Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30650_irnt_Liver.Rmd) and HTML (docs/ukb-d-30650_irnt_Liver.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd 627a4e1 wesleycrouse 2021-09-07 adding heritability
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Aspartate aminotransferase (quantile) using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30650_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1070  768  652  417  494  611  548  408  405  434  634  629  195  365  354 
  16   17   18   19   20   21   22 
 526  663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8366205

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
       gene         snp 
0.015809377 0.000193017 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
16.24626 13.27424 
#report sample size
print(sample_size)
[1] 342990
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10901 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.008163062 0.064969496 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.08428546 0.75356417

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip     mu2     PVE     z
6402          MOV10       1_69     1.000 6348.07 1.9e-02 -3.93
2771         HMGXB3       5_88     1.000   78.58 2.3e-04 -9.30
3684           GOT2      16_31     1.000   85.60 2.5e-04  8.21
9390           GAS6      13_62     0.988   61.24 1.8e-04 -7.85
3212          CCND2       12_4     0.982   25.01 7.2e-05 -4.76
7445           CFL2       14_9     0.980   33.38 9.5e-05 -6.80
2546           LTBR       12_7     0.979   28.51 8.1e-05  5.20
2924          EFHD1      2_136     0.978   75.04 2.1e-04  8.70
4744           BIN1       2_74     0.975   31.02 8.8e-05 -5.50
6121         ZNF827       4_95     0.969   24.22 6.8e-05 -5.48
8803          DLEU1      13_21     0.968   24.75 7.0e-05  4.42
2279        FAM208B       10_6     0.967   23.73 6.7e-05  4.65
11198   RP6-109B7.2      22_20     0.961   23.92 6.7e-05 -4.70
5632          CAND2        3_9     0.959   30.44 8.5e-05 -5.33
8119         TM4SF4       3_92     0.955   27.63 7.7e-05 -5.49
583           ZNF76       6_28     0.953   78.23 2.2e-04  8.05
12467 RP11-219B17.3      15_27     0.949   28.34 7.8e-05 -4.87
7179         LZTFL1       3_32     0.946  124.57 3.4e-04 11.54
5143          SBNO1      12_75     0.921   24.59 6.6e-05  4.88
5121           SUOX      12_35     0.918   54.43 1.5e-04  6.84
11619         ECSCR       5_82     0.916   21.24 5.7e-05 -3.67
11219         ZBED9       6_22     0.914   25.42 6.8e-05  5.69
9345            NDN       15_2     0.908   28.29 7.5e-05  5.11
9988          SF3B3      16_37     0.903   27.26 7.2e-05  5.67
9404        PTTG1IP      21_23     0.899   21.54 5.6e-05  4.32
8057          PTAFR       1_19     0.877   65.16 1.7e-04  8.12
5563          ABCG8       2_27     0.875   22.63 5.8e-05  4.87
4481          KLRC1      12_10     0.874   58.30 1.5e-04  8.11
7524          PSMC3      11_29     0.852  361.19 9.0e-04 -9.78
2660        SLC17A2       6_20     0.850   27.86 6.9e-05 -4.41
10763        NYNRIN       14_3     0.842   21.49 5.3e-05  4.27
12135         S1PR2       19_9     0.838   25.51 6.2e-05 -4.46
9985          LITAF      16_12     0.837   19.20 4.7e-05 -3.67
11988        ZNF865      19_38     0.825   24.17 5.8e-05 -4.58
8089         LRRC45      17_46     0.813   20.39 4.8e-05  4.04

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag susie_pip      mu2     PVE     z
5389     RPS11      19_34     0.791 13813.35 3.2e-02  4.91
1227    FLT3LG      19_34     0.000 11915.81 0.0e+00 -4.10
6402     MOV10       1_69     1.000  6348.07 1.9e-02 -3.93
5393      RCN3      19_34     0.000  4536.79 0.0e+00 -4.75
1931     FCGRT      19_34     0.000  4126.68 0.0e+00 -3.90
113       ST7L       1_69     0.000  2358.82 7.3e-15 -1.33
3804     PRRG2      19_34     0.000  2167.99 0.0e+00 -6.56
3017    CAPZA1       1_69     0.000  1951.89 1.7e-15 -0.74
2463     PANX1      11_53     0.000  1784.31 0.0e+00 11.79
10714   PSMB10      16_36     0.120  1399.47 4.9e-04 -4.26
1739     NUTF2      16_36     0.123  1397.38 5.0e-04 -4.26
3803     PRMT1      19_34     0.000  1387.76 0.0e+00 -3.23
3584     ENKD1      16_36     0.188  1382.74 7.6e-04  4.34
1749       ACD      16_36     0.173  1371.43 6.9e-04  4.35
1751    PARD6A      16_36     0.173  1371.43 6.9e-04  4.35
3805     SCAF1      19_34     0.000  1366.90 0.0e+00 -1.87
3802      IRF3      19_34     0.000  1331.23 0.0e+00 -1.99
5271   RANBP10      16_36     0.001  1260.32 4.1e-06 -3.81
1748      CTCF      16_36     0.003  1180.77 9.2e-06  4.06
9370  C11orf54      11_53     0.000  1041.19 0.0e+00 -1.80

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
           genename region_tag susie_pip      mu2     PVE      z
5389          RPS11      19_34     0.791 13813.35 0.03200   4.91
6402          MOV10       1_69     1.000  6348.07 0.01900  -3.93
7524          PSMC3      11_29     0.852   361.19 0.00090  -9.78
3584          ENKD1      16_36     0.188  1382.74 0.00076   4.34
1749            ACD      16_36     0.173  1371.43 0.00069   4.35
1751         PARD6A      16_36     0.173  1371.43 0.00069   4.35
2486         PTPMT1      11_29     0.300   665.02 0.00058   8.26
1739          NUTF2      16_36     0.123  1397.38 0.00050  -4.26
10714        PSMB10      16_36     0.120  1399.47 0.00049  -4.26
7179         LZTFL1       3_32     0.946   124.57 0.00034  11.54
3684           GOT2      16_31     1.000    85.60 0.00025   8.21
2771         HMGXB3       5_88     1.000    78.58 0.00023  -9.30
583           ZNF76       6_28     0.953    78.23 0.00022   8.05
3307           GOT1      10_64     0.500   144.16 0.00021  17.13
11056 RP11-441O15.3      10_64     0.500   144.16 0.00021 -17.13
2924          EFHD1      2_136     0.978    75.04 0.00021   8.70
9390           GAS6      13_62     0.988    61.24 0.00018  -7.85
2004          TGFB1      19_28     0.748    79.78 0.00017   9.03
8057          PTAFR       1_19     0.877    65.16 0.00017   8.12
11684 RP11-136O12.2       8_83     0.634    80.00 0.00015   9.59

