Last updated: 2021-09-09

Checks: 7 0

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Whole_Blood.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30660_irnt_Liver_fixedpi.Rmd) and HTML (docs/ukb-d-30660_irnt_Liver_fixedpi.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 47f58ac wesleycrouse 2021-09-06 fixing thin argument for fixed pi results
html 47f58ac wesleycrouse 2021-09-06 fixing thin argument for fixed pi results
Rmd 209346f wesleycrouse 2021-09-06 updating additional analyses
html 209346f wesleycrouse 2021-09-06 updating additional analyses
html b14741c wesleycrouse 2021-09-06 switching from render to wflow_build
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
html 2739f4f wesleycrouse 2021-08-30 fixing typo
html b1e6b7e wesleycrouse 2021-08-30 fixing alignment on index
html d7dfe76 wesleycrouse 2021-08-30 Adding detailed reports for 30660
Rmd ea2e654 wesleycrouse 2021-08-30 Exploring fixed priors and trimming large z scores

Overview

These are the results of a ctwas analysis of the UK Biobank trait Direct bilirubin (quantile) using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30660_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1070  768  652  417  494  611  548  408  405  434  634  629  195  365  354 
  16   17   18   19   20   21   22 
 526  663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8366205

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas_fixedpi.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas_fixedpi.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas_fixedpi.s2.susieIrssres.Rd"))

#hardcode fixed pi, paramters not stored as part of the analysis
group_prior_rec[1,] <- 0.01
group_prior_rec[2,] <- 0.0001

df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

#df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
b14741c wesleycrouse 2021-09-06
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
#estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
 gene   snp 
1e-02 1e-04 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
     gene       snp 
  7.54527 156.69298 
#report sample size
print(sample_size)
[1] 292933
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10901 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.002807843 0.465229439 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.02861249 4.44575475

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
b14741c wesleycrouse 2021-09-06
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip   mu2     PVE     z
3212          CCND2       12_4     0.988 27.78 9.4e-05  5.34
7040          INHBB       2_70     0.978 23.41 7.8e-05  4.81
3562         ACVR1C       2_94     0.949 22.27 7.2e-05  4.62
1320        CWF19L1      10_64     0.949 28.80 9.3e-05 -7.09
12467 RP11-219B17.3      15_27     0.946 46.41 1.5e-04  7.18
4269          ITGB4      17_42     0.935 20.92 6.7e-05 -4.91
2359          ABCC3      17_29     0.931 19.91 6.3e-05  4.38
11790        CYP2A6      19_28     0.927 22.10 7.0e-05 -4.73
5563          ABCG8       2_27     0.889 32.51 9.9e-05  5.88
1146         DNMT3B      20_19     0.873 18.11 5.4e-05 -3.98
1120           CETP      16_31     0.865 19.28 5.7e-05 -4.03
12687   RP4-781K5.7      1_121     0.846 19.58 5.7e-05 -4.17
1153           TGDS      13_47     0.813 17.85 5.0e-05 -4.00
10212          IL27      16_23     0.796 23.31 6.3e-05 -4.76
5978        ZC3H12C      11_65     0.785 19.55 5.2e-05 -4.19
10495         PRMT6       1_66     0.744 25.95 6.6e-05  5.14
6682         CYB5R1      1_102     0.742 19.33 4.9e-05 -3.95
1231         PABPC4       1_24     0.728 21.68 5.4e-05  4.52
1848          CD276      15_35     0.722 33.69 8.3e-05  6.13
666           COASY      17_25     0.720 20.08 4.9e-05 -3.97

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
b14741c wesleycrouse 2021-09-06
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag susie_pip       mu2     PVE       z
12683    HCP5B       6_24         0 147799.60 9.5e-16   -3.52
10663   TRIM31       6_24         0  77351.52 5.9e-17    1.07
4833     FLOT1       6_24         0  73472.62 5.6e-17   -1.07
11533   UGT1A4      2_137         0  48265.96 0.0e+00  232.75
11447   UGT1A1      2_137         0  40648.97 0.0e+00 -230.41
10651    ABCF1       6_24         0  33573.32 1.4e-16   -3.76
11489   UGT1A3      2_137         0  32229.44 0.0e+00  213.80
5766   PPP1R18       6_24         0  29189.76 2.2e-16   -3.94
7732    UGT1A6      2_137         0  26862.67 0.0e+00  186.96
4836       NRM       6_24         0  16444.79 1.9e-17   -0.40
10667    HLA-G       6_24         0  15964.29 1.9e-11   -6.69
624      ZNRD1       6_24         0  11550.68 8.8e-18    0.19
11522   UGT1A7      2_137         0   5175.25 0.0e+00  -71.90
10661   TRIM10       6_24         0   4873.66 7.4e-18   -0.49
10648 C6orf136       6_24         0   2146.93 1.6e-18    0.11
11136    HCG20       6_24         0   1935.85 3.4e-17   -1.98
10664    RNF39       6_24         0   1772.07 2.0e-18   -1.02
1088     USP40      2_137         0   1610.92 0.0e+00  -46.64
6476   SUPV3L1      10_46         0   1310.26 0.0e+00    2.81
10774    HLA-A       6_24         0    898.51 6.8e-19   -0.83

