Last updated: 2021-09-09
Checks: 6 1
Knit directory: ctwas_applied/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210726)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Unstaged changes:
Modified: analysis/ukb-d-30500_irnt_Liver.Rmd
Modified: analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
Modified: analysis/ukb-d-30600_irnt_Liver.Rmd
Modified: analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
Modified: analysis/ukb-d-30610_irnt_Liver.Rmd
Modified: analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
Modified: analysis/ukb-d-30620_irnt_Liver.Rmd
Modified: analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
Modified: analysis/ukb-d-30630_irnt_Liver.Rmd
Modified: analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
Modified: analysis/ukb-d-30640_irnt_Liver.Rmd
Modified: analysis/ukb-d-30650_irnt_Liver.Rmd
Modified: analysis/ukb-d-30660_irnt_Liver.Rmd
Modified: analysis/ukb-d-30670_irnt_Liver.Rmd
Modified: analysis/ukb-d-30680_irnt_Liver.Rmd
Modified: analysis/ukb-d-30690_irnt_Liver.Rmd
Modified: analysis/ukb-d-30700_irnt_Liver.Rmd
Modified: analysis/ukb-d-30710_irnt_Liver.Rmd
Modified: analysis/ukb-d-30720_irnt_Liver.Rmd
Modified: analysis/ukb-d-30730_irnt_Liver.Rmd
Modified: analysis/ukb-d-30740_irnt_Liver.Rmd
Modified: analysis/ukb-d-30750_irnt_Liver.Rmd
Modified: analysis/ukb-d-30760_irnt_Liver.Rmd
Modified: analysis/ukb-d-30770_irnt_Liver.Rmd
Modified: analysis/ukb-d-30780_irnt_Liver.Rmd
Modified: analysis/ukb-d-30790_irnt_Liver.Rmd
Modified: analysis/ukb-d-30800_irnt_Liver.Rmd
Modified: analysis/ukb-d-30810_irnt_Liver.Rmd
Modified: analysis/ukb-d-30820_irnt_Liver.Rmd
Modified: analysis/ukb-d-30830_irnt_Liver.Rmd
Modified: analysis/ukb-d-30840_irnt_Liver.Rmd
Modified: analysis/ukb-d-30850_irnt_Liver.Rmd
Modified: analysis/ukb-d-30860_irnt_Liver.Rmd
Modified: analysis/ukb-d-30870_irnt_Liver.Rmd
Modified: analysis/ukb-d-30880_irnt_Liver.Rmd
Modified: analysis/ukb-d-30890_irnt_Liver.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30630_irnt_Whole_Blood.Rmd
) and HTML (docs/ukb-d-30630_irnt_Whole_Blood.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | cbf7408 | wesleycrouse | 2021-09-08 | adding enrichment to reports |
html | cbf7408 | wesleycrouse | 2021-09-08 | adding enrichment to reports |
Rmd | 4970e3e | wesleycrouse | 2021-09-08 | updating reports |
html | 4970e3e | wesleycrouse | 2021-09-08 | updating reports |
Rmd | dfd2b5f | wesleycrouse | 2021-09-07 | regenerating reports |
html | dfd2b5f | wesleycrouse | 2021-09-07 | regenerating reports |
Rmd | 61b53b3 | wesleycrouse | 2021-09-06 | updated PVE calculation |
html | 61b53b3 | wesleycrouse | 2021-09-06 | updated PVE calculation |
Rmd | 837dd01 | wesleycrouse | 2021-09-01 | adding additional fixedsigma report |
Rmd | d0a5417 | wesleycrouse | 2021-08-30 | adding new reports to the index |
Rmd | 0922de7 | wesleycrouse | 2021-08-18 | updating all reports with locus plots |
html | 0922de7 | wesleycrouse | 2021-08-18 | updating all reports with locus plots |
html | 1c62980 | wesleycrouse | 2021-08-11 | Updating reports |
Rmd | 5981e80 | wesleycrouse | 2021-08-11 | Adding more reports |
html | 5981e80 | wesleycrouse | 2021-08-11 | Adding more reports |
Rmd | 05a98b7 | wesleycrouse | 2021-08-07 | adding additional results |
html | 05a98b7 | wesleycrouse | 2021-08-07 | adding additional results |
html | 03e541c | wesleycrouse | 2021-07-29 | Cleaning up report generation |
Rmd | 276893d | wesleycrouse | 2021-07-29 | Updating reports |
html | 276893d | wesleycrouse | 2021-07-29 | Updating reports |
These are the results of a ctwas
analysis of the UK Biobank trait Apoliprotein A (quantile)
using Whole_Blood
gene weights.
The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30630_irnt
. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.
The weights are mashr GTEx v8 models on Whole_Blood
eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)
LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])
TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)
qclist_all <- list()
qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))
for (i in 1:length(qc_files)){
load(qc_files[i])
chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}
qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"
rm(qclist, wgtlist, z_gene_chr)
#number of imputed weights
nrow(qclist_all)
[1] 11095
#number of imputed weights by chromosome
table(qclist_all$chr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1129 747 624 400 479 621 560 383 404 430 682 652 192 362 331
16 17 18 19 20 21 22
551 725 159 911 313 130 310
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.762776
#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))
#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")
#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation
#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)
#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)
ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])
#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z
#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized