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip    mu2     PVE      z
10848         CLIC1       6_26     0.001 235.76 6.7e-07  20.97
5928        TMEM236      10_14     0.000 574.61 0.0e+00 -19.14
1320        CWF19L1      10_64     0.010 321.59 9.7e-06 -18.27
11541           C4A       6_26     0.000 155.94 7.1e-08  17.29
3307           GOT1      10_64     0.500 144.16 2.1e-04  17.13
11056 RP11-441O15.3      10_64     0.500 144.16 2.1e-04 -17.13
10602          RNF5       6_26     0.000 113.71 1.6e-08  17.06
10599        NOTCH4       6_26     0.001 169.39 5.9e-07  16.73
4833          FLOT1       6_24     0.009 116.79 3.2e-06 -16.44
10625          MSH5       6_26     0.001 177.73 5.1e-07  16.29
4748           STAM      10_14     0.000 154.35 0.0e+00 -16.07
11007          PPT2       6_26     0.000  96.41 1.3e-08 -15.25
4838          VARS2       6_25     0.000 132.05 3.1e-11  14.98
3308           CPN1      10_64     0.000 205.23 2.6e-11  14.68
11478       HLA-DMB       6_27     0.000 130.59 1.2e-09 -13.78
11366      HLA-DQA2       6_26     0.000  87.37 2.7e-08 -13.47
10603        AGPAT1       6_26     0.001 103.01 3.6e-07 -13.15
10591       HLA-DMA       6_27     0.000  99.79 1.3e-11 -12.92
12683         HCP5B       6_24     0.001  60.18 2.3e-07 -12.54
10601          AGER       6_26     0.000  93.06 1.1e-08 -12.54

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.02632786
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip    mu2     PVE      z
10848         CLIC1       6_26     0.001 235.76 6.7e-07  20.97
5928        TMEM236      10_14     0.000 574.61 0.0e+00 -19.14
1320        CWF19L1      10_64     0.010 321.59 9.7e-06 -18.27
11541           C4A       6_26     0.000 155.94 7.1e-08  17.29
3307           GOT1      10_64     0.500 144.16 2.1e-04  17.13
11056 RP11-441O15.3      10_64     0.500 144.16 2.1e-04 -17.13
10602          RNF5       6_26     0.000 113.71 1.6e-08  17.06
10599        NOTCH4       6_26     0.001 169.39 5.9e-07  16.73
4833          FLOT1       6_24     0.009 116.79 3.2e-06 -16.44
10625          MSH5       6_26     0.001 177.73 5.1e-07  16.29
4748           STAM      10_14     0.000 154.35 0.0e+00 -16.07
11007          PPT2       6_26     0.000  96.41 1.3e-08 -15.25
4838          VARS2       6_25     0.000 132.05 3.1e-11  14.98
3308           CPN1      10_64     0.000 205.23 2.6e-11  14.68
11478       HLA-DMB       6_27     0.000 130.59 1.2e-09 -13.78
11366      HLA-DQA2       6_26     0.000  87.37 2.7e-08 -13.47
10603        AGPAT1       6_26     0.001 103.01 3.6e-07 -13.15
10591       HLA-DMA       6_27     0.000  99.79 1.3e-11 -12.92
12683         HCP5B       6_24     0.001  60.18 2.3e-07 -12.54
10601          AGER       6_26     0.000  93.06 1.1e-08 -12.54

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 6_26"
      genename region_tag susie_pip    mu2     PVE      z
10632     BAG6       6_26     0.002  46.30 2.9e-07  -4.15
10634     AIF1       6_26     0.000   8.42 1.4e-09   0.33
10633   PRRC2A       6_26     0.000  32.23 5.7e-09   6.01
10631     APOM       6_26     0.003  41.93 3.4e-07   2.54
10630  C6orf47       6_26     0.013  55.01 2.1e-06   3.09
10629   CSNK2B       6_26     0.000  81.71 1.1e-07   8.28
11414   LY6G5B       6_26     0.000  30.48 6.1e-09  -8.62
10628   LY6G5C       6_26     0.000  24.07 6.8e-09  -7.07
10627  ABHD16A       6_26     0.000  16.87 2.0e-09   0.58
10626   MPIG6B       6_26     0.000  88.80 4.1e-08  -9.08
10849    DDAH2       6_26     0.000  87.07 5.9e-08   8.55
10625     MSH5       6_26     0.001 177.73 5.1e-07  16.29
10848    CLIC1       6_26     0.001 235.76 6.7e-07  20.97
10623     VWA7       6_26     0.014  55.24 2.2e-06  -3.07
10622     LSM2       6_26     0.000  13.23 2.6e-09  -1.31
10621   HSPA1L       6_26     0.008  66.60 1.5e-06   4.90
10619  C6orf48       6_26     0.000  15.85 1.9e-09  -4.02
10618  SLC44A4       6_26     0.000   5.74 7.1e-10   0.53
10616    EHMT2       6_26     0.000  10.98 2.0e-09   1.59
10612   SKIV2L       6_26     0.001  72.07 2.8e-07   7.67
10610    STK19       6_26     0.000  18.15 5.3e-09   2.81
10611      DXO       6_26     0.000  32.96 3.9e-09   3.29
11541      C4A       6_26     0.000 155.94 7.1e-08  17.29
11216  CYP21A2       6_26     0.000  15.47 2.2e-09   1.06
11038      C4B       6_26     0.002 128.98 7.4e-07 -10.00
10844    ATF6B       6_26     0.000  30.22 8.9e-09   4.37
7949      TNXB       6_26     0.000  34.01 8.3e-09  -3.77
10606    FKBPL       6_26     0.000  33.59 9.3e-09  -3.53
11007     PPT2       6_26     0.000  96.41 1.3e-08 -15.25
10605    PRRT1       6_26     0.000  34.90 2.3e-08   2.71
11441    EGFL8       6_26     0.001  70.47 1.3e-07  -7.87
10603   AGPAT1       6_26     0.001 103.01 3.6e-07 -13.15
10601     AGER       6_26     0.000  93.06 1.1e-08 -12.54
10602     RNF5       6_26     0.000 113.71 1.6e-08  17.06
10600     PBX2       6_26     0.000  23.35 2.9e-09  -1.21
10599   NOTCH4       6_26     0.001 169.39 5.9e-07  16.73
10597  HLA-DRA       6_26     0.000  67.70 1.2e-08  -5.35
10402 HLA-DRB5       6_26     0.000  49.02 5.9e-09   0.75
10023 HLA-DRB1       6_26     0.000  50.42 6.2e-09   1.08
10137 HLA-DQA1       6_26     0.000  86.90 2.3e-08  12.28
11366 HLA-DQA2       6_26     0.000  87.37 2.7e-08 -13.47
9089  HLA-DQB1       6_26     0.000  59.48 1.5e-08   6.56
11231 HLA-DQB2       6_26     0.000  65.25 2.1e-08 -10.86