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
           genename region_tag susie_pip   mu2     PVE     z
12467 RP11-219B17.3      15_27     0.946 46.41 1.5e-04  7.18
5563          ABCG8       2_27     0.889 32.51 9.9e-05  5.88
3212          CCND2       12_4     0.988 27.78 9.4e-05  5.34
1320        CWF19L1      10_64     0.949 28.80 9.3e-05 -7.09
2924          EFHD1      2_136     0.715 37.43 9.1e-05  6.05
1848          CD276      15_35     0.722 33.69 8.3e-05  6.13
2004          TGFB1      19_28     0.702 33.94 8.1e-05  5.64
7040          INHBB       2_70     0.978 23.41 7.8e-05  4.81
3562         ACVR1C       2_94     0.949 22.27 7.2e-05  4.62
11790        CYP2A6      19_28     0.927 22.10 7.0e-05 -4.73
10000       ZKSCAN3       6_22     0.469 42.29 6.8e-05  3.82
11669 RP11-452H21.4      11_43     0.600 33.08 6.8e-05  5.78
4269          ITGB4      17_42     0.935 20.92 6.7e-05 -4.91
10495         PRMT6       1_66     0.744 25.95 6.6e-05  5.14
10212          IL27      16_23     0.796 23.31 6.3e-05 -4.76
2359          ABCC3      17_29     0.931 19.91 6.3e-05  4.38
8142         CNTROB       17_7     0.609 28.81 6.0e-05 -5.71
12687   RP4-781K5.7      1_121     0.846 19.58 5.7e-05 -4.17
1120           CETP      16_31     0.865 19.28 5.7e-05 -4.03
6291          JAZF1       7_23     0.704 23.28 5.6e-05  4.83

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip      mu2     PVE       z
11533        UGT1A4      2_137     0.000 48265.96 0.0e+00  232.75
11447        UGT1A1      2_137     0.000 40648.97 0.0e+00 -230.41
11489        UGT1A3      2_137     0.000 32229.44 0.0e+00  213.80
7732         UGT1A6      2_137     0.000 26862.67 0.0e+00  186.96
11522        UGT1A7      2_137     0.000  5175.25 0.0e+00  -71.90
1088          USP40      2_137     0.000  1610.92 0.0e+00  -46.64
10747       SLCO1B7      12_16     0.000   728.14 0.0e+00   12.26
3556          HJURP      2_137     0.000   154.82 0.0e+00   10.96
8651           MSL2       3_84     0.028    87.27 8.4e-06   10.28
2584        SLCO1B3      12_16     0.000   338.41 0.0e+00    9.93
2586         GOLT1B      12_16     0.000    65.15 0.0e+00    7.53
537           DGAT2      11_42     0.286    48.64 4.8e-05   -7.51
11290  MAPKAPK5-AS1      12_67     0.048    44.92 7.3e-06   -7.21
12467 RP11-219B17.3      15_27     0.946    46.41 1.5e-04    7.18
2541          ALDH2      12_67     0.039    42.68 5.7e-06    7.10
1320        CWF19L1      10_64     0.949    28.80 9.3e-05   -7.09
2536          SH2B3      12_67     0.018    36.13 2.3e-06    6.80
10667         HLA-G       6_24     0.000 15964.29 1.9e-11   -6.69
2170            AHR       7_17     0.021    30.55 2.1e-06   -6.58
4962          EXOC6      10_59     0.039    46.08 6.1e-06   -6.37

