Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30650_irnt_Whole_Blood.Rmd) and HTML (docs/ukb-d-30650_irnt_Whole_Blood.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Aspartate aminotransferase (quantile) using Whole_Blood gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30650_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Whole_Blood eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11095
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1129  747  624  400  479  621  560  383  404  430  682  652  192  362  331 
  16   17   18   19   20   21   22 
 551  725  159  911  313  130  310 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.762776

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0168494018 0.0001829734 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
13.28972 13.76141 
#report sample size
print(sample_size)
[1] 342990
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11095 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.007243461 0.063849180 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.03063955 0.88253267

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip    mu2     PVE      z
11229 RP11-441O15.3      10_64     1.000 201.94 5.9e-04 -20.11
5690          WDPCP       2_41     0.995  29.86 8.7e-05   5.22
11318      MIR34AHG        1_6     0.989  67.35 1.9e-04  -7.83
9863          LAMP1      13_62     0.989  54.41 1.6e-04   7.28
4881           BIN1       2_74     0.985  24.42 7.0e-05  -5.18
6290        ZFP36L2       2_27     0.976  47.02 1.3e-04  -6.94
6206         ZNF827       4_95     0.973  23.81 6.8e-05   5.48
9181          BEND3       6_71     0.961  21.56 6.0e-05  -4.42
10946         KLRC3      12_10     0.960  55.58 1.6e-04   8.32
4894          TOR1B       9_67     0.958  25.87 7.2e-05   4.52
3758          ATXN1       6_13     0.945  40.30 1.1e-04   6.40
11297     LINC01624      6_112     0.941  24.93 6.8e-05  -4.79
9363           PPA1      10_46     0.941  35.86 9.8e-05   6.03
6670          RHPN1       8_94     0.918  21.75 5.8e-05  -4.18
4223         CHMP2A      19_39     0.918  22.24 6.0e-05   4.51
9523            NDN       15_2     0.912  27.72 7.4e-05   5.11
3194         TSPAN1       1_28     0.898  25.15 6.6e-05   6.14
6460          KLF10       8_69     0.887  20.52 5.3e-05  -4.04
3804          OPRL1      20_38     0.882  23.97 6.2e-05   5.10
8229         LRRC45      17_46     0.868  19.85 5.0e-05   4.03
4643         COL4A2      13_59     0.859  27.82 7.0e-05   4.90
11143      TMEM167B       1_67     0.848  20.88 5.2e-05   4.19
6439         SLFN13      17_21     0.847  18.71 4.6e-05  -2.84
6674          CNNM4       2_57     0.827  20.91 5.0e-05   4.34
3347        IRF2BPL      14_36     0.825  30.44 7.3e-05   5.40
6704         ZC3H18      16_54     0.824  40.47 9.7e-05   7.19
208           PPP5C      19_32     0.812  30.21 7.1e-05   5.17

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
         genename region_tag susie_pip      mu2     PVE      z
1980        FCGRT      19_34     0.001 14960.68 5.9e-05   4.83
8003        KCTD5       16_2     0.000 10884.40 0.0e+00   4.70
5520         RCN3      19_34     0.000  4813.08 0.0e+00   4.81
6481        MOV10       1_69     0.000  2925.93 1.1e-10  -6.12
120          ST7L       1_69     0.000  2236.96 4.5e-15  -1.26
3093       CAPZA1       1_69     0.000  1715.56 2.5e-15  -1.16
2528        PANX1      11_53     0.000  1055.79 0.0e+00   9.40
8165        CPT1C      19_34     0.000  1042.35 0.0e+00  -1.47
2551       PTPMT1      11_29     0.659   716.01 1.4e-03   8.23
881        ZNF37A      10_28     0.004   540.86 6.2e-06  -1.43
4609       MYBPC3      11_29     0.000   499.21 2.0e-16   3.44
3657        GPR83      11_53     0.000   460.03 0.0e+00  -1.59
6024      TMEM236      10_14     0.000   371.04 7.3e-08 -19.58
8552      C1QTNF4      11_29     0.128   328.91 1.2e-04   9.11
571       SLC6A16      19_34     0.000   287.31 0.0e+00  -2.17
11652         C4A       6_26     0.000   258.00 2.0e-11  21.14
10492 CTC-301O7.4      19_34     0.000   255.66 0.0e+00  -0.76
11047       CLIC1       6_26     0.000   255.53 2.5e-12  20.97
10808        NEU1       6_26     0.000   255.06 3.2e-12  20.97
7712           C2       6_26     0.000   253.54 3.4e-12 -21.06

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
           genename region_tag susie_pip    mu2     PVE      z
2551         PTPMT1      11_29     0.659 716.01 1.4e-03   8.23
11229 RP11-441O15.3      10_64     1.000 201.94 5.9e-04 -20.11
11318      MIR34AHG        1_6     0.989  67.35 1.9e-04  -7.83
10946         KLRC3      12_10     0.960  55.58 1.6e-04   8.32
9863          LAMP1      13_62     0.989  54.41 1.6e-04   7.28
6290        ZFP36L2       2_27     0.976  47.02 1.3e-04  -6.94
8552        C1QTNF4      11_29     0.128 328.91 1.2e-04   9.11
5235           SUOX      12_35     0.724  52.14 1.1e-04   6.77
3758          ATXN1       6_13     0.945  40.30 1.1e-04   6.40
6423         FAM69A       1_56     0.776  44.93 1.0e-04   6.18
9363           PPA1      10_46     0.941  35.86 9.8e-05   6.03
6704         ZC3H18      16_54     0.824  40.47 9.7e-05   7.19
8809         TMEM81      1_104     0.529  60.73 9.4e-05   5.54
5690          WDPCP       2_41     0.995  29.86 8.7e-05   5.22
5004          SDCBP       8_45     0.611  48.34 8.6e-05   7.07
10392          SND1       7_79     0.659  42.80 8.2e-05   6.63
10746         LIME1      20_38     0.716  39.20 8.2e-05  -6.35
7500         GPR146        7_3     0.773  35.06 7.9e-05   5.99
3101          MEF2D       1_77     0.798  33.74 7.9e-05   5.76
9523            NDN       15_2     0.912  27.72 7.4e-05   5.11