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 10_14"
     genename region_tag susie_pip    mu2 PVE      z
7537    C1QL3      10_14         0   5.15   0   0.00
5929     RSU1      10_14         0  16.11   0  -2.04
2238   TRDMT1      10_14         0  99.52   0   4.71
7539    HACD1      10_14         0 166.23   0  -9.40
4748     STAM      10_14         0 154.35   0 -16.07
5928  TMEM236      10_14         0 574.61   0 -19.14
5927 SLC39A12      10_14         0  86.03   0  12.06
7538   CACNB2      10_14         0   7.93   0  -2.25

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 10_64"
           genename region_tag susie_pip    mu2     PVE      z
3299          CNNM1      10_64     0.000  63.84 7.4e-12   9.64
3307           GOT1      10_64     0.500 144.16 2.1e-04  17.13
11056 RP11-441O15.3      10_64     0.500 144.16 2.1e-04 -17.13
11947   RP11-85A1.3      10_64     0.000  15.53 1.1e-12   4.24
10330        ENTPD7      10_64     0.000  11.01 1.2e-12  -1.88
3296           CUTC      10_64     0.000  12.23 1.6e-12  -1.37
228           COX15      10_64     0.000  15.11 2.1e-12  -0.54
281           ABCC2      10_64     0.001 197.72 6.3e-07  10.42
2234          DNMBP      10_64     0.000  42.17 3.0e-12  -5.47
3308           CPN1      10_64     0.000 205.23 2.6e-11  14.68
2237         ERLIN1      10_64     0.000  96.03 2.3e-09  -7.73
10819          CHUK      10_64     0.000  78.13 9.9e-10  -6.59
1320        CWF19L1      10_64     0.010 321.59 9.7e-06 -18.27
10014       BLOC1S2      10_64     0.000  94.97 3.3e-09  -7.88
11326      OLMALINC      10_64     0.000  12.00 2.1e-12  -0.84
12405 RP11-285F16.1      10_64     0.000  21.52 7.2e-12  -2.04
7557         NDUFB8      10_64     0.000  23.39 1.2e-11  -2.05
3291           SLF2      10_64     0.000  27.00 1.6e-11   2.16
1321         SEMA4G      10_64     0.000  11.70 1.3e-12  -1.81
2256          LZTS2      10_64     0.000  20.44 6.8e-12   1.68
9772          PDZD7      10_64     0.000   4.77 3.1e-13   0.25
2254           TLX1      10_64     0.000  19.78 4.9e-12  -2.08

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 6_24"
      genename region_tag susie_pip    mu2     PVE      z
10667    HLA-G       6_24     0.001   6.35 2.5e-08  -0.13
12683    HCP5B       6_24     0.001  60.18 2.3e-07 -12.54
10774    HLA-A       6_24     0.002  13.18 6.6e-08  -1.05
624      ZNRD1       6_24     0.001  10.42 4.2e-08   2.78
10664    RNF39       6_24     0.085  23.54 5.8e-06  -3.34
10663   TRIM31       6_24     0.001  68.88 2.7e-07  12.31
10661   TRIM10       6_24     0.005   7.91 1.1e-07   3.74
11273   TRIM26       6_24     0.016  16.23 7.4e-07   4.34
10657   TRIM39       6_24     0.002   8.84 3.9e-08   3.43
10651    ABCF1       6_24     0.001  14.65 5.8e-08  -5.11
10649  MRPS18B       6_24     0.001   5.21 2.1e-08   0.17
10648 C6orf136       6_24     0.002  11.57 5.1e-08   2.80
10647    DHX16       6_24     0.008  18.62 4.4e-07   1.33
5766   PPP1R18       6_24     0.002  17.17 7.8e-08  -5.27
4836       NRM       6_24     0.025  36.73 2.7e-06   5.64
4833     FLOT1       6_24     0.009 116.79 3.2e-06 -16.44
11136    HCG20       6_24     0.003  12.05 1.1e-07   1.74

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 6_25"
               genename region_tag susie_pip    mu2     PVE      z
10653              DDR1       6_25         0  18.15 2.8e-12   1.17
4838              VARS2       6_25         0 132.05 3.1e-11  14.98
10854            GTF2H4       6_25         0  16.44 3.5e-11   0.55
10044             SFTA2       6_25         0  65.47 1.9e-11  -9.91
10646          PSORS1C1       6_25         0  28.97 4.0e-12   3.80
10645          PSORS1C2       6_25         0  19.74 4.3e-12  -3.87
11297             HLA-B       6_25         0   8.47 1.4e-12  -3.22
4832              TCF19       6_25         0  24.34 3.0e-12   8.45
10644            CCHCR1       6_25         0  24.34 3.0e-12   8.45
10643            POU5F1       6_25         0  69.39 9.5e-12 -11.22
10771             HCG27       6_25         0  40.89 8.2e-12   1.52
10642             HLA-C       6_25         0  61.58 9.7e-12  -8.31
12306 XXbac-BPG181B23.7       6_25         0  26.84 3.2e-11  -4.53
10640              MICA       6_25         0  16.49 2.2e-12   2.77
10639              MICB       6_25         0  84.84 3.5e-09 -10.48
10417            DDX39B       6_25         0  10.75 1.2e-12   3.70
10637           NFKBIL1       6_25         0  57.36 2.5e-10  -4.89
10852          ATP6V1G2       6_25         0  26.74 5.3e-11   1.44
11110               LTA       6_25         0  35.63 2.0e-11  -5.80
11237               TNF       6_25         0  20.75 1.0e-11   2.29
10635              NCR3       6_25         0  14.29 5.4e-12  -0.02

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip      mu2     PVE      z
2918    rs113228967        1_6     1.000    50.27 1.5e-04  -6.51
4789      rs4336844       1_11     1.000   155.09 4.5e-04  12.99
35323     rs1771599       1_79     1.000    80.64 2.4e-04   9.94
35332    rs61804205       1_79     1.000   130.96 3.8e-04  15.58
48710     rs4951163      1_104     1.000    80.49 2.3e-04   7.21
62341    rs12239046      1_131     1.000    33.95 9.9e-05  -5.82
72067      rs780093       2_16     1.000    76.33 2.2e-04  -8.18
151848   rs35327008       3_39     1.000    55.41 1.6e-04  -7.18
185703  rs149368105      3_105     1.000    56.81 1.7e-04  -9.86
185724     rs234043      3_106     1.000    42.17 1.2e-04  -6.53
228655   rs35518360       4_67     1.000   152.60 4.4e-04  13.08
228721   rs13140033       4_68     1.000    74.59 2.2e-04   8.87
271197    rs2859493       5_26     1.000   141.30 4.1e-04  10.33
318573    rs1322599       6_13     1.000    39.72 1.2e-04  -6.38
325693    rs9272364       6_26     1.000   349.03 1.0e-03  20.71
326150    rs9276192       6_27     1.000   305.20 8.9e-04 -19.53
326343    rs2244458       6_27     1.000    92.55 2.7e-04   1.51
426195  rs758184196       8_11     1.000   526.21 1.5e-03  -4.11
432824    rs2293400       8_23     1.000    65.69 1.9e-04   7.54
467777     rs307738       8_92     1.000    96.79 2.8e-04   1.32
467778   rs56114972       8_92     1.000   142.19 4.1e-04   6.32
492016  rs113609637       9_47     1.000    56.83 1.7e-04  -7.84
494162    rs1226592       9_50     1.000    68.10 2.0e-04   8.37
504326  rs115478735       9_70     1.000   235.96 6.9e-04 -16.44
511864   rs16917138      10_15     1.000    50.03 1.5e-04   7.23
511868   rs79666207      10_15     1.000    48.65 1.4e-04   7.13
518573   rs71007692      10_28     1.000  1242.38 3.6e-03  -1.99
527635    rs9645500      10_46     1.000    94.89 2.8e-04   9.62
530511    rs5786398      10_51     1.000    42.45 1.2e-04  -5.40
536917  rs112255710      10_63     1.000    39.58 1.2e-04  -7.34
541313   rs17875416      10_71     1.000    39.05 1.1e-04  -6.24
556748    rs7481951      11_15     1.000   129.15 3.8e-04  12.24
583088    rs2307599      11_67     1.000    56.61 1.7e-04  -1.37
587084    rs4937122      11_77     1.000    48.06 1.4e-04  -6.92
606475    rs7397189      12_36     1.000   119.46 3.5e-04  11.38
610516    rs2137537      12_44     1.000   102.91 3.0e-04 -10.77
631006     rs504366       13_3     1.000    43.62 1.3e-04  -6.70
669940   rs72681869      14_20     1.000    76.18 2.2e-04 -11.71
669988  rs142004400      14_20     1.000    67.33 2.0e-04 -11.39
682956    rs1243165      14_48     1.000    44.26 1.3e-04   3.48
697873    rs2070895      15_26     1.000    49.89 1.5e-04  -7.15
721781   rs17257349      16_29     1.000    71.36 2.1e-04   9.26
727745   rs11645522      16_45     1.000    44.03 1.3e-04   6.11
749325    rs1801689      17_38     1.000    81.55 2.4e-04   9.38
785784    rs3794991      19_15     1.000   155.65 4.5e-04  13.27
844881   rs35130213       1_19     1.000  1076.13 3.1e-03   3.30
844883    rs2236854       1_19     1.000  1070.19 3.1e-03   3.13
861480     rs333947       1_69     1.000   213.29 6.2e-04 -14.64
870266  rs200856259       1_69     1.000  6290.14 1.8e-02   4.22
964696  rs369705328      10_14     1.000   829.44 2.4e-03  45.85
964701   rs56278466      10_14     1.000  3166.52 9.2e-03  60.07
964702   rs35160301      10_14     1.000   796.97 2.3e-03 -17.04
964895     rs508196      10_14     1.000   478.37 1.4e-03 -36.18
969077    rs3072639      11_29     1.000  3960.66 1.2e-02   3.11
981128  rs148050219      11_53     1.000 31055.66 9.1e-02 -12.67
981138  rs111443113      11_53     1.000 31025.44 9.0e-02  -0.39
1016337   rs9604045      13_62     1.000    53.29 1.6e-04   7.28
1087460  rs56090907      16_36     1.000  2027.51 5.9e-03   1.70
1126218 rs113176985      19_34     1.000 13790.80 4.0e-02  -4.88
1126221 rs374141296      19_34     1.000 13896.37 4.1e-02  -4.72
1131954  rs12975366      19_37     1.000   127.60 3.7e-04 -12.07
147756    rs2649750       3_28     0.999    32.83 9.6e-05  -5.78
180626    rs9817452       3_97     0.999    32.41 9.4e-05   5.50
271215   rs76142317       5_26     0.999    35.40 1.0e-04   4.22
401555     rs740047       7_56     0.999    33.17 9.7e-05   5.03
550899   rs10838525       11_4     0.999    36.02 1.0e-04  -5.16
569136   rs75592015      11_37     0.999    32.31 9.4e-05  -5.66
595805   rs66720652      12_15     0.999    33.72 9.8e-05  -5.72
749650   rs56213591      17_39     0.999    35.25 1.0e-04   5.81
835363   rs11090617      22_19     0.999   754.75 2.2e-03  28.80
271208   rs34209642       5_26     0.997    38.22 1.1e-04   2.40
271243    rs2962478       5_26     0.997    36.75 1.1e-04   5.86
295748  rs112801206       5_74     0.997    29.11 8.5e-05   5.22
298698    rs6894249       5_79     0.997    47.52 1.4e-04  -5.98
427448   rs11250151       8_15     0.997    73.90 2.1e-04  -9.51
537316  rs139450722      10_64     0.997    49.78 1.4e-04  -2.32
626255   rs12425627      12_76     0.997    31.25 9.1e-05  -5.67
793873   rs12978750      19_33     0.997    55.56 1.6e-04   7.95
203153    rs2970862       4_20     0.996    31.63 9.2e-05   6.07
322521    rs1233385       6_23     0.996   118.70 3.4e-04 -14.33
536997   rs76744182      10_64     0.996    44.83 1.3e-04  -6.86
965017   rs41277356      10_14     0.996   213.00 6.2e-04 -15.74
780784  rs576338566       19_4     0.995    29.91 8.7e-05  -5.44
976089    rs2511241      11_41     0.995    33.68 9.8e-05  -6.18
564918   rs77897592      11_30     0.994    27.18 7.9e-05   4.42
735016   rs12601581       17_7     0.994    41.52 1.2e-04  -6.19
322979     rs425052       6_24     0.993    41.05 1.2e-04   8.29
487492   rs34084620       9_38     0.993    27.84 8.1e-05   5.09
1000564   rs6581124      12_35     0.993    37.63 1.1e-04   5.73
25164    rs79900185       1_56     0.991    44.40 1.3e-04   6.25
223880   rs77094191       4_59     0.989    55.94 1.6e-04  -5.02
185611   rs17461279      3_105     0.988    29.49 8.5e-05  -5.36
425959    rs7833103       8_11     0.988   242.72 7.0e-04  10.85
753400    rs4969183      17_44     0.987    77.28 2.2e-04   9.26
721778  rs190752012      16_29     0.986    29.94 8.6e-05   6.36
482332    rs1137642       9_25     0.985   138.13 4.0e-04 -11.65
591366    rs7976853       12_3     0.985    35.33 1.0e-04   5.78
913911    rs4835265       4_95     0.985   141.14 4.1e-04  12.80
782257   rs10401485       19_7     0.980    31.21 8.9e-05   5.36
74097    rs71409634       2_21     0.978    27.61 7.9e-05   5.09
357529     rs212776       6_88     0.978    28.27 8.1e-05   5.31
586788   rs11220136      11_77     0.978    60.62 1.7e-04   8.41
511869    rs7089228      10_15     0.976    47.51 1.4e-04  -7.75
779685     rs351988       19_2     0.976    31.49 9.0e-05   5.50
179129    rs7610095       3_94     0.975    34.87 9.9e-05  -6.40
682952     rs941594      14_48     0.975    48.45 1.4e-04   4.34
300305  rs769204262       5_84     0.974    27.10 7.7e-05   5.11
482740    rs6476453       9_26     0.974    26.83 7.6e-05  -4.89
79141     rs4952901       2_30     0.973    30.46 8.6e-05   5.28
323411    rs3130374       6_24     0.972   119.02 3.4e-04 -16.61
537039    rs4423123      10_64     0.970   187.26 5.3e-04  18.49
732002  rs539705186      16_53     0.970    28.57 8.1e-05   5.88
426934   rs11777976       8_13     0.969    71.91 2.0e-04  -9.65
661052    rs1760940       14_1     0.969    55.46 1.6e-04   7.72
15885     rs7556224       1_37     0.967    25.53 7.2e-05   4.55
77745    rs72800939       2_28     0.967    25.36 7.1e-05   4.81
835374    rs9626057      22_19     0.967   301.46 8.5e-04  15.73
753365   rs12449451      17_44     0.966    26.82 7.6e-05   5.57
118681   rs17576323      2_112     0.964    33.59 9.4e-05  -6.02
208858   rs12639940       4_32     0.960    23.84 6.7e-05  -4.14
317577    rs2841572       6_12     0.959    97.30 2.7e-04  10.45
671443    rs6572976      14_24     0.959    62.06 1.7e-04  -8.09
431750   rs11986461       8_21     0.958    31.13 8.7e-05  -5.69
576712   rs74717621      11_54     0.957    24.81 6.9e-05   4.72
151802  rs559993437       3_39     0.949    25.68 7.1e-05  -4.50
771436   rs12373325      18_31     0.948   117.16 3.2e-04 -12.23
576528  rs144988974      11_52     0.947    24.67 6.8e-05   4.62
185001   rs61436251      3_104     0.944    27.24 7.5e-05  -3.27
727744   rs13334801      16_45     0.944    27.83 7.7e-05   4.30
427473    rs1809356       8_15     0.943    28.06 7.7e-05   5.74
77666    rs62140177       2_26     0.942    29.59 8.1e-05  -5.36
830644   rs11704551      22_10     0.939    70.17 1.9e-04  -9.17
171840    rs9870956       3_77     0.938    26.01 7.1e-05   4.87
677265    rs2363514      14_36     0.936    27.97 7.6e-05  -5.17
149836   rs11917269       3_35     0.934    28.09 7.6e-05  -5.32
735062     rs307627       17_7     0.933    28.84 7.8e-05  -5.11
324490    rs2853999       6_25     0.931   208.65 5.7e-04 -20.00
809142    rs1412956      20_29     0.931    27.09 7.4e-05   5.13
833028     rs132642      22_14     0.930    73.66 2.0e-04   8.89
536919  rs117780022      10_63     0.929    25.18 6.8e-05   4.28
79160    rs56030357       2_31     0.926    53.65 1.4e-04   7.52
115996   rs12464787      2_108     0.922    79.94 2.1e-04   9.23
271239   rs13183079       5_26     0.919   122.58 3.3e-04   9.38
352573   rs78485454       6_77     0.917    26.26 7.0e-05  -3.13
511908    rs7070430      10_15     0.914    31.39 8.4e-05  -3.99
321823   rs62392365       6_19     0.913    37.83 1.0e-04  -6.58
623136  rs141105880      12_67     0.912    35.36 9.4e-05  -6.95
1030132   rs2239222      14_34     0.912    35.89 9.5e-05  -5.85
326300    rs1871664       6_27     0.911    68.11 1.8e-04  -8.00
503229  rs199755552       9_67     0.910    24.52 6.5e-05  -4.69
537289   rs17882431      10_64     0.907   330.56 8.7e-04 -18.75
692689   rs17659152      15_15     0.906    23.32 6.2e-05   4.31
605772   rs10876377      12_33     0.904    36.39 9.6e-05   5.98
771063    rs2849421      18_30     0.900   147.73 3.9e-04 -12.71
321931   rs72838866       6_19     0.891    29.45 7.7e-05   5.77
732066    rs2291160      16_53     0.891    47.56 1.2e-04  -7.54
35333    rs10917685       1_79     0.890   101.91 2.6e-04 -12.02
773119   rs71162605      18_35     0.890    26.99 7.0e-05   4.53
326967    rs4713999       6_29     0.888    25.94 6.7e-05   4.64
732842  rs558760274       17_1     0.888    23.43 6.1e-05  -4.37
773117   rs73963711      18_35     0.887    30.68 7.9e-05  -5.25
604118   rs12313103      12_29     0.885    26.16 6.8e-05   4.75
42154     rs2500119       1_91     0.883   141.56 3.6e-04  12.46
782033     rs339399       19_7     0.883    31.50 8.1e-05   5.35
411695   rs77506340       7_78     0.880    27.12 7.0e-05   5.34
610031     rs317687      12_42     0.879    34.97 9.0e-05  -5.69
587767   rs71480000      11_80     0.878    24.15 6.2e-05  -4.43
290021     rs163895       5_63     0.872    24.20 6.2e-05  -4.18
195235   rs36205397        4_4     0.864    27.60 7.0e-05   5.63
143169     rs734866       3_18     0.863    25.93 6.5e-05  -4.80
373253   rs10279376        7_9     0.863    49.86 1.3e-04  -7.15
829468     rs133902       22_7     0.862    26.02 6.5e-05   4.71
323651     rs915665       6_24     0.860    27.27 6.8e-05   5.33
332096     rs941968       6_39     0.860    25.36 6.4e-05   4.73
96306     rs4849369       2_66     0.859    29.69 7.4e-05  -5.28
325952  rs117317274       6_26     0.859   101.62 2.5e-04   8.47
790850    rs2251125      19_24     0.859    25.51 6.4e-05  -4.53
739774  rs191842317      17_17     0.857    24.70 6.2e-05  -4.49
785492   rs11880916      19_15     0.856    26.60 6.6e-05   5.04
352603    rs7758190       6_77     0.854    25.13 6.3e-05  -3.91
502674   rs13302576       9_66     0.852    25.14 6.2e-05  -4.68
254319    rs3814419      4_118     0.846    31.89 7.9e-05   6.05
710426   rs11641275       16_2     0.843    25.02 6.1e-05   4.63
70331     rs1042034       2_13     0.841    25.18 6.2e-05   4.63
625978  rs571529125      12_74     0.840    49.06 1.2e-04   8.15
103052   rs10928493       2_79     0.838    24.89 6.1e-05   4.90
692490     rs511338      15_14     0.834    29.07 7.1e-05   5.29
329246    rs2025704       6_34     0.832    29.82 7.2e-05  -5.55
837775   rs12484572      22_24     0.829    24.95 6.0e-05   4.65
482761    rs3808868       9_27     0.828    25.70 6.2e-05   4.81
633649    rs1756957       13_7     0.828    37.32 9.0e-05  -6.17
692485   rs11070250      15_13     0.826    59.71 1.4e-04  -9.17
459461  rs146373428       8_78     0.825    25.20 6.1e-05  -4.40
585734   rs10892865      11_74     0.823    30.00 7.2e-05  -6.03
127277  rs149146451      2_129     0.816    25.18 6.0e-05   4.31
790114      rs33824      19_23     0.808    46.40 1.1e-04  -8.54
704922   rs72754570      15_41     0.805    44.74 1.0e-04  -6.65
753328    rs9915814      17_43     0.805    27.53 6.5e-05   4.70
582939   rs55697087      11_67     0.803    27.23 6.4e-05  -4.50