z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1
#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)
#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA
ctwas_res <- rbind(ctwas_gene_res,
ctwas_snp_res[,colnames(ctwas_gene_res)])
#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])
report_cols_snps <- c("id", report_cols[-1])
#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)
library(ggplot2)
library(cowplot)
********************************************************
Note: As of version 1.0.0, cowplot does not change the
default ggplot2 theme anymore. To recover the previous
behavior, execute:
theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
value = c(group_prior_rec[1,], group_prior_rec[2,]),
group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)
df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument
p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
geom_line(aes(color=group)) +
geom_point(aes(color=group)) +
xlab("Iteration") + ylab(bquote(pi)) +
ggtitle("Prior mean") +
theme_cowplot()
df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
geom_line(aes(color=group)) +
geom_point(aes(color=group)) +
xlab("Iteration") + ylab(bquote(sigma^2)) +
ggtitle("Prior variance") +
theme_cowplot()
plot_grid(p_pi, p_sigma2)
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
gene snp
0.0196334837 0.0001842734
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
gene snp
25.11155 16.68317
#report sample size
print(sample_size)
[1] 313387
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1] 11095 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
gene snp
0.01745490 0.08531908
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.1325020 0.8951585
#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
genename region_tag susie_pip mu2 PVE z
10765 ZDHHC18 1_18 1.000 76.68 2.4e-04 -10.10
1980 FCGRT 19_34 1.000 29303.85 9.4e-02 -4.89
1652 PCIF1 20_28 0.999 64.50 2.1e-04 8.15
4564 PSRC1 1_67 0.998 231.34 7.4e-04 16.64
7654 PSMC3 11_29 0.997 109.99 3.5e-04 -14.44
4610 ACP2 11_29 0.996 105.08 3.3e-04 -14.33
12237 RP11-110I1.14 11_71 0.994 54.36 1.7e-04 8.05
8863 PACS1 11_36 0.986 28.53 9.0e-05 5.21
9863 LAMP1 13_62 0.980 25.00 7.8e-05 4.79
8482 SPSB1 1_6 0.979 23.06 7.2e-05 4.29
5389 CTRL 16_36 0.979 258.47 8.1e-04 15.96
3378 GPAM 10_70 0.973 99.00 3.1e-04 10.46
12304 RP11-54O7.17 1_1 0.965 43.82 1.3e-04 -6.74
6590 NTAN1 16_15 0.960 36.78 1.1e-04 -5.73
1420 MARCH2 19_8 0.955 27.63 8.4e-05 -7.04
5397 VPS53 17_1 0.952 23.82 7.2e-05 4.58
23 M6PR 12_9 0.947 35.97 1.1e-04 5.68
6370 CEBPG 19_23 0.946 24.27 7.3e-05 -5.66
8628 SP3 2_105 0.935 24.51 7.3e-05 2.76
5834 TNFAIP8 5_72 0.931 25.75 7.6e-05 -4.81
4316 MAP1B 5_43 0.920 21.79 6.4e-05 4.37
6439 SLFN13 17_21 0.920 20.51 6.0e-05 4.09
4360 TRIM5 11_4 0.912 26.92 7.8e-05 4.08
6089 FADS1 11_34 0.910 156.08 4.5e-04 -14.88
9777 RAB11B 19_8 0.906 46.72 1.4e-04 -10.38
2333 PITRM1 10_4 0.899 19.22 5.5e-05 -3.87
9322 F2 11_28 0.898 65.51 1.9e-04 -10.46
2891 GBE1 3_54 0.884 21.80 6.2e-05 4.39
2410 MLX 17_25 0.882 55.30 1.6e-04 -7.32
7513 FOXK1 7_6 0.878 25.40 7.1e-05 -4.80
4283 TRAF3 14_54 0.875 26.76 7.5e-05 -4.95
10417 MRPL21 11_38 0.874 52.78 1.5e-04 7.15
2442 IFT20 17_18 0.873 86.29 2.4e-04 -9.35
1267 PABPC4 1_24 0.868 185.89 5.1e-04 14.60
2388 BLMH 17_18 0.868 32.08 8.9e-05 5.67
3224 RPA2 1_19 0.867 21.72 6.0e-05 4.19
5262 SLAIN1 13_38 0.841 20.81 5.6e-05 -4.04
8242 NRG4 15_35 0.839 25.48 6.8e-05 4.48
10505 UGT2B17 4_48 0.835 48.94 1.3e-04 8.27
562 DGAT2 11_42 0.825 113.88 3.0e-04 13.70
#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
genename region_tag susie_pip mu2 PVE z
1980 FCGRT 19_34 1 29303.85 9.4e-02 -4.89
5520 RCN3 19_34 0 9358.83 0.0e+00 -5.07
8926 RPS6KB2 11_37 0 7563.91 2.9e-07 -4.55
7978 NDUFV1 11_37 0 6981.82 1.3e-12 1.53
168 SPRTN 1_118 0 5167.34 0.0e+00 -3.22
1818 ESRP2 16_36 0 4689.55 0.0e+00 -1.93
10901 PSMB10 16_36 0 4457.24 0.0e+00 -1.88
1794 NUTF2 16_36 0 4455.38 0.0e+00 2.04
6809 C16orf86 16_36 0 4399.66 0.0e+00 -1.89
1805 ACD 16_36 0 4363.60 0.0e+00 -1.92
1804 CTCF 16_36 0 3755.01 0.0e+00 1.73
374 EDC4 16_36 0 3728.73 0.0e+00 1.10
3138 EXOC8 1_118 0 3716.67 0.0e+00 -3.02
1796 CENPT 16_36 0 3691.79 0.0e+00 1.21
806 NFATC3 16_36 0 3642.73 0.0e+00 -2.76
6806 ATP6V0D1 16_36 0 3486.84 0.0e+00 -1.58
6805 ZDHHC1 16_36 0 3472.98 0.0e+00 1.48
7875 DUS2 16_36 0 3468.33 0.0e+00 6.75
6804 TPPP3 16_36 0 3376.47 0.0e+00 0.42
10904 E2F4 16_36 0 3318.89 0.0e+00 1.75
#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
genename region_tag susie_pip mu2 PVE z
1980 FCGRT 19_34 1.000 29303.85 0.09400 -4.89
5389 CTRL 16_36 0.979 258.47 0.00081 15.96
4564 PSRC1 1_67 0.998 231.34 0.00074 16.64
1267 PABPC4 1_24 0.868 185.89 0.00051 14.60
7089 USP1 1_39 0.550 255.43 0.00045 16.75
6089 FADS1 11_34 0.910 156.08 0.00045 -14.88
7654 PSMC3 11_29 0.997 109.99 0.00035 -14.44
4610 ACP2 11_29 0.996 105.08 0.00033 -14.33
3378 GPAM 10_70 0.973 99.00 0.00031 10.46
562 DGAT2 11_42 0.825 113.88 0.00030 13.70
7786 CATSPER2 15_16 0.669 116.07 0.00025 -10.07
10765 ZDHHC18 1_18 1.000 76.68 0.00024 -10.10
2442 IFT20 17_18 0.873 86.29 0.00024 -9.35
