Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30500_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30620_irnt_Whole_Blood.Rmd
    Modified:   analysis/ukb-d-30630_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30640_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30650_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30660_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30670_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30680_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30690_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30700_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30710_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30720_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30730_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30740_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30750_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30760_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30770_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30780_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30790_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30800_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30810_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30820_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30830_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30840_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30850_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30860_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30870_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30880_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30890_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30620_irnt_Whole_Blood.Rmd) and HTML (docs/ukb-d-30620_irnt_Whole_Blood.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Alanine aminotransferase (quantile) using Whole_Blood gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30620_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Whole_Blood eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11095
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1129  747  624  400  479  621  560  383  404  430  682  652  192  362  331 
  16   17   18   19   20   21   22 
 551  725  159  911  313  130  310 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.762776

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0186343157 0.0001879955 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
11.96031 12.02071 
#report sample size
print(sample_size)
[1] 344136
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11095 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.007185434 0.057112804 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.02928884 0.74343215

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
       genename region_tag susie_pip    mu2     PVE     z
9507        FES      15_43     0.997  31.75 9.2e-05 -5.57
2378     CAMTA2       17_5     0.996 235.82 6.8e-04  5.31
10004      FPR3      19_35     0.988  23.83 6.8e-05 -4.77
7955      MFSD3       8_94     0.985  53.08 1.5e-04  5.22
10841   MRPS18B       6_26     0.981  56.91 1.6e-04 -7.62
3058    PLEKHA3      2_108     0.975  34.25 9.7e-05 -5.69
5540      SYTL1       1_19     0.962  29.73 8.3e-05 -5.41
5690      WDPCP       2_41     0.960  26.90 7.5e-05  5.36
1778      KPNA3      13_21     0.955  21.70 6.0e-05 -4.39
7835      EVA1C      21_13     0.947  31.67 8.7e-05  5.55
5420    C18orf8      18_12     0.944  32.79 9.0e-05 -5.94
2540    NECTIN1      11_72     0.943  19.99 5.5e-05 -4.15
11104   STARD10      11_41     0.940  67.49 1.8e-04  9.15
5235       SUOX      12_35     0.934  49.65 1.3e-04  6.98
4360      TRIM5       11_4     0.928  39.30 1.1e-04 -5.20
5634     ADAM15       1_77     0.927  25.16 6.8e-05 -2.81
6533      WHAMM      15_38     0.927  27.27 7.3e-05 -4.47
325        BAK1       6_28     0.904  25.59 6.7e-05  4.90
8823   SH3PXD2B      5_103     0.886  22.44 5.8e-05  4.67
9223     ZBTB7A       19_4     0.877  24.95 6.4e-05 -4.84
11143  TMEM167B       1_67     0.868  21.37 5.4e-05  4.45
3758      ATXN1       6_13     0.868  20.25 5.1e-05  4.15
10313     ZFP62      5_109     0.853  20.36 5.0e-05  4.15
11411 HIST1H2BN       6_21     0.851  18.69 4.6e-05  3.77
3833     GPCPD1       20_5     0.846  22.00 5.4e-05  4.22
8124     DDX19A      16_37     0.844  20.03 4.9e-05 -4.22
8829       HRAS       11_1     0.829  23.21 5.6e-05  4.52
3101      MEF2D       1_77     0.828  46.09 1.1e-04  6.91
5100       OIT3      10_48     0.827  27.66 6.6e-05  5.56
208       PPP5C      19_32     0.823  21.51 5.1e-05  4.29
209       CEP68       2_42     0.813  29.21 6.9e-05  5.38
487       FOXC1        6_2     0.813  21.82 5.2e-05 -4.35

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
      genename region_tag susie_pip     mu2     PVE      z
4687    TMEM60       7_49     0.000 1540.88 0.0e+00   3.75
2528     PANX1      11_53     0.000 1461.44 0.0e+00  13.17
9608     PSMG1      21_19     0.000 1347.00 0.0e+00  -6.78
9834     BRWD1      21_19     0.000  636.42 0.0e+00   1.07
3657     GPR83      11_53     0.000  531.67 0.0e+00  -2.81
1366   CWF19L1      10_64     0.211  503.74 3.1e-04 -24.40
8411   TRMT61B       2_19     0.000  463.33 2.6e-16   2.53
11039   PPP1CB       2_19     0.000  455.93 2.5e-17  -2.33
10204  BLOC1S2      10_64     0.000  406.60 1.0e-08 -21.88
10931    HMGN1      21_19     0.000  397.10 0.0e+00  -1.59
11094     APTR       7_49     0.000  306.65 0.0e+00   1.10
9466       WRB      21_19     0.000  243.07 0.0e+00  -2.96
268      MRE11      11_53     0.000  240.72 0.0e+00  -0.49
2378    CAMTA2       17_5     0.996  235.82 6.8e-04   5.31
397      MED17      11_53     0.000  235.70 0.0e+00   2.20
4095     KIF1C       17_5     0.018  232.55 1.2e-05   4.18
10258    INCA1       17_5     0.030  221.19 2.0e-05   3.75
6626     LCA5L      21_19     0.000  205.24 0.0e+00  -2.86
5934    MFHAS1       8_11     0.000  204.76 7.0e-10   5.41
9806    SH3BGR      21_19     0.000  201.83 0.0e+00   1.20

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
      genename region_tag susie_pip    mu2     PVE      z
2378    CAMTA2       17_5     0.996 235.82 6.8e-04   5.31
1366   CWF19L1      10_64     0.211 503.74 3.1e-04 -24.40
11104  STARD10      11_41     0.940  67.49 1.8e-04   9.15
2849      SMC4       3_99     0.774  74.17 1.7e-04   8.76
10841  MRPS18B       6_26     0.981  56.91 1.6e-04  -7.62
7955     MFSD3       8_94     0.985  53.08 1.5e-04   5.22
5235      SUOX      12_35     0.934  49.65 1.3e-04   6.98
8813      MSL2       3_84     0.682  57.38 1.1e-04  10.26
3101     MEF2D       1_77     0.828  46.09 1.1e-04   6.91
4360     TRIM5       11_4     0.928  39.30 1.1e-04  -5.20
9656     KMT5A      12_75     0.733  47.04 1.0e-04  -8.04
3058   PLEKHA3      2_108     0.975  34.25 9.7e-05  -5.69
3378      GPAM      10_70     0.660  47.77 9.2e-05   7.40
8284    SPDYE5       7_48     0.720  44.07 9.2e-05   6.83
9507       FES      15_43     0.997  31.75 9.2e-05  -5.57
5420   C18orf8      18_12     0.944  32.79 9.0e-05  -5.94
7835     EVA1C      21_13     0.947  31.67 8.7e-05   5.55
10505  UGT2B17       4_48     0.787  36.95 8.5e-05  -6.01
5540     SYTL1       1_19     0.962  29.73 8.3e-05  -5.41
2607     SH2B3      12_67     0.626  44.03 8.0e-05   9.03

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
         genename region_tag susie_pip     mu2     PVE      z
1366      CWF19L1      10_64     0.211  503.74 3.1e-04 -24.40
10204     BLOC1S2      10_64     0.000  406.60 1.0e-08 -21.88
4137         MAU2      19_15     0.015  150.04 6.7e-06 -15.13
11446 RP11-9M16.2       9_59     0.006  201.16 3.4e-06 -14.56
2528        PANX1      11_53     0.000 1461.44 0.0e+00  13.17
6949         RPL8       8_94     0.000  137.02 2.2e-10 -12.54
6175         DLG5      10_50     0.032   69.77 6.5e-06  10.46
8813         MSL2       3_84     0.682   57.38 1.1e-04  10.26
10765     ZDHHC18       1_18     0.032   88.50 8.2e-06   9.92
2131      ATP13A1      19_15     0.002   78.73 5.6e-07   9.71
6551      SUPV3L1      10_46     0.022   76.39 4.9e-06  -9.19
11104     STARD10      11_41     0.940   67.49 1.8e-04   9.15
2289        DNMBP      10_64     0.000  110.27 4.3e-09  -9.08
10255       ZNF34       8_94     0.000  115.63 9.3e-11   9.04
2607        SH2B3      12_67     0.626   44.03 8.0e-05   9.03
2292       ERLIN1      10_64     0.000   89.62 2.8e-08  -8.84
2849         SMC4       3_99     0.774   74.17 1.7e-04   8.76
11726      YJEFN3      19_15     0.008   52.11 1.3e-06   8.76
4451         RSG1       1_11     0.014   66.90 2.8e-06  -8.56
9813         MUC1       1_77     0.002   80.65 3.8e-07  -8.55

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.02045967
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
         genename region_tag susie_pip     mu2     PVE      z
1366      CWF19L1      10_64     0.211  503.74 3.1e-04 -24.40
10204     BLOC1S2      10_64     0.000  406.60 1.0e-08 -21.88
4137         MAU2      19_15     0.015  150.04 6.7e-06 -15.13
11446 RP11-9M16.2       9_59     0.006  201.16 3.4e-06 -14.56
2528        PANX1      11_53     0.000 1461.44 0.0e+00  13.17
6949         RPL8       8_94     0.000  137.02 2.2e-10 -12.54
6175         DLG5      10_50     0.032   69.77 6.5e-06  10.46
8813         MSL2       3_84     0.682   57.38 1.1e-04  10.26
10765     ZDHHC18       1_18     0.032   88.50 8.2e-06   9.92
2131      ATP13A1      19_15     0.002   78.73 5.6e-07   9.71
6551      SUPV3L1      10_46     0.022   76.39 4.9e-06  -9.19
11104     STARD10      11_41     0.940   67.49 1.8e-04   9.15
2289        DNMBP      10_64     0.000  110.27 4.3e-09  -9.08
10255       ZNF34       8_94     0.000  115.63 9.3e-11   9.04
2607        SH2B3      12_67     0.626   44.03 8.0e-05   9.03
2292       ERLIN1      10_64     0.000   89.62 2.8e-08  -8.84
2849         SMC4       3_99     0.774   74.17 1.7e-04   8.76
11726      YJEFN3      19_15     0.008   52.11 1.3e-06   8.76
4451         RSG1       1_11     0.014   66.90 2.8e-06  -8.56
9813         MUC1       1_77     0.002   80.65 3.8e-07  -8.55

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 10_64"
           genename region_tag susie_pip    mu2     PVE      z
3390           GOT1      10_64     0.000  21.02 4.3e-10  -4.11
11229 RP11-441O15.3      10_64     0.000  21.63 6.7e-10  -3.61
6475       SLC25A28      10_64     0.000  12.50 1.2e-10  -2.34
11988   RP11-85A1.3      10_64     0.000  12.33 1.2e-10   2.31
10532        ENTPD7      10_64     0.000  25.61 9.5e-10   3.63
3379           CUTC      10_64     0.000  17.85 1.7e-10   3.51
244           COX15      10_64     0.000   8.21 7.6e-11   0.89
290           ABCC2      10_64     0.000  37.61 1.3e-08   2.46
2289          DNMBP      10_64     0.000 110.27 4.3e-09  -9.08
2292         ERLIN1      10_64     0.000  89.62 2.8e-08  -8.84
1366        CWF19L1      10_64     0.211 503.74 3.1e-04 -24.40
10204       BLOC1S2      10_64     0.000 406.60 1.0e-08 -21.88
2294         PKD2L1      10_64     0.000  32.62 8.1e-10   4.96
11463      OLMALINC      10_64     0.000  17.20 7.3e-10  -2.20
891          SEC31B      10_64     0.000   9.30 1.6e-10  -0.86
7681         HIF1AN      10_64     0.000   7.67 1.1e-10  -0.38
7682         NDUFB8      10_64     0.000   5.67 6.0e-11  -0.10
3375           SLF2      10_64     0.796  29.49 6.8e-05   5.10
1367         SEMA4G      10_64     0.082  25.08 6.0e-06   4.01
2313           TWNK      10_64     0.011  20.86 6.8e-07   4.64
504          MRPL43      10_64     0.004  18.44 2.3e-07  -3.42
2314          LZTS2      10_64     0.033  22.86 2.2e-06   3.82
9967          PDZD7      10_64     0.000   4.97 5.1e-11   0.90
2315          SFXN3      10_64     0.000   6.99 8.8e-11   0.95
2316        KAZALD1      10_64     0.000   7.83 9.5e-11   0.19

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 19_15"
      genename region_tag susie_pip    mu2     PVE      z
4199      LSM4      19_15     0.004  11.76 1.4e-07  -1.65
4197    PGPEP1      19_15     0.004  11.39 1.4e-07  -1.27
8907    LRRC25      19_15     0.010  22.03 6.4e-07   3.12
4196     SSBP4      19_15     0.002   5.07 3.1e-08   0.93
2112    ISYNA1      19_15     0.002   5.19 3.2e-08  -0.81
2113       ELL      19_15     0.014  24.63 9.8e-07  -3.21
2123      KXD1      19_15     0.002   9.60 6.5e-08   1.69
11192    UBA52      19_15     0.003   9.42 8.8e-08   1.54
7904    KLHL26      19_15     0.002  10.62 6.9e-08   2.24
52        UPF1      19_15     0.003   7.68 7.2e-08  -0.15
2115      COPE      19_15     0.002   5.10 3.2e-08  -0.40
2116     DDX49      19_15     0.003   8.91 8.7e-08   1.09
2118     ARMC6      19_15     0.002   5.24 3.7e-08   0.53
599      SUGP2      19_15     0.002   5.07 3.2e-08  -0.17
596   TMEM161A      19_15     0.004  12.39 1.4e-07   1.46
11075    MEF2B      19_15     0.064  53.86 1.0e-05  -6.43
11817   BORCS8      19_15     0.002  15.11 9.6e-08  -5.47
595     RFXANK      19_15     0.002   5.69 3.7e-08   0.57
4137      MAU2      19_15     0.015 150.04 6.7e-06 -15.13
7905   GATAD2A      19_15     0.008  45.36 1.0e-06   7.00
9879   NDUFA13      19_15     0.005  41.67 6.2e-07   6.71
9152     TSSK6      19_15     0.008  15.09 3.6e-07  -4.98
11726   YJEFN3      19_15     0.008  52.11 1.3e-06   8.76
6840     CILP2      19_15     0.008  14.84 3.4e-07   4.96
2128      PBX4      19_15     0.003   6.46 5.3e-08   2.93
597      LPAR2      19_15     0.037  27.91 3.0e-06   5.92
1235      GMIP      19_15     0.049  26.95 3.9e-06   5.34
2131   ATP13A1      19_15     0.002  78.73 5.6e-07   9.71
9450    ZNF101      19_15     0.004   9.29 1.0e-07   4.14
2126     ZNF14      19_15     0.002   8.48 5.5e-08  -0.67

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 9_59"
         genename region_tag susie_pip    mu2     PVE      z
11333        ORM1       9_59     0.008   9.73 2.2e-07   2.67
11310        ORM2       9_59     0.013  13.15 4.9e-07   0.94
11446 RP11-9M16.2       9_59     0.006 201.16 3.4e-06 -14.56
4914     ATP6V1G1       9_59     0.006   6.84 1.3e-07   0.61
6633      TMEM268       9_59     0.010  20.88 5.9e-07   3.91
2258       TNFSF8       9_59     0.005   5.89 9.2e-08   1.59
9428      TNFSF15       9_59     0.008   8.54 1.9e-07  -0.80
392           TNC       9_59     0.007   7.82 1.6e-07  -1.15

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 11_53"
     genename region_tag susie_pip     mu2 PVE     z
7666   CEP295      11_53         0   62.46   0  0.30
397     MED17      11_53         0  235.70   0  2.20
2528    PANX1      11_53         0 1461.44   0 13.17
3657    GPR83      11_53         0  531.67   0 -2.81
268     MRE11      11_53         0  240.72   0 -0.49
8126  ANKRD49      11_53         0  126.76   0 -3.89

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 8_94"
      genename region_tag susie_pip    mu2     PVE      z
9429     ZFP41       8_94     0.000   7.53 3.3e-15  -0.94
11739     GLI4       8_94     0.000   7.09 2.9e-15   0.56
9844    ZNF696       8_94     0.000   8.16 3.8e-15  -0.98
9696    TOP1MT       8_94     0.000  41.62 5.7e-13   3.16
6670     RHPN1       8_94     0.000   9.70 5.2e-15  -1.13
1943     GSDMD       8_94     0.000  24.94 8.2e-14   1.88
239      ZC3H3       8_94     0.000   7.96 4.3e-15  -1.44
10868    MROH6       8_94     0.000   6.00 2.4e-15   0.98
5965     NAPRT       8_94     0.000  62.41 9.5e-12  -4.12
1944     EEF1D       8_94     0.000  62.95 1.0e-11  -3.46
9289     TIGD5       8_94     0.000   9.70 6.8e-15  -0.56
9398    ZNF707       8_94     0.000  14.16 1.1e-14   2.04
9378    FAM83H       8_94     0.000  18.58 3.2e-14   1.62
9302     PUF60       8_94     0.000   5.70 2.0e-15  -0.37
9164      PLEC       8_94     0.000   9.63 1.0e-14  -0.64
9194    PARP10       8_94     0.000  10.27 1.1e-14  -1.17
9198     GRINA       8_94     0.000  24.95 2.1e-13  -1.99
9209     OPLAH       8_94     0.000  16.38 9.4e-15   2.43
9240      CYC1       8_94     0.000  10.40 4.8e-15   1.08
9276      MAF1       8_94     0.000   6.89 2.5e-15   0.53
9278     WDR97       8_94     0.000   6.43 3.1e-15  -0.38
9268   SHARPIN       8_94     0.000   6.74 2.4e-15  -0.50
9766      HSF1       8_94     0.000   7.75 2.9e-15  -1.94
11985      SCX       8_94     0.000   6.28 2.4e-15  -0.88
9752     DGAT1       8_94     0.000  14.01 7.1e-15   1.22
12034  TMEM249       8_94     0.000   9.09 3.5e-15  -0.82
8663     ADCK5       8_94     0.000   9.98 4.0e-15   0.60
785      CPSF1       8_94     0.000  19.42 3.8e-14   0.30
6938     TONSL       8_94     0.000  20.96 3.9e-14   1.92
7957     KIFC2       8_94     0.000  33.78 6.8e-14  -4.79
6943  PPP1R16A       8_94     0.000 112.03 1.4e-13   6.05
6940    RECQL4       8_94     0.004 178.54 2.2e-06   7.95
7956       GPT       8_94     0.000  19.60 1.2e-14   4.98
7955     MFSD3       8_94     0.985  53.08 1.5e-04   5.22
6941    LRRC14       8_94     0.000 135.11 1.3e-13   7.72
5964   SLC39A4       8_94     0.000  16.37 2.8e-14   0.16
10559   ZNF251       8_94     0.000  16.16 6.6e-15   2.50
10255    ZNF34       8_94     0.000 115.63 9.3e-11   9.04
6949      RPL8       8_94     0.000 137.02 2.2e-10 -12.54
10422   ZNF517       8_94     0.000  57.30 1.2e-12  -6.87
8358    COMMD5       8_94     0.000  85.75 2.9e-10  -5.93
10214   ZNF250       8_94     0.000  36.82 6.4e-13   1.76
8360     ZNF16       8_94     0.000  28.12 6.8e-14   2.47
9490   C8orf33       8_94     0.000  47.38 3.2e-12   2.03

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip      mu2     PVE      z
4517      rs4336844       1_11     1.000   182.38 5.3e-04  14.42
7755     rs79598313       1_18     1.000   111.95 3.3e-04  11.19
53029     rs2642420      1_112     1.000    43.08 1.3e-04  -6.69
62118    rs12239046      1_131     1.000    48.67 1.4e-04  -7.26
72145   rs569546056       2_19     1.000   832.92 2.4e-03   3.68
91172      rs894194       2_55     1.000    39.75 1.2e-04  -6.40
112383    rs1862069      2_102     1.000    50.73 1.5e-04   8.48
147330    rs2649750       3_28     1.000    34.60 1.0e-04  -6.03
171928    rs9870956       3_77     1.000    49.99 1.5e-04   7.14
181653    rs9817452       3_97     1.000    45.72 1.3e-04   6.81
186146  rs149368105      3_105     1.000   105.46 3.1e-04 -11.00
241496   rs11727676       4_94     1.000    43.34 1.3e-04   6.79
275686  rs536916238       5_33     1.000    42.84 1.2e-04  -0.43
290229     rs163895       5_63     1.000    35.05 1.0e-04  -5.66
392506   rs10277379       7_49     1.000  2675.85 7.8e-03  -4.68
392509  rs761767938       7_49     1.000  3442.53 1.0e-02  -3.42
392517    rs1544459       7_49     1.000  3379.03 9.8e-03  -3.87
422115       rs2428       8_11     1.000   592.65 1.7e-03   8.64
422120  rs758184196       8_11     1.000   642.54 1.9e-03  -2.30
428749    rs2293400       8_23     1.000    46.62 1.4e-04   5.84
437165  rs140753685       8_42     1.000    42.24 1.2e-04   6.62
493797    rs7040440       9_59     1.000    62.06 1.8e-04  -1.99
493805    rs2763193       9_59     1.000   279.81 8.1e-04 -17.31
493806   rs10739409       9_59     1.000   117.29 3.4e-04 -14.77
523481    rs9645500      10_46     1.000   149.90 4.4e-04  12.94
532240  rs139450722      10_64     1.000    92.15 2.7e-04  -4.95
562420   rs17157266      11_34     1.000    47.42 1.4e-04  -7.06
571107  rs144988974      11_52     1.000    37.01 1.1e-04   6.20
571291   rs74717621      11_54     1.000    37.52 1.1e-04   6.45
577665    rs1176746      11_67     1.000  1141.65 3.3e-03  -2.94
577667    rs2307599      11_67     1.000  1141.79 3.3e-03  -2.75
588457   rs12824533      12_11     1.000    64.00 1.9e-04   8.23
591300   rs66720652      12_15     1.000    49.16 1.4e-04  -6.83
659222    rs2332328       14_3     1.000    42.81 1.2e-04   6.77
667696   rs72681869      14_20     1.000    54.77 1.6e-04  -9.53
681621    rs1243165      14_49     1.000    50.17 1.5e-04   3.73
691494     rs511338      15_14     1.000    44.36 1.3e-04   7.09
696877    rs2070895      15_27     1.000    52.37 1.5e-04  -7.39
729354   rs11645522      16_46     1.000    63.73 1.9e-04   7.57
731241    rs2255451      16_49     1.000    50.06 1.5e-04  -7.19
750513    rs1801689      17_38     1.000   125.15 3.6e-04  11.78
752292    rs1477066      17_41     1.000    46.72 1.4e-04   6.87
755830   rs62076019      17_46     1.000    97.54 2.8e-04  10.38
772181   rs62094231      18_31     1.000    68.66 2.0e-04  -8.33
793518     rs814573      19_31     1.000    94.79 2.8e-04 -11.60
825489   rs62221472      21_23     1.000    48.03 1.4e-04  -6.44
834737     rs139050      22_19     1.000   158.48 4.6e-04 -12.57
834738    rs6006585      22_19     1.000    63.28 1.8e-04  -5.48
844023    rs4989532        1_6     1.000   498.41 1.4e-03  -3.70
844025  rs115843159        1_6     1.000    63.86 1.9e-04   0.87
848095   rs35130213       1_19     1.000   461.64 1.3e-03   2.49
855500  rs140584594       1_67     1.000    74.80 2.2e-04   8.43
951448    rs2844543       6_26     1.000   133.09 3.9e-04  10.88
951785  rs112436252       6_26     1.000    72.23 2.1e-04   6.91
987691     rs873884       8_94     1.000   213.09 6.2e-04  11.89
1011559  rs11601507       11_4     1.000    96.61 2.8e-04   9.71
1015846   rs2511241      11_41     1.000    39.24 1.1e-04  -6.84
1020885 rs148050219      11_53     1.000 37770.02 1.1e-01 -15.40
1020895 rs111443113      11_53     1.000 37728.14 1.1e-01  -0.61
1066876 rs373230966       17_5     1.000   412.37 1.2e-03   3.07
1135585  rs34079499      21_19     1.000  4321.11 1.3e-02  -5.26
77909    rs72800939       2_28     0.999    32.41 9.4e-05   5.73
532073  rs111286300      10_64     0.999    42.44 1.2e-04   8.46
709547    rs9788910       16_3     0.999    34.10 9.9e-05   7.01
834739   rs11090617      22_19     0.999   594.73 1.7e-03  30.16
1075621 rs117643180       17_6     0.999    79.28 2.3e-04   9.29
53007      rs337171      1_112     0.998    48.80 1.4e-04   7.55
783550    rs8113613       19_9     0.998    71.69 2.1e-04  -6.23
792417   rs11879413      19_30     0.998    32.95 9.6e-05  -5.23
301099  rs769204262       5_84     0.997    30.33 8.8e-05   5.47
321252  rs115740542       6_20     0.997    31.70 9.2e-05   5.67
392105   rs12539160       7_47     0.997    34.31 9.9e-05   5.46
561872    rs1593480      11_34     0.997    32.33 9.4e-05  -5.53
783547   rs10854115       19_9     0.997    44.04 1.3e-04  -2.96
223425   rs77094191       4_59     0.996    60.26 1.7e-04  -4.92
403677   rs10435378       7_70     0.996    46.37 1.3e-04   6.83
550446    rs7481951      11_15     0.996    48.04 1.4e-04   7.20
743238    rs3760511      17_22     0.996    28.29 8.2e-05  -5.16
832404     rs132642      22_14     0.996   164.71 4.8e-04  13.69
422095   rs11774455       8_11     0.995   113.11 3.3e-04   7.51
790090     rs889140      19_23     0.995    41.56 1.2e-04  -8.34
47962     rs4951163      1_104     0.994    32.28 9.3e-05   5.08
186167     rs234043      3_106     0.994    28.86 8.3e-05  -5.30
772474   rs12373325      18_31     0.993   167.58 4.8e-04 -14.96
322033    rs2235698       6_23     0.992    31.36 9.0e-05   5.96
457437   rs10956254       8_83     0.992    31.52 9.1e-05   7.08
987654  rs112574791       8_94     0.992   465.69 1.3e-03 -21.20
38163     rs9425587       1_84     0.991    29.94 8.6e-05  -5.39
274729   rs28499105       5_31     0.990    31.48 9.1e-05   5.56
790082   rs12610925      19_23     0.990    49.94 1.4e-04  -8.65
807380    rs6129631      20_24     0.989    45.84 1.3e-04  -5.34
241704    rs4552481       4_95     0.988   239.74 6.9e-04  16.59
656101    rs7318424      13_59     0.987    34.87 1.0e-04  -5.90
809285    rs6066141      20_29     0.987    32.35 9.3e-05  -5.84
16463    rs12140153       1_39     0.986    27.56 7.9e-05  -5.46
422859   rs11777976       8_13     0.985    58.40 1.7e-04  -8.60
464149    rs1016565        9_1     0.984    25.82 7.4e-05   4.91
844024    rs2072735        1_6     0.983   495.86 1.4e-03  -4.12
673581   rs12894822      14_33     0.981    43.05 1.2e-04   6.62
298750   rs72791146       5_79     0.979    29.77 8.5e-05   5.35
457396   rs13252684       8_83     0.979    53.78 1.5e-04   3.57
667779    rs2883893      14_20     0.979    29.33 8.3e-05  -5.00
701147   rs12594627      15_35     0.978    63.87 1.8e-04   8.23
722872   rs72784008      16_31     0.978    38.31 1.1e-04  -6.24
179322    rs6774253       3_92     0.973    37.74 1.1e-04  -7.57
486605  rs113609637       9_47     0.971    31.61 8.9e-05  -5.79
786198   rs11668601      19_14     0.965    86.42 2.4e-04   9.97
591656   rs67981690      12_16     0.964    34.80 9.7e-05   5.54
729353   rs13334801      16_46     0.964    33.67 9.4e-05   4.78
30332     rs1730862       1_66     0.961    28.62 8.0e-05  -5.25
782395   rs10401485       19_7     0.959    27.01 7.5e-05   4.98
477234   rs11557154       9_27     0.958    34.95 9.7e-05   6.11
815725    rs2823025       21_2     0.958    29.03 8.1e-05   5.29
543580    rs7939634       11_2     0.957    27.25 7.6e-05  -5.03
802595   rs11557577      20_13     0.957    27.04 7.5e-05  -4.99
177104   rs12695769       3_87     0.948    44.46 1.2e-04  -6.83
808536    rs4810422      20_28     0.945    29.58 8.1e-05   5.40
275668     rs173964       5_33     0.943   106.88 2.9e-04   8.09
188268   rs13089089      3_110     0.935    24.26 6.6e-05  -4.47
580906   rs11220136      11_77     0.934    36.66 9.9e-05   6.02
732626   rs75079463      16_51     0.934    24.53 6.7e-05   4.61
1093989  rs58542926      19_15     0.927   272.55 7.3e-04  19.31
792431   rs28602288      19_30     0.925    28.05 7.5e-05   4.57
154307   rs62247577       3_43     0.921    23.65 6.3e-05   4.37
681617     rs941594      14_49     0.920    56.88 1.5e-04   4.99
303634   rs35341726       5_88     0.918    25.06 6.7e-05   4.76
409      rs10910028        1_2     0.917    45.42 1.2e-04   7.16
171948  rs141809192       3_78     0.914    24.22 6.4e-05   4.15
691486   rs17723097      15_13     0.914    42.80 1.1e-04   7.20
774155   rs73963711      18_35     0.913    25.00 6.6e-05  -5.02
422385   rs13265179       8_12     0.911    88.78 2.3e-04  10.81
347271    rs7752846       6_75     0.908    24.42 6.4e-05  -4.77
138463  rs115532219        3_9     0.907    25.76 6.8e-05   3.99
268706   rs13172112       5_21     0.899    46.22 1.2e-04   9.04
322624    rs1126511       6_27     0.892    40.87 1.1e-04   7.43
73473    rs72787520       2_20     0.889    23.94 6.2e-05  -4.53
565578   rs11236797      11_42     0.888    28.01 7.2e-05  -4.85
138281   rs13085211        3_9     0.884   152.89 3.9e-04 -10.80
654691   rs61965347      13_56     0.884    27.44 7.0e-05   5.11
571267   rs72980431      11_54     0.880    24.09 6.2e-05  -4.58
30969      rs325937       1_69     0.873    26.12 6.6e-05  -4.74
422136   rs13265731       8_11     0.873   580.93 1.5e-03   8.08
279872    rs3010273       5_43     0.870    35.64 9.0e-05  -6.07
987989  rs113284751       8_94     0.870    58.28 1.5e-04  -4.33
667744  rs142004400      14_20     0.866    48.06 1.2e-04  -8.89
457385   rs79658059       8_83     0.858   176.75 4.4e-04 -15.98
465759       rs6915        9_5     0.854    26.32 6.5e-05  -4.88
45973    rs12144388       1_99     0.852    27.90 6.9e-05   4.99
297743   rs34576922       5_78     0.851    32.23 8.0e-05  -5.67
684894   rs17617994      14_54     0.847    31.02 7.6e-05  -5.37
982512    rs1050969       8_69     0.847    29.22 7.2e-05  -4.08
805790    rs4911358      20_20     0.844    54.60 1.3e-04   6.24
298906    rs6894249       5_79     0.841    28.92 7.1e-05  -5.04
697511     rs340029      15_27     0.841    50.15 1.2e-04   7.15
195658   rs13116176        4_4     0.839    30.42 7.4e-05  -6.04
180156    rs7610095       3_94     0.837    36.37 8.8e-05  -6.13
98359   rs192728998       2_70     0.835    24.26 5.9e-05  -4.50
72144     rs7562170       2_19     0.833   801.87 1.9e-03   3.52
629940    rs1778790       13_7     0.833    57.79 1.4e-04  -7.85
179270    rs7645585       3_92     0.823    54.89 1.3e-04  -7.96
705143   rs35408448      15_41     0.823    71.72 1.7e-04  -8.67
10338      rs260970       1_24     0.822    25.00 6.0e-05   4.55
71938      rs937813       2_16     0.819    27.47 6.5e-05   5.15
679984     rs243215      14_45     0.819    26.29 6.3e-05   4.77
72148     rs4580350       2_19     0.811   803.08 1.9e-03  -3.46
769143    rs9953845      18_26     0.811    30.88 7.3e-05   5.33

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                 id region_tag susie_pip      mu2     PVE      z
1020885 rs148050219      11_53     1.000 37770.02 1.1e-01 -15.40
1020895 rs111443113      11_53     1.000 37728.14 1.1e-01  -0.61
1020894  rs60550219      11_53     0.140 37725.38 1.5e-02 -15.42
1020881   rs7105405      11_53     0.157 37715.61 1.7e-02 -15.44
1020919  rs67167563      11_53     0.067 37712.32 7.3e-03 -15.41
1020926 rs113426210      11_53     0.531 37699.41 5.8e-02 -15.46
1020877   rs9888156      11_53     0.000 37657.48 5.0e-06 -15.40
1020932    rs950878      11_53     0.007 37650.52 7.8e-04 -15.44
1020875  rs67232024      11_53     0.000 37586.96 1.1e-08 -15.34
1020854   rs7927828      11_53     0.000 37583.40 9.1e-11 -15.29
1020872   rs9888266      11_53     0.000 37532.49 2.3e-11 -15.31
1020860  rs67812366      11_53     0.000 37531.84 1.6e-11 -15.31
1020863   rs7109132      11_53     0.000 37531.70 1.3e-11 -15.31
1020855  rs57856352      11_53     0.000 37519.25 2.0e-13 -15.27
1020876  rs16919533      11_53     0.000 37518.96 4.1e-12 -15.37
1020874  rs67549397      11_53     0.000 37463.49 4.3e-15 -15.29
1020873   rs9888143      11_53     0.000 37403.19 1.2e-17 -15.27
1020864  rs60351354      11_53     0.000 37399.02 0.0e+00 -15.27
1020865  rs60546087      11_53     0.000 37398.98 0.0e+00 -15.27
1020869   rs1573567      11_53     0.000 37398.95 0.0e+00 -15.27
1020866   rs7109819      11_53     0.000 37398.87 0.0e+00 -15.27
1020832   rs7932290      11_53     0.000 37218.99 0.0e+00 -15.28
1020800   rs7934467      11_53     0.000 36913.01 0.0e+00 -15.03
1021195  rs72966603      11_53     0.000 31145.65 0.0e+00 -16.38
1021325  rs12419615      11_53     0.000 29498.09 0.0e+00 -16.55
1021376  rs58964858      11_53     0.000 25272.82 0.0e+00 -16.59
1021378  rs72968738      11_53     0.000 25224.88 0.0e+00 -16.54
1021402 rs138626734      11_53     0.000 24921.79 0.0e+00 -16.62
1021420   rs4408267      11_53     0.000 24909.30 0.0e+00 -16.60
1021388  rs72968745      11_53     0.000 24896.33 0.0e+00 -16.47
1021387   rs4491178      11_53     0.000 24894.79 0.0e+00 -16.46
1021448  rs11604580      11_53     0.000 24881.93 0.0e+00 -16.62
1021453   rs4342991      11_53     0.000 24879.20 0.0e+00 -16.62
1021392   rs4753124      11_53     0.000 24819.88 0.0e+00 -16.63
1021425  rs16919942      11_53     0.000 24802.25 0.0e+00 -16.64
1021306   rs7945841      11_53     0.000 24742.95 0.0e+00 -14.94
1021019  rs72962880      11_53     0.000 24719.19 0.0e+00 -12.36
1021008  rs55659547      11_53     0.000 24647.19 0.0e+00 -12.33
1021007   rs7950356      11_53     0.000 24642.75 0.0e+00 -12.32
1021018  rs56359140      11_53     0.000 24616.13 0.0e+00 -12.29
1021011  rs72962872      11_53     0.000 24613.98 0.0e+00 -12.30
1021013 rs140989262      11_53     0.000 24291.75 0.0e+00 -12.26
1021344   rs7119800      11_53     0.000 24259.32 0.0e+00 -15.03
1021033  rs72962891      11_53     0.000 24095.40 0.0e+00 -12.23
1021052  rs72964604      11_53     0.000 24046.27 0.0e+00 -12.26
1021348   rs2176565      11_53     0.000 23950.34 0.0e+00 -15.17
1021349   rs7949551      11_53     0.000 23243.87 0.0e+00 -15.51
1020815   rs1506657      11_53     0.000 22836.55 0.0e+00  12.23
1021352  rs72968710      11_53     0.000 22722.53 0.0e+00 -15.74
1021355  rs16919917      11_53     0.000 22529.43 0.0e+00 -15.60

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip      mu2     PVE      z
1020885 rs148050219      11_53     1.000 37770.02 0.11000 -15.40
1020895 rs111443113      11_53     1.000 37728.14 0.11000  -0.61
1020926 rs113426210      11_53     0.531 37699.41 0.05800 -15.46
1020881   rs7105405      11_53     0.157 37715.61 0.01700 -15.44
1020894  rs60550219      11_53     0.140 37725.38 0.01500 -15.42
1135585  rs34079499      21_19     1.000  4321.11 0.01300  -5.26
392509  rs761767938       7_49     1.000  3442.53 0.01000  -3.42
392517    rs1544459       7_49     1.000  3379.03 0.00980  -3.87
392506   rs10277379       7_49     1.000  2675.85 0.00780  -4.68
1020919  rs67167563      11_53     0.067 37712.32 0.00730 -15.41
392513   rs11972122       7_49     0.778  3154.12 0.00710  -4.21
1135549   rs2836974      21_19     0.438  4260.45 0.00540  -5.16
1135586  rs34578707      21_19     0.285  4259.41 0.00350  -5.13
1135599  rs77090950      21_19     0.278  4260.48 0.00340  -5.15
577665    rs1176746      11_67     1.000  1141.65 0.00330  -2.94
577667    rs2307599      11_67     1.000  1141.79 0.00330  -2.75
1135603  rs35560196      21_19     0.269  4260.46 0.00330  -5.14
72145   rs569546056       2_19     1.000   832.92 0.00240   3.68
1135620   rs8129147      21_19     0.195  4259.42 0.00240  -5.18
1135621  rs28360661      21_19     0.181  4257.33 0.00220  -5.17
392514   rs11406602       7_49     0.222  3149.98 0.00200  -4.15
72144     rs7562170       2_19     0.833   801.87 0.00190   3.52
72148     rs4580350       2_19     0.811   803.08 0.00190  -3.46
422120  rs758184196       8_11     1.000   642.54 0.00190  -2.30
422115       rs2428       8_11     1.000   592.65 0.00170   8.64
834739   rs11090617      22_19     0.999   594.73 0.00170  30.16
1135537  rs34672724      21_19     0.137  4253.23 0.00170  -5.16
422136   rs13265731       8_11     0.873   580.93 0.00150   8.08
844023    rs4989532        1_6     1.000   498.41 0.00140  -3.70
844024    rs2072735        1_6     0.983   495.86 0.00140  -4.12
848095   rs35130213       1_19     1.000   461.64 0.00130   2.49
987654  rs112574791       8_94     0.992   465.69 0.00130 -21.20
1135787  rs12482979      21_19     0.124  3639.38 0.00130  -5.91
1066876 rs373230966       17_5     1.000   412.37 0.00120   3.07
532213   rs17882431      10_64     0.752   511.94 0.00110 -24.55
844028    rs2072734        1_6     0.790   487.79 0.00110  -4.24
1135754   rs8128827      21_19     0.096  3655.88 0.00100  -5.86
1135759   rs2026267      21_19     0.092  3655.38 0.00098  -5.86
1135760  rs35123057      21_19     0.092  3655.36 0.00098  -5.86
1135768   rs2735306      21_19     0.090  3654.71 0.00096  -5.86
1135782   rs2735309      21_19     0.088  3645.36 0.00093  -5.88
1135784   rs2776309      21_19     0.084  3643.45 0.00089  -5.88
1135774   rs2776307      21_19     0.083  3649.26 0.00088  -5.87
1135781   rs2776308      21_19     0.082  3645.78 0.00087  -5.88
493805    rs2763193       9_59     1.000   279.81 0.00081 -17.31
1020932    rs950878      11_53     0.007 37650.52 0.00078 -15.44
1093989  rs58542926      19_15     0.927   272.55 0.00073  19.31
1135800   rs3216359      21_19     0.069  3604.73 0.00072  -5.96
241704    rs4552481       4_95     0.988   239.74 0.00069  16.59
848101   rs34563832       1_19     0.532   448.89 0.00069   2.81

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                 id region_tag susie_pip    mu2     PVE      z
834739   rs11090617      22_19     0.999 594.73 1.7e-03  30.16
834742    rs1977081      22_19     0.001 584.16 1.1e-06  29.82
834749   rs13056555      22_19     0.000 573.44 4.0e-09  29.50
834746    rs2401512      22_19     0.000 572.04 2.9e-09  29.48
834747    rs4823176      22_19     0.000 572.12 2.9e-09  29.48
834748    rs4823178      22_19     0.000 572.21 3.0e-09  29.48
834745    rs2072905      22_19     0.000 571.94 2.8e-09  29.47
834744    rs1883348      22_19     0.000 562.66 6.1e-10  29.26
532213   rs17882431      10_64     0.752 511.94 1.1e-03 -24.55
532198   rs35614792      10_64     0.037 506.82 5.4e-05 -24.45
532232   rs34539738      10_64     0.000 460.22 1.4e-09 -23.32
532231  rs138052038      10_64     0.000 447.22 1.1e-09 -23.05
532224  rs568600628      10_64     0.000 403.80 6.6e-10 -21.98
987654  rs112574791       8_94     0.992 465.69 1.3e-03 -21.20
987602   rs35968570       8_94     0.008 457.58 1.1e-05 -20.97
532189  rs528153341      10_64     0.000 304.20 5.4e-10 -19.45
1093989  rs58542926      19_15     0.927 272.55 7.3e-04  19.31
532191    rs2104368      10_64     0.000 318.15 3.7e-10 -19.24
532192   rs11190401      10_64     0.000 316.50 3.4e-10 -19.20
532185    rs6584345      10_64     0.000 295.46 3.5e-10 -19.18
532187    rs2902371      10_64     0.000 294.80 3.5e-10 -19.16
532188   rs11595928      10_64     0.000 294.55 3.4e-10 -19.15
1094037 rs200210321      19_15     0.044 267.00 3.4e-05  19.14
532219    rs4917889      10_64     0.000 317.96 3.1e-10 -19.09
1094020   rs8107974      19_15     0.028 264.34 2.1e-05  19.09
1094070  rs10401969      19_15     0.004 262.10 2.7e-06  19.01
834754     rs738491      22_19     0.000 286.32 9.7e-12  18.97
1094088    rs739846      19_15     0.002 259.68 1.4e-06  18.93
1094182  rs73001065      19_15     0.004 263.31 3.0e-06  18.86
532177   rs11595257      10_64     0.000 277.63 3.2e-10 -18.62
1093951  rs72999033      19_15     0.004 261.11 2.7e-06  18.61
532167   rs34633631      10_64     0.000 276.29 3.2e-10 -18.59
532171   rs11599683      10_64     0.000 275.88 3.1e-10 -18.58
1094418  rs73002956      19_15     0.007 247.71 5.3e-06  18.36
1094235  rs56255430      19_15     0.003 246.01 2.4e-06  18.35
1094472   rs3794991      19_15     0.006 243.94 4.2e-06  18.25
532174  rs555100159      10_64     0.000 242.52 2.5e-10 -17.95
1094269 rs150268548      19_15     0.001 231.35 6.6e-07  17.93
457384    rs2980875       8_83     0.159 133.94 6.2e-05 -17.90
457380    rs2001844       8_83     0.312 134.16 1.2e-04 -17.85
457382    rs2980886       8_83     0.315 134.18 1.2e-04 -17.85
532184    rs2862991      10_64     0.000 250.52 2.4e-10 -17.82
532166    rs3829161      10_64     0.000 255.42 3.3e-10 -17.45
1094593  rs17216525      19_15     0.001 217.78 8.6e-07  17.42
532164   rs12782078      10_64     0.000 245.33 3.1e-10 -17.40
532165   rs11597528      10_64     0.000 245.47 3.1e-10 -17.40
532178    rs2862949      10_64     0.000 247.20 3.9e-10 -17.38
987776  rs189120668       8_94     0.000 326.65 1.6e-15 -17.33
1094589  rs16996148      19_15     0.001 215.08 7.3e-07  17.33
493805    rs2763193       9_59     1.000 279.81 8.1e-04 -17.31

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 32
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
SYTL1 gene(s) from the input list not found in DisGeNET CURATEDZFP62 gene(s) from the input list not found in DisGeNET CURATEDMFSD3 gene(s) from the input list not found in DisGeNET CURATEDADAM15 gene(s) from the input list not found in DisGeNET CURATEDPPP5C gene(s) from the input list not found in DisGeNET CURATEDDDX19A gene(s) from the input list not found in DisGeNET CURATEDPLEKHA3 gene(s) from the input list not found in DisGeNET CURATEDFES gene(s) from the input list not found in DisGeNET CURATEDFPR3 gene(s) from the input list not found in DisGeNET CURATEDTMEM167B gene(s) from the input list not found in DisGeNET CURATