2.6e-07 -0.03
6584     NCK1       3_84     0.014   9.46 4.6e-07 -2.19

Version Author Date
b14741c wesleycrouse 2021-09-06
[1] "Region: 11_42"
           genename region_tag susie_pip   mu2     PVE     z
7611          XRRA1      11_42     0.026  9.38 8.5e-07 -1.00
3170          SPCS2      11_42     0.019  6.48 4.2e-07  0.73
6901           NEU3      11_42     0.017  5.04 2.9e-07  0.39
4848        SLCO2B1      11_42     0.017  5.06 2.9e-07 -0.22
12001         TPBGL      11_42     0.023  7.94 6.3e-07  0.68
6617          GDPD5      11_42     0.024 11.38 9.5e-07  1.95
8328           MAP6      11_42     0.022  7.34 5.6e-07  0.24
7603         MOGAT2      11_42     0.102 19.48 6.8e-06  0.85
537           DGAT2      11_42     0.813 57.18 1.6e-04 -7.51
10381         UVRAG      11_42     0.019  8.07 5.4e-07  1.62
1082          WNT11      11_42     0.025  8.98 7.5e-07  1.06
11773 RP11-619A14.3      11_42     0.019  6.36 4.2e-07  0.61
4849         THAP12      11_42     0.018  6.01 3.7e-07 -0.66
12265 RP11-111M22.5      11_42     0.020  7.06 4.9e-07  0.80
11766 RP11-111M22.3      11_42     0.017  5.05 2.9e-07  0.31
11751  RP11-672A2.4      11_42     0.018  5.92 3.7e-07  0.53
9350           TSKU      11_42     0.018  5.57 3.4e-07  0.25
905           ACER3      11_42     0.083 20.30 5.7e-06 -2.04
5976          CAPN5      11_42     0.052 16.31 2.9e-06  1.72

Version Author Date
b14741c wesleycrouse 2021-09-06
[1] "Region: 12_67"
          genename region_tag susie_pip   mu2     PVE     z
5112          TCHP      12_67     0.334 18.64 2.1e-05  3.21
5111          GIT2      12_67     0.193 17.49 1.2e-05  3.36
8639      C12orf76      12_67     0.014  7.16 3.5e-07 -0.30
3515         IFT81      12_67     0.016 12.26 6.6e-07  2.50
10093       ANAPC7      12_67     0.017 10.87 6.3e-07  2.16
2531         ARPC3      12_67     0.018  8.90 5.5e-07  0.54
10684      FAM216A      12_67     0.013 10.38 4.7e-07  2.42
2532          GPN3      12_67     0.011  6.09 2.3e-07  1.40
2533         VPS29      12_67     0.011  6.16 2.4e-07 -1.41
10683        TCTN1      12_67     0.015  7.13 3.7e-07  0.02
3517         HVCN1      12_67     0.029 16.92 1.7e-06  2.67
9717        PPP1CC      12_67     0.029 16.84 1.7e-06 -2.65
10375      FAM109A      12_67     0.011  8.05 3.1e-07 -1.46
2536         SH2B3      12_67     0.011 42.12 1.6e-06  6.80
10680        ATXN2      12_67     0.011 20.51 7.8e-07  3.97
2541         ALDH2      12_67     0.031 51.20 5.5e-06  7.10
11290 MAPKAPK5-AS1      12_67     0.040 54.00 7.3e-06 -7.21
1191         ERP29      12_67     0.076 46.69 1.2e-05  6.25
10370      TMEM116      12_67     0.076 46.69 1.2e-05 -6.25
2544         NAA25      12_67     0.059 43.51 8.8e-06 -6.12
8505        HECTD4      12_67     0.084 49.39 1.4e-05  6.33
9084        PTPN11      12_67     0.015  7.99 4.2e-07 -0.78