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip    mu2     PVE      z
11218           C4B       6_26     0.000 244.94 1.1e-12 -21.16
11652           C4A       6_26     0.000 258.00 2.0e-11  21.14
7712             C2       6_26     0.000 253.54 3.4e-12 -21.06
10808          NEU1       6_26     0.000 255.06 3.2e-12  20.97
11047         CLIC1       6_26     0.000 255.53 2.5e-12  20.97
10825          APOM       6_26     0.000 251.94 6.3e-13  20.85
11229 RP11-441O15.3      10_64     1.000 201.94 5.9e-04 -20.11
6024        TMEM236      10_14     0.000 371.04 7.3e-08 -19.58
1366        CWF19L1      10_64     0.000 249.47 4.3e-09 -18.50
3390           GOT1      10_64     0.000 162.98 1.5e-09 -17.13
10204       BLOC1S2      10_64     0.000 184.96 1.1e-09 -16.23
10789          PBX2       6_26     0.000 101.43 0.0e+00  15.89
10848        TRIM10       6_26     0.000 232.41 6.7e-12  15.50
10807       SLC44A4       6_26     0.000 181.10 0.0e+00 -14.12
10790          AGER       6_26     0.000 165.01 0.0e+00 -13.97
6593          FCHO2       5_43     0.022 160.61 1.0e-05 -13.96
8055           PDHB       3_40     0.051 167.16 2.5e-05  13.27
10781       HLA-DMA       6_27     0.000  97.61 1.5e-11 -12.92
6712        ZSCAN12       6_22     0.031 124.91 1.1e-05  12.58
10021       ZKSCAN4       6_22     0.033 124.49 1.2e-05 -12.53

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.02712934
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip    mu2     PVE      z
11218           C4B       6_26     0.000 244.94 1.1e-12 -21.16
11652           C4A       6_26     0.000 258.00 2.0e-11  21.14
7712             C2       6_26     0.000 253.54 3.4e-12 -21.06
10808          NEU1       6_26     0.000 255.06 3.2e-12  20.97
11047         CLIC1       6_26     0.000 255.53 2.5e-12  20.97
10825          APOM       6_26     0.000 251.94 6.3e-13  20.85
11229 RP11-441O15.3      10_64     1.000 201.94 5.9e-04 -20.11
6024        TMEM236      10_14     0.000 371.04 7.3e-08 -19.58
1366        CWF19L1      10_64     0.000 249.47 4.3e-09 -18.50
3390           GOT1      10_64     0.000 162.98 1.5e-09 -17.13
10204       BLOC1S2      10_64     0.000 184.96 1.1e-09 -16.23
10789          PBX2       6_26     0.000 101.43 0.0e+00  15.89
10848        TRIM10       6_26     0.000 232.41 6.7e-12  15.50
10807       SLC44A4       6_26     0.000 181.10 0.0e+00 -14.12
10790          AGER       6_26     0.000 165.01 0.0e+00 -13.97
6593          FCHO2       5_43     0.022 160.61 1.0e-05 -13.96
8055           PDHB       3_40     0.051 167.16 2.5e-05  13.27
10781       HLA-DMA       6_27     0.000  97.61 1.5e-11 -12.92
6712        ZSCAN12       6_22     0.031 124.91 1.1e-05  12.58
10021       ZKSCAN4       6_22     0.033 124.49 1.2e-05 -12.53