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
b14741c wesleycrouse 2021-09-06
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
b14741c wesleycrouse 2021-09-06
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.006696633
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip      mu2     PVE       z
11533        UGT1A4      2_137     0.000 48265.96 0.0e+00  232.75
11447        UGT1A1      2_137     0.000 40648.97 0.0e+00 -230.41
11489        UGT1A3      2_137     0.000 32229.44 0.0e+00  213.80
7732         UGT1A6      2_137     0.000 26862.67 0.0e+00  186.96
11522        UGT1A7      2_137     0.000  5175.25 0.0e+00  -71.90
1088          USP40      2_137     0.000  1610.92 0.0e+00  -46.64
10747       SLCO1B7      12_16     0.000   728.14 0.0e+00   12.26
3556          HJURP      2_137     0.000   154.82 0.0e+00   10.96
8651           MSL2       3_84     0.028    87.27 8.4e-06   10.28
2584        SLCO1B3      12_16     0.000   338.41 0.0e+00    9.93
2586         GOLT1B      12_16     0.000    65.15 0.0e+00    7.53
537           DGAT2      11_42     0.286    48.64 4.8e-05   -7.51
11290  MAPKAPK5-AS1      12_67     0.048    44.92 7.3e-06   -7.21
12467 RP11-219B17.3      15_27     0.946    46.41 1.5e-04    7.18
2541          ALDH2      12_67     0.039    42.68 5.7e-06    7.10
1320        CWF19L1      10_64     0.949    28.80 9.3e-05   -7.09
2536          SH2B3      12_67     0.018    36.13 2.3e-06    6.80
10667         HLA-G       6_24     0.000 15964.29 1.9e-11   -6.69
2170            AHR       7_17     0.021    30.55 2.1e-06   -6.58
4962          EXOC6      10_59     0.039    46.08 6.1e-06   -6.37

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 2_137"
        genename region_tag susie_pip      mu2 PVE       z
10567     GIGYF2      2_137         0    28.08   0   -5.12
9340     C2orf82      2_137         0     5.92   0    0.45
620         NGEF      2_137         0     7.68   0    2.52
8006      INPP5D      2_137         0    14.31   0    4.05
879         DGKD      2_137         0    30.48   0   -0.07
1088       USP40      2_137         0  1610.92   0  -46.64
11522     UGT1A7      2_137         0  5175.25   0  -71.90
7732      UGT1A6      2_137         0 26862.67   0  186.96
11533     UGT1A4      2_137         0 48265.96   0  232.75
11489     UGT1A3      2_137         0 32229.44   0  213.80
11447     UGT1A1      2_137         0 40648.97   0 -230.41
3556       HJURP      2_137         0   154.82   0   10.96
11098 AC006037.2      2_137         0     5.20   0    1.50

Version Author Date
b14741c wesleycrouse 2021-09-06
[1] "Region: 12_16"
      genename region_tag susie_pip    mu2 PVE     z
2584   SLCO1B3      12_16         0 338.41   0  9.93
10747  SLCO1B7      12_16         0 728.14   0 12.26
3400      IAPP      12_16         0 107.34   0  5.16
3399   PYROXD1      12_16         0  13.54   0  0.89
36       RECQL      12_16         0 149.90   0  3.81
2586    GOLT1B      12_16         0  65.15   0  7.53
4482       SPX      12_16         0 170.34   0  4.60
2587      LDHB      12_16         0   9.08   0  0.07
3401     KCNJ8      12_16         0   6.48   0 -0.33
689      ABCC9      12_16         0   7.74   0  2.11
2590     C2CD5      12_16         0  10.85   0 -1.39
5073     ETNK1      12_16         0   9.95   0  0.30

Version Author Date
b14741c wesleycrouse 2021-09-06
[1] "Region: 3_84"
     genename region_tag susie_pip   mu2     PVE     z
796   PPP2R3A       3_84     0.059 15.36 3.1e-06 -2.46
8651     MSL2       3_84     0.028 87.27 8.4e-06 10.28
2795     PCCB       3_84     0.024  5.77 4.7e-07  1.22
3148    STAG1       3_84     0.024  4.76 4.0e-07 -0.03
6584     NCK1       3_84     0.024  8.49 7.0e-07 -2.19

Version Author Date
b14741c wesleycrouse 2021-09-06
[1] "Region: 11_42"
           genename region_tag susie_pip   mu2     PVE     z
7611          XRRA1      11_42     0.051  8.05 1.4e-06 -1.00
3170          SPCS2      11_42     0.039  5.83 7.8e-07  0.73
6901           NEU3      11_42     0.034  4.61 5.4e-07  0.39
4848        SLCO2B1      11_42     0.035  4.62 5.5e-07 -0.22
12001         TPBGL      11_42     0.047  7.13 1.1e-06  0.68
6617          GDPD5      11_42     0.049  9.88 1.6e-06  1.95
8328           MAP6      11_42     0.043  6.32 9.3e-07  0.24
7603         MOGAT2      11_42     0.148 15.34 7.8e-06  0.85
537           DGAT2      11_42     0.286 48.64 4.8e-05 -7.51
10381         UVRAG      11_42     0.039  6.77 8.9e-07  1.62
1082          WNT11      11_42     0.049  7.88 1.3e-06  1.06
11773 RP11-619A14.3      11_42     0.040  5.79 7.8e-07  0.61
4849         THAP12      11_42     0.037  5.36 6.8e-07 -0.66
12265 RP11-111M22.5      11_42     0.041  6.24 8.7e-07  0.80
11766 RP11-111M22.3      11_42     0.035  4.64 5.5e-07  0.31
11751  RP11-672A2.4      11_42     0.038  5.35 6.9e-07  0.53
9350           TSKU      11_42     0.037  5.01 6.3e-07  0.25
905           ACER3      11_42     0.135 16.60 7.6e-06 -2.04
5976          CAPN5      11_42     0.092 13.49 4.2e-06  1.72

Version Author Date
b14741c wesleycrouse 2021-09-06
[1] "Region: 12_67"
          genename region_tag susie_pip   mu2     PVE     z
5112          TCHP      12_67     0.296 16.14 1.6e-05  3.21
5111          GIT2      12_67     0.175 15.07 9.0e-06  3.36
8639      C12orf76      12_67     0.024  6.45 5.2e-07 -0.30
3515         IFT81      12_67     0.025 10.48 8.9e-07  2.50
10093       ANAPC7      12_67     0.027  9.24 8.4e-07  2.16
2531         ARPC3      12_67     0.029  7.80 7.7e-07  0.54
10684      FAM216A      12_67     0.021  8.80 6.4e-07  2.42
2532          GPN3      12_67     0.019  5.43 3.4e-07  1.40
2533         VPS29      12_67     0.019  5.49 3.5e-07 -1.41
10683        TCTN1      12_67     0.025  6.35 5.4e-07  0.02
3517         HVCN1      12_67     0.043 14.17 2.1e-06  2.67
9717        PPP1CC      12_67     0.042 14.11 2.0e-06 -2.65
10375      FAM109A      12_67     0.019  7.10 4.5e-07 -1.46
2536         SH2B3      12_67     0.018 36.13 2.3e-06  6.80
10680        ATXN2      12_67     0.018 17.51 1.1e-06  3.97
2541         ALDH2      12_67     0.039 42.68 5.7e-06  7.10
11290 MAPKAPK5-AS1      12_67     0.048 44.92 7.3e-06 -7.21
1191         ERP29      12_67     0.088 38.80 1.2e-05  6.25
10370      TMEM116      12_67     0.088 38.80 1.2e-05 -6.25
2544         NAA25      12_67     0.071 36.21 8.8e-06 -6.12
8505        HECTD4      12_67     0.095 41.00 1.3e-05  6.33
9084        PTPN11      12_67     0.026  7.36 6.4e-07 -0.78