1652 PCIF1 20_28 0.999 64.50 0.00021 8.15
9322 F2 11_28 0.898 65.51 0.00019 -10.46
6959 CCDC116 22_4 0.492 106.26 0.00017 10.44
12237 RP11-110I1.14 11_71 0.994 54.36 0.00017 8.05
2496 ZPR1 11_70 0.140 364.62 0.00016 3.93
11441 APOC2 19_31 0.319 160.14 0.00016 -11.79
2410 MLX 17_25 0.882 55.30 0.00016 -7.32
#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
genename region_tag susie_pip mu2 PVE z
8899 LPL 8_21 0.000 457.84 2.3e-13 30.54
3237 APOA1 11_70 0.000 197.52 0.0e+00 -17.89
7089 USP1 1_39 0.550 255.43 4.5e-04 16.75
4564 PSRC1 1_67 0.998 231.34 7.4e-04 16.64
3102 DOCK7 1_39 0.057 240.10 4.4e-05 16.05
5389 CTRL 16_36 0.979 258.47 8.1e-04 15.96
11020 LCAT 16_36 0.000 251.55 5.6e-09 15.35
6089 FADS1 11_34 0.910 156.08 4.5e-04 -14.88
1267 PABPC4 1_24 0.868 185.89 5.1e-04 14.60
5390 DPEP3 16_36 0.000 172.87 1.1e-15 -14.55
7654 PSMC3 11_29 0.997 109.99 3.5e-04 -14.44
6813 PSKH1 16_36 0.000 1096.57 1.0e-08 -14.36
4610 ACP2 11_29 0.996 105.08 3.3e-04 -14.33
4068 ALDH1A2 15_27 0.000 240.92 0.0e+00 13.99
6808 CARMIL2 16_36 0.000 200.07 1.5e-16 -13.82
562 DGAT2 11_42 0.825 113.88 3.0e-04 13.70
7874 DPEP2 16_36 0.000 198.04 2.9e-18 13.54
1807 PARD6A 16_36 0.000 171.75 3.8e-18 -13.47
7671 LIPC 15_27 0.000 535.17 1.3e-13 13.28
5500 AKT1 14_55 0.003 169.98 1.6e-06 -13.07
#set nominal signifiance threshold for z scores
alpha <- 0.05
#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)
#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))
plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.029653
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
genename region_tag susie_pip mu2 PVE z
8899 LPL 8_21 0.000 457.84 2.3e-13 30.54
3237 APOA1 11_70 0.000 197.52 0.0e+00 -17.89
7089 USP1 1_39 0.550 255.43 4.5e-04 16.75
4564 PSRC1 1_67 0.998 231.34 7.4e-04 16.64
3102 DOCK7 1_39 0.057 240.10 4.4e-05 16.05
5389 CTRL 16_36 0.979 258.47 8.1e-04 15.96
11020 LCAT 16_36 0.000 251.55 5.6e-09 15.35
6089 FADS1 11_34 0.910 156.08 4.5e-04 -14.88
1267 PABPC4 1_24 0.868 185.89 5.1e-04 14.60
5390 DPEP3 16_36 0.000 172.87 1.1e-15 -14.55
7654 PSMC3 11_29 0.997 109.99 3.5e-04 -14.44
6813 PSKH1 16_36 0.000 1096.57 1.0e-08 -14.36
4610 ACP2 11_29 0.996 105.08 3.3e-04 -14.33
4068 ALDH1A2 15_27 0.000 240.92 0.0e+00 13.99
6808 CARMIL2 16_36 0.000 200.07 1.5e-16 -13.82
562 DGAT2 11_42 0.825 113.88 3.0e-04 13.70
7874 DPEP2 16_36 0.000 198.04 2.9e-18 13.54
1807 PARD6A 16_36 0.000 171.75 3.8e-18 -13.47
7671 LIPC 15_27 0.000 535.17 1.3e-13 13.28
5500 AKT1 14_55 0.003 169.98 1.6e-06 -13.07
ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]
n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
ctwas_res_region <- ctwas_res[ctwas_res$region_tag==region_tag_plot,]
start <- min(ctwas_res_region$pos)
end <- max(ctwas_res_region$pos)
ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
#region name
print(paste0("Region: ", region_tag_plot))
#table of genes in region
print(ctwas_res_region_gene[,report_cols])
par(mfrow=c(4,1))
#gene z scores
plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
main=paste0("Region: ", region_tag_plot))
abline(h=sig_thresh,col="red",lty=2)
#significance threshold for SNPs
alpha_snp <- 5*10^(-8)
sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
#snp z scores
plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
abline(h=sig_thresh_snp,col="purple",lty=2)
#gene pips
plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
abline(h=0.8,col="blue",lty=2)
#snp pips
plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 8_21"
genename region_tag susie_pip mu2 PVE z
5936 CSGALNACT1 8_21 0 43.59 0.0e+00 6.66
1947 INTS10 8_21 0 133.94 0.0e+00 7.40
8899 LPL 8_21 0 457.84 2.3e-13 30.54
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
[1] "Region: 11_70"
genename region_tag susie_pip mu2 PVE z
5007 BUD13 11_70 0.00 194.01 0.00000 1.66
2496 ZPR1 11_70 0.14 364.62 0.00016 3.93
3237 APOA1 11_70 0.00 197.52 0.00000 -17.89
6898 SIK3 11_70 0.00 38.39 0.00000 -5.62
8030 PAFAH1B2 11_70 0.00 82.61 0.00000 -4.60
6104 TAGLN 11_70 0.00 356.64 0.00000 -4.49
6902 PCSK7 11_70 0.00 287.15 0.00000 11.90
7873 RNF214 11_70 0.00 10.17 0.00000 -0.23
9915 BACE1 11_70 0.00 45.14 0.00000 0.28
2530 CEP164 11_70 0.00 74.71 0.00000 4.21
5018 FXYD2 11_70 0.00 17.75 0.00000 1.77
5017 FXYD6 11_70 0.00 12.87 0.00000 1.86
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
[1] "Region: 1_39"
genename region_tag susie_pip mu2 PVE z
7088 TM2D1 1_39 0.023 4.95 3.7e-07 0.35
4449 PATJ 1_39 0.097 19.23 6.0e-06 -2.17
7089 USP1 1_39 0.550 255.43 4.5e-04 16.75
3102 DOCK7 1_39 0.057 240.10 4.4e-05 16.05
3822 ATG4C 1_39 0.067 16.63 3.6e-06 -2.34
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
[1] "Region: 1_67"
genename region_tag susie_pip mu2 PVE z
11280 RP11-356N1.2 1_67 0.011 6.10 2.2e-07 0.95
1102 SLC25A24 1_67 0.022 11.36 8.1e-07 -1.24
7095 FAM102B 1_67 0.013 6.18 2.5e-07 0.54
7096 HENMT1 1_67 0.131 26.71 1.1e-05 -2.90
3080 STXBP3 1_67 0.027 15.56 1.3e-06 -2.08
3522 GPSM2 1_67 0.020 10.51 6.8e-07 1.24
3521 CLCC1 1_67 0.012 6.06 2.2e-07 0.15
10487 TAF13 1_67 0.015 8.85 4.2e-07 1.86
11143 TMEM167B 1_67 0.153 33.42 1.6e-05 -3.93
9291 C1orf194 1_67 0.019 12.03 7.1e-07 1.85
1099 WDR47 1_67 0.017 11.21 6.0e-07 1.80
3084 KIAA1324 1_67 0.012 10.17 3.9e-07 -2.10
331 SARS 1_67 0.020 33.72 2.2e-06 5.10
5562 CELSR2 1_67 0.044 24.38 3.4e-06 -4.39
4564 PSRC1 1_67 0.998 231.34 7.4e-04 16.64
7099 ATXN7L2 1_67 0.013 6.56 2.7e-07 -0.30
8776 CYB561D1 1_67 0.018 13.27 7.4e-07 1.56
9435 AMIGO1 1_67 0.028 13.20 1.2e-06 0.74
617 GNAI3 1_67 0.091 31.99 9.3e-06 -3.42
11016 GSTM2 1_67 0.017 50.60 2.7e-06 -7.02
8107 GSTM4 1_67 0.020 11.27 7.1e-07 0.55
4559 GSTM1 1_67 0.011 61.75 2.1e-06 -8.92
4561 GSTM5 1_67 0.011 13.67 4.7e-07 -3.83
4562 GSTM3 1_67 0.016 9.88 5.0e-07 -0.12
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
[1] "Region: 16_36"
genename region_tag susie_pip mu2 PVE z
4752 DYNC1LI2 16_36 0.000 23.54 0.0e+00 1.06
9282 CDH5 16_36 0.000 31.02 0.0e+00 -2.97
11678 LINC00920 16_36 0.000 78.37 0.0e+00 -1.59
7763 BEAN1 16_36 0.000 35.42 0.0e+00 3.40
7764 TK2 16_36 0.000 24.58 0.0e+00 2.86
11156 CKLF 16_36 0.000 59.70 0.0e+00 2.43
1233 CMTM1 16_36 0.000 36.19 0.0e+00 3.39
5365 CMTM3 16_36 0.000 131.44 0.0e+00 3.78
9636 CMTM4 16_36 0.000 22.78 0.0e+00 3.21
6794 NAE1 16_36 0.000 21.70 0.0e+00 -1.71
8627 PDP2 16_36 0.000 28.15 0.0e+00 -0.52
8626 CES2 16_36 0.000 163.62 0.0e+00 -2.36
8624 CES3 16_36 0.000 24.15 0.0e+00 2.66
695 CBFB 16_36 0.000 44.55 0.0e+00 -5.52
3773 C16orf70 16_36 0.000 43.14 0.0e+00 -5.47
11479 B3GNT9 16_36 0.000 157.31 0.0e+00 1.22
5366 NOL3 16_36 0.000 45.73 0.0e+00 4.63
1793 ELMO3 16_36 0.000 64.09 0.0e+00 6.78
10210 KIAA0895L 16_36 0.000 8.74 0.0e+00 0.08
9235 EXOC3L1 16_36 0.000 60.61 0.0e+00 6.69
10904 E2F4 16_36 0.000 3318.89 0.0e+00 1.75
4756 SLC9A5 16_36 0.000 51.32 0.0e+00 5.90
3769 LRRC29 16_36 0.000 66.26 0.0e+00 -6.87
4754 FHOD1 16_36 0.000 17.88 0.0e+00 0.89
10218 PLEKHG4 16_36 0.000 1832.66 0.0e+00 4.88
6804 TPPP3 16_36 0.000 3376.47 0.0e+00 0.42
6805 ZDHHC1 16_36 0.000 3472.98 0.0e+00 1.48
6806 ATP6V0D1 16_36 0.000 3486.84 0.0e+00 -1.58
1804 CTCF 16_36 0.000 3755.01 0.0e+00 1.73
12029 CTD-2012K14.6 16_36 0.000 49.51 0.0e+00 -0.07
6808 CARMIL2 16_36 0.000 200.07 1.5e-16 -13.82
1807 PARD6A 16_36 0.000 171.75 3.8e-18 -13.47
1805 ACD 16_36 0.000 4363.60 0.0e+00 -1.92
3665 ENKD1 16_36 0.000 30.49 0.0e+00 -1.05
6809 C16orf86 16_36 0.000 4399.66 0.0e+00 -1.89
5391 GFOD2 16_36 0.000 18.72 0.0e+00 0.72
1797 TSNAXIP1 16_36 0.000 19.42 0.0e+00 1.67
1794 NUTF2 16_36 0.000 4455.38 0.0e+00 2.04
1796 CENPT 16_36 0.000 3691.79 0.0e+00 1.21
374 EDC4 16_36 0.000 3728.73 0.0e+00 1.10
10064 NRN1L 16_36 0.000 73.84 0.0e+00 -3.85
6813 PSKH1 16_36 0.000 1096.57 1.0e-08 -14.36
5389 CTRL 16_36 0.979 258.47 8.1e-04 15.96
10901 PSMB10 16_36 0.000 4457.24 0.0e+00 -1.88
5390 DPEP3 16_36 0.000 172.87 1.1e-15 -14.55
11020 LCAT 16_36 0.000 251.55 5.6e-09 15.35
7875 DUS2 16_36 0.000 3468.33 0.0e+00 6.75
7874 DPEP2 16_36 0.000 198.04 2.9e-18 13.54
806 NFATC3 16_36 0.000 3642.73 0.0e+00 -2.76
1818 ESRP2 16_36 0.000 4689.55 0.0e+00 -1.93
1816 SLC7A6 16_36 0.000 174.59 0.0e+00 -12.59
1817 PLA2G15 16_36 0.000 128.26 0.0e+00 -10.66
4414 PRMT7 16_36 0.000 75.15 0.0e+00 8.98
9744 ZFP90 16_36 0.000 21.50 0.0e+00 1.04
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
id region_tag susie_pip mu2 PVE z
32910 rs9427104 1_75 1.000 59.94 1.9e-04 7.67
52630 rs2642420 1_112 1.000 42.91 1.4e-04 -7.64
55284 rs2103827 1_117 1.000 177.59 5.7e-04 19.40
55285 rs11122453 1_117 1.000 355.61 1.1e-03 22.94
55766 rs766167074 1_118 1.000 5284.70 1.7e-02 3.00
67964 rs1042034 2_13 1.000 439.62 1.4e-03 -22.04
67965 rs1801699 2_13 1.000 40.04 1.3e-04 -7.66
69700 rs780093 2_16 1.000 107.83 3.4e-04 -11.04
179579 rs9817452 3_97 1.000 53.13 1.7e-04 7.45
226226 rs35518360 4_67 1.000 218.42 7.0e-04 -15.55
226292 rs13140033 4_68 1.000 127.17 4.1e-04 -11.78
270843 rs62369502 5_28 1.000 47.70 1.5e-04 -6.90
365965 rs191555775 6_104 1.000 61.69 2.0e-04 -9.19
411549 rs6961342 7_80 1.000 149.04 4.8e-04 -11.19
426292 rs7012814 8_12 1.000 126.40 4.0e-04 13.90
426595 rs1402522 8_13 1.000 52.90 1.7e-04 7.83
427356 rs17810889 8_15 1.000 54.96 1.8e-04 7.91
431557 rs75835816 8_21 1.000 432.77 1.4e-03 -21.65
431593 rs11986461 8_21 1.000 297.44 9.5e-04 19.74
462183 rs10956254 8_83 1.000 34.53 1.1e-04 -6.15
468461 rs7832515 8_94 1.000 145.72 4.6e-04 12.84
495023 rs2777798 9_52 1.000 372.16 1.2e-03 14.36
495031 rs2777804 9_52 1.000 144.15 4.6e-04 4.64
495037 rs7024300 9_53 1.000 253.55 8.1e-04 16.99
495043 rs2297400 9_53 1.000 256.21 8.2e-04 15.59
495054 rs62568181 9_53 1.000 339.56 1.1e-03 -24.86
495067 rs2254819 9_53 1.000 252.37 8.1e-04 -22.66
495070 rs2437818 9_53 1.000 112.25 3.6e-04 15.45
518864 rs71007692 10_28 1.000 4974.96 1.6e-02 -2.78
578713 rs640621 11_70 1.000 781.61 2.5e-03 -24.74
601920 rs6581124 12_35 1.000 52.68 1.7e-04 8.14
601939 rs7397189 12_36 1.000 66.46 2.1e-04 11.12
605980 rs2137537 12_44 1.000 40.50 1.3e-04 -5.98
622624 rs61941677 12_76 1.000 140.43 4.5e-04 -14.41
622630 rs12230146 12_76 1.000 60.74 1.9e-04 7.50
674672 rs13379043 14_34 1.000 67.67 2.2e-04 8.46
695142 rs72737411 15_25 1.000 43.28 1.4e-04 -6.21
695252 rs58038553 15_27 1.000 342.57 1.1e-03 -24.93
695254 rs1711037 15_27 1.000 153.87 4.9e-04 16.41
695312 rs28594460 15_27 1.000 334.39 1.1e-03 21.14
695328 rs62000868 15_27 1.000 894.23 2.9e-03 31.87
695334 rs2070895 15_27 1.000 2223.91 7.1e-03 50.25
721595 rs8064102 16_31 1.000 294.95 9.4e-04 6.16
721617 rs190575415 16_31 1.000 311.73 9.9e-04 16.53
721627 rs821840 16_31 1.000 4452.45 1.4e-02 74.05
721628 rs12720926 16_31 1.000 2773.56 8.9e-03 66.58
721632 rs66495554 16_31 1.000 985.37 3.1e-03 -7.44
724451 rs2276329 16_37 1.000 49.88 1.6e-04 -6.87
754781 rs146424771 18_3 1.000 64.89 2.1e-04 2.47
767463 rs11082766 18_27 1.000 181.93 5.8e-04 13.66
767483 rs6507938 18_27 1.000 666.13 2.1e-03 32.32
767484 rs118043171 18_27 1.000 412.24 1.3e-03 27.52
767703 rs74461650 18_28 1.000 109.21 3.5e-04 10.92
782307 rs1865063 19_11 1.000 210.52 6.7e-04 -14.13
782309 rs3745683 19_11 1.000 89.99 2.9e-04 -13.33
791435 rs814573 19_31 1.000 689.64 2.2e-03 -29.76
791441 rs4803775 19_31 1.000 186.72 6.0e-04 14.22
806860 rs6063139 20_29 1.000 75.34 2.4e-04 3.79
806898 rs78492788 20_29 1.000 94.99 3.0e-04 9.49
872966 rs140584594 1_67 1.000 159.28 5.1e-04 14.42
920095 rs35733538 3_95 1.000 2313.38 7.4e-03 -5.36
926460 rs35945848 4_2 1.000 1953.28 6.2e-03 3.13
986221 rs11601507 11_4 1.000 51.94 1.7e-04 -6.79
1023190 rs146923372 11_37 1.000 14480.70 4.6e-02 4.02
1084266 rs4986970 16_36 1.000 145.96 4.7e-04 -12.74
1085097 rs56090907 16_36 1.000 6377.25 2.0e-02 4.77
1116082 rs72836561 17_26 1.000 444.60 1.4e-03 -21.66
1119239 rs116843064 19_8 1.000 225.35 7.2e-04 16.71
1137782 rs61371437 19_34 1.000 28186.41 9.0e-02 4.89
1137794 rs374141296 19_34 1.000 28260.93 9.0e-02 5.19
1152147 rs12975366 19_37 1.000 79.79 2.5e-04 -10.99
1163659 rs1800961 20_28 1.000 441.16 1.4e-03 -21.94
325282 rs181268076 6_27 0.999 61.80 2.0e-04 -7.07
417541 rs6977416 7_94 0.999 39.35 1.3e-04 -6.32
426303 rs13265179 8_12 0.999 162.85 5.2e-04 -16.86
622608 rs3782287 12_76 0.999 62.45 2.0e-04 -11.72
622638 rs11834751 12_76 0.999 48.86 1.6e-04 -4.27
728789 rs12443634 16_46 0.999 69.01 2.2e-04 10.14
791402 rs111794050 19_31 0.999 70.30 2.2e-04 9.35
791431 rs405509 19_31 0.999 78.58 2.5e-04 13.56
791759 rs58701309 19_32 0.999 86.20 2.7e-04 3.46
1023185 rs57808037 11_37 0.999 14479.15 4.6e-02 4.04
782338 rs35753011 19_11 0.998 84.91 2.7e-04 -0.92
5647 rs603412 1_14 0.997 38.30 1.2e-04 -6.26
31792 rs185073199 1_73 0.997 31.10 9.9e-05 5.49
426291 rs713286 8_12 0.997 54.78 1.7e-04 -12.24
503785 rs115478735 9_70 0.997 91.91 2.9e-04 9.87
460707 rs9297630 8_80 0.996 55.21 1.8e-04 -7.19
498390 rs2763193 9_59 0.996 51.42 1.6e-04 5.91
767499 rs62101781 18_27 0.996 299.90 9.5e-04 19.53
207416 rs58932203 4_32 0.995 43.64 1.4e-04 6.15
323700 rs77424484 6_26 0.994 66.81 2.1e-04 -7.74
748678 rs113408695 17_39 0.993 38.01 1.2e-04 -5.86
34934 rs4657041 1_79 0.992 32.76 1.0e-04 -5.77
325011 rs2858317 6_26 0.992 116.83 3.7e-04 11.56
543302 rs10901802 10_78 0.992 33.94 1.1e-04 5.87
653598 rs185932947 13_52 0.992 27.71 8.8e-05 5.10
790334 rs11879413 19_30 0.992 31.74 1.0e-04 5.64
61939 rs10183939 2_2 0.991 32.06 1.0e-04 -5.59
228047 rs111349657 4_71 0.991 30.53 9.7e-05 -5.71
498382 rs7040440 9_59 0.991 30.71 9.7e-05 3.18
1062725 rs2494732 14_55 0.991 102.70 3.2e-04 1.84
1115618 rs117380643 17_25 0.991 68.72 2.2e-04 -8.28
697062 rs11071771 15_29 0.989 35.61 1.1e-04 -5.86
328541 rs142449754 6_32 0.988 36.29 1.1e-04 -6.44
581366 rs4937122 11_77 0.988 32.22 1.0e-04 -5.50
625794 rs76734539 12_82 0.988 30.81 9.7e-05 5.68
579848 rs1219430 11_74 0.982 30.60 9.6e-05 -5.72
708180 rs1037118 15_50 0.982 28.59 9.0e-05 4.67
142353 rs4681065 3_19 0.981 28.79 9.0e-05 5.17
753084 rs72854483 17_46 0.976 26.25 8.2e-05 -4.92
701050 rs16972386 15_38 0.974 27.38 8.5e-05 -4.97
791760 rs7259871 19_32 0.974 100.61 3.1e-04 -5.78
169035 rs334563 3_74 0.973 46.18 1.4e-04 6.67
864778 rs11591147 1_34 0.972 31.71 9.8e-05 5.65
322856 rs3095311 6_26 0.970 115.58 3.6e-04 -10.67
370246 rs11971790 7_3 0.970 59.52 1.8e-04 -6.93
952940 rs686030 9_13 0.970 241.76 7.5e-04 16.56
384656 rs9490 7_28 0.969 26.92 8.3e-05 4.97
574302 rs72980276 11_59 0.967 26.70 8.2e-05 -4.99
556662 rs12288512 11_19 0.964 53.72 1.7e-04 -7.27
323880 rs3869145 6_26 0.963 55.39 1.7e-04 -8.02
67911 rs17721572 2_12 0.962 36.45 1.1e-04 -4.63
380411 rs75348547 7_22 0.962 27.65 8.5e-05 -4.86
478373 rs145804707 9_18 0.960 24.96 7.6e-05 -4.69
728796 rs11641142 16_46 0.960 48.51 1.5e-04 9.01
321497 rs1233480 6_23 0.958 94.78 2.9e-04 -9.65
179337 rs816547 3_97 0.953 25.37 7.7e-05 -4.76
272758 rs113088001 5_31 0.953 32.70 9.9e-05 -5.21
431539 rs6999813 8_21 0.950 435.42 1.3e-03 31.97
812524 rs759884584 20_38 0.942 31.03 9.3e-05 2.74
52628 rs883847 1_112 0.941 33.59 1.0e-04 6.84
193684 rs13116176 4_4 0.940 29.38 8.8e-05 -4.46
601875 rs1874888 12_35 0.940 33.30 1.0e-04 -6.19
380588 rs2699814 7_23 0.934 27.09 8.1e-05 4.98
273694 rs173964 5_33 0.928 80.30 2.4e-04 -7.90
995001 rs7123635 11_28 0.927 47.77 1.4e-04 -7.04
69407 rs577641882 2_15 0.926 33.03 9.8e-05 -5.71
207327 rs12639940 4_32 0.926 24.19 7.2e-05 -3.63
770359 rs41292412 18_31 0.926 30.52 9.0e-05 -5.49
301991 rs4958365 5_90 0.925 31.09 9.2e-05 4.70