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 6_26"
               genename region_tag susie_pip    mu2     PVE      z
10855             HLA-G       6_26         0 160.40 0.0e+00  11.83
12599             HCP5B       6_26         0 159.99 0.0e+00 -12.45
10968             HLA-A       6_26         0  25.76 0.0e+00   4.85
10853              HCG9       6_26         0  26.02 0.0e+00   4.51
10851           PPP1R11       6_26         0  23.95 0.0e+00   3.66
661               ZNRD1       6_26         0  42.75 0.0e+00   3.30
10850             RNF39       6_26         0   5.83 0.0e+00   0.93
10848            TRIM10       6_26         0 232.41 6.7e-12  15.50
10847            TRIM15       6_26         0  45.06 0.0e+00   4.96
11418            TRIM26       6_26         0  54.35 0.0e+00  -5.74
10845            TRIM39       6_26         0   9.22 0.0e+00   0.04
11563             RPP21       6_26         0  75.33 1.5e-19  -2.98
10844             HLA-E       6_26         0  37.11 0.0e+00  -5.91
10841           MRPS18B       6_26         0  12.63 0.0e+00  -2.38
10840          C6orf136       6_26         0  49.93 0.0e+00   4.25
10839             DHX16       6_26         0  29.28 0.0e+00   2.44
5868            PPP1R18       6_26         0  30.42 0.0e+00  -5.11
4976                NRM       6_26         0  39.72 0.0e+00   3.38
4970              FLOT1       6_26         0  15.99 0.0e+00  -3.10
10230              TUBB       6_26         0  13.49 0.0e+00  -1.74
4971               IER3       6_26         0  13.41 0.0e+00  -2.95
11120         LINC00243       6_26         0 116.40 0.0e+00 -12.44
10843              DDR1       6_26         0  14.55 0.0e+00   2.44
11052            GTF2H4       6_26         0   5.23 0.0e+00   0.44
4978              VARS2       6_26         0  15.92 0.0e+00   0.60
10838            CCHCR1       6_26         0  93.00 1.8e-18  -3.01
4969              TCF19       6_26         0 192.31 3.2e-14   6.77
10966             HCG27       6_26         0  51.05 0.0e+00   5.35
10837            POU5F1       6_26         0  22.93 0.0e+00   0.97
10836             HLA-C       6_26         0 123.35 0.0e+00  -9.71
10788            NOTCH4       6_26         0 249.31 1.3e-14  10.30
11439             HLA-B       6_26         0  75.27 2.9e-19  -1.49
12270 XXbac-BPG181B23.7       6_26         0  41.85 0.0e+00  -5.34
10834              MICA       6_26         0   8.51 0.0e+00  -0.47
10833              MICB       6_26         0  15.70 0.0e+00  -0.87
10830              LST1       6_26         0   4.82 0.0e+00  -0.08
10619            DDX39B       6_26         0  12.05 0.0e+00   0.56
11050          ATP6V1G2       6_26         0  41.51 0.0e+00  -1.67
10831           NFKBIL1       6_26         0 116.12 2.5e-18  -5.91
11282               LTA       6_26         0  29.20 0.0e+00   5.27
11296               LTB       6_26         0  28.40 0.0e+00   5.13
11395               TNF       6_26         0  45.97 0.0e+00   2.29
10829              NCR3       6_26         0  37.63 0.0e+00  -4.48
10828              AIF1       6_26         0   6.14 0.0e+00   0.36
10827            PRRC2A       6_26         0  34.59 0.0e+00   6.01
10826              BAG6       6_26         0  59.29 2.7e-19  -8.54
10825              APOM       6_26         0 251.94 6.3e-13  20.85
10824           C6orf47       6_26         0   9.30 0.0e+00  -1.09
10822            CSNK2B       6_26         0  35.18 0.0e+00  -8.45
10823            GPANK1       6_26         0  80.95 0.0e+00  11.68
11539            LY6G5B       6_26         0  96.29 0.0e+00  -7.92
10821            LY6G5C       6_26         0  84.04 0.0e+00  -6.58
11639            LY6G6D       6_26         0  85.28 0.0e+00  -7.06
10818            MPIG6B       6_26         0  13.14 0.0e+00  -0.36
10819            LY6G6C       6_26         0  45.83 0.0e+00  -5.52
11048             DDAH2       6_26         0  67.94 0.0e+00  -3.96
10817              MSH5       6_26         0  10.68 0.0e+00  -2.24
11047             CLIC1       6_26         0 255.53 2.5e-12  20.97
11327            SAPCD1       6_26         0   9.09 0.0e+00  -2.64
10814              VWA7       6_26         0  23.54 0.0e+00   3.06
10809           C6orf48       6_26         0   9.65 0.0e+00   0.08
10813              VARS       6_26         0  28.05 0.0e+00   1.44
10812              LSM2       6_26         0  27.64 0.0e+00  -1.25
10811            HSPA1L       6_26         0  34.20 0.0e+00   4.90
10808              NEU1       6_26         0 255.06 3.2e-12  20.97
10807           SLC44A4       6_26         0 181.10 0.0e+00 -14.12
7712                 C2       6_26         0 253.54 3.4e-12 -21.06
10805             EHMT2       6_26         0  47.73 0.0e+00   2.12
10802             NELFE       6_26         0  14.63 0.0e+00  -1.78
10801            SKIV2L       6_26         0  49.77 0.0e+00   4.57
10797             STK19       6_26         0  28.38 0.0e+00   2.96
10800               DXO       6_26         0  19.40 0.0e+00   0.34
11652               C4A       6_26         0 258.00 2.0e-11  21.14
11218               C4B       6_26         0 244.94 1.1e-12 -21.16
11374           CYP21A2       6_26         0  73.63 0.0e+00 -11.94
11193              PPT2       6_26         0  21.03 0.0e+00  -3.66
11043             ATF6B       6_26         0  14.66 0.0e+00   1.14
10795             FKBPL       6_26         0  22.21 0.0e+00  -3.53
10794             PRRT1       6_26         0  30.69 1.9e-18   1.52
10791              RNF5       6_26         0   5.47 0.0e+00   1.90
11565             EGFL8       6_26         0  17.96 0.0e+00  -2.83
10792            AGPAT1       6_26         0  18.64 0.0e+00   7.47
10790              AGER       6_26         0 165.01 0.0e+00 -13.97
10789              PBX2       6_26         0 101.43 0.0e+00  15.89
10608          HLA-DRB5       6_26         0  53.54 0.0e+00  -0.05
10325          HLA-DQA1       6_26         0  46.31 0.0e+00  -1.33
11490          HLA-DQA2       6_26         0  45.11 2.6e-18   2.66
11389          HLA-DQB2       6_26         0 107.63 3.8e-15 -10.75
9260           HLA-DQB1       6_26         0  90.93 8.8e-17   9.21

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 10_64"
           genename region_tag susie_pip    mu2     PVE      z
3390           GOT1      10_64         0 162.98 1.5e-09 -17.13
11229 RP11-441O15.3      10_64         1 201.94 5.9e-04 -20.11
6475       SLC25A28      10_64         0   8.39 2.8e-11  -4.25
11988   RP11-85A1.3      10_64         0   8.46 2.8e-11   4.24
10532        ENTPD7      10_64         0   7.25 3.1e-11   0.36
3379           CUTC      10_64         0  20.85 2.4e-10   3.97
244           COX15      10_64         0   9.92 3.5e-11   2.60
290           ABCC2      10_64         0  18.87 5.6e-09   3.81
2289          DNMBP      10_64         0  30.80 2.5e-10  -7.22
2292         ERLIN1      10_64         0  91.43 2.6e-08  -7.73
1366        CWF19L1      10_64         0 249.47 4.3e-09 -18.50
10204       BLOC1S2      10_64         0 184.96 1.1e-09 -16.23
2294         PKD2L1      10_64         0  46.64 1.1e-09   5.04
11463      OLMALINC      10_64         0  11.43 6.1e-11  -0.84
891          SEC31B      10_64         0  25.27 7.9e-10  -2.59
7681         HIF1AN      10_64         0  16.73 2.5e-10  -1.81
7682         NDUFB8      10_64         0  17.39 2.1e-10  -2.05
3375           SLF2      10_64         0  18.94 2.4e-10   2.23
1367         SEMA4G      10_64         0  16.90 1.9e-10   1.73
2313           TWNK      10_64         0   8.03 3.0e-11   1.42
504          MRPL43      10_64         0   8.64 3.7e-11  -0.94
2314          LZTS2      10_64         0  16.67 1.8e-10   1.68
9967          PDZD7      10_64         0   4.70 1.2e-11   0.21
2315          SFXN3      10_64         0   6.28 1.8e-11   0.62
2316        KAZALD1      10_64         0   6.10 1.8e-11   0.32

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 10_14"
     genename region_tag susie_pip    mu2     PVE      z
6025     RSU1      10_14         0   6.54 0.0e+00  -0.29
2295     CUBN      10_14         0  90.54 0.0e+00  -3.66
2296   TRDMT1      10_14         0 253.49 8.2e-19   8.13
6026  ST8SIA6      10_14         0   7.06 0.0e+00   1.29
7664    HACD1      10_14         0 248.42 1.5e-18  -9.46
6024  TMEM236      10_14         0 371.04 7.3e-08 -19.58