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE      z
981128 rs148050219      11_53     1.000 31055.66 9.1e-02 -12.67
981138 rs111443113      11_53     1.000 31025.44 9.0e-02  -0.39
981137  rs60550219      11_53     0.131 31013.92 1.2e-02 -12.67
981124   rs7105405      11_53     0.222 31006.87 2.0e-02 -12.70
981162  rs67167563      11_53     0.054 31001.93 4.9e-03 -12.66
981169 rs113426210      11_53     0.029 30988.06 2.6e-03 -12.67
981120   rs9888156      11_53     0.000 30960.49 4.2e-05 -12.66
981175    rs950878      11_53     0.013 30951.82 1.2e-03 -12.69
981118  rs67232024      11_53     0.000 30906.45 3.1e-08 -12.62
981097   rs7927828      11_53     0.000 30905.42 1.7e-08 -12.61
981115   rs9888266      11_53     0.000 30864.86 1.6e-08 -12.65
981103  rs67812366      11_53     0.000 30864.76 2.0e-08 -12.65
981106   rs7109132      11_53     0.000 30864.46 1.3e-08 -12.65
981098  rs57856352      11_53     0.000 30854.49 1.1e-09 -12.62
981119  rs16919533      11_53     0.000 30848.56 4.2e-10 -12.64
981117  rs67549397      11_53     0.000 30803.29 3.8e-14 -12.54
981116   rs9888143      11_53     0.000 30755.62 3.3e-15 -12.56
981108  rs60546087      11_53     0.000 30752.43 3.5e-15 -12.56
981107  rs60351354      11_53     0.000 30752.40 3.4e-15 -12.56
981112   rs1573567      11_53     0.000 30752.17 2.3e-15 -12.56
981109   rs7109819      11_53     0.000 30752.14 2.3e-15 -12.56
981075   rs7932290      11_53     0.000 30616.09 2.0e-12 -12.79
981043   rs7934467      11_53     0.000 30366.00 0.0e+00 -12.59
981438  rs72966603      11_53     0.000 25584.48 0.0e+00 -13.54
981568  rs12419615      11_53     0.000 24217.18 0.0e+00 -13.58
981619  rs58964858      11_53     0.000 20700.11 0.0e+00 -13.18
981621  rs72968738      11_53     0.000 20659.05 0.0e+00 -13.11
981645 rs138626734      11_53     0.000 20400.36 0.0e+00 -13.07
981631  rs72968745      11_53     0.000 20396.05 0.0e+00 -13.14
981630   rs4491178      11_53     0.000 20394.83 0.0e+00 -13.14
981663   rs4408267      11_53     0.000 20390.80 0.0e+00 -13.07
981691  rs11604580      11_53     0.000 20371.28 0.0e+00 -13.13
981696   rs4342991      11_53     0.000 20368.99 0.0e+00 -13.13
981262  rs72962880      11_53     0.000 20345.12 0.0e+00 -10.63
981549   rs7945841      11_53     0.000 20333.35 0.0e+00 -12.54
981635   rs4753124      11_53     0.000 20315.87 0.0e+00 -13.08
981668  rs16919942      11_53     0.000 20301.79 0.0e+00 -13.10
981251  rs55659547      11_53     0.000 20284.11 0.0e+00 -10.57
981250   rs7950356      11_53     0.000 20280.91 0.0e+00 -10.57
981261  rs56359140      11_53     0.000 20259.67 0.0e+00 -10.56
981254  rs72962872      11_53     0.000 20257.25 0.0e+00 -10.56
981256 rs140989262      11_53     0.000 19992.27 0.0e+00 -10.53
981587   rs7119800      11_53     0.000 19920.41 0.0e+00 -12.41
981276  rs72962891      11_53     0.000 19825.62 0.0e+00 -10.41
981295  rs72964604      11_53     0.000 19789.04 0.0e+00 -10.51
981591   rs2176565      11_53     0.000 19664.80 0.0e+00 -12.54
981592   rs7949551      11_53     0.000 19077.21 0.0e+00 -12.79
981058   rs1506657      11_53     0.000 18800.30 0.0e+00  10.56
981595  rs72968710      11_53     0.000 18625.94 0.0e+00 -12.72
981598  rs16919917      11_53     0.000 18486.49 0.0e+00 -12.85