321253 rs3132390 6_22 0.919 86.91 2.5e-04 -9.77
431331 rs113231830 8_20 0.919 26.10 7.6e-05 -4.89
53794 rs12132342 1_115 0.918 24.45 7.2e-05 -4.53
132476 rs4675812 2_144 0.910 32.67 9.5e-05 6.69
329293 rs581465 6_34 0.909 26.03 7.5e-05 4.83
1021356 rs4930352 11_37 0.907 461.61 1.3e-03 7.80
741680 rs12450388 17_23 0.904 25.34 7.3e-05 4.39
362643 rs6905582 6_99 0.902 24.27 7.0e-05 -4.49
828336 rs12321 22_9 0.900 25.09 7.2e-05 4.48
525850 rs10761739 10_42 0.895 41.45 1.2e-04 6.40
590855 rs964974 12_15 0.892 36.91 1.1e-04 -5.99
622601 rs838876 12_76 0.889 126.44 3.6e-04 -13.65
832151 rs531420711 22_17 0.886 25.45 7.2e-05 -4.81
606101 rs1707498 12_44 0.882 29.31 8.2e-05 5.11
355180 rs112120898 6_84 0.869 24.37 6.8e-05 4.42
431523 rs17091881 8_21 0.866 315.07 8.7e-04 -18.25
550501 rs2923096 11_8 0.864 33.26 9.2e-05 5.90
459205 rs2721932 8_78 0.863 248.86 6.9e-04 14.87
578686 rs3135506 11_70 0.860 357.80 9.8e-04 -4.60
586800 rs10849492 12_7 0.856 29.13 8.0e-05 -5.34
793518 rs34637812 19_38 0.856 25.67 7.0e-05 -4.61
284264 rs538659275 5_57 0.855 26.01 7.1e-05 4.87
459259 rs10095930 8_78 0.855 75.60 2.1e-04 5.62
601962 rs140734681 12_36 0.855 22.23 6.1e-05 -1.53
55277 rs6678475 1_117 0.853 25.93 7.1e-05 -1.21
908148 rs115787626 3_33 0.853 54.64 1.5e-04 -7.73
439582 rs62515418 8_40 0.850 24.57 6.7e-05 4.31
673133 rs194749 14_33 0.849 41.11 1.1e-04 6.09
155733 rs73090625 3_48 0.847 30.56 8.3e-05 5.31
685827 rs11161243 15_4 0.847 32.36 8.7e-05 5.48
294648 rs10057561 5_77 0.846 26.73 7.2e-05 -4.91
1169161 rs235314 21_23 0.846 85.37 2.3e-04 -9.34
84728 rs3796098 2_47 0.843 30.28 8.1e-05 -5.43
149031 rs78342753 3_35 0.842 33.26 8.9e-05 -6.36
794824 rs2316866 20_1 0.839 25.29 6.8e-05 -4.54
325153 rs9276189 6_27 0.835 37.27 9.9e-05 3.68
541420 rs78787582 10_74 0.833 25.93 6.9e-05 4.69
517323 rs145407036 10_24 0.829 29.01 7.7e-05 -5.44
738786 rs78792395 17_15 0.828 26.33 7.0e-05 4.54
71055 rs11124265 2_20 0.817 25.39 6.6e-05 4.48
455512 rs2570952 8_69 0.813 30.32 7.9e-05 5.25
468451 rs7387969 8_94 0.813 40.17 1.0e-04 6.84
368701 rs34207042 6_110 0.812 24.70 6.4e-05 4.28
211185 rs723585 4_40 0.811 36.57 9.5e-05 5.82
767329 rs76055069 18_27 0.811 319.03 8.3e-04 25.71
517546 rs12765967 10_25 0.807 29.61 7.6e-05 -5.17
202380 rs56147366 4_22 0.804 44.29 1.1e-04 -6.56
460843 rs4871180 8_80 0.802 26.93 6.9e-05 4.24
#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")
Version | Author | Date |
---|---|---|
dfd2b5f | wesleycrouse | 2021-09-07 |
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
id region_tag susie_pip mu2 PVE z
1137794 rs374141296 19_34 1 28260.93 9.0e-02 5.19
1137791 rs113176985 19_34 0 28214.13 0.0e+00 4.85
1137798 rs2946865 19_34 0 28202.09 0.0e+00 4.89
1137782 rs61371437 19_34 1 28186.41 9.0e-02 4.89
1137784 rs35295508 19_34 0 28181.31 0.0e+00 4.89
1137789 rs73056069 19_34 0 28079.60 0.0e+00 4.87
1137773 rs756628 19_34 0 28071.84 2.8e-07 4.88
1137772 rs739349 19_34 0 28071.67 2.0e-07 4.88
1137769 rs739347 19_34 0 28011.77 9.6e-14 4.79
1137786 rs2878354 19_34 0 28009.82 0.0e+00 4.91
1137770 rs2073614 19_34 0 27974.95 3.0e-17 4.75
1137775 rs2077300 19_34 0 27903.13 1.2e-13 4.90
1137765 rs4802613 19_34 0 27851.90 0.0e+00 4.75
1137779 rs73056059 19_34 0 27850.11 0.0e+00 4.84
1137799 rs60815603 19_34 0 27709.16 0.0e+00 5.04
1137802 rs1316885 19_34 0 27673.86 0.0e+00 5.13
1137807 rs2946863 19_34 0 27625.22 0.0e+00 5.19
1137800 rs35443645 19_34 0 27580.12 0.0e+00 5.05
1137804 rs60746284 19_34 0 27538.77 0.0e+00 5.17
1137763 rs10403394 19_34 0 27482.16 0.0e+00 4.94
1137764 rs17555056 19_34 0 27459.82 0.0e+00 4.87
1137780 rs73056062 19_34 0 27131.74 0.0e+00 4.80
1137810 rs553431297 19_34 0 26738.29 0.0e+00 4.57
1137793 rs112283514 19_34 0 26649.08 0.0e+00 4.82
1137795 rs11270139 19_34 0 26481.17 0.0e+00 4.44
1137760 rs10421294 19_34 0 24805.48 0.0e+00 3.94
1137759 rs8108175 19_34 0 24801.93 0.0e+00 3.93
1137752 rs59192944 19_34 0 24754.20 0.0e+00 3.91
1137758 rs1858742 19_34 0 24743.70 0.0e+00 3.86
1137749 rs55991145 19_34 0 24733.42 0.0e+00 3.92
1137744 rs3786567 19_34 0 24723.57 0.0e+00 3.92
1137740 rs2271952 19_34 0 24713.32 0.0e+00 3.91
1137743 rs4801801 19_34 0 24709.97 0.0e+00 3.90
1137739 rs2271953 19_34 0 24681.35 0.0e+00 3.87
1137741 rs2271951 19_34 0 24680.11 0.0e+00 3.87
1137730 rs60365978 19_34 0 24662.80 0.0e+00 3.90
1137736 rs4802612 19_34 0 24563.69 0.0e+00 3.99
1137746 rs2517977 19_34 0 24494.38 0.0e+00 3.81
1137733 rs55893003 19_34 0 24483.30 0.0e+00 3.93
1137725 rs55992104 19_34 0 23917.19 0.0e+00 3.75
1137719 rs60403475 19_34 0 23915.37 0.0e+00 3.77
1137722 rs4352151 19_34 0 23906.18 0.0e+00 3.73
1137716 rs11878448 19_34 0 23888.90 0.0e+00 3.72
1137710 rs9653100 19_34 0 23884.66 0.0e+00 3.74
1137706 rs4802611 19_34 0 23870.19 0.0e+00 3.77
1137698 rs7251338 19_34 0 23833.66 0.0e+00 3.76
1137697 rs59269605 19_34 0 23831.12 0.0e+00 3.77
1137718 rs1042120 19_34 0 23766.04 0.0e+00 3.82
1137714 rs113220577 19_34 0 23744.64 0.0e+00 3.81
1137708 rs9653118 19_34 0 23706.52 0.0e+00 3.78
#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
id region_tag susie_pip mu2 PVE z
1137782 rs61371437 19_34 1.000 28186.41 0.0900 4.89