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 5_43"
      genename region_tag susie_pip    mu2     PVE      z
4316     MAP1B       5_43     0.012   4.99 1.8e-07   0.92
2789    MRPS27       5_43     0.018   7.77 4.1e-07  -0.45
1055     TNPO1       5_43     0.080  64.06 1.5e-05   8.34
6593     FCHO2       5_43     0.022 160.61 1.0e-05 -13.96
6595   TMEM171       5_43     0.054  19.57 3.1e-06   1.82
5832      BTF3       5_43     0.013   5.07 1.9e-07  -0.61
7436     UTP15       5_43     0.013   4.76 1.7e-07   0.08
7434    ANKRA2       5_43     0.021   9.77 5.9e-07   1.39
11122 ARHGEF28       5_43     0.072  19.72 4.1e-06  -2.28

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 3_40"
      genename region_tag susie_pip    mu2     PVE      z
7284  DNASE1L3       3_40     0.013   7.34 2.8e-07  -2.10
7283     ABHD6       3_40     0.013  67.09 2.6e-06 -10.86
7282     RPP14       3_40     0.013  96.01 3.6e-06  10.77
8056       PXK       3_40     0.067  15.28 3.0e-06  -2.15
8055      PDHB       3_40     0.051 167.16 2.5e-05  13.27
8058     KCTD6       3_40     0.012  15.22 5.2e-07  -2.39
8059     ACOX2       3_40     0.024  55.47 3.9e-06   8.48
8060   FAM107A       3_40     0.018   7.76 4.2e-07   0.05
10630    FAM3D       3_40     0.032  11.18 1.0e-06   0.05