Version Author Date
b14741c wesleycrouse 2021-09-06

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                id region_tag susie_pip       mu2     PVE      z
133086   rs6731991      2_136     1.000     42.74 1.5e-04  -5.75
133395   rs2070959      2_137     1.000  46431.28 1.6e-01 238.14
133404   rs1875263      2_137     1.000  45491.47 1.6e-01 181.67
133423  rs76063448      2_137     1.000   6958.93 2.4e-02  70.66
133425   rs2885296      2_137     1.000  64774.79 2.2e-01 240.61
328252  rs72834643       6_20     1.000    129.78 4.4e-04   9.73
328273 rs115740542       6_20     1.000    194.26 6.6e-04  12.66
329443   rs3130253       6_23     1.000     43.01 1.5e-04  -6.63
372704  rs12208357      6_103     1.000     88.82 3.0e-04  -6.65
384490 rs542176135       7_17     1.000    174.83 6.0e-04  -8.38
536407 rs569165969      10_46     1.000   2515.63 8.6e-03  -1.12
536455   rs6480402      10_46     1.000    633.80 2.2e-03   8.90
607179  rs11045819      12_16     1.000   3088.45 1.1e-02 -14.34
607196   rs4363657      12_16     1.000   1660.58 5.7e-03  43.78
802732  rs59616136      19_14     1.000     52.66 1.8e-04   7.00
810878 rs113345881      19_32     1.000     40.74 1.4e-04   6.12
889972   rs1611236       6_24     1.000 391477.83 1.3e+00  -3.60
384512   rs4721597       7_17     0.999    106.35 3.6e-04   1.94
511740 rs115478735       9_70     0.999     68.71 2.3e-04  -8.02
810876    rs814573      19_32     0.998     38.91 1.3e-04  -6.68
557751  rs76153913       11_2     0.997     51.04 1.7e-04   6.70
617869   rs7397189      12_36     0.996     36.93 1.3e-04   5.69
634455    rs653178      12_67     0.996    170.95 5.8e-04 -13.12
822609  rs34507316      20_13     0.996     34.07 1.2e-04   5.60
800961 rs141645070      19_10     0.991     31.74 1.1e-04  -5.27
36470    rs2779116       1_78     0.983     73.09 2.5e-04  -8.25
133428  rs12052787      2_137     0.974   2286.99 7.6e-03 -11.25
810881  rs12721109      19_32     0.974     32.46 1.1e-04   6.44
749268   rs2608604      16_53     0.972     62.77 2.1e-04  -6.33
803517   rs3794991      19_15     0.957    141.37 4.6e-04  11.64
810812   rs1551891      19_32     0.950     35.15 1.1e-04   7.88
235153  rs17238095       4_72     0.949     30.51 9.9e-05   5.18
850915  rs34662558      22_10     0.941     32.14 1.0e-04  -5.19
606894   rs7962574      12_15     0.936     46.67 1.5e-04  -8.40
606899  rs73080739      12_15     0.930     32.72 1.0e-04  -7.24
440166  rs12549737       8_24     0.922     31.18 9.8e-05   5.15
497658   rs9410381       9_45     0.922     78.95 2.5e-04   8.62
512125  rs34755157       9_71     0.914     30.02 9.4e-05  -5.03
562204  rs34623292      11_10     0.912     30.92 9.6e-05  -5.06
814057  rs71185869      19_36     0.897     26.26 8.0e-05   4.56
328091  rs75080831       6_19     0.871     62.37 1.9e-04   7.96
296468   rs4566840       5_66     0.862     33.19 9.8e-05  -5.46
277953  rs79086423       5_29     0.861     26.45 7.8e-05   4.53
34263   rs12124727       1_73     0.857     26.40 7.7e-05  -4.54
606934  rs10770693      12_15     0.854     61.50 1.8e-04   8.86
853666   rs6000553      22_14     0.848     46.50 1.3e-04   6.47
560773   rs4910498       11_8     0.847     55.10 1.6e-04   6.71
588854  rs11224303      11_58     0.806     32.39 8.9e-05   5.20
395398 rs181292113       7_35     0.805     27.29 7.5e-05   4.44