1137794 rs374141296 19_34 1.000 28260.93 0.0900 5.19
1023185 rs57808037 11_37 0.999 14479.15 0.0460 4.04
1023190 rs146923372 11_37 1.000 14480.70 0.0460 4.02
1085097 rs56090907 16_36 1.000 6377.25 0.0200 4.77
55766 rs766167074 1_118 1.000 5284.70 0.0170 3.00
518864 rs71007692 10_28 1.000 4974.96 0.0160 -2.78
721627 rs821840 16_31 1.000 4452.45 0.0140 74.05
721628 rs12720926 16_31 1.000 2773.56 0.0089 66.58
1085067 rs71395853 16_36 0.436 6402.29 0.0089 1.49
518870 rs2472183 10_28 0.482 5005.57 0.0077 -2.84
518863 rs2474565 10_28 0.469 5005.53 0.0075 -2.84
920095 rs35733538 3_95 1.000 2313.38 0.0074 -5.36
518873 rs11011452 10_28 0.458 5005.63 0.0073 -2.83
695334 rs2070895 15_27 1.000 2223.91 0.0071 50.25
926460 rs35945848 4_2 1.000 1953.28 0.0062 3.13
518861 rs9299760 10_28 0.335 5003.06 0.0053 -2.85
55763 rs10489611 1_118 0.298 5324.45 0.0051 3.25
1085099 rs71395854 16_36 0.237 6403.15 0.0048 1.46
55765 rs971534 1_118 0.270 5324.37 0.0046 3.25
55757 rs2256908 1_118 0.256 5324.16 0.0043 3.25
55764 rs2486737 1_118 0.248 5324.32 0.0042 3.24
55753 rs1076804 1_118 0.218 5317.93 0.0037 3.29
55760 rs2790891 1_118 0.196 5324.00 0.0033 3.24
55761 rs2491405 1_118 0.196 5324.00 0.0033 3.24
721632 rs66495554 16_31 1.000 985.37 0.0031 -7.44
1085110 rs35189054 16_36 0.154 6402.06 0.0031 1.46
695328 rs62000868 15_27 1.000 894.23 0.0029 31.87
578713 rs640621 11_70 1.000 781.61 0.0025 -24.74
926479 rs1680073 4_2 0.383 1948.46 0.0024 2.76
791435 rs814573 19_31 1.000 689.64 0.0022 -29.76
767483 rs6507938 18_27 1.000 666.13 0.0021 32.32
926470 rs1680074 4_2 0.344 1948.55 0.0021 2.75
1023200 rs6591245 11_37 0.043 14456.05 0.0020 3.96
67964 rs1042034 2_13 1.000 439.62 0.0014 -22.04
431557 rs75835816 8_21 1.000 432.77 0.0014 -21.65
920099 rs433903 3_95 0.196 2242.10 0.0014 -5.44
920104 rs355782 3_95 0.194 2242.34 0.0014 -5.44
926486 rs10024013 4_2 0.218 1948.01 0.0014 2.72
1085069 rs34530665 16_36 0.067 6401.82 0.0014 1.45
1116082 rs72836561 17_26 1.000 444.60 0.0014 -21.66
1163659 rs1800961 20_28 1.000 441.16 0.0014 -21.94
431539 rs6999813 8_21 0.950 435.42 0.0013 31.97
767484 rs118043171 18_27 1.000 412.24 0.0013 27.52
1021356 rs4930352 11_37 0.907 461.61 0.0013 7.80
495023 rs2777798 9_52 1.000 372.16 0.0012 14.36
55285 rs11122453 1_117 1.000 355.61 0.0011 22.94
495054 rs62568181 9_53 1.000 339.56 0.0011 -24.86
695252 rs58038553 15_27 1.000 342.57 0.0011 -24.93
695312 rs28594460 15_27 1.000 334.39 0.0011 21.14
#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
id region_tag susie_pip mu2 PVE z
721627 rs821840 16_31 1.000 4452.45 1.4e-02 74.05
721625 rs12446515 16_31 0.000 4410.80 5.9e-12 73.66
721628 rs12720926 16_31 1.000 2773.56 8.9e-03 66.58
721624 rs193695 16_31 0.000 2028.32 8.7e-15 50.33
695334 rs2070895 15_27 1.000 2223.91 7.1e-03 50.25
695336 rs8034802 15_27 0.000 1439.98 0.0e+00 39.84
695347 rs686958 15_27 0.000 1387.04 0.0e+00 -39.62
695337 rs633695 15_27 0.000 1365.45 0.0e+00 38.77
695340 rs261341 15_27 0.000 1309.73 0.0e+00 -37.82
695342 rs488490 15_27 0.000 1335.99 0.0e+00 -37.73
695346 rs485671 15_27 0.000 1305.03 0.0e+00 -37.05
431534 rs2410620 8_21 0.469 428.07 6.4e-04 35.48
431541 rs1441762 8_21 0.311 426.37 4.2e-04 35.46
431544 rs4126104 8_21 0.040 420.58 5.3e-05 35.41
431540 rs35878331 8_21 0.124 422.11 1.7e-04 35.35
431545 rs35369244 8_21 0.004 412.71 5.2e-06 35.09
431514 rs149553676 8_21 0.000 311.99 0.0e+00 32.53
431513 rs287 8_21 0.000 317.58 0.0e+00 32.42
767483 rs6507938 18_27 1.000 666.13 2.1e-03 32.32
431543 rs11986942 8_21 0.052 457.17 7.6e-05 32.15
431518 rs10645926 8_21 0.000 435.68 6.0e-07 31.99
431539 rs6999813 8_21 0.950 435.42 1.3e-03 31.97
695328 rs62000868 15_27 1.000 894.23 2.9e-03 31.87
767480 rs7241918 18_27 0.000 640.63 1.6e-08 31.84
431525 rs78963197 8_21 0.048 434.09 6.7e-05 31.58
431530 rs17489226 8_21 0.001 415.56 8.1e-07 31.38
431551 rs28675909 8_21 0.000 412.58 2.2e-07 31.31
431554 rs11989309 8_21 0.000 411.78 1.6e-07 31.30
431556 rs7816447 8_21 0.000 415.44 3.0e-07 31.30
431552 rs79198716 8_21 0.000 409.14 8.8e-08 31.27
431553 rs7004149 8_21 0.000 408.98 8.3e-08 31.26
431558 rs11984698 8_21 0.000 409.18 7.1e-08 31.24
578802 rs7930783 11_70 0.330 631.10 6.7e-04 31.22
578804 rs7932655 11_70 0.328 631.03 6.6e-04 31.22
578807 rs59097294 11_70 0.332 631.04 6.7e-04 31.22
431520 rs1569209 8_21 0.000 397.73 8.2e-14 30.70
431522 rs80073370 8_21 0.000 389.17 1.7e-15 30.35
578715 rs11216162 11_70 0.010 675.74 2.2e-05 30.18
431583 rs80026582 8_21 0.000 418.63 6.5e-16 30.05
791435 rs814573 19_31 1.000 689.64 2.2e-03 -29.76
721630 rs4784744 16_31 0.000 1194.42 0.0e+00 -29.10
721629 rs289717 16_31 0.000 1188.16 0.0e+00 -29.05
721631 rs4784745 16_31 0.000 1240.66 0.0e+00 -28.97
431536 rs4083261 8_21 0.000 406.06 1.3e-11 28.57
431535 rs12541912 8_21 0.000 362.71 8.9e-15 27.95
767466 rs4121823 18_27 0.000 548.60 0.0e+00 27.72
767484 rs118043171 18_27 1.000 412.24 1.3e-03 27.52
767329 rs76055069 18_27 0.811 319.03 8.3e-04 25.71
431548 rs6586886 8_21 0.000 166.81 0.0e+00 25.51
767326 rs75495141 18_27 0.189 310.96 1.9e-04 25.44
#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ...