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip      mu2     PVE      z
4517      rs4336844       1_11     1.000   155.78 4.5e-04  12.99
34427     rs1771599       1_79     1.000    80.93 2.4e-04   9.94
34436    rs61804205       1_79     1.000   131.61 3.8e-04  15.58
47814     rs4951163      1_104     1.000    80.77 2.4e-04   7.21
61970    rs12239046      1_131     1.000    34.17 1.0e-04  -5.82
129950    rs4973550      2_136     1.000    71.08 2.1e-04   8.55
149320    rs7648467       3_32     1.000   100.42 2.9e-04  10.70
152147   rs35327008       3_39     1.000    55.52 1.6e-04  -7.18
186417  rs149368105      3_105     1.000    56.56 1.6e-04  -9.86
186438     rs234043      3_106     1.000    42.09 1.2e-04  -6.53
229369   rs35518360       4_67     1.000   153.22 4.5e-04  13.08
229435   rs13140033       4_68     1.000    74.74 2.2e-04   8.87
271911    rs2859493       5_26     1.000   142.14 4.1e-04  10.33
322475  rs115740542       6_20     1.000    51.47 1.5e-04   7.10
326785    rs9272364       6_26     1.000   291.23 8.5e-04  20.71
327242    rs9276192       6_27     1.000   306.88 8.9e-04 -19.53
327435    rs2244458       6_27     1.000    93.24 2.7e-04   1.51
425884  rs758184196       8_11     1.000   547.84 1.6e-03  -4.11
432513    rs2293400       8_23     1.000    66.34 1.9e-04   7.54
466638     rs307738       8_92     1.000    98.41 2.9e-04   1.32
466639   rs56114972       8_92     1.000   144.00 4.2e-04   6.32
490369  rs113609637       9_47     1.000    55.48 1.6e-04  -7.84
497561    rs7040440       9_59     1.000    54.75 1.6e-04  -4.69
502565  rs115478735       9_70     1.000   235.47 6.9e-04 -16.44
511282   rs72782512      10_14     1.000   231.91 6.8e-04  20.05
511313   rs17657502      10_14     1.000   546.34 1.6e-03  33.32
511323     rs553304      10_14     1.000   557.46 1.6e-03 -35.11
511474   rs16917138      10_15     1.000    50.52 1.5e-04   7.23
511478   rs79666207      10_15     1.000    47.56 1.4e-04   7.13
518183   rs71007692      10_28     1.000  1326.96 3.9e-03  -1.99
529336    rs5786398      10_51     1.000    42.72 1.2e-04  -5.40
535742  rs112255710      10_63     1.000    39.69 1.2e-04  -7.34
554962    rs7481951      11_15     1.000   130.26 3.8e-04  12.24
581855    rs2307599      11_67     1.000    57.97 1.7e-04  -1.37
585851    rs4937122      11_77     1.000    48.00 1.4e-04  -6.92
605835    rs6581124      12_35     1.000    37.16 1.1e-04   5.73
605854    rs7397189      12_36     1.000   113.20 3.3e-04  11.38
609895    rs2137537      12_44     1.000   103.48 3.0e-04 -10.77
631186     rs504366       13_3     1.000    43.78 1.3e-04  -6.70
670481   rs72681869      14_20     1.000    76.29 2.2e-04 -11.71
670529  rs142004400      14_20     1.000    67.36 2.0e-04 -11.39
683627    rs1243165      14_49     1.000    40.70 1.2e-04   3.48
698544    rs2070895      15_27     1.000    49.66 1.4e-04  -7.15
724678   rs17257349      16_29     1.000    71.46 2.1e-04   9.26
732885   rs11645522      16_46     1.000    44.28 1.3e-04   6.11
752836    rs1801689      17_38     1.000    81.62 2.4e-04   9.38
789975    rs3794991      19_15     1.000   154.73 4.5e-04  13.27
796743   rs73045223      19_30     1.000    54.36 1.6e-04   7.25
867065     rs333947       1_69     1.000   214.20 6.2e-04 -14.64
875851  rs200856259       1_69     1.000  5967.95 1.7e-02   4.22
990466    rs3072639      11_29     1.000  4269.84 1.2e-02   3.11
997311  rs148050219      11_53     1.000 33519.65 9.8e-02 -12.67
997321  rs111443113      11_53     1.000 33489.73 9.8e-02  -0.39
1043893 rs116985006       16_2     1.000 15036.21 4.4e-02   5.81
1043897 rs774104952       16_2     1.000 15148.46 4.4e-02   5.75
1086615 rs113176985      19_34     1.000 15120.35 4.4e-02  -4.88
1086618 rs374141296      19_34     1.000 15237.14 4.4e-02  -4.72
1100971  rs12975366      19_37     1.000   130.84 3.8e-04 -12.07
147541    rs2649750       3_28     0.999    32.97 9.6e-05  -5.78
181340    rs9817452       3_97     0.999    32.48 9.5e-05   5.50
271929   rs76142317       5_26     0.999    35.63 1.0e-04   4.22
400784     rs740047       7_56     0.999    33.46 9.7e-05   5.03
492515    rs1226592       9_50     0.999    67.01 2.0e-04   8.37
549113   rs10838525       11_4     0.999    36.19 1.1e-04  -5.16
567350   rs75592015      11_37     0.999    32.54 9.5e-05  -5.66
594818   rs66720652      12_15     0.999    33.84 9.9e-05  -5.72
753161   rs56213591      17_39     0.999    35.58 1.0e-04   5.81
838299   rs11090617      22_19     0.999   759.96 2.2e-03  28.80
271922   rs34209642       5_26     0.998    38.59 1.1e-04   2.40
271957    rs2962478       5_26     0.998    36.89 1.1e-04   5.86
203867    rs2970862       4_20     0.997    31.74 9.2e-05   6.07
295808  rs112801206       5_74     0.997    29.20 8.5e-05   5.22
298758    rs6894249       5_79     0.997    47.61 1.4e-04  -5.98
427137   rs11250151       8_15     0.997    75.09 2.2e-04  -9.51
626435   rs12425627      12_76     0.997    31.47 9.1e-05  -5.67
323613    rs1233385       6_23     0.996   119.20 3.5e-04 -14.33
511518    rs7070430      10_15     0.995    39.02 1.1e-04  -3.99
798064   rs12978750      19_33     0.995    55.05 1.6e-04   7.95
563132   rs77897592      11_30     0.994    27.30 7.9e-05   4.42
756911    rs4969183      17_44     0.994    72.71 2.1e-04   9.26
784295  rs576338566       19_4     0.993    30.46 8.8e-05  -5.44
866342  rs140584594       1_67     0.993    33.17 9.6e-05   5.41
485845   rs34084620       9_38     0.992    27.92 8.1e-05   5.09
326017     rs204887       6_26     0.991   101.91 2.9e-04 -11.22
511479    rs7089228      10_15     0.990    48.46 1.4e-04  -7.75
224594   rs77094191       4_59     0.989    56.02 1.6e-04  -5.02
683623     rs941594      14_49     0.989    49.03 1.4e-04   4.34
425648    rs7833103       8_11     0.988   250.23 7.2e-04  10.85
724675  rs190752012      16_29     0.988    30.12 8.7e-05   6.36
982132   rs76744182      10_64     0.988    45.58 1.3e-04  -6.86
186325   rs17461279      3_105     0.987    29.60 8.5e-05  -5.36
480685    rs1137642       9_25     0.986   138.62 4.0e-04 -11.65
911357    rs4835265       4_95     0.986   141.72 4.1e-04  12.80
1086606  rs61371437      19_34     0.986 15080.94 4.3e-02  -4.73
590133    rs7976853       12_3     0.985    35.54 1.0e-04   5.78
73372    rs71409634       2_21     0.980    27.73 7.9e-05   5.09
300951  rs769204262       5_84     0.980    27.34 7.8e-05   5.11
358087     rs212776       6_88     0.978    28.54 8.1e-05   5.31
585555   rs11220136      11_77     0.978    61.12 1.7e-04   8.41
738951   rs12601581       17_7     0.977    44.63 1.3e-04  -6.19
783196     rs351988       19_2     0.977    31.49 9.0e-05   5.50
179843    rs7610095       3_94     0.975    35.00 1.0e-04  -6.40
497570   rs10739409       9_59     0.975    52.74 1.5e-04  -8.90
78416     rs4952901       2_30     0.974    30.94 8.8e-05   5.28
785768   rs10401485       19_7     0.973    31.02 8.8e-05   5.36
325582    rs2853999       6_26     0.972   358.86 1.0e-03 -20.00
426623   rs11777976       8_13     0.970    73.13 2.1e-04  -9.65
77020    rs72800939       2_28     0.968    25.46 7.2e-05   4.81
756876   rs12449451      17_44     0.967    26.93 7.6e-05   5.57
838310    rs9626057      22_19     0.967   303.13 8.5e-04  15.73
1053097  rs75303800      16_54     0.961    38.62 1.1e-04   7.06
15808     rs7556224       1_37     0.960    25.37 7.1e-05   4.55
318797    rs2841572       6_12     0.960    97.56 2.7e-04  10.45
209572   rs12639940       4_32     0.959    24.03 6.7e-05  -4.14
511318  rs145553078      10_14     0.958   153.26 4.3e-04 -16.45
481093    rs6476453       9_27     0.957    26.89 7.5e-05  -4.89
575479   rs74717621      11_54     0.957    24.93 7.0e-05   4.72
497581   rs10759697       9_59     0.956    89.95 2.5e-04 -10.40
431439   rs11986461       8_21     0.955    31.26 8.7e-05  -5.69
671984    rs6572976      14_24     0.955    63.70 1.8e-04  -8.09
152101  rs559993437       3_39     0.951    25.71 7.1e-05  -4.50
427162    rs1809356       8_15     0.949    28.14 7.8e-05   5.74
774947   rs12373325      18_31     0.949   117.50 3.3e-04 -12.23
575295  rs144988974      11_52     0.943    24.77 6.8e-05   4.62
726171    rs9922575      16_31     0.943    55.92 1.5e-04  -3.28
114214   rs12464787      2_108     0.942    79.78 2.2e-04   9.23
185715   rs61436251      3_104     0.942    25.95 7.1e-05  -3.27
116899   rs17576323      2_112     0.941    33.87 9.3e-05  -6.02
172139    rs9870956       3_77     0.940    26.12 7.2e-05   4.87
833580   rs11704551      22_10     0.938    69.77 1.9e-04  -9.17
732884   rs13334801      16_46     0.937    28.07 7.7e-05   4.30
604785   rs10876377      12_33     0.936    36.96 1.0e-04   5.98
327392    rs1871664       6_27     0.933    68.10 1.9e-04  -8.00
812095    rs1412956      20_29     0.931    27.14 7.4e-05   5.13
835964     rs132642      22_14     0.931    74.42 2.0e-04   8.89
78435    rs56030357       2_31     0.930    55.48 1.5e-04   7.52
535744  rs117780022      10_63     0.927    25.33 6.8e-05   4.28
353131   rs78485454       6_77     0.921    26.42 7.1e-05  -3.13
271953   rs13183079       5_26     0.920   123.29 3.3e-04   9.38
726209   rs71400028      16_31     0.919   246.86 6.6e-04 -15.88
322211   rs62392365       6_19     0.915    38.04 1.0e-04  -6.58
622515  rs141105880      12_67     0.914    35.69 9.5e-05  -6.95
738997     rs307627       17_7     0.913    28.67 7.6e-05  -5.11
832916     rs133902       22_7     0.911    24.74 6.6e-05   4.71
179009    rs6774253       3_92     0.903    28.44 7.5e-05  -5.22
138458   rs56395424        3_9     0.902    33.15 8.7e-05  -5.76
280045  rs150892208       5_42     0.901    43.66 1.1e-04  -7.16
625357  rs571529125      12_74     0.900    47.92 1.3e-04   8.15
774574    rs2849421      18_30     0.900   148.24 3.9e-04 -12.71
693360   rs17659152      15_15     0.899    23.51 6.2e-05   4.31
328059    rs4713999       6_29     0.893    26.06 6.8e-05   4.64
373562   rs10279376        7_9     0.893    49.03 1.3e-04  -7.15
322319   rs72838866       6_19     0.892    29.54 7.7e-05   5.77
776630   rs71162605      18_35     0.890    27.13 7.0e-05   4.53
34437    rs10917685       1_79     0.889   102.27 2.7e-04 -12.02
776628   rs73963711      18_35     0.889    30.82 8.0e-05  -5.25
603131   rs12313103      12_29     0.888    26.32 6.8e-05   4.75
736777  rs558760274       17_1     0.885    23.55 6.1e-05  -4.37
41258     rs2500119       1_91     0.884   141.75 3.7e-04  12.46
785544     rs339399       19_7     0.883    31.46 8.1e-05   5.35
532895    rs7094510      10_57     0.881    29.19 7.5e-05  -5.20
586534   rs71480000      11_80     0.880    24.17 6.2e-05  -4.43
704144   rs12592898      15_37     0.880    29.08 7.5e-05  -6.10
94524     rs4849369       2_66     0.877    29.77 7.6e-05  -5.28
547803    rs2583438       11_2     0.877    55.53 1.4e-04  -7.56
303365   rs12110157       5_88     0.871    27.83 7.1e-05   5.24
195949   rs36205397        4_4     0.869    27.87 7.1e-05   5.63
142619     rs734866       3_18     0.863    25.96 6.5e-05  -4.80
290081     rs163895       5_63     0.861    24.36 6.1e-05  -4.18
353161    rs7758190       6_77     0.860    25.19 6.3e-05  -3.91
327137    rs1794274       6_26     0.849   270.32 6.7e-04 -22.47
255033    rs3814419      4_118     0.848    31.95 7.9e-05   6.05
69960     rs1042034       2_13     0.845    25.14 6.2e-05   4.63
333188     rs941968       6_39     0.840    26.36 6.5e-05   4.73
101270   rs10928493       2_79     0.839    24.95 6.1e-05   4.90
410924   rs77506340       7_79     0.839    28.53 7.0e-05   5.34
330338    rs2025704       6_34     0.832    29.91 7.3e-05  -5.55
973562  rs143378550       9_67     0.832    65.79 1.6e-04  -7.17
633829    rs1756957       13_7     0.829    37.44 9.0e-05  -6.17
458322  rs146373428       8_78     0.826    25.22 6.1e-05  -4.40
798750   rs28875253      19_38     0.824    27.31 6.6e-05   4.92
789723   rs12162221      19_15     0.822    48.55 1.2e-04   4.23
841356   rs12484572      22_24     0.822    24.84 6.0e-05   4.65
693156   rs11070250      15_13     0.819    58.62 1.4e-04  -9.17
592228    rs6488516      12_11     0.817    26.49 6.3e-05   4.76
125495  rs149146451      2_129     0.816    25.44 6.0e-05   4.31
660640    rs1760940       14_1     0.815    54.90 1.3e-04   7.72
584501   rs10892865      11_74     0.809    30.55 7.2e-05  -6.03
794305      rs33824      19_23     0.809    46.94 1.1e-04  -8.54
581706   rs55697087      11_67     0.808    27.24 6.4e-05  -4.50
707510   rs72754570      15_41     0.804    45.01 1.1e-04  -6.65
693029  rs530892566      15_13     0.803    27.86 6.5e-05   5.05
797445   rs56010181      19_33     0.802    53.13 1.2e-04   7.29
481114    rs3808868       9_27     0.801    26.63 6.2e-05   4.81
501312   rs13302576       9_66     0.801    26.39 6.2e-05  -4.68