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
b14741c wesleycrouse 2021-09-06
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE     z
889954 rs111734624       6_24     0.158 391480.4 2.1e-01 -3.62
889951   rs2508055       6_24     0.157 391480.4 2.1e-01 -3.62
889999   rs1611252       6_24     0.129 391480.2 1.7e-01 -3.62
889995   rs1611248       6_24     0.661 391479.6 8.8e-01 -3.63
890016   rs1611260       6_24     0.107 391478.9 1.4e-01 -3.62
890022   rs1611265       6_24     0.099 391478.5 1.3e-01 -3.62
889972   rs1611236       6_24     1.000 391477.8 1.3e+00 -3.60
889890   rs1633033       6_24     0.403 391473.2 5.4e-01 -3.63
890026   rs2394171       6_24     0.001 391472.0 1.1e-03 -3.61
890024   rs1611267       6_24     0.001 391471.7 1.9e-03 -3.62
890028   rs2893981       6_24     0.001 391471.1 1.0e-03 -3.61
889958   rs1611228       6_24     0.002 391470.3 2.7e-03 -3.62
889947   rs1737020       6_24     0.000 391470.0 3.1e-05 -3.60
889948   rs1737019       6_24     0.000 391470.0 3.1e-05 -3.60
889903   rs2844838       6_24     0.031 391469.3 4.1e-02 -3.63
889907   rs1633032       6_24     0.000 391444.0 2.5e-04 -3.62
889941   rs1633020       6_24     0.000 391422.6 1.3e-06 -3.61
889945   rs1633018       6_24     0.000 391419.3 1.7e-08 -3.60
889970   rs1611234       6_24     0.000 391395.6 2.2e-09 -3.60
889830   rs1610726       6_24     0.000 391374.7 1.7e-09 -3.61
889898   rs2844840       6_24     0.000 391335.2 1.2e-09 -3.62
890225   rs3129185       6_24     0.000 391320.5 2.9e-10 -3.63
890240   rs1736999       6_24     0.000 391304.0 4.1e-11 -3.63
890253   rs1633001       6_24     0.000 391271.4 3.1e-11 -3.64
889993   rs1611246       6_24     0.000 391266.0 1.5e-13 -3.62
890429   rs1632980       6_24     0.000 391247.4 1.6e-13 -3.63
889926   rs1614309       6_24     0.000 391149.8 0.0e+00 -3.63
889925   rs1633030       6_24     0.000 390829.9 0.0e+00 -3.61
890038   rs9258382       6_24     0.000 390416.6 0.0e+00 -3.69
890035   rs9258379       6_24     0.000 389781.2 0.0e+00 -3.62
889984   rs1611241       6_24     0.000 389310.5 0.0e+00 -3.84
889929   rs1633028       6_24     0.000 388775.2 0.0e+00 -3.72
889987   rs1611244       6_24     0.000 387298.8 0.0e+00 -3.64
889942   rs2735042       6_24     0.000 386693.5 0.0e+00 -3.61
890023   rs1611266       6_24     0.000 383755.4 0.0e+00 -3.97
889996   rs1611249       6_24     0.000 382076.2 0.0e+00 -4.10
889962   rs1611230       6_24     0.000 381139.6 0.0e+00 -4.08
890011 rs145043018       6_24     0.000 381060.6 0.0e+00 -4.09
890021 rs147376303       6_24     0.000 381058.6 0.0e+00 -4.09
890032   rs9258376       6_24     0.000 381053.6 0.0e+00 -4.09
890039   rs1633016       6_24     0.000 381049.0 0.0e+00 -4.09
889884   rs1633035       6_24     0.000 381040.1 0.0e+00 -4.09
890092   rs1633014       6_24     0.000 381012.6 0.0e+00 -4.09
889917   rs1618670       6_24     0.000 381012.0 0.0e+00 -4.09
889944   rs1633019       6_24     0.000 380987.5 0.0e+00 -4.06
890206   rs1633010       6_24     0.000 380888.1 0.0e+00 -4.09
890330    rs909722       6_24     0.000 380827.5 0.0e+00 -4.08
890362   rs1610713       6_24     0.000 380823.3 0.0e+00 -4.09
890287   rs1736991       6_24     0.000 380820.3 0.0e+00 -4.09
890342   rs1610648       6_24     0.000 380798.0 0.0e+00 -4.10