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
#number of genes for gene set enrichment
length(genes)
[1] 40
if (length(genes)>0){
GO_enrichment <- enrichr(genes, dbs)
for (db in dbs){
print(db)
df <- GO_enrichment[[db]]
df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
print(df)
}
#DisGeNET enrichment
# devtools::install_bitbucket("ibi_group/disgenet2r")
library(disgenet2r)
disgenet_api_key <- get_disgenet_api_key(
email = "wesleycrouse@gmail.com",
password = "uchicago1" )
Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
database = "CURATED" )
df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio", "BgRatio")]
print(df)
#WebGestalt enrichment
library(WebGestaltR)
background <- ctwas_gene_res$genename
#listGeneSet()
databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
interestGene=genes, referenceGene=background,
enrichDatabase=databases, interestGeneType="genesymbol",
referenceGeneType="genesymbol", isOutput=F)
print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
Querying GO_Biological_Process_2021... Done.
Querying GO_Cellular_Component_2021... Done.
Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term Overlap Adjusted.P.value Genes
<0 rows> (or 0-length row.names)
BLMH gene(s) from the input list not found in DisGeNET CURATEDMRPL21 gene(s) from the input list not found in DisGeNET CURATEDSLAIN1 gene(s) from the input list not found in DisGeNET CURATEDSP3 gene(s) from the input list not found in DisGeNET CURATEDPCIF1 gene(s) from the input list not found in DisGeNET CURATEDCEBPG gene(s) from the input list not found in DisGeNET CURATEDMARCH2 gene(s) from the input list not found in DisGeNET CURATEDFOXK1 gene(s) from the input list not found in DisGeNET CURATEDRPA2 gene(s) from the input list not found in DisGeNET CURATEDIFT20 gene(s) from the input list not found in DisGeNET CURATEDRP11-54O7.17 gene(s) from the input list not found in DisGeNET CURATEDNRG4 gene(s) from the input list not found in DisGeNET CURATEDNTAN1 gene(s) from the input list not found in DisGeNET CURATEDSLFN13 gene(s) from the input list not found in DisGeNET CURATEDFCGRT gene(s) from the input list not found in DisGeNET CURATEDLAMP1 gene(s) from the input list not found in DisGeNET CURATEDZDHHC18 gene(s) from the input list not found in DisGeNET CURATEDRP11-110I1.14 gene(s) from the input list not found in DisGeNET CURATEDSPSB1 gene(s) from the input list not found in DisGeNET CURATEDPSRC1 gene(s) from the input list not found in DisGeNET CURATED
Description FDR Ratio BgRatio
27 Glycogen Storage Disease Type IV 0.0147245 1/20 1/9703
32 HIV Infections 0.0147245 3/20 103/9703
34 Inherited Factor II deficiency 0.0147245 1/20 1/9703
67 Skin Diseases, Vascular 0.0147245 1/20 1/9703
79 Acid Phosphatase Deficiency 0.0147245 1/20 1/9703
80 Hereditary factor II deficiency disease 0.0147245 1/20 1/9703
118 Polyglucosan Body Disease, Adult Form 0.0147245 1/20 1/9703
119 GSD IV, Neuromuscular Form, Fatal Perinatal 0.0147245 1/20 1/9703
120 GSD IV, Neuromuscular Form, Congenital 0.0147245 1/20 1/9703
121 GSD IV, Neuromuscular Form, Childhood 0.0147245 1/20 1/9703
******************************************
* *
* Welcome to WebGestaltR ! *
* *
******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0 cowplot_1.0.0
[5] ggplot2_3.3.3
loaded via a namespace (and not attached):
[1] bitops_1.0-6 matrixStats_0.57.0
[3] fs_1.3.1 bit64_4.0.5
[5] doParallel_1.0.16 progress_1.2.2
[7] httr_1.4.1 rprojroot_2.0.2
[9] GenomeInfoDb_1.20.0 doRNG_1.8.2
[11] tools_3.6.1 utf8_1.2.1
[13] R6_2.5.0 DBI_1.1.1
[15] BiocGenerics_0.30.0 colorspace_1.4-1
[17] withr_2.4.1 tidyselect_1.1.0
[19] prettyunits_1.0.2 bit_4.0.4
[21] curl_3.3 compiler_3.6.1
[23] git2r_0.26.1 Biobase_2.44.0
[25] DelayedArray_0.10.0 rtracklayer_1.44.0
[27] labeling_0.3 scales_1.1.0
[29] readr_1.4.0 apcluster_1.4.8
[31] stringr_1.4.0 digest_0.6.20
[33] Rsamtools_2.0.0 svglite_1.2.2
[35] rmarkdown_1.13 XVector_0.24.0
[37] pkgconfig_2.0.3 htmltools_0.3.6
[39] fastmap_1.1.0 BSgenome_1.52.0
[41] rlang_0.4.11 RSQLite_2.2.7
[43] generics_0.0.2 farver_2.1.0
[45] jsonlite_1.6 BiocParallel_1.18.0
[47] dplyr_1.0.7 VariantAnnotation_1.30.1
[49] RCurl_1.98-1.1 magrittr_2.0.1
[51] GenomeInfoDbData_1.2.1 Matrix_1.2-18
[53] Rcpp_1.0.6 munsell_0.5.0
[55] S4Vectors_0.22.1 fansi_0.5.0
[57] gdtools_0.1.9 lifecycle_1.0.0
[59] stringi_1.4.3 whisker_0.3-2
[61] yaml_2.2.0 SummarizedExperiment_1.14.1
[63] zlibbioc_1.30.0 plyr_1.8.4
[65] grid_3.6.1 blob_1.2.1
[67] parallel_3.6.1 promises_1.0.1
[69] crayon_1.4.1 lattice_0.20-38
[71] Biostrings_2.52.0 GenomicFeatures_1.36.3
[73] hms_1.1.0 knitr_1.23
[75] pillar_1.6.1 igraph_1.2.4.1
[77] GenomicRanges_1.36.0 rjson_0.2.20
[79] rngtools_1.5 codetools_0.2-16
[81] reshape2_1.4.3 biomaRt_2.40.1
[83] stats4_3.6.1 XML_3.98-1.20
[85] glue_1.4.2 evaluate_0.14
[87] data.table_1.14.0 foreach_1.5.1
[89] vctrs_0.3.8 httpuv_1.5.1
[91] gtable_0.3.0 purrr_0.3.4
[93] assertthat_0.2.1 cachem_1.0.5
[95] xfun_0.8 later_0.8.0
[97] tibble_3.1.2 iterators_1.0.13
[99] GenomicAlignments_1.20.1 AnnotationDbi_1.46.0
[101] memoise_2.0.0 IRanges_2.18.1
[103] workflowr_1.6.2 ellipsis_0.3.2