Version Author Date
b14741c wesleycrouse 2021-09-06

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                id region_tag susie_pip      mu2     PVE      z
132828   rs2070959      2_137     1.000 28459.01 9.7e-02 238.14
132856  rs76063448      2_137     1.000  5888.78 2.0e-02  70.66
132858   rs2885296      2_137     1.000 40201.66 1.4e-01 240.61
327685  rs72834643       6_20     1.000   119.90 4.1e-04   9.73
327706 rs115740542       6_20     1.000   180.33 6.2e-04  12.66
371809  rs12208357      6_103     1.000    80.44 2.7e-04  -6.65
383595 rs542176135       7_17     1.000   152.49 5.2e-04  -8.38
534815   rs6480402      10_46     1.000   463.77 1.6e-03   8.90
604087  rs11045819      12_16     1.000  2525.87 8.6e-03 -14.34
604104   rs4363657      12_16     1.000  1587.00 5.4e-03  43.78
799284  rs59616136      19_14     1.000    49.30 1.7e-04   7.00
891763  rs13031505      2_136     1.000    59.39 2.0e-04  -8.07
895089   rs1611236       6_24     1.000 25202.51 8.6e-02  -3.60
328548   rs3130253       6_23     0.999    41.00 1.4e-04  -6.63
510100 rs115478735       9_70     0.999    64.59 2.2e-04  -8.02
807430 rs113345881      19_32     0.999    38.14 1.3e-04   6.12
807428    rs814573      19_32     0.998    37.40 1.3e-04  -6.68
556111  rs76153913       11_2     0.997    47.81 1.6e-04   6.70
383617   rs4721597       7_17     0.996    88.59 3.0e-04   1.94
614777   rs7397189      12_36     0.995    34.89 1.2e-04   5.69
631363    rs653178      12_67     0.995   160.56 5.5e-04 -13.12
891700  rs34247311      2_136     0.995    38.70 1.3e-04   4.44
819161  rs34507316      20_13     0.993    32.86 1.1e-04   5.60
797513 rs141645070      19_10     0.989    30.06 1.0e-04  -5.27
36470    rs2779116       1_78     0.980    68.69 2.3e-04  -8.25
746176   rs2608604      16_53     0.972    55.49 1.8e-04  -6.33
807433  rs12721109      19_32     0.972    31.43 1.0e-04   6.44
800069   rs3794991      19_15     0.952   132.20 4.3e-04  11.64
807364   rs1551891      19_32     0.949    34.75 1.1e-04   7.88
234586  rs17238095       4_72     0.938    29.18 9.3e-05   5.18
847467  rs34662558      22_10     0.930    30.49 9.7e-05  -5.19
603802   rs7962574      12_15     0.921    45.83 1.4e-04  -8.40
496018   rs9410381       9_45     0.913    74.38 2.3e-04   8.62
132860  rs11568318      2_137     0.910  1443.19 4.5e-03 -65.81
510485  rs34755157       9_71     0.900    28.91 8.9e-05  -5.03
438526  rs12549737       8_24     0.898    30.01 9.2e-05   5.15
560564  rs34623292      11_10     0.892    29.87 9.1e-05  -5.06
603807  rs73080739      12_15     0.887    33.82 1.0e-04  -7.24
327524  rs75080831       6_19     0.851    59.63 1.7e-04   7.96
295901   rs4566840       5_66     0.849    31.75 9.2e-05  -5.46
603842  rs10770693      12_15     0.849    59.16 1.7e-04   8.86
850218   rs6000553      22_14     0.840    43.93 1.3e-04   6.47
559133   rs4910498       11_8     0.832    50.78 1.4e-04   6.71
73907     rs780093       2_16     0.813    37.31 1.0e-04   5.98

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
b14741c wesleycrouse 2021-09-06
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE      z
132858   rs2885296      2_137     1.000 40201.66 1.4e-01 240.61
132854  rs17862875      2_137     0.000 39943.84 0.0e+00 239.53
132828   rs2070959      2_137     1.000 28459.01 9.7e-02 238.14
132827   rs1105880      2_137     0.000 27491.08 0.0e+00 232.16
132822  rs77070100      2_137     0.000 27306.28 0.0e+00 231.38
132857  rs11888459      2_137     0.000 27291.21 0.0e+00 187.72
132840  rs13401281      2_137     0.000 26765.91 0.0e+00 186.34
132836   rs6749496      2_137     0.000 25345.04 0.0e+00 208.13
895089   rs1611236       6_24     1.000 25202.51 8.6e-02  -3.60
895112   rs1611248       6_24     0.227 25201.43 1.9e-02  -3.63
895116   rs1611252       6_24     0.137 25201.31 1.2e-02  -3.62
895071 rs111734624       6_24     0.143 25201.27 1.2e-02  -3.62
895068   rs2508055       6_24     0.143 25201.26 1.2e-02  -3.62
895133   rs1611260       6_24     0.135 25201.25 1.2e-02  -3.62
895139   rs1611265       6_24     0.134 25201.23 1.1e-02  -3.62
895007   rs1633033       6_24     0.242 25201.13 2.1e-02  -3.63
895020   rs2844838       6_24     0.127 25200.67 1.1e-02  -3.63
895141   rs1611267       6_24     0.058 25200.63 5.0e-03  -3.62
895143   rs2394171       6_24     0.050 25200.60 4.3e-03  -3.61
895145   rs2893981       6_24     0.050 25200.55 4.3e-03  -3.61
895075   rs1611228       6_24     0.064 25200.49 5.5e-03  -3.62
895064   rs1737020       6_24     0.021 25200.05 1.8e-03  -3.60
895065   rs1737019       6_24     0.021 25200.05 1.8e-03  -3.60
895024   rs1633032       6_24     0.068 25198.93 5.8e-03  -3.62
895058   rs1633020       6_24     0.027 25197.30 2.4e-03  -3.61
895062   rs1633018       6_24     0.010 25196.74 8.4e-04  -3.60
895087   rs1611234       6_24     0.010 25195.27 8.5e-04  -3.60
894947   rs1610726       6_24     0.016 25194.16 1.3e-03  -3.61
895015   rs2844840       6_24     0.037 25192.16 3.2e-03  -3.62
895342   rs3129185       6_24     0.045 25191.93 3.9e-03  -3.63
895357   rs1736999       6_24     0.033 25190.82 2.8e-03  -3.63
895370   rs1633001       6_24     0.060 25189.13 5.2e-03  -3.64
895110   rs1611246       6_24     0.017 25187.52 1.5e-03  -3.62
895546   rs1632980       6_24     0.029 25187.36 2.5e-03  -3.63
895043   rs1614309       6_24     0.019 25180.60 1.6e-03  -3.63
895042   rs1633030       6_24     0.000 25159.01 8.7e-06  -3.61
895155   rs9258382       6_24     0.002 25134.98 1.5e-04  -3.69
895152   rs9258379       6_24     0.000 25091.93 4.6e-09  -3.62
895101   rs1611241       6_24     0.009 25068.34 8.1e-04  -3.84
895046   rs1633028       6_24     0.000 25030.29 4.6e-09  -3.72
132837   rs1875263      2_137     0.000 25002.73 0.0e+00 181.67
895104   rs1611244       6_24     0.000 24932.95 2.3e-09  -3.64
895059   rs2735042       6_24     0.000 24893.91 2.3e-09  -3.61
895140   rs1611266       6_24     0.000 24714.83 1.1e-08  -3.97
895113   rs1611249       6_24     0.000 24611.05 2.0e-08  -4.10
895079   rs1611230       6_24     0.000 24550.04 1.8e-08  -4.08
895128 rs145043018       6_24     0.000 24545.38 1.9e-08  -4.09
895138 rs147376303       6_24     0.000 24545.26 1.9e-08  -4.09
895149   rs9258376       6_24     0.000 24544.95 1.9e-08  -4.09
895156   rs1633016       6_24     0.000 24544.65 1.9e-08  -4.09

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE      z
132858   rs2885296      2_137     1.000 40201.66 0.14000 240.61
132828   rs2070959      2_137     1.000 28459.01 0.09700 238.14
895089   rs1611236       6_24     1.000 25202.51 0.08600  -3.60
895007   rs1633033       6_24     0.242 25201.13 0.02100  -3.63
132856  rs76063448      2_137     1.000  5888.78 0.02000  70.66
895112   rs1611248       6_24     0.227 25201.43 0.01900  -3.63
895068   rs2508055       6_24     0.143 25201.26 0.01200  -3.62
895071 rs111734624       6_24     0.143 25201.27 0.01200  -3.62
895116   rs1611252       6_24     0.137 25201.31 0.01200  -3.62
895133   rs1611260       6_24     0.135 25201.25 0.01200  -3.62
895020   rs2844838       6_24     0.127 25200.67 0.01100  -3.63
895139   rs1611265       6_24     0.134 25201.23 0.01100  -3.62
604087  rs11045819      12_16     1.000  2525.87 0.00860 -14.34
603988  rs12366506      12_16     0.714  2441.77 0.00590  23.44
895024   rs1633032       6_24     0.068 25198.93 0.00580  -3.62
895075   rs1611228       6_24     0.064 25200.49 0.00550  -3.62
604104   rs4363657      12_16     1.000  1587.00 0.00540  43.78
895370   rs1633001       6_24     0.060 25189.13 0.00520  -3.64
895141   rs1611267       6_24     0.058 25200.63 0.00500  -3.62
132860  rs11568318      2_137     0.910  1443.19 0.00450 -65.81
603994  rs11045612      12_16     0.533  2439.59 0.00440  23.44
895143   rs2394171       6_24     0.050 25200.60 0.00430  -3.61
895145   rs2893981       6_24     0.050 25200.55 0.00430  -3.61
895342   rs3129185       6_24     0.045 25191.93 0.00390  -3.63
895015   rs2844840       6_24     0.037 25192.16 0.00320  -3.62
895357   rs1736999       6_24     0.033 25190.82 0.00280  -3.63
895546   rs1632980       6_24     0.029 25187.36 0.00250  -3.63
895058   rs1633020       6_24     0.027 25197.30 0.00240  -3.61
604005  rs73062442      12_16     0.216  2439.80 0.00180  23.39
895064   rs1737020       6_24     0.021 25200.05 0.00180  -3.60
895065   rs1737019       6_24     0.021 25200.05 0.00180  -3.60
534815   rs6480402      10_46     1.000   463.77 0.00160   8.90
603997  rs11513221      12_16     0.198  2439.83 0.00160  23.38
895043   rs1614309       6_24     0.019 25180.60 0.00160  -3.63
132861  rs12052787      2_137     0.290  1498.47 0.00150 -11.25
895110   rs1611246       6_24     0.017 25187.52 0.00150  -3.62
894947   rs1610726       6_24     0.016 25194.16 0.00130  -3.61
132843  rs10929293      2_137     0.220  1470.36 0.00110 -10.54
132841  rs12463641      2_137     0.205  1471.08 0.00100 -10.57
895087   rs1611234       6_24     0.010 25195.27 0.00085  -3.60
895062   rs1633018       6_24     0.010 25196.74 0.00084  -3.60
895101   rs1611241       6_24     0.009 25068.34 0.00081  -3.84
327706 rs115740542       6_20     1.000   180.33 0.00062  12.66
534820  rs35233497      10_46     0.525   348.24 0.00062  -4.24
132848  rs28899191      2_137     0.120  1482.41 0.00061 -10.84
132842  rs12463910      2_137     0.111  1470.40 0.00056 -10.56
534823  rs79086908      10_46     0.474   348.17 0.00056  -4.24
631363    rs653178      12_67     0.995   160.56 0.00055 -13.12
383595 rs542176135       7_17     1.000   152.49 0.00052  -8.38
603898   rs3060461      12_16     0.317   475.51 0.00051 -21.86

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE       z
132858   rs2885296      2_137      1.00 40201.66 1.4e-01  240.61
132854  rs17862875      2_137      0.00 39943.84 0.0e+00  239.53
132828   rs2070959      2_137      1.00 28459.01 9.7e-02  238.14
132827   rs1105880      2_137      0.00 27491.08 0.0e+00  232.16
132822  rs77070100      2_137      0.00 27306.28 0.0e+00  231.38
132836   rs6749496      2_137      0.00 25345.04 0.0e+00  208.13
132851   rs3821242      2_137      0.00 22316.10 0.0e+00  203.17
132849   rs2008584      2_137      0.00 22166.46 0.0e+00  202.59
132829   rs7583278      2_137      0.00 22771.57 0.0e+00  200.99
132847  rs57258852      2_137      0.00 23748.91 0.0e+00  198.41
132845   rs4663332      2_137      0.00 21854.28 0.0e+00  194.41
132846 rs200973045      2_137      0.00 21792.50 0.0e+00  194.10
132813   rs2741034      2_137      0.00 16196.23 0.0e+00  190.53
132805   rs2602363      2_137      0.00 16175.70 0.0e+00  190.40
132800   rs2741013      2_137      0.00 16122.59 0.0e+00  190.21
132835   rs2012734      2_137      0.00 18701.32 0.0e+00  187.89
132857  rs11888459      2_137      0.00 27291.21 0.0e+00  187.72
132823   rs6753320      2_137      0.00 18930.97 0.0e+00  186.96
132824   rs6736743      2_137      0.00 18930.97 0.0e+00  186.96
132840  rs13401281      2_137      0.00 26765.91 0.0e+00  186.34
132837   rs1875263      2_137      0.00 25002.73 0.0e+00  181.67
132872   rs2361502      2_137      0.00 16313.71 0.0e+00  157.91
132809   rs6431558      2_137      0.00  9544.22 0.0e+00 -144.34
132817   rs1113193      2_137      0.00  3951.40 0.0e+00  -97.79
132811   rs1823803      2_137      0.00  4007.19 0.0e+00   91.76
132869  rs10202032      2_137      0.00  3925.50 0.0e+00  -88.03
132870   rs6723936      2_137      0.00  4969.72 0.0e+00   78.31
132859 rs143373661      2_137      0.00  3962.93 0.0e+00   78.24
132807  rs13027376      2_137      0.00  2907.71 0.0e+00  -74.88
132804   rs4047192      2_137      0.00  2902.35 0.0e+00  -74.81
132826  rs12476197      2_137      0.00  3493.78 0.0e+00  -71.92
132820   rs4663871      2_137      0.00  3477.32 0.0e+00  -71.72
132825 rs765251456      2_137      0.00  3452.57 0.0e+00  -71.57
132856  rs76063448      2_137      1.00  5888.78 2.0e-02   70.66
132852  rs45510999      2_137      0.00  5810.95 2.2e-18   70.21
132844 rs183532563      2_137      0.00  5748.85 0.0e+00   69.70
132860  rs11568318      2_137      0.91  1443.19 4.5e-03  -65.81
132850  rs45507691      2_137      0.09  1427.87 4.4e-04  -65.58
132818  rs17863773      2_137      0.00  2762.37 0.0e+00  -65.44
132812  rs10929252      2_137      0.00  2274.43 0.0e+00  -63.60
132810  rs17863766      2_137      0.00  2219.41 0.0e+00  -63.58
132799 rs140719475      2_137      0.00  2269.57 0.0e+00  -63.55
132802   rs6713902      2_137      0.00  1918.36 0.0e+00  -60.77
132853 rs139257330      2_137      0.00  2392.82 0.0e+00   60.10
132801   rs7563478      2_137      0.00  1055.03 0.0e+00  -59.73
132815   rs2602372      2_137      0.00  2155.84 0.0e+00   58.13
132862   rs2003569      2_137      0.00  2364.24 0.0e+00  -57.58
132785  rs62192764      2_137      0.00  1290.78 0.0e+00  -54.32
132777  rs62192761      2_137      0.00  1289.74 0.0e+00  -54.28
132787   rs4047189      2_137      0.00  1933.89 0.0e+00   53.85