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE      z
997311 rs148050219      11_53     1.000 33519.65 9.8e-02 -12.67
997321 rs111443113      11_53     1.000 33489.73 9.8e-02  -0.39
997320  rs60550219      11_53     0.125 33474.24 1.2e-02 -12.67
997307   rs7105405      11_53     0.206 33466.52 2.0e-02 -12.70
997345  rs67167563      11_53     0.049 33461.29 4.8e-03 -12.66
997352 rs113426210      11_53     0.025 33446.28 2.4e-03 -12.67
997303   rs9888156      11_53     0.000 33416.66 2.8e-05 -12.66
997358    rs950878      11_53     0.010 33407.00 9.6e-04 -12.69
997301  rs67232024      11_53     0.000 33358.81 1.1e-08 -12.62
997280   rs7927828      11_53     0.000 33357.70 6.1e-09 -12.61
997298   rs9888266      11_53     0.000 33313.72 5.0e-09 -12.65
997286  rs67812366      11_53     0.000 33313.60 6.3e-09 -12.65
997289   rs7109132      11_53     0.000 33313.30 4.0e-09 -12.65
997281  rs57856352      11_53     0.000 33302.62 3.1e-10 -12.62
997302  rs16919533      11_53     0.000 33296.05 1.1e-10 -12.64
997300  rs67549397      11_53     0.000 33247.72 6.2e-15 -12.54
997299   rs9888143      11_53     0.000 33196.15 4.2e-16 -12.56
997291  rs60546087      11_53     0.000 33192.69 4.4e-16 -12.56
997290  rs60351354      11_53     0.000 33192.66 4.3e-16 -12.56
997295   rs1573567      11_53     0.000 33192.43 2.9e-16 -12.56
997292   rs7109819      11_53     0.000 33192.40 2.9e-16 -12.56
997258   rs7932290      11_53     0.000 33044.33 2.2e-13 -12.79
997226   rs7934467      11_53     0.000 32775.06 0.0e+00 -12.59
997621  rs72966603      11_53     0.000 27604.22 0.0e+00 -13.54
997751  rs12419615      11_53     0.000 26126.77 0.0e+00 -13.58
997802  rs58964858      11_53     0.000 22329.00 0.0e+00 -13.18
997804  rs72968738      11_53     0.000 22285.01 0.0e+00 -13.11
997828 rs138626734      11_53     0.000 22005.73 0.0e+00 -13.07
997814  rs72968745      11_53     0.000 22000.68 0.0e+00 -13.14
997813   rs4491178      11_53     0.000 21999.40 0.0e+00 -13.14
997846   rs4408267      11_53     0.000 21995.42 0.0e+00 -13.07
997874  rs11604580      11_53     0.000 21973.97 0.0e+00 -13.13
997879   rs4342991      11_53     0.000 21971.52 0.0e+00 -13.13
997445  rs72962880      11_53     0.000 21957.46 0.0e+00 -10.63
997732   rs7945841      11_53     0.000 21936.14 0.0e+00 -12.54
997818   rs4753124      11_53     0.000 21914.40 0.0e+00 -13.08
997851  rs16919942      11_53     0.000 21899.10 0.0e+00 -13.10
997434  rs55659547      11_53     0.000 21891.75 0.0e+00 -10.57
997433   rs7950356      11_53     0.000 21888.30 0.0e+00 -10.57
997444  rs56359140      11_53     0.000 21865.40 0.0e+00 -10.56
997437  rs72962872      11_53     0.000 21862.78 0.0e+00 -10.56
997439 rs140989262      11_53     0.000 21576.66 0.0e+00 -10.53
997770   rs7119800      11_53     0.000 21490.65 0.0e+00 -12.41
997459  rs72962891      11_53     0.000 21397.07 0.0e+00 -10.41
997478  rs72964604      11_53     0.000 21357.17 0.0e+00 -10.51
997774   rs2176565      11_53     0.000 21213.84 0.0e+00 -12.54
997775   rs7949551      11_53     0.000 20577.62 0.0e+00 -12.79
997241   rs1506657      11_53     0.000 20289.29 0.0e+00  10.56
997778  rs72968710      11_53     0.000 20090.45 0.0e+00 -12.72
997781  rs16919917      11_53     0.000 19939.03 0.0e+00 -12.85

