Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30640_irnt_Whole_Blood.Rmd) and HTML (docs/ukb-d-30640_irnt_Whole_Blood.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Apoliprotein B (quantile) using Whole_Blood gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30640_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Whole_Blood eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11095
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1129  747  624  400  479  621  560  383  404  430  682  652  192  362  331 
  16   17   18   19   20   21   22 
 551  725  159  911  313  130  310 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.762776

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
2.782596e-03 8.084458e-05 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
     gene       snp 
230.42406  42.76761 
#report sample size
print(sample_size)
[1] 342590
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11095 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.02076494 0.08777628 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.2592707 1.4822193

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
       genename region_tag susie_pip      mu2     PVE      z
4564      PSRC1       1_67     1.000  3046.09 8.9e-03 -55.62
4151       LDLR       19_9     1.000   647.73 1.9e-03 -24.64
1980      FCGRT      19_34     1.000 82373.60 2.4e-01  -3.37
8166      PCSK9       1_34     0.988   187.18 5.4e-04  21.41
6892       PKN3       9_66     0.987    41.39 1.2e-04  -6.04
5839      TIMD4       5_92     0.934   180.48 4.9e-04  13.61
12535    PKD1L3      16_38     0.917   144.04 3.9e-04  -1.79
6089      FADS1      11_34     0.883   304.46 7.8e-04 -17.64
7838      CNPY4       7_61     0.833    28.48 6.9e-05   4.20
5380       DEF8      16_54     0.808    26.90 6.3e-05  -4.76
9109    CD163L1       12_7     0.791    28.60 6.6e-05  -4.90
11247 TRAM2-AS1       6_39     0.747    31.26 6.8e-05   5.30
7128       ACP6       1_73     0.707    28.19 5.8e-05   4.16
11025   SYNJ2BP      14_33     0.696    44.46 9.0e-05   7.38
1975      SARS2      19_26     0.650    25.97 4.9e-05   4.54
10343     ZFP28      19_38     0.645    37.66 7.1e-05  -5.68
33        SARM1      17_18     0.594    67.10 1.2e-04   8.11
9198      GRINA       8_94     0.534    59.67 9.3e-05  -7.45
5355      DHX38      16_38     0.506    38.23 5.6e-05   7.87
3384   C10orf88      10_77     0.491    38.57 5.5e-05  -5.64

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
           genename region_tag susie_pip      mu2     PVE      z
1980          FCGRT      19_34     1.000 82373.60 2.4e-01  -3.37
5520           RCN3      19_34     0.000 26124.28 0.0e+00  -3.85
4691          SRPK2       7_65     0.000 11841.99 0.0e+00  -1.34
73            KMT2E       7_65     0.000  7270.85 0.0e+00  -0.81
11489 RP11-325F22.2       7_65     0.000  7178.37 0.0e+00   1.71
8165          CPT1C      19_34     0.000  5679.82 0.0e+00   2.27
4564          PSRC1       1_67     1.000  3046.09 8.9e-03 -55.62
11441         APOC2      19_31     0.033  2550.21 2.5e-04  60.12
571         SLC6A16      19_34     0.000  1425.98 0.0e+00   1.30
10492   CTC-301O7.4      19_34     0.000  1350.10 0.0e+00   0.72
4159        NECTIN2      19_31     0.000   897.58 0.0e+00  21.05
11220          ADM5      19_34     0.000   847.62 0.0e+00  -0.50
6980       ALDH16A1      19_34     0.000   834.98 0.0e+00  -2.07
846           TEAD2      19_34     0.000   806.84 0.0e+00   0.09
4151           LDLR       19_9     1.000   647.73 1.9e-03 -24.64
11152        IGSF23      19_31     0.000   625.43 0.0e+00  -4.00
331            SARS       1_67     0.001   591.80 1.8e-06 -23.74
820             PVR      19_31     0.000   405.62 0.0e+00 -11.82
5562         CELSR2       1_67     0.001   344.47 5.3e-07  18.65
6089          FADS1      11_34     0.883   304.46 7.8e-04 -17.64

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
       genename region_tag susie_pip      mu2     PVE      z
1980      FCGRT      19_34     1.000 82373.60 2.4e-01  -3.37
4564      PSRC1       1_67     1.000  3046.09 8.9e-03 -55.62
4151       LDLR       19_9     1.000   647.73 1.9e-03 -24.64
6089      FADS1      11_34     0.883   304.46 7.8e-04 -17.64
8166      PCSK9       1_34     0.988   187.18 5.4e-04  21.41
5839      TIMD4       5_92     0.934   180.48 4.9e-04  13.61
12535    PKD1L3      16_38     0.917   144.04 3.9e-04  -1.79
11441     APOC2      19_31     0.033  2550.21 2.5e-04  60.12
7089       USP1       1_39     0.455   165.12 2.2e-04  12.72
33        SARM1      17_18     0.594    67.10 1.2e-04   8.11
6892       PKN3       9_66     0.987    41.39 1.2e-04  -6.04
9198      GRINA       8_94     0.534    59.67 9.3e-05  -7.45
11025   SYNJ2BP      14_33     0.696    44.46 9.0e-05   7.38
10343     ZFP28      19_38     0.645    37.66 7.1e-05  -5.68
7838      CNPY4       7_61     0.833    28.48 6.9e-05   4.20
11247 TRAM2-AS1       6_39     0.747    31.26 6.8e-05   5.30
9109    CD163L1       12_7     0.791    28.60 6.6e-05  -4.90
5380       DEF8      16_54     0.808    26.90 6.3e-05  -4.76
7128       ACP6       1_73     0.707    28.19 5.8e-05   4.16
3645     ACVR1C       2_94     0.376    51.15 5.6e-05  -4.89

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
          genename region_tag susie_pip     mu2     PVE      z
11441        APOC2      19_31     0.033 2550.21 2.5e-04  60.12
4564         PSRC1       1_67     1.000 3046.09 8.9e-03 -55.62
4151          LDLR       19_9     1.000  647.73 1.9e-03 -24.64
331           SARS       1_67     0.001  591.80 1.8e-06 -23.74
8166         PCSK9       1_34     0.988  187.18 5.4e-04  21.41
7053          BSND       1_34     0.012  283.91 1.0e-05  21.09
4159       NECTIN2      19_31     0.000  897.58 0.0e+00  21.05
5562        CELSR2       1_67     0.001  344.47 5.3e-07  18.65
6089         FADS1      11_34     0.883  304.46 7.8e-04 -17.64
4137          MAU2      19_15     0.002  273.54 1.3e-06  16.48
2496          ZPR1      11_70     0.001  280.47 7.8e-07 -15.91
2131       ATP13A1      19_15     0.003  199.94 1.7e-06 -14.23
5839         TIMD4       5_92     0.934  180.48 4.9e-04  13.61
12254 CTC-366B18.4       5_44     0.001  115.61 2.4e-07 -13.48
4636         FADS2      11_34     0.003  187.11 1.5e-06 -13.25
2793      COL4A3BP       5_44     0.000  104.22 1.5e-07  12.75
7089          USP1       1_39     0.455  165.12 2.2e-04  12.72
5512         CARM1       19_9     0.000  147.19 0.0e+00 -12.52
820            PVR      19_31     0.000  405.62 0.0e+00 -11.82
1652         PCIF1      20_28     0.007  150.07 3.2e-06  11.69

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.02063993
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
          genename region_tag susie_pip     mu2     PVE      z
11441        APOC2      19_31     0.033 2550.21 2.5e-04  60.12
4564         PSRC1       1_67     1.000 3046.09 8.9e-03 -55.62
4151          LDLR       19_9     1.000  647.73 1.9e-03 -24.64
331           SARS       1_67     0.001  591.80 1.8e-06 -23.74
8166         PCSK9       1_34     0.988  187.18 5.4e-04  21.41
7053          BSND       1_34     0.012  283.91 1.0e-05  21.09
4159       NECTIN2      19_31     0.000  897.58 0.0e+00  21.05
5562        CELSR2       1_67     0.001  344.47 5.3e-07  18.65
6089         FADS1      11_34     0.883  304.46 7.8e-04 -17.64
4137          MAU2      19_15     0.002  273.54 1.3e-06  16.48
2496          ZPR1      11_70     0.001  280.47 7.8e-07 -15.91
2131       ATP13A1      19_15     0.003  199.94 1.7e-06 -14.23
5839         TIMD4       5_92     0.934  180.48 4.9e-04  13.61
12254 CTC-366B18.4       5_44     0.001  115.61 2.4e-07 -13.48
4636         FADS2      11_34     0.003  187.11 1.5e-06 -13.25
2793      COL4A3BP       5_44     0.000  104.22 1.5e-07  12.75
7089          USP1       1_39     0.455  165.12 2.2e-04  12.72
5512         CARM1       19_9     0.000  147.19 0.0e+00 -12.52
820            PVR      19_31     0.000  405.62 0.0e+00 -11.82
1652         PCIF1      20_28     0.007  150.07 3.2e-06  11.69

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 19_31"
      genename region_tag susie_pip     mu2     PVE      z
6822    ZNF235      19_31     0.000   70.32 0.00000  -8.86
12136   ZNF285      19_31     0.000    9.63 0.00000  -1.42
7892    ZNF180      19_31     0.000   14.12 0.00000   3.44
820        PVR      19_31     0.000  405.62 0.00000 -11.82
11152   IGSF23      19_31     0.000  625.43 0.00000  -4.00
9941  CEACAM19      19_31     0.000   51.53 0.00000  11.14
4159   NECTIN2      19_31     0.000  897.58 0.00000  21.05
4161    TOMM40      19_31     0.000   39.26 0.00000  -1.33
12134    APOC4      19_31     0.000   69.85 0.00000   8.97
11441    APOC2      19_31     0.033 2550.21 0.00025  60.12
1977    CLPTM1      19_31     0.000   50.50 0.00000  -4.11
8368    ZNF296      19_31     0.000   82.96 0.00000  -9.89
5505    GEMIN7      19_31     0.000   90.05 0.00000   2.94
1979   PPP1R37      19_31     0.000   39.08 0.00000  -1.67
10171  BLOC1S3      19_31     0.000   31.54 0.00000   3.51
116   TRAPPC6A      19_31     0.000   28.19 0.00000   2.35
12615  EXOC3L2      19_31     0.000   53.89 0.00000  -2.14
111      MARK4      19_31     0.000    8.18 0.00000  -3.38
1988      KLC3      19_31     0.000   24.50 0.00000  -5.17
1982  PPP1R13L      19_31     0.000   33.77 0.00000  -3.78
3230    CD3EAP      19_31     0.000   33.77 0.00000  -3.78
213      ERCC1      19_31     0.000   23.42 0.00000  -2.75
11059    PPM1N      19_31     0.000   32.15 0.00000  -3.46
3830      RTN2      19_31     0.000   47.91 0.00000   7.44
3831      VASP      19_31     0.000    9.80 0.00000   6.21

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 1_67"
          genename region_tag susie_pip     mu2     PVE      z
11280 RP11-356N1.2       1_67     0.001   19.55 6.5e-08  -2.73
1102      SLC25A24       1_67     0.001   10.19 2.1e-08   1.64
7095       FAM102B       1_67     0.001   40.28 1.6e-07  -5.32
7096        HENMT1       1_67     0.001   16.61 7.1e-08  -1.66
3080        STXBP3       1_67     0.001   24.92 9.0e-08   3.77
3522         GPSM2       1_67     0.001    7.62 1.4e-08   0.34
3521         CLCC1       1_67     0.001   22.44 3.4e-08  -4.12
10487        TAF13       1_67     0.001   90.04 1.6e-07  -8.70
11143     TMEM167B       1_67     0.000   14.49 2.1e-08   3.48
9291      C1orf194       1_67     0.005   41.42 5.9e-07  -2.23
1099         WDR47       1_67     0.003   39.75 3.1e-07  -2.50
3084      KIAA1324       1_67     0.002   75.84 3.9e-07   7.14
331           SARS       1_67     0.001  591.80 1.8e-06 -23.74
5562        CELSR2       1_67     0.001  344.47 5.3e-07  18.65
4564         PSRC1       1_67     1.000 3046.09 8.9e-03 -55.62
7099       ATXN7L2       1_67     0.001   17.32 3.2e-08   3.01
8776      CYB561D1       1_67     0.003   43.49 3.3e-07   4.59
9435        AMIGO1       1_67     0.003   64.52 4.9e-07  -6.71
617          GNAI3       1_67     0.003   85.92 6.5e-07   8.22
11016        GSTM2       1_67     0.001   19.71 4.4e-08   3.58
8107         GSTM4       1_67     0.001   60.67 9.7e-08  -7.20
4559         GSTM1       1_67     0.281   67.11 5.5e-05   9.74
4561         GSTM5       1_67     0.001   14.71 4.2e-08   3.54
4562         GSTM3       1_67     0.001   33.68 9.6e-08  -4.20

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 19_9"
           genename region_tag susie_pip    mu2    PVE      z
4240         ZNF317       19_9         0  10.68 0.0000  -1.67
10208        ZNF699       19_9         0  41.28 0.0000  -2.31
10092        ZNF559       19_9         0   6.17 0.0000   0.78
8818         ZNF266       19_9         0  14.20 0.0000  -1.38
4245         ZNF426       19_9         0  19.63 0.0000  -1.20
12567  CTC-543D15.8       19_9         0  40.14 0.0000   2.30
10522        ZNF121       19_9         0  20.05 0.0000  -1.23
8463         ZNF561       19_9         0  11.75 0.0000  -1.44
8461         ZNF562       19_9         0  19.98 0.0000  -1.36
12539 CTD-3116E22.8       19_9         0   5.83 0.0000  -0.59
10303        ZNF846       19_9         0   5.67 0.0000   0.45
3954         FBXL12       19_9         0   9.97 0.0000   0.51
10572          UBL5       19_9         0  18.05 0.0000  -1.27
1004         COL5A3       19_9         0  15.22 0.0000   1.13
4243        ANGPTL6       19_9         0   7.61 0.0000  -0.50
11635        P2RY11       19_9         0   7.19 0.0000  -0.35
4241           PPAN       19_9         0  31.49 0.0000  -2.71
4244       C19orf66       19_9         0  27.46 0.0000   3.08
4242          EIF3G       19_9         0  17.41 0.0000   2.58
2062          MRPL4       19_9         0  10.70 0.0000   0.84
1256          ICAM1       19_9         0  23.43 0.0000  -1.26
2068          ICAM5       19_9         0  11.48 0.0000  -1.44
11171         ZGLP1       19_9         0   8.22 0.0000  -1.09
12143          FDX2       19_9         0  43.69 0.0000  -5.18
6996         RAVER1       19_9         0  11.88 0.0000   1.41
913           ICAM3       19_9         0  17.04 0.0000  -0.08
2072           TYK2       19_9         0  47.28 0.0000   1.58
650           PDE4A       19_9         0  48.55 0.0000   1.06
9357          S1PR5       19_9         0   9.45 0.0000   0.75
4228          ATG4D       19_9         0  54.86 0.0000  -5.55
4101           KRI1       19_9         0  13.89 0.0000   0.73
4104         CDKN2D       19_9         0  31.74 0.0000   2.54
4103          AP1M2       19_9         0  65.23 0.0000  -4.44
4102        SLC44A2       19_9         0  91.02 0.0000  -3.07
12119      ILF3-AS1       19_9         0  47.98 0.0000  -0.82
1398          TMED1       19_9         0  20.52 0.0000  -1.69
11089      C19orf38       19_9         0  20.52 0.0000  -1.69
5512          CARM1       19_9         0 147.19 0.0000 -12.52
5511         TIMM29       19_9         0 153.80 0.0000 -10.31
4227          YIPF2       19_9         0  24.85 0.0000  -4.25
3972        SMARCA4       19_9         0  15.17 0.0000   4.14
4151           LDLR       19_9         1 647.73 0.0019 -24.64
6998          SPC24       19_9         0  79.41 0.0000   9.02

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 1_34"
      genename region_tag susie_pip    mu2     PVE     z
528       NDC1       1_34     0.000  32.89 2.2e-14 -2.44
527      YIPF1       1_34     0.000  16.07 2.1e-15 -1.26
10976     DIO1       1_34     0.000  28.19 1.1e-14 -2.16
1028    HSPB11       1_34     0.000   8.13 4.4e-16 -0.64
3074    LRRC42       1_34     0.000   8.13 4.4e-16  0.64
3072   TCEANC2       1_34     0.000   6.34 3.0e-16 -0.46
3073    TMEM59       1_34     0.000   5.09 2.1e-16  0.18
11148   CYB5RL       1_34     0.000  20.29 4.3e-15  1.35
3076    MRPL37       1_34     0.000   5.53 2.4e-16  0.08
6603     SSBP3       1_34     0.000   6.12 2.6e-16 -0.96
9687     MROH7       1_34     0.000   8.28 4.5e-16  1.19
11620     TTC4       1_34     0.000   5.53 2.3e-16  0.97
7051     PARS2       1_34     0.000  21.42 4.0e-15 -1.54
97       TTC22       1_34     0.000   6.91 3.3e-16  0.39
7052      LEXM       1_34     0.000  24.49 7.7e-15  2.27
3062    DHCR24       1_34     0.000  22.82 6.7e-15 -1.78
7053      BSND       1_34     0.012 283.91 1.0e-05 21.09
8166     PCSK9       1_34     0.988 187.18 5.4e-04 21.41

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 11_34"
           genename region_tag susie_pip    mu2     PVE      z
10165       FAM111B      11_34     0.001   5.36 1.8e-08  -0.28
7794        FAM111A      11_34     0.001   5.17 1.7e-08   0.15
2506           DTX4      11_34     0.002  11.87 7.1e-08   1.27
10468         MPEG1      11_34     0.001   5.23 1.7e-08  -0.21
2515         MS4A6A      11_34     0.001   5.63 1.9e-08   0.91
7815          PATL1      11_34     0.017  31.07 1.5e-06   2.98
7817           STX3      11_34     0.001   5.87 2.0e-08  -0.62
7818         MRPL16      11_34     0.001   4.98 1.6e-08   0.19
4634            GIF      11_34     0.022  33.93 2.2e-06  -3.12
4638           TCN1      11_34     0.002  10.04 5.4e-08   0.88
6096          MS4A2      11_34     0.002  10.96 6.5e-08  -1.49
11819    AP001257.1      11_34     0.001   5.17 1.7e-08   0.07
11116        MS4A4E      11_34     0.009  21.00 5.4e-07   2.56
2516         MS4A4A      11_34     0.014  27.18 1.1e-06   3.15
7825         MS4A6E      11_34     0.061  28.46 5.1e-06  -3.25
7826          MS4A7      11_34     0.006  20.78 3.4e-07   1.99
7827         MS4A14      11_34     0.001   6.73 2.5e-08   0.63
2519         CCDC86      11_34     0.002   9.82 5.4e-08  -0.77
9570         PTGDR2      11_34     0.001   7.85 3.3e-08  -0.85
6093            ZP1      11_34     0.008  23.35 5.5e-07  -1.62
2520         PRPF19      11_34     0.004  18.62 2.2e-07   1.88
2521        TMEM109      11_34     0.004  17.34 1.9e-07   1.70
2546        SLC15A3      11_34     0.001   6.46 2.1e-08   1.08
2547            CD5      11_34     0.001   5.89 1.9e-08  -0.76
8008         VPS37C      11_34     0.001   5.36 1.7e-08   0.62
11874          PGA5      11_34     0.002  11.44 8.1e-08   0.18
11340          PGA3      11_34     0.004  14.50 1.5e-07   0.40
8009           VWCE      11_34     0.001   6.32 2.0e-08  -1.06
6088        TMEM138      11_34     0.001  10.44 3.9e-08  -2.01
7030       CYB561A3      11_34     0.001  10.44 3.9e-08  -2.01
9981        TMEM216      11_34     0.002   8.84 4.4e-08   0.46
11871 RP11-286N22.8      11_34     0.002  10.26 5.8e-08   0.90
4631          DAGLA      11_34     0.001  20.96 6.8e-08   4.02
3765           MYRF      11_34     0.001  31.25 1.0e-07  -5.19
4636          FADS2      11_34     0.003 187.11 1.5e-06 -13.25
4637        TMEM258      11_34     0.001 102.10 4.3e-07  -9.84
6089          FADS1      11_34     0.883 304.46 7.8e-04 -17.64
11190         FADS3      11_34     0.005  33.91 4.6e-07   4.31
8011          BEST1      11_34     0.002  35.74 2.1e-07  -5.28
6092         INCENP      11_34     0.001   6.20 2.0e-08  -1.11
7032         ASRGL1      11_34     0.001   5.07 1.6e-08  -0.29

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                id region_tag susie_pip      mu2     PVE      z
60112    rs6586405      1_122     1.000    63.26 1.8e-04   9.55
60162     rs822928      1_122     1.000   120.10 3.5e-04  12.37
72783   rs11679386       2_12     1.000   272.77 8.0e-04  15.27
72832    rs1042034       2_13     1.000   787.16 2.3e-03  25.92
72838     rs934197       2_13     1.000   358.23 1.0e-03  36.28
72841     rs548145       2_13     1.000  1405.49 4.1e-03  43.00
72918    rs1848922       2_13     1.000   471.02 1.4e-03  33.23
74568     rs780093       2_16     1.000   287.72 8.4e-04 -19.84
80633   rs72800939       2_28     1.000    51.43 1.5e-04  -7.00
325398  rs11376017       6_13     1.000    72.14 2.1e-04  -8.44
329106  rs72834643       6_20     1.000    44.16 1.3e-04  -5.50
329127 rs115740542       6_20     1.000   153.67 4.5e-04 -11.47
329860    rs454182       6_22     1.000   142.86 4.2e-04   4.48
355971   rs9496567       6_67     1.000    52.44 1.5e-04  -7.07
373728 rs117733303      6_104     1.000   130.01 3.8e-04  10.35
373764  rs56393506      6_104     1.000   109.98 3.2e-04  14.79
394763    rs217396       7_32     1.000    57.84 1.7e-04  -7.51
412317 rs763798411       7_65     1.000 90272.52 2.6e-01  -3.84
412320  rs10274607       7_65     1.000 90043.23 2.6e-01  -3.41
412328   rs4997569       7_65     1.000 90152.37 2.6e-01  -3.54
434163   rs7012814       8_12     1.000    76.84 2.2e-04   8.60
439428  rs75835816       8_21     1.000    48.44 1.4e-04   6.88
448954 rs140753685       8_42     1.000    56.44 1.6e-04   7.39
450350   rs4738679       8_45     1.000   101.69 3.0e-04 -10.43
470013  rs13252684       8_83     1.000   374.62 1.1e-03  12.25
511827 rs115478735       9_70     1.000   174.10 5.1e-04  13.95
596752   rs4937122      11_77     1.000    83.46 2.4e-04  12.93
617302   rs7397189      12_36     1.000    57.85 1.7e-04  -7.60
637978  rs11057830      12_76     1.000    39.58 1.2e-04   6.05
675211   rs2332328       14_3     1.000    61.34 1.8e-04   7.75
712866   rs2070895      15_27     1.000    70.65 2.1e-04   8.36
740406  rs66495554      16_31     1.000    91.04 2.7e-04   0.58
749620   rs2255451      16_49     1.000    52.41 1.5e-04  -7.15
768690   rs1801689      17_38     1.000   100.88 2.9e-04  10.00
769606 rs113408695      17_39     1.000   140.76 4.1e-04  11.55
769632   rs8070232      17_39     1.000   194.75 5.7e-04  -7.51
805624   rs3794991      19_15     1.000   394.75 1.2e-03 -18.65
812330  rs62117204      19_31     1.000  1466.26 4.3e-03 -59.82
812348 rs111794050      19_31     1.000  1496.74 4.4e-03 -45.67
812381    rs814573      19_31     1.000  4395.67 1.3e-02  74.70
812383 rs113345881      19_31     1.000  1729.23 5.0e-03 -48.87
812721 rs150262789      19_32     1.000   105.99 3.1e-04 -12.81
823310   rs6075251      20_13     1.000   118.36 3.5e-04  -3.56
823311  rs34507316      20_13     1.000   146.95 4.3e-04  -7.80
864616  rs11591147       1_34     1.000  1329.31 3.9e-03 -38.51
936372  rs10422256       19_9     1.000   268.34 7.8e-04  13.21
945575  rs55840997      19_30     1.000   139.63 4.1e-04 -11.43
946003  rs62115559      19_30     1.000   379.29 1.1e-03 -19.47
948769 rs374141296      19_34     1.000 79241.62 2.3e-01   3.02
80497  rs139029940       2_27     0.999    39.31 1.1e-04   6.33
286849   rs7701166       5_44     0.999    39.06 1.1e-04  -2.82
331082  rs28780090       6_26     0.999    56.92 1.7e-04   6.45
593679   rs3135506      11_70     0.999   289.98 8.5e-04  16.52
593684  rs75542613      11_70     0.999    39.14 1.1e-04  -6.81
802872   rs2043302      19_11     0.999    56.23 1.6e-04   5.05
805655 rs113619686      19_15     0.999    62.06 1.8e-04   0.73
890942  rs12208357      6_103     0.999   269.47 7.9e-04  13.53
470002  rs79658059       8_83     0.998   538.10 1.6e-03 -20.19
740401    rs821840      16_31     0.998   491.75 1.4e-03 -19.39
72835   rs78610189       2_13     0.997   126.68 3.7e-04 -10.48
386961  rs56130071       7_19     0.997   116.29 3.4e-04  11.36
805264   rs2302209      19_14     0.997    37.60 1.1e-04   5.78
946086 rs185920692      19_30     0.997    96.49 2.8e-04  -9.35
802907 rs201868221      19_11     0.996    55.90 1.6e-04   7.69
948757  rs61371437      19_34     0.996 78777.09 2.3e-01   3.07
74569    rs6744393       2_16     0.995    68.71 2.0e-04 -10.90
331105  rs62407548       6_26     0.995    71.03 2.1e-04   7.51
31045    rs1109112       1_69     0.994    31.56 9.2e-05  -5.03
438681   rs1495743       8_20     0.994    37.56 1.1e-04  -5.88
691022  rs13379043      14_34     0.994    32.76 9.5e-05  -5.43
30794    rs1730862       1_66     0.992    31.79 9.2e-05  -5.29
31047   rs78221564       1_69     0.992    30.76 8.9e-05  -4.76
646865   rs1012130      13_10     0.992    97.01 2.8e-04  -3.82
621668 rs148481241      12_44     0.990    31.05 9.0e-05   5.22
818956  rs74273659       20_5     0.990    36.58 1.1e-04   6.07
559771  rs10838525       11_4     0.989    48.93 1.4e-04  -5.31
55764    rs2807848      1_112     0.988    33.19 9.6e-05  -6.39
828215   rs6029132      20_24     0.988    44.67 1.3e-04  -6.92
150446   rs9834932       3_24     0.987    72.72 2.1e-04  -8.42
754368 rs144129583       17_7     0.985    32.20 9.3e-05  -5.94
330268  rs28986304       6_23     0.983    44.39 1.3e-04   6.87
891010    rs662138      6_103     0.983   121.30 3.5e-04  11.25
864675   rs7552841       1_34     0.981    78.61 2.3e-04   8.74
802853   rs4804149      19_11     0.980    36.41 1.0e-04   7.46
280397   rs1499279       5_31     0.979   120.13 3.4e-04 -11.06
564322   rs7943121      11_13     0.978    52.78 1.5e-04   7.12
673403   rs3934835      13_62     0.978    64.74 1.8e-04   7.86
646870    rs206326      13_10     0.976    58.67 1.7e-04  -5.04
80513    rs4076834       2_27     0.974   395.41 1.1e-03 -18.14
805673  rs12984303      19_15     0.974    30.05 8.5e-05   5.24
744293   rs4396539      16_37     0.973    30.86 8.8e-05  -5.06
828268  rs73124945      20_24     0.973    33.43 9.5e-05  -7.68
633888    rs653178      12_67     0.972    69.67 2.0e-04   8.65
200869   rs3748034        4_4     0.969    61.29 1.7e-04   6.91
946008 rs143283769      19_30     0.969    37.95 1.1e-04  -5.27
483436    rs677622       9_13     0.967    32.04 9.0e-05   5.23
812386  rs12721109      19_31     0.967  2508.75 7.1e-03 -60.87
589948 rs201912654      11_59     0.966    38.59 1.1e-04  -5.86
549895  rs12244851      10_70     0.965    34.31 9.7e-05  -4.33
823291  rs78348000      20_13     0.962    37.65 1.1e-04   5.58
712860  rs62000868      15_27     0.960    28.78 8.1e-05   4.67
812704  rs34942359      19_32     0.957    55.73 1.6e-04  -5.80
828233   rs6102034      20_24     0.953    86.37 2.4e-04 -10.11
286790  rs10062361       5_44     0.948   185.78 5.1e-04  17.92
227473   rs1458038       4_54     0.947    42.80 1.2e-04  -6.28
8327    rs79598313       1_18     0.941   125.93 3.5e-04  11.30
388651  rs10268799       7_23     0.941    37.11 1.0e-04   5.33
812621 rs377297589      19_32     0.939    70.54 1.9e-04  -7.79
358707  rs12199109       6_73     0.936    28.41 7.8e-05   5.19
646857   rs1799955      13_10     0.928   160.54 4.3e-04  -9.26
816766  rs34003091      19_39     0.921   106.85 2.9e-04 -10.07
333831 rs112357706       6_27     0.917    27.86 7.5e-05   5.21
636843   rs1169300      12_74     0.906    61.49 1.6e-04   7.69
891046   rs2297374      6_103     0.901   144.99 3.8e-04 -12.07
612389   rs2638250      12_25     0.888    27.59 7.1e-05  -4.73
740391 rs190575415      16_31     0.888    46.38 1.2e-04  -1.36
596755  rs74612335      11_77     0.883    93.65 2.4e-04  12.89
278533  rs55681913       5_28     0.877    27.85 7.1e-05  -4.97
286813   rs3843482       5_44     0.877   350.19 9.0e-04  21.88
751308  rs77277579      16_52     0.876    28.19 7.2e-05  -4.83
143365    rs307572        3_9     0.872    28.83 7.3e-05  -5.25
769617   rs9303012      17_39     0.868   197.18 5.0e-04   2.40
544074  rs10882161      10_59     0.867    44.19 1.1e-04  -6.50
871214  rs34287152       1_67     0.866    37.96 9.6e-05  -1.67
764195   rs7212325      17_28     0.862    42.75 1.1e-04  -7.37
812649  rs11083779      19_32     0.856    87.91 2.2e-04 -11.80
8443   rs138012132       1_19     0.852    29.97 7.4e-05   4.96
893938 rs542985909       7_61     0.842    33.77 8.3e-05  -5.15
828264  rs76981217      20_24     0.837    33.24 8.1e-05   6.60
596739   rs1614592      11_77     0.836    31.21 7.6e-05  -6.08
659526   rs9564985      13_36     0.835    28.56 7.0e-05  -4.75
5089     rs4336844       1_11     0.834    32.20 7.8e-05   5.32
58408   rs11122453      1_117     0.830    78.43 1.9e-04  -8.77
101201 rs138192199       2_69     0.819    27.60 6.6e-05   4.70
367772 rs540973884       6_92     0.817    30.83 7.3e-05  -5.16
593669   rs9326246      11_70     0.809   204.82 4.8e-04 -13.23
101970   rs2311597       2_70     0.806    73.55 1.7e-04   8.47

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE     z
412317 rs763798411       7_65     1.000 90272.52 2.6e-01 -3.84
412328   rs4997569       7_65     1.000 90152.37 2.6e-01 -3.54
412320  rs10274607       7_65     1.000 90043.23 2.6e-01 -3.41
412335   rs6952534       7_65     0.000 89879.82 0.0e+00 -3.46
412323  rs13230660       7_65     0.000 89848.86 4.0e-05 -3.48
412334   rs4730069       7_65     0.000 89802.89 0.0e+00 -3.44
412327  rs10242713       7_65     0.000 89487.65 0.0e+00 -3.36
412330  rs10249965       7_65     0.000 88752.31 0.0e+00 -3.33
412342   rs1013016       7_65     0.000 85111.68 0.0e+00  2.82
412367   rs8180737       7_65     0.000 80765.40 0.0e+00 -3.26
412360  rs17778396       7_65     0.000 80745.61 0.0e+00 -3.22
412361   rs2237621       7_65     0.000 80709.47 0.0e+00 -3.23
412332  rs71562637       7_65     0.000 80672.91 0.0e+00 -3.13
412394  rs10224564       7_65     0.000 80563.29 0.0e+00 -3.24
412379  rs10255779       7_65     0.000 80521.58 0.0e+00 -3.28
412396  rs78132606       7_65     0.000 80137.48 0.0e+00 -3.24
412399   rs4610671       7_65     0.000 80036.70 0.0e+00 -3.18
948773   rs2946865      19_34     0.000 79336.72 0.0e+00  3.37
948769 rs374141296      19_34     1.000 79241.62 2.3e-01  3.02
948766 rs113176985      19_34     0.000 79168.88 0.0e+00  3.42
948759  rs35295508      19_34     0.000 79051.86 0.0e+00  3.34
948764  rs73056069      19_34     0.000 78819.81 0.0e+00  3.61
948757  rs61371437      19_34     0.996 78777.09 2.3e-01  3.07
948761   rs2878354      19_34     0.000 78567.91 0.0e+00  3.52
948747    rs739349      19_34     0.000 78447.12 7.1e-06  3.09
948748    rs756628      19_34     0.000 78446.98 3.1e-06  3.08
948744    rs739347      19_34     0.000 78287.78 4.3e-11  3.05
948745   rs2073614      19_34     0.000 78190.32 1.4e-12  3.06
948750   rs2077300      19_34     0.004 77969.95 8.6e-04  3.30
948740   rs4802613      19_34     0.000 77841.87 0.0e+00  3.07
948754  rs73056059      19_34     0.000 77835.80 2.8e-08  3.31
948777   rs1316885      19_34     0.000 77814.43 0.0e+00  3.22
948774  rs60815603      19_34     0.000 77766.74 0.0e+00  3.27
948782   rs2946863      19_34     0.000 77676.17 0.0e+00  3.25
948775  rs35443645      19_34     0.000 77533.43 0.0e+00  3.19
948779  rs60746284      19_34     0.000 77271.13 0.0e+00  3.47
948738  rs10403394      19_34     0.000 76783.24 0.0e+00  3.01
948739  rs17555056      19_34     0.000 76729.61 0.0e+00  3.03
412401  rs12669532       7_65     0.000 76714.81 0.0e+00 -3.21
948755  rs73056062      19_34     0.000 75813.70 0.0e+00  2.81
412358   rs2237618       7_65     0.000 75460.30 0.0e+00 -2.88
948785 rs553431297      19_34     0.000 74898.63 0.0e+00  3.27
412403 rs118089279       7_65     0.000 74715.68 0.0e+00 -3.19
412390  rs73188303       7_65     0.000 74656.11 0.0e+00 -2.85
948768 rs112283514      19_34     0.000 74557.62 0.0e+00  3.31
948770  rs11270139      19_34     0.000 74182.82 0.0e+00  3.27
948735  rs10421294      19_34     0.000 69403.33 0.0e+00  3.05
948734   rs8108175      19_34     0.000 69393.56 0.0e+00  3.05
948727  rs59192944      19_34     0.000 69262.29 0.0e+00  3.10
948733   rs1858742      19_34     0.000 69238.40 0.0e+00  3.13

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE      z
412317 rs763798411       7_65     1.000 90272.52 0.26000  -3.84
412320  rs10274607       7_65     1.000 90043.23 0.26000  -3.41
412328   rs4997569       7_65     1.000 90152.37 0.26000  -3.54
948757  rs61371437      19_34     0.996 78777.09 0.23000   3.07
948769 rs374141296      19_34     1.000 79241.62 0.23000   3.02
812381    rs814573      19_31     1.000  4395.67 0.01300  74.70
812386  rs12721109      19_31     0.967  2508.75 0.00710 -60.87
812383 rs113345881      19_31     1.000  1729.23 0.00500 -48.87
812348 rs111794050      19_31     1.000  1496.74 0.00440 -45.67
812330  rs62117204      19_31     1.000  1466.26 0.00430 -59.82
72841     rs548145       2_13     1.000  1405.49 0.00410  43.00
864616  rs11591147       1_34     1.000  1329.31 0.00390 -38.51
936332  rs12151108       19_9     0.430  2590.23 0.00320 -47.78
936333  rs73015024       19_9     0.355  2589.85 0.00270 -47.77
72832    rs1042034       2_13     1.000   787.16 0.00230  25.92
470002  rs79658059       8_83     0.998   538.10 0.00160 -20.19
72918    rs1848922       2_13     1.000   471.02 0.00140  33.23
740401    rs821840      16_31     0.998   491.75 0.00140 -19.39
936334 rs147985405       19_9     0.168  2588.43 0.00130 -47.76
805624   rs3794991      19_15     1.000   394.75 0.00120 -18.65
80513    rs4076834       2_27     0.974   395.41 0.00110 -18.14
470013  rs13252684       8_83     1.000   374.62 0.00110  12.25
946003  rs62115559      19_30     1.000   379.29 0.00110 -19.47
72838     rs934197       2_13     1.000   358.23 0.00100  36.28
286813   rs3843482       5_44     0.877   350.19 0.00090  21.88
948750   rs2077300      19_34     0.004 77969.95 0.00086   3.30
593679   rs3135506      11_70     0.999   289.98 0.00085  16.52
74568     rs780093       2_16     1.000   287.72 0.00084 -19.84
72783   rs11679386       2_12     1.000   272.77 0.00080  15.27
936505   rs2738464       19_9     0.615   443.55 0.00080   6.70
890942  rs12208357      6_103     0.999   269.47 0.00079  13.53
916621   rs3794695      16_38     0.619   432.43 0.00078  16.79
936372  rs10422256       19_9     1.000   268.34 0.00078  13.21
769632   rs8070232      17_39     1.000   194.75 0.00057  -7.51
286790  rs10062361       5_44     0.948   185.78 0.00051  17.92
511827 rs115478735       9_70     1.000   174.10 0.00051  13.95
769617   rs9303012      17_39     0.868   197.18 0.00050   2.40
593669   rs9326246      11_70     0.809   204.82 0.00048 -13.23
329127 rs115740542       6_20     1.000   153.67 0.00045 -11.47
646857   rs1799955      13_10     0.928   160.54 0.00043  -9.26
823311  rs34507316      20_13     1.000   146.95 0.00043  -7.80
936511   rs2915966       19_9     0.336   442.78 0.00043   6.69
329860    rs454182       6_22     1.000   142.86 0.00042   4.48
769606 rs113408695      17_39     1.000   140.76 0.00041  11.55
936364  rs28493980       19_9     0.517   270.49 0.00041   9.87
945575  rs55840997      19_30     1.000   139.63 0.00041 -11.43
72777     rs660069       2_12     0.591   218.61 0.00038  -9.40
373728 rs117733303      6_104     1.000   130.01 0.00038  10.35
891046   rs2297374      6_103     0.901   144.99 0.00038 -12.07
936363   rs3745677       19_9     0.482   270.05 0.00038   9.91

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                id region_tag susie_pip     mu2     PVE      z
812381    rs814573      19_31     1.000 4395.67 1.3e-02  74.70
812386  rs12721109      19_31     0.967 2508.75 7.1e-03 -60.87
812330  rs62117204      19_31     1.000 1466.26 4.3e-03 -59.82
812317   rs1551891      19_31     0.000  790.71 0.0e+00 -56.10
871927  rs12740374       1_67     0.000 2933.87 2.8e-07 -55.62
871934    rs646776       1_67     0.000 2922.70 2.8e-07  55.51
871933    rs629301       1_67     0.000 2919.40 2.8e-07  55.48
871923   rs7528419       1_67     0.000 2908.61 2.8e-07 -55.38
871945    rs583104       1_67     0.000 2824.26 2.7e-07  54.58
871948   rs4970836       1_67     0.000 2823.08 2.7e-07  54.55
871950   rs1277930       1_67     0.000 2809.76 2.7e-07  54.42
871951    rs599839       1_67     0.000 2804.16 2.7e-07  54.37
871931   rs3832016       1_67     0.000 2754.88 2.6e-07  53.86
871928    rs660240       1_67     0.000 2740.69 2.6e-07  53.72
871946    rs602633       1_67     0.000 2684.03 2.5e-07  53.17
812377    rs405509      19_31     0.000 2307.20 0.0e+00 -49.85
812383 rs113345881      19_31     1.000 1729.23 5.0e-03 -48.87
936332  rs12151108       19_9     0.430 2590.23 3.2e-03 -47.78
936333  rs73015024       19_9     0.355 2589.85 2.7e-03 -47.77
936334 rs147985405       19_9     0.168 2588.43 1.3e-03 -47.76
936336  rs17248727       19_9     0.045 2585.79 3.4e-04 -47.73
936343   rs6511720       19_9     0.002 2579.69 1.3e-05 -47.71
936342  rs57217136       19_9     0.000 2576.65 3.1e-06 -47.66
936298 rs138175288       19_9     0.000 2568.30 4.5e-08 -47.58
936318  rs73015020       19_9     0.000 2568.25 4.5e-08 -47.58
936297 rs114821903       19_9     0.000 2568.03 4.0e-08 -47.57
936299 rs112107114       19_9     0.000 2567.37 2.8e-08 -47.57
936300 rs115594766       19_9     0.000 2567.24 2.7e-08 -47.57
936309  rs73015013       19_9     0.000 2568.14 4.2e-08 -47.57
936335  rs17248720       19_9     0.000 2559.03 3.3e-10 -47.57
936316  rs61194703       19_9     0.000 2565.25 9.8e-09 -47.56
936296  rs73015011       19_9     0.000 2565.18 9.3e-09 -47.55
936315 rs138294113       19_9     0.000 2565.44 1.1e-08 -47.55
936307 rs142130958       19_9     0.000 2564.27 5.8e-09 -47.54
936324 rs112552009       19_9     0.000 2565.34 9.9e-09 -47.52
936330   rs8106503       19_9     0.000 2553.06 1.7e-11 -47.52
936320  rs77140532       19_9     0.000 2559.18 4.5e-10 -47.51
936322  rs73015021       19_9     0.000 2558.92 4.0e-10 -47.51
936314  rs10402112       19_9     0.000 2561.22 1.2e-09 -47.50
936293 rs113722226       19_9     0.000 2559.42 4.9e-10 -47.49
936325  rs10412048       19_9     0.000 2555.82 8.1e-11 -47.47
936292 rs148898583       19_9     0.000 2556.94 1.4e-10 -47.46
936310 rs114846969       19_9     0.000 2546.31 6.3e-13 -47.43
936290 rs112898275       19_9     0.000 2551.86 1.0e-11 -47.41
936291 rs112374545       19_9     0.000 2553.27 2.1e-11 -47.41
936301 rs112032422       19_9     0.000 2552.37 1.3e-11 -47.41
936312  rs73015016       19_9     0.000 2548.41 1.8e-12 -47.40
936288  rs56125973       19_9     0.000 2545.66 4.3e-13 -47.35
936286  rs55997232       19_9     0.000 2544.11 1.9e-13 -47.33
936287  rs55791371       19_9     0.000 2543.69 1.5e-13 -47.33

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 10
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
                                                                                            Term
1                                              cellular response to nutrient levels (GO:0031669)
2                                                           cholesterol homeostasis (GO:0042632)
3                                                                sterol homeostasis (GO:0055092)
4                                                  sensory perception of sour taste (GO:0050915)
5                   positive regulation of protein catabolic process in the vacuole (GO:1904352)
6                                                regulation of astrocyte activation (GO:0061888)
7         regulation of low-density lipoprotein particle receptor catabolic process (GO:0032803)
8                                                   cellular response to starvation (GO:0009267)
9                                  negative regulation of astrocyte differentiation (GO:0048712)
10                            negative regulation of lipoprotein particle clearance (GO:0010985)
11                                                                    sterol import (GO:0035376)
12                                                               cholesterol import (GO:0070508)
13                 negative regulation of low-density lipoprotein receptor activity (GO:1905598)
14                                positive regulation of receptor catabolic process (GO:2000646)
15                                                    chylomicron remnant clearance (GO:0034382)
16                                regulation of lysosomal protein catabolic process (GO:1905165)
17                                negative regulation of microglial cell activation (GO:1903979)
18                                regulation of nitrogen compound metabolic process (GO:0051171)
19                       negative regulation of nitrogen compound metabolic process (GO:0051172)
20                           negative regulation of macromolecule metabolic process (GO:0010605)
21                                      unsaturated fatty acid biosynthetic process (GO:0006636)
22                                                intestinal cholesterol absorption (GO:0030299)
23                        negative regulation of sodium ion transmembrane transport (GO:1902306)
24             negative regulation of sodium ion transmembrane transporter activity (GO:2000650)
25                      low-density lipoprotein particle receptor catabolic process (GO:0032802)
26                      low-density lipoprotein receptor particle metabolic process (GO:0032799)
27                         regulation of low-density lipoprotein particle clearance (GO:0010988)
28                                                   cellular response to acidic pH (GO:0071468)
29                                          negative regulation of receptor binding (GO:1900121)
30                         positive regulation of triglyceride biosynthetic process (GO:0010867)
31                                           positive regulation of bone resorption (GO:0045780)
32                                                      intestinal lipid absorption (GO:0098856)
33                                                      sensory perception of taste (GO:0050909)
34                                  negative regulation of amyloid fibril formation (GO:1905907)
35                                             carboxylic acid biosynthetic process (GO:0046394)
36                                           alpha-linolenic acid metabolic process (GO:0036109)
37                                           positive regulation of ruffle assembly (GO:1900029)
38                   cellular response to low-density lipoprotein particle stimulus (GO:0071404)
39                                           negative regulation of cell activation (GO:0050866)
40                                negative regulation of neuroinflammatory response (GO:0150079)
41                                                            response to acidic pH (GO:0010447)
42                                                   icosanoid biosynthetic process (GO:0046456)
43                                           regulation of amyloid fibril formation (GO:1905906)
44                                  regulation of triglyceride biosynthetic process (GO:0010866)
45                                              intracellular cholesterol transport (GO:0032367)
46                                         regulation of microglial cell activation (GO:1903978)
47                                     negative regulation of macrophage activation (GO:0043031)
48                                                 regulation of receptor recycling (GO:0001919)
49                                                           protein autoprocessing (GO:0016540)
50 positive regulation of cyclin-dependent protein serine/threonine kinase activity (GO:0045737)
51                                                          cellular response to pH (GO:0071467)
52                                               regulation of spindle organization (GO:0090224)
53                            positive regulation of triglyceride metabolic process (GO:0090208)
54                                                 detection of mechanical stimulus (GO:0050982)
55                                                                 long-term memory (GO:0007616)
56                        positive regulation of cellular protein catabolic process (GO:1903364)
57                                               hepaticobiliary system development (GO:0061008)
58                  positive regulation of cyclin-dependent protein kinase activity (GO:1904031)
59                    negative regulation of ion transmembrane transporter activity (GO:0032413)
60                                                  linoleic acid metabolic process (GO:0043651)
61                                                                 sterol transport (GO:0015918)
62                                  positive regulation of receptor internalization (GO:0002092)
63                                  positive regulation of neuron apoptotic process (GO:0043525)
64                                                    regulation of ruffle assembly (GO:1900027)
65                                                 negative regulation of signaling (GO:0023057)
66                                                  organophosphate ester transport (GO:0015748)
67                                                       receptor catabolic process (GO:0032801)
68            positive regulation of microtubule polymerization or depolymerization (GO:0031112)
69                             negative regulation of receptor-mediated endocytosis (GO:0048261)
70                                positive regulation of microtubule polymerization (GO:0031116)
71                                       long-chain fatty acid biosynthetic process (GO:0042759)
72                                                                liver development (GO:0001889)
73                                       regulation of mitotic spindle organization (GO:0060236)
74                                positive regulation of lipid biosynthetic process (GO:0046889)
75                                           regulation of receptor internalization (GO:0002090)
76                                                            lysosome localization (GO:0032418)
77                                                phospholipid biosynthetic process (GO:0008654)
78                                             organophosphate biosynthetic process (GO:0090407)
79                                negative regulation of cellular metabolic process (GO:0031324)
80                                         regulation of microtubule polymerization (GO:0031113)
81                      regulation of sodium ion transmembrane transporter activity (GO:2000649)
82                                                        epithelial cell migration (GO:0010631)
83           detection of chemical stimulus involved in sensory perception of taste (GO:0050912)
84                                                                     neurogenesis (GO:0022008)
85                             positive regulation of receptor-mediated endocytosis (GO:0048260)
86                                                     microtubule bundle formation (GO:0001578)
87                                              positive regulation of neuron death (GO:1901216)
88                                          regulation of protein metabolic process (GO:0051246)
89                                              mitotic metaphase plate congression (GO:0007080)
90                                                            cholesterol transport (GO:0030301)
91                                                    ameboidal-type cell migration (GO:0001667)
92                    positive regulation of protein localization to cell periphery (GO:1904377)
93                   positive regulation of protein localization to plasma membrane (GO:1903078)
94                                 negative regulation of protein metabolic process (GO:0051248)
95                                         unsaturated fatty acid metabolic process (GO:0033559)
96                                                         renal system development (GO:0072001)
97                                                      icosanoid metabolic process (GO:0006690)