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                id region_tag susie_pip       mu2     PVE      z
889972   rs1611236       6_24     1.000 391477.83 1.30000  -3.60
889995   rs1611248       6_24     0.661 391479.61 0.88000  -3.63
889890   rs1633033       6_24     0.403 391473.16 0.54000  -3.63
133425   rs2885296      2_137     1.000  64774.79 0.22000 240.61
889951   rs2508055       6_24     0.157 391480.36 0.21000  -3.62
889954 rs111734624       6_24     0.158 391480.42 0.21000  -3.62
889999   rs1611252       6_24     0.129 391480.17 0.17000  -3.62
133395   rs2070959      2_137     1.000  46431.28 0.16000 238.14
133404   rs1875263      2_137     1.000  45491.47 0.16000 181.67
890016   rs1611260       6_24     0.107 391478.89 0.14000  -3.62
890022   rs1611265       6_24     0.099 391478.50 0.13000  -3.62
889903   rs2844838       6_24     0.031 391469.34 0.04100  -3.63
133423  rs76063448      2_137     1.000   6958.93 0.02400  70.66
607179  rs11045819      12_16     1.000   3088.45 0.01100 -14.34
536407 rs569165969      10_46     1.000   2515.63 0.00860  -1.12
890107 rs372065521       6_24     0.191  12741.36 0.00830   0.27
890108 rs555157405       6_24     0.188  12694.57 0.00820   0.27
890109 rs572275478       6_24     0.188  12694.57 0.00820   0.27
133428  rs12052787      2_137     0.974   2286.99 0.00760 -11.25
607080  rs12366506      12_16     0.725   2947.01 0.00730  23.44
890106 rs376865941       6_24     0.162  12742.01 0.00710   0.25
536408   rs7909631      10_46     0.720   2514.18 0.00620  -3.53
607196   rs4363657      12_16     1.000   1660.58 0.00570  43.78
607086  rs11045612      12_16     0.528   2944.31 0.00530  23.44
889958   rs1611228       6_24     0.002 391470.33 0.00270  -3.62
536406   rs7084697      10_46     0.271   2513.72 0.00230  -3.50
536455   rs6480402      10_46     1.000    633.80 0.00220   8.90
607097  rs73062442      12_16     0.211   2945.43 0.00210  23.39
607089  rs11513221      12_16     0.192   2945.54 0.00190  23.38
890024   rs1611267       6_24     0.001 391471.66 0.00190  -3.62
890026   rs2394171       6_24     0.001 391472.03 0.00110  -3.61
890028   rs2893981       6_24     0.001 391471.12 0.00100  -3.61
895648  rs74419673       6_24     0.026  10214.20 0.00090   0.45
896731 rs115013107       6_24     0.029   8609.63 0.00086   0.10
536460  rs35233497      10_46     0.527    461.47 0.00083  -4.24
536463  rs79086908      10_46     0.472    461.42 0.00074  -4.24
328273 rs115740542       6_20     1.000    194.26 0.00066  12.66
895641  rs79828868       6_24     0.018  10274.69 0.00062   0.42
384490 rs542176135       7_17     1.000    174.83 0.00060  -8.38
634455    rs653178      12_67     0.996    170.95 0.00058 -13.12
606990   rs3060461      12_16     0.316    511.17 0.00055 -21.86
606994  rs35290079      12_16     0.294    508.74 0.00051 -21.76
895530  rs57471183       6_24     0.014  10266.69 0.00050   0.38
803517   rs3794991      19_15     0.957    141.37 0.00046  11.64
895660  rs78940852       6_24     0.013  10269.38 0.00045   0.39
328252  rs72834643       6_20     1.000    129.78 0.00044   9.73
536464  rs73267631      10_46     0.710    174.73 0.00042  -1.71
896058  rs78205117       6_24     0.012   9894.66 0.00041   0.47
178663    rs523118       3_84     0.532    212.96 0.00039 -14.52
384512   rs4721597       7_17     0.999    106.35 0.00036   1.94

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE       z
133425   rs2885296      2_137         1 64774.79 2.2e-01  240.61
133421  rs17862875      2_137         0 64563.08 0.0e+00  239.53
133395   rs2070959      2_137         1 46431.28 1.6e-01  238.14
133394   rs1105880      2_137         0 44790.26 0.0e+00  232.16
133389  rs77070100      2_137         0 44515.47 0.0e+00  231.38
133403   rs6749496      2_137         0 43407.39 0.0e+00  208.13
133418   rs3821242      2_137         0 36396.23 0.0e+00  203.17
133416   rs2008584      2_137         0 36197.64 0.0e+00  202.59
133396   rs7583278      2_137         0 39812.28 0.0e+00  200.99
133414  rs57258852      2_137         0 39540.91 0.0e+00  198.41
133412   rs4663332      2_137         0 36835.35 0.0e+00  194.41
133413 rs200973045      2_137         0 36845.09 0.0e+00  194.10
133380   rs2741034      2_137         0 27363.03 0.0e+00  190.53
133372   rs2602363      2_137         0 27321.01 0.0e+00  190.40
133367   rs2741013      2_137         0 27245.27 0.0e+00  190.21
133402   rs2012734      2_137         0 31409.85 0.0e+00  187.89
133424  rs11888459      2_137         0 47816.22 4.4e-14  187.72
133390   rs6753320      2_137         0 34017.77 0.0e+00  186.96
133391   rs6736743      2_137         0 34017.77 0.0e+00  186.96
133407  rs13401281      2_137         0 47340.26 0.0e+00  186.34
133404   rs1875263      2_137         1 45491.47 1.6e-01  181.67
133439   rs2361502      2_137         0 27383.80 0.0e+00  157.91
133376   rs6431558      2_137         0 16382.41 0.0e+00 -144.34
133384   rs1113193      2_137         0  6259.59 0.0e+00  -97.79
133378   rs1823803      2_137         0  7465.59 0.0e+00   91.76
133436  rs10202032      2_137         0  6838.83 0.0e+00  -88.03
133437   rs6723936      2_137         0  8088.97 0.0e+00   78.31
133426 rs143373661      2_137         0  7078.53 0.0e+00   78.24
133374  rs13027376      2_137         0  5566.27 0.0e+00  -74.88
133371   rs4047192      2_137         0  5557.82 0.0e+00  -74.81
133393  rs12476197      2_137         0  6567.86 0.0e+00  -71.92
133387   rs4663871      2_137         0  6531.38 0.0e+00  -71.72
133392 rs765251456      2_137         0  6477.17 0.0e+00  -71.57
133423  rs76063448      2_137         1  6958.93 2.4e-02   70.66
133419  rs45510999      2_137         0  6873.94 0.0e+00   70.21
133411 rs183532563      2_137         0  6809.64 0.0e+00   69.70
133427  rs11568318      2_137         0  1337.57 0.0e+00  -65.81
133417  rs45507691      2_137         0  1314.17 0.0e+00  -65.58
133385  rs17863773      2_137         0  5148.42 0.0e+00  -65.44
133379  rs10929252      2_137         0  4367.07 0.0e+00  -63.60
133377  rs17863766      2_137         0  4269.00 0.0e+00  -63.58
133366 rs140719475      2_137         0  4351.33 0.0e+00  -63.55
133369   rs6713902      2_137         0  3692.41 0.0e+00  -60.77
133420 rs139257330      2_137         0  4374.67 0.0e+00   60.10
133368   rs7563478      2_137         0   983.67 0.0e+00  -59.73
133382   rs2602372      2_137         0  3949.45 0.0e+00   58.13
133429   rs2003569      2_137         0  3269.44 0.0e+00  -57.58
133352  rs62192764      2_137         0  2549.23 0.0e+00  -54.32
133344  rs62192761      2_137         0  2543.08 0.0e+00  -54.28
133354   rs4047189      2_137         0  3472.81 0.0e+00   53.85