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip      mu2     PVE      z
997311  rs148050219      11_53     1.000 33519.65 0.09800 -12.67
997321  rs111443113      11_53     1.000 33489.73 0.09800  -0.39
1043893 rs116985006       16_2     1.000 15036.21 0.04400   5.81
1043897 rs774104952       16_2     1.000 15148.46 0.04400   5.75
1086615 rs113176985      19_34     1.000 15120.35 0.04400  -4.88
1086618 rs374141296      19_34     1.000 15237.14 0.04400  -4.72
1086606  rs61371437      19_34     0.986 15080.94 0.04300  -4.73
997307    rs7105405      11_53     0.206 33466.52 0.02000 -12.70
875851  rs200856259       1_69     1.000  5967.95 0.01700   4.22
990466    rs3072639      11_29     1.000  4269.84 0.01200   3.11
997320   rs60550219      11_53     0.125 33474.24 0.01200 -12.67
997345   rs67167563      11_53     0.049 33461.29 0.00480 -12.66
518183   rs71007692      10_28     1.000  1326.96 0.00390  -1.99
875748    rs6537746       1_69     0.210  5877.17 0.00360  -3.96
875848    rs2932539       1_69     0.197  5881.57 0.00340  -3.93
875798   rs10857969       1_69     0.171  5881.40 0.00290  -3.93
875751    rs4838961       1_69     0.161  5880.09 0.00280  -3.94
875840   rs12048528       1_69     0.147  5879.78 0.00250  -3.93
875795   rs10745332       1_69     0.142  5879.83 0.00240  -3.93
997352  rs113426210      11_53     0.025 33446.28 0.00240 -12.67
875801    rs3013441       1_69     0.137  5880.28 0.00230  -3.93
838299   rs11090617      22_19     0.999   759.96 0.00220  28.80
875773    rs4240534       1_69     0.131  5880.25 0.00220  -3.93
875849    rs2932538       1_69     0.130  5880.53 0.00220  -3.92
875776    rs6691025       1_69     0.121  5880.15 0.00210  -3.93
518180    rs9299760      10_28     0.527  1299.94 0.00200  -2.01
518189    rs2472183      10_28     0.448  1300.46 0.00170  -1.99
425884  rs758184196       8_11     1.000   547.84 0.00160  -4.11
511313   rs17657502      10_14     1.000   546.34 0.00160  33.32
511323     rs553304      10_14     1.000   557.46 0.00160 -35.11
875843       rs1238       1_69     0.093  5879.57 0.00160  -3.91
518182    rs2474565      10_28     0.405  1300.36 0.00150  -1.98
518192   rs11011452      10_28     0.380  1300.44 0.00140  -1.97
990472   rs11039670      11_29     0.099  4308.93 0.00120   3.16
990504    rs7124318      11_29     0.099  4308.89 0.00120   3.16
875833    rs6682678       1_69     0.065  5877.92 0.00110  -3.92
990468    rs7949513      11_29     0.088  4308.57 0.00110   3.16
325582    rs2853999       6_26     0.972   358.86 0.00100 -20.00
990495   rs11039675      11_29     0.078  4308.79 0.00098   3.16
990481   rs11039671      11_29     0.077  4308.79 0.00096   3.16
990507    rs9651621      11_29     0.077  4308.79 0.00096   3.16
997358     rs950878      11_53     0.010 33407.00 0.00096 -12.69
990487    rs4436573      11_29     0.075  4308.77 0.00094   3.16
425900   rs13265731       8_11     0.529   583.26 0.00090   8.51
327242    rs9276192       6_27     1.000   306.88 0.00089 -19.53
326785    rs9272364       6_26     1.000   291.23 0.00085  20.71
838310    rs9626057      22_19     0.967   303.13 0.00085  15.73
425896    rs6993494       8_11     0.471   582.79 0.00080   8.49
990493   rs10838872      11_29     0.060  4308.18 0.00075   3.16
425648    rs7833103       8_11     0.988   250.23 0.00072  10.85