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip      mu2     PVE      z
981128  rs148050219      11_53     1.000 31055.66 0.09100 -12.67
981138  rs111443113      11_53     1.000 31025.44 0.09000  -0.39
1126221 rs374141296      19_34     1.000 13896.37 0.04100  -4.72
1126218 rs113176985      19_34     1.000 13790.80 0.04000  -4.88
981124    rs7105405      11_53     0.222 31006.87 0.02000 -12.70
870266  rs200856259       1_69     1.000  6290.14 0.01800   4.22
969077    rs3072639      11_29     1.000  3960.66 0.01200   3.11
981137   rs60550219      11_53     0.131 31013.92 0.01200 -12.67
964701   rs56278466      10_14     1.000  3166.52 0.00920  60.07
1126209  rs61371437      19_34     0.202 13751.17 0.00810  -4.73
1087460  rs56090907      16_36     1.000  2027.51 0.00590   1.70
981162   rs67167563      11_53     0.054 31001.93 0.00490 -12.66
518573   rs71007692      10_28     1.000  1242.38 0.00360  -1.99
844881   rs35130213       1_19     1.000  1076.13 0.00310   3.30
844883    rs2236854       1_19     1.000  1070.19 0.00310   3.13
981169  rs113426210      11_53     0.029 30988.06 0.00260 -12.67
964696  rs369705328      10_14     1.000   829.44 0.00240  45.85
964702   rs35160301      10_14     1.000   796.97 0.00230 -17.04
835363   rs11090617      22_19     0.999   754.75 0.00220  28.80
518570    rs9299760      10_28     0.525  1215.95 0.00190  -2.01
1087415  rs12934423      16_36     0.283  2005.06 0.00170   2.78
518579    rs2472183      10_28     0.447  1216.42 0.00160  -1.99
844892    rs2234918       1_19     0.537  1047.45 0.00160   3.60
426195  rs758184196       8_11     1.000   526.21 0.00150  -4.11
518572    rs2474565      10_28     0.406  1216.32 0.00140  -1.98
518582   rs11011452      10_28     0.382  1216.39 0.00140  -1.97
844887   rs34563832       1_19     0.462  1051.08 0.00140   3.62
964895     rs508196      10_14     1.000   478.37 0.00140 -36.18
981175     rs950878      11_53     0.013 30951.82 0.00120 -12.69
969083   rs11039670      11_29     0.097  3999.66 0.00110   3.16
969115    rs7124318      11_29     0.094  3999.60 0.00110   3.16
325693    rs9272364       6_26     1.000   349.03 0.00100  20.71
969079    rs7949513      11_29     0.083  3999.29 0.00097   3.16
1087473  rs35189054      16_36     0.157  2005.72 0.00092   2.72
326150    rs9276192       6_27     1.000   305.20 0.00089 -19.53
426211   rs13265731       8_11     0.535   561.77 0.00088   8.51
537289   rs17882431      10_64     0.907   330.56 0.00087 -18.75
969106   rs11039675      11_29     0.075  3999.50 0.00087   3.16
969092   rs11039671      11_29     0.074  3999.50 0.00086   3.16
969118    rs9651621      11_29     0.074  3999.50 0.00086   3.16
835374    rs9626057      22_19     0.967   301.46 0.00085  15.73
969098    rs4436573      11_29     0.072  3999.48 0.00084   3.16
426207    rs6993494       8_11     0.465   561.28 0.00076   8.49
969104   rs10838872      11_29     0.061  3998.95 0.00071   3.16
425959    rs7833103       8_11     0.988   242.72 0.00070  10.85
504326  rs115478735       9_70     1.000   235.96 0.00069 -16.44
1087432  rs34530665      16_36     0.118  2005.36 0.00069   2.71
1087489   rs8060896      16_36     0.118  1999.91 0.00069   2.73
1087392   rs8061122      16_36     0.111  1998.31 0.00065   2.77
861480     rs333947       1_69     1.000   213.29 0.00062 -14.64