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] cowplot_1.0.0 ggplot2_3.3.3

loaded via a namespace (and not attached):
 [1] Biobase_2.44.0              httr_1.4.1                 
 [3] bit64_4.0.5                 assertthat_0.2.1           
 [5] stats4_3.6.1                blob_1.2.1                 
 [7] BSgenome_1.52.0             GenomeInfoDbData_1.2.1     
 [9] Rsamtools_2.0.0             yaml_2.2.0                 
[11] progress_1.2.2              pillar_1.6.1               
[13] RSQLite_2.2.7               lattice_0.20-38            
[15] glue_1.4.2                  digest_0.6.20              
[17] GenomicRanges_1.36.0        promises_1.0.1             
[19] XVector_0.24.0              colorspace_1.4-1           
[21] htmltools_0.3.6             httpuv_1.5.1               
[23] Matrix_1.2-18               XML_3.98-1.20              
[25] pkgconfig_2.0.3             biomaRt_2.40.1             
[27] zlibbioc_1.30.0             purrr_0.3.4                
[29] scales_1.1.0                whisker_0.3-2              
[31] later_0.8.0                 BiocParallel_1.18.0        
[33] git2r_0.26.1                tibble_3.1.2               
[35] farver_2.1.0                generics_0.0.2             
[37] IRanges_2.18.1              ellipsis_0.3.2             
[39] withr_2.4.1                 cachem_1.0.5               
[41] SummarizedExperiment_1.14.1 GenomicFeatures_1.36.3     
[43] BiocGenerics_0.30.0         magrittr_2.0.1             
[45] crayon_1.4.1                memoise_2.0.0              
[47] evaluate_0.14               fs_1.3.1                   
[49] fansi_0.5.0                 tools_3.6.1                
[51] data.table_1.14.0           prettyunits_1.0.2          
[53] hms_1.1.0                   lifecycle_1.0.0            
[55] matrixStats_0.57.0          stringr_1.4.0              
[57] S4Vectors_0.22.1            munsell_0.5.0              
[59] DelayedArray_0.10.0         AnnotationDbi_1.46.0       
[61] Biostrings_2.52.0           compiler_3.6.1             
[63] GenomeInfoDb_1.20.0         rlang_0.4.11               
[65] grid_3.6.1                  RCurl_1.98-1.1             
[67] VariantAnnotation_1.30.1    labeling_0.3               
[69] bitops_1.0-6                rmarkdown_1.13             
[71] gtable_0.3.0                DBI_1.1.1                  
[73] R6_2.5.0                    GenomicAlignments_1.20.1   
[75] dplyr_1.0.7                 knitr_1.23                 
[77] rtracklayer_1.44.0          utf8_1.2.1                 
[79] fastmap_1.1.0               bit_4.0.4                  
[81] workflowr_1.6.2             rprojroot_2.0.2            
[83] stringi_1.4.3               parallel_3.6.1             
[85] Rcpp_1.0.6                  vctrs_0.3.8                
[87] tidyselect_1.1.0            xfun_0.8