98                                                           phospholipid transport (GO:0015914)
99                                               cellular protein catabolic process (GO:0044257)
   Overlap Adjusted.P.value       Genes
1     2/66       0.02502945 PCSK9;FADS1
2     2/71       0.02502945  PCSK9;LDLR
3     2/72       0.02502945  PCSK9;LDLR
4      1/5       0.02502945      PKD1L3
5      1/5       0.02502945        LDLR
6      1/5       0.02502945        LDLR
7      1/5       0.02502945       PCSK9
8    2/158       0.02502945 PCSK9;FADS1
9      1/6       0.02502945        LDLR
10     1/6       0.02502945       PCSK9
11     1/6       0.02502945        LDLR
12     1/6       0.02502945        LDLR
13     1/7       0.02502945       PCSK9
14     1/7       0.02502945       PCSK9
15     1/7       0.02502945        LDLR
16     1/7       0.02502945        LDLR
17     1/8       0.02502945        LDLR
18     1/8       0.02502945        LDLR
19     1/8       0.02502945        LDLR
20   2/194       0.02502945  PCSK9;LDLR
21     1/9       0.02502945       FADS1
22     1/9       0.02502945        LDLR
23    1/10       0.02502945       PCSK9
24    1/10       0.02502945       PCSK9
25    1/10       0.02502945       PCSK9
26    1/10       0.02502945       PCSK9
27    1/10       0.02502945       PCSK9
28    1/10       0.02502945      PKD1L3
29    1/10       0.02502945       PCSK9
30    1/11       0.02502945        LDLR
31    1/11       0.02502945        DEF8
32    1/11       0.02502945        LDLR
33    1/12       0.02502945      PKD1L3
34    1/12       0.02502945        LDLR
35    1/13       0.02502945       FADS1
36    1/13       0.02502945       FADS1
37    1/13       0.02502945        DEF8
38    1/14       0.02502945        LDLR
39    1/14       0.02502945        LDLR
40    1/14       0.02502945        LDLR
41    1/15       0.02502945      PKD1L3
42    1/15       0.02502945       FADS1
43    1/15       0.02502945        LDLR
44    1/15       0.02502945        LDLR
45    1/15       0.02502945        LDLR
46    1/15       0.02502945        LDLR
47    1/16       0.02601915        LDLR
48    1/17       0.02601915       PCSK9
49    1/17       0.02601915       PCSK9
50    1/17       0.02601915       PSRC1
51    1/18       0.02601915      PKD1L3
52    1/18       0.02601915       PSRC1
53    1/19       0.02601915        LDLR
54    1/19       0.02601915      PKD1L3
55    1/19       0.02601915        LDLR
56    1/19       0.02601915       PCSK9
57    1/20       0.02638894       PCSK9
58    1/20       0.02638894       PSRC1
59    1/21       0.02638894       PCSK9
60    1/21       0.02638894       FADS1
61    1/21       0.02638894        LDLR
62    1/23       0.02842323       PCSK9
63    1/24       0.02857639       PCSK9
64    1/24       0.02857639        DEF8
65    1/25       0.02857639       PCSK9
66    1/25       0.02857639        LDLR
67    1/25       0.02857639       PCSK9
68    1/26       0.02885153       PSRC1
69    1/26       0.02885153       PCSK9
70    1/28       0.03061325       PSRC1
71    1/30       0.03232342       FADS1
72    1/32       0.03398418       PCSK9
73    1/35       0.03614123       PSRC1
74    1/35       0.03614123        LDLR
75    1/36       0.03666995       PCSK9
76    1/37       0.03670139        DEF8
77    1/37       0.03670139       FADS1
78    1/39       0.03768894       FADS1
79    1/39       0.03768894       PCSK9
80    1/40       0.03769241       PSRC1
81    1/40       0.03769241       PCSK9
82    1/41       0.03815499        PKN3
83    1/44       0.03947503      PKD1L3
84    1/44       0.03947503       PCSK9
85    1/44       0.03947503       PCSK9
86    1/45       0.03989379       PSRC1
87    1/47       0.04116943       PCSK9
88    1/48       0.04155825        LDLR
89    1/51       0.04210990       PSRC1
90    1/51       0.04210990        LDLR
91    1/52       0.04210990        PKN3
92    1/52       0.04210990       CNPY4
93    1/52       0.04210990       CNPY4
94    1/52       0.04210990        LDLR
95    1/54       0.04324977       FADS1
96    1/57       0.04468115       PCSK9
97    1/57       0.04468115       FADS1
98    1/59       0.04575644        LDLR
99    1/60       0.04605161       PCSK9
[1] "GO_Cellular_Component_2021"
                                                                  Term
1                                   endolysosome membrane (GO:0036020)
2                                            endolysosome (GO:0036019)
3                                           late endosome (GO:0005770)
4 extrinsic component of external side of plasma membrane (GO:0031232)
5                                           lytic vacuole (GO:0000323)
6                                          early endosome (GO:0005769)
7                                       endosome membrane (GO:0010008)
8                                      lysosomal membrane (GO:0005765)
  Overlap Adjusted.P.value      Genes
1    2/17     0.0009143328 PCSK9;LDLR
2    2/25     0.0010063130 PCSK9;LDLR
3   2/189     0.0299523470 PCSK9;LDLR
4     1/8     0.0299523470      PCSK9
5   2/219     0.0304139312 PCSK9;LDLR
6   2/266     0.0369547171 PCSK9;LDLR
7   2/325     0.0419655608 PCSK9;LDLR
8   2/330     0.0419655608 PCSK9;LDLR
[1] "GO_Molecular_Function_2021"
                                                             Term Overlap
1           low-density lipoprotein particle binding (GO:0030169)    2/17
2                       lipoprotein particle binding (GO:0071813)    2/24
3                                        IgG binding (GO:0019864)     1/5
4                    apolipoprotein receptor binding (GO:0034190)     1/6
5                  sodium channel inhibitor activity (GO:0019871)     1/8
6                       clathrin heavy chain binding (GO:0032050)     1/9
7  low-density lipoprotein particle receptor binding (GO:0050750)    1/23
8              lipoprotein particle receptor binding (GO:0070325)    1/28
9                            taste receptor activity (GO:0008527)    1/31
10                    ion channel inhibitor activity (GO:0008200)    1/37
11                 sodium channel regulator activity (GO:0017080)    1/37
   Adjusted.P.value      Genes
1      0.0007924217 PCSK9;LDLR
2      0.0008025804 PCSK9;LDLR
3      0.0194646578      FCGRT
4      0.0194646578      PCSK9
5      0.0194646578      PCSK9
6      0.0194646578       LDLR
7      0.0425030170      PCSK9
8      0.0433743700      PCSK9
9      0.0433743700     PKD1L3
10     0.0433743700      PCSK9
11     0.0433743700      PCSK9
DEF8 gene(s) from the input list not found in DisGeNET CURATEDPKN3 gene(s) from the input list not found in DisGeNET CURATEDFCGRT gene(s) from the input list not found in DisGeNET CURATEDPKD1L3 gene(s) from the input list not found in DisGeNET CURATEDPSRC1 gene(s) from the input list not found in DisGeNET CURATED
                                   Description         FDR Ratio BgRatio
10              Hypercholesterolemia, Familial 0.001393696   2/5 18/9703
9                         Hypercholesterolemia 0.003360327   2/5 39/9703
4                    Coronary Arteriosclerosis 0.004432076   2/5 65/9703
34 HYPERCHOLESTEROLEMIA, AUTOSOMAL DOMINANT, 3 0.004432076   1/5  1/9703
35                     Coronary Artery Disease 0.004432076   2/5 65/9703
17                                     Q Fever 0.012301172   1/5  5/9703
22                               Acute Q fever 0.012301172   1/5  5/9703
27                             Chronic Q Fever 0.012301172   1/5  5/9703
38                 Coxiella burnetii Infection 0.012301172   1/5  5/9703
29               Hyperlipoproteinemia Type IIb 0.028737302   1/5 13/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
                         description size overlap          FDR
1                      Dyslipidaemia   81       5 1.023299e-05
2                   Coronary Disease  185       5 3.306265e-04
3            Coronary Artery Disease  169       4 7.133147e-03
4        Arterial Occlusive Diseases  182       4 7.133147e-03
5                   Arteriosclerosis  184       4 7.133147e-03
6                Myocardial Ischemia  195       4 7.133147e-03
7                    Hyperlipidemias   62       3 7.133147e-03
8          Hypo-beta-lipoproteinemia   10       2 9.175745e-03
9           Hypobetalipoproteinemias   10       2 9.175745e-03
10                    Heart Diseases  234       4 9.252811e-03
11           Cardiovascular Diseases  276       4 1.607091e-02
12 Hyperlipidemia, Familial Combined   16       2 1.829748e-02
13      Hyperlipoproteinemia Type II   18       2 2.151358e-02
14             Hyperlipoproteinemias   19       2 2.231616e-02
15             Myocardial Infarction  139       3 3.637876e-02
16                        Infarction  141       3 3.637876e-02
17            Cholesterol metabolism   31       2 4.968148e-02
         database                       userId
1  disease_GLAD4U PCSK9;PSRC1;TIMD4;FADS1;LDLR
2  disease_GLAD4U PCSK9;PSRC1;TIMD4;FADS1;LDLR
3  disease_GLAD4U       PCSK9;PSRC1;FADS1;LDLR
4  disease_GLAD4U       PCSK9;PSRC1;FADS1;LDLR
5  disease_GLAD4U       PCSK9;PSRC1;FADS1;LDLR
6  disease_GLAD4U       PCSK9;PSRC1;FADS1;LDLR
7  disease_GLAD4U             PCSK9;TIMD4;LDLR
8  disease_GLAD4U                   PCSK9;LDLR
9  disease_GLAD4U                   PCSK9;LDLR
10 disease_GLAD4U       PCSK9;PSRC1;FADS1;LDLR
11 disease_GLAD4U       PCSK9;PSRC1;FADS1;LDLR
12 disease_GLAD4U                   PCSK9;LDLR
13 disease_GLAD4U                   PCSK9;LDLR
14 disease_GLAD4U                   PCSK9;LDLR
15 disease_GLAD4U             PCSK9;PSRC1;LDLR
16 disease_GLAD4U             PCSK9;PSRC1;LDLR
17   pathway_KEGG                   PCSK9;LDLR

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2