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip     mu2     PVE      z
964701  rs56278466      10_14     1.000 3166.52 9.2e-03  60.07
964704  rs12359178      10_14     0.000 1209.77 7.2e-17  48.44
964699 rs181242111      10_14     0.000  916.21 0.0e+00  46.92
964696 rs369705328      10_14     1.000  829.44 2.4e-03  45.85
964895    rs508196      10_14     1.000  478.37 1.4e-03 -36.18
964896    rs692097      10_14     0.000  502.75 2.1e-13 -35.89
964900    rs556165      10_14     0.000  486.17 5.5e-15 -35.57
964904   rs2437260      10_14     0.000  481.87 3.4e-15 -35.44
964905   rs2497827      10_14     0.000  481.65 3.2e-15 -35.44
964910   rs2497828      10_14     0.000  479.82 2.1e-15 -35.40
964911   rs2497829      10_14     0.000  479.17 1.8e-15 -35.40
964914   rs2497831      10_14     0.000  478.42 1.5e-15 -35.38
964917    rs943329      10_14     0.000  473.35 4.8e-16 -35.37
964916   rs2478569      10_14     0.000  476.18 8.3e-16 -35.34
964695   rs2477669      10_14     0.000 1181.80 0.0e+00 -35.25
964923   rs1926739      10_14     0.000  470.88 2.1e-16 -35.25
964899    rs692594      10_14     0.000  465.16 1.3e-16 -35.23
964935   rs2497832      10_14     0.000  466.00 5.5e-17 -35.23
964936   rs2497833      10_14     0.000  464.30 3.5e-17 -35.19
964929  rs11407350      10_14     0.000  459.57 2.3e-17 -35.14
964902    rs553304      10_14     0.000  457.37 1.3e-17 -35.11
964697 rs200265081      10_14     0.000  408.97 0.0e+00  34.04
964758  rs72782600      10_14     0.000  742.52 0.0e+00  33.41
964757  rs17657502      10_14     0.000  738.45 0.0e+00  33.32
964839  rs72784717      10_14     0.000  646.63 0.0e+00  32.60
964698 rs118160793      10_14     0.000  375.88 0.0e+00  32.25
964703 rs587772656      10_14     0.000  851.35 0.0e+00  29.85
964955   rs2148598      10_14     0.000  360.95 0.0e+00 -29.27
964961   rs2497839      10_14     0.000  347.10 0.0e+00 -28.99
964958   rs2437271      10_14     0.000  346.52 0.0e+00 -28.97
964964   rs2497840      10_14     0.000  345.44 0.0e+00 -28.95
835363  rs11090617      22_19     0.999  754.75 2.2e-03  28.80
964970   rs1926738      10_14     0.000  341.08 0.0e+00 -28.79
835366   rs1977081      22_19     0.022  745.75 4.9e-05  28.52
835369   rs2072905      22_19     0.018  724.77 3.8e-05  28.11
835370   rs2401512      22_19     0.018  724.85 3.8e-05  28.11
835371   rs4823176      22_19     0.018  724.75 3.8e-05  28.11
835372   rs4823178      22_19     0.018  724.78 3.8e-05  28.11
835373  rs13056555      22_19     0.018  725.04 3.9e-05  28.11
835368   rs1883348      22_19     0.014  712.68 2.9e-05  27.88
964940   rs2437263      10_14     0.000  293.58 0.0e+00 -27.71
964941   rs2437264      10_14     0.000  290.72 0.0e+00 -27.65
964919   rs2437261      10_14     0.000  288.25 0.0e+00 -27.62
964938   rs2497834      10_14     0.000  277.35 0.0e+00 -27.50
964939   rs2497835      10_14     0.000  282.00 0.0e+00 -27.42
964906    rs943331      10_14     0.000  293.77 0.0e+00 -27.38
964912   rs2497830      10_14     0.000  292.61 0.0e+00 -27.35
964760    rs560358      10_14     0.000  434.31 0.0e+00 -27.02
964772    rs691728      10_14     0.000  434.08 0.0e+00 -27.02
964756    rs483809      10_14     0.000  424.62 0.0e+00 -26.89