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] cowplot_1.0.0 ggplot2_3.3.3

loaded via a namespace (and not attached):
 [1] Biobase_2.44.0              httr_1.4.1                 
 [3] bit64_4.0.5                 assertthat_0.2.1           
 [5] stats4_3.6.1                blob_1.2.1                 
 [7] BSgenome_1.52.0             GenomeInfoDbData_1.2.1     
 [9] Rsamtools_2.0.0             yaml_2.2.0                 
[11] progress_1.2.2              pillar_1.6.1               
[13] RSQLite_2.2.7               lattice_0.20-38            
[15] glue_1.4.2                  digest_0.6.20              
[17] GenomicRanges_1.36.0        promises_1.0.1             
[19] XVector_0.24.0              colorspace_1.4-1           
[21] htmltools_0.3.6             httpuv_1.5.1               
[23] Matrix_1.2-18               XML_3.98-1.20              
[25] pkgconfig_2.0.3             biomaRt_2.40.1             
[27] zlibbioc_1.30.0             purrr_0.3.4                
[29] scales_1.1.0                whisker_0.3-2              
[31] later_0.8.0                 BiocParallel_1.18.0        
[33] git2r_0.26.1                tibble_3.1.2               
[35] farver_2.1.0                generics_0.0.2             
[37] IRanges_2.18.1              ellipsis_0.3.2             
[39] withr_2.4.1                 cachem_1.0.5               
[41] SummarizedExperiment_1.14.1 GenomicFeatures_1.36.3     
[43] BiocGenerics_0.30.0         magrittr_2.0.1             
[45] crayon_1.4.1                memoise_2.0.0              
[47] evaluate_0.14               fs_1.3.1                   
[49] fansi_0.5.0                 tools_3.6.1                
[51] data.table_1.14.0           prettyunits_1.0.2          
[53] hms_1.1.0                   lifecycle_1.0.0            
[55] matrixStats_0.57.0          stringr_1.4.0              
[57] S4Vectors_0.22.1            munsell_0.5.0              
[59] DelayedArray_0.10.0         AnnotationDbi_1.46.0       
[61] Biostrings_2.52.0           compiler_3.6.1             
[63] GenomeInfoDb_1.20.0         rlang_0.4.11               
[65] grid_3.6.1                  RCurl_1.98-1.1             
[67] VariantAnnotation_1.30.1    labeling_0.3               
[69] bitops_1.0-6                rmarkdown_1.13             
[71] gtable_0.3.0                DBI_1.1.1                  
[73] R6_2.5.0                    GenomicAlignments_1.20.1   
[75] dplyr_1.0.7                 knitr_1.23                 
[77] rtracklayer_1.44.0          utf8_1.2.1                 
[79] fastmap_1.1.0               bit_4.0.4                  
[81] workflowr_1.6.2             rprojroot_2.0.2            
[83] stringi_1.4.3               parallel_3.6.1             
[85] Rcpp_1.0.6                  vctrs_0.3.8                
[87] tidyselect_1.1.0            xfun_0.8