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip    mu2     PVE      z
511323    rs553304      10_14     1.000 557.46 1.6e-03 -35.11
511313  rs17657502      10_14     1.000 546.34 1.6e-03  33.32
838299  rs11090617      22_19     0.999 759.96 2.2e-03  28.80
838302   rs1977081      22_19     0.020 750.85 4.4e-05  28.52
838305   rs2072905      22_19     0.016 729.82 3.5e-05  28.11
838306   rs2401512      22_19     0.016 729.90 3.5e-05  28.11
838307   rs4823176      22_19     0.016 729.80 3.5e-05  28.11
838308   rs4823178      22_19     0.016 729.83 3.5e-05  28.11
838309  rs13056555      22_19     0.017 730.09 3.5e-05  28.11
838304   rs1883348      22_19     0.013 717.71 2.7e-05  27.88
511330   rs2478571      10_14     0.000 583.51 0.0e+00 -25.93
511325 rs113334738      10_14     0.000 198.26 0.0e+00  23.64
511262 rs113414299      10_14     0.078 492.81 1.1e-04 -23.42
327137   rs1794274       6_26     0.849 270.32 6.7e-04 -22.47
327168   rs9275576       6_26     0.151 265.19 1.2e-04 -22.32
326704   rs9271690       6_26     0.000 222.21 9.4e-18 -21.86
326708   rs9271727       6_26     0.000 224.13 0.0e+00 -21.67
326307   rs7748925       6_26     0.000 235.10 4.5e-12 -21.47
326319   rs3135383       6_26     0.000 234.02 3.2e-12 -21.44
326628   rs9271342       6_26     0.000 225.20 0.0e+00 -21.34
326131   rs9268152       6_26     0.000 236.92 1.5e-12 -21.33
326184   rs2395149       6_26     0.000 236.40 1.4e-12 -21.33
326623    rs642093       6_26     0.000 224.54 0.0e+00 -21.33
326194   rs3129927       6_26     0.000 235.54 1.0e-12 -21.30
326714 rs539509361       6_26     0.000 211.55 0.0e+00 -21.30
326540    rs592362       6_26     0.000 222.38 0.0e+00 -21.27
326541   rs3998183       6_26     0.000 223.82 0.0e+00 -21.26
325986   rs1270942       6_26     0.000 253.62 6.5e-13 -21.14
325954   rs3130478       6_26     0.000 263.95 2.7e-12 -21.13
325984   rs1265905       6_26     0.000 253.36 3.9e-13 -21.07
325938   rs3130491       6_26     0.000 263.59 1.7e-12 -21.05
152289  rs11719192       3_40     0.232 291.93 2.0e-04  21.04
325955   rs3130679       6_26     0.000 259.02 7.0e-13 -21.02
326195   rs2143462       6_26     0.000 245.94 1.7e-17 -21.02
326080   rs3130303       6_26     0.000 255.32 5.7e-16 -21.01
152283  rs11925862       3_40     0.118 290.00 9.9e-05  21.00
152286  rs62259778       3_40     0.097 289.47 8.2e-05  20.99
152287  rs11919206       3_40     0.100 289.55 8.5e-05  20.99
152288  rs62259780       3_40     0.094 289.39 7.9e-05  20.99
152269  rs11705721       3_40     0.057 288.04 4.8e-05  20.96
152270  rs55727087       3_40     0.056 288.02 4.7e-05  20.96
152271  rs11130637       3_40     0.057 288.07 4.8e-05  20.96
326779   rs9272309       6_26     0.000 223.19 7.2e-20 -20.95
152256   rs7647184       3_40     0.038 287.14 3.2e-05  20.94
326620   rs9271304       6_26     0.000 212.34 0.0e+00 -20.94
152263  rs62258103       3_40     0.033 286.59 2.8e-05  20.93
152264   rs6445978       3_40     0.034 286.61 2.8e-05  20.93
152274  rs11915190       3_40     0.038 286.86 3.2e-05  20.93
511251  rs72638788      10_14     0.000 355.06 1.1e-14 -20.90
152275  rs34579268       3_40     0.020 285.21 1.7e-05  20.89

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 27
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
ZNF827 gene(s) from the input list not found in DisGeNET CURATEDLAMP1 gene(s) from the input list not found in DisGeNET CURATEDLRRC45 gene(s) from the input list not found in DisGeNET CURATEDZC3H18 gene(s) from the input list not found in DisGeNET CURATEDMIR34AHG gene(s) from the input list not found in DisGeNET CURATEDBEND3 gene(s) from the input list not found in DisGeNET CURATEDLINC01624 gene(s) from the input list not found in DisGeNET CURATEDCHMP2A gene(s) from the input list not found in DisGeNET CURATEDTMEM167B gene(s) from the input list not found in DisGeNET CURATEDPPP5C gene(s) from the input list not found in DisGeNET CURATEDRP11-441O15.3 gene(s) from the input list not found in DisGeNET CURATEDTSPAN1 gene(s) from the input list not found in DisGeNET CURATEDKLRC3 gene(s) from the input list not found in DisGeNET CURATEDSLFN13 gene(s) from the input list not found in DisGeNET CURATED
                                                                                     Description
66                                                           Orstavik Lindemann Solberg syndrome
67                                                                      Amaurosis hypertrichosis
72                                             Heart defect, tongue hamartoma and polysyndactyly
73                                                    Cone rod dystrophy amelogenesis imperfecta
76                                                                      BARDET-BIEDL SYNDROME 15
77                                                                                PORENCEPHALY 2
80                                                                               Jalili syndrome
91 NEURODEVELOPMENTAL DISORDER WITH REGRESSION, ABNORMAL MOVEMENTS, LOSS OF SPEECH, AND SEIZURES
40                                                                       Congenital porencephaly
68                                                                        PORENCEPHALY, FAMILIAL
          FDR Ratio BgRatio
66 0.01524170  1/13  1/9703
67 0.01524170  1/13  1/9703
72 0.01524170  1/13  1/9703
73 0.01524170  1/13  1/9703
76 0.01524170  1/13  1/9703
77 0.01524170  1/13  1/9703
80 0.01524170  1/13  1/9703
91 0.01524170  1/13  1/9703
40 0.01624776  1/13  2/9703
68 0.01624776  1/13  2/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2