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 35
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
ZNF827 gene(s) from the input list not found in DisGeNET CURATEDRP11-219B17.3 gene(s) from the input list not found in DisGeNET CURATEDHMGXB3 gene(s) from the input list not found in DisGeNET CURATEDSF3B3 gene(s) from the input list not found in DisGeNET CURATEDZNF865 gene(s) from the input list not found in DisGeNET CURATEDPTTG1IP gene(s) from the input list not found in DisGeNET CURATEDZNF76 gene(s) from the input list not found in DisGeNET CURATEDFAM208B gene(s) from the input list not found in DisGeNET CURATEDECSCR gene(s) from the input list not found in DisGeNET CURATEDZBED9 gene(s) from the input list not found in DisGeNET CURATEDLRRC45 gene(s) from the input list not found in DisGeNET CURATEDKLRC1 gene(s) from the input list not found in DisGeNET CURATEDDLEU1 gene(s) from the input list not found in DisGeNET CURATEDNYNRIN gene(s) from the input list not found in DisGeNET CURATEDMOV10 gene(s) from the input list not found in DisGeNET CURATEDRP6-109B7.2 gene(s) from the input list not found in DisGeNET CURATED
                                                           Description
75                                          Sulfite oxidase deficiency
77                                Charcot-Marie-Tooth disease, Type 1C
110                                   DEAFNESS, AUTOSOMAL RECESSIVE 68
111                                            Increased serum lactate
113                                                Nemaline Myopathy 7
119                                              GALLBLADDER DISEASE 4
123                                                   Sulfocysteinuria
131                                           BARDET-BIEDL SYNDROME 17
134 MEGALENCEPHALY-POLYMICROGYRIA-POLYDACTYLY-HYDROCEPHALUS SYNDROME 3
47                                            Salivary Gland Neoplasms
           FDR Ratio BgRatio
75  0.03046336  1/19  1/9703
77  0.03046336  1/19  1/9703
110 0.03046336  1/19  1/9703
111 0.03046336  1/19  1/9703
113 0.03046336  1/19  1/9703
119 0.03046336  1/19  1/9703
123 0.03046336  1/19  1/9703
131 0.03046336  1/19  1/9703
134 0.03046336  1/19  1/9703
47  0.03913085  2/19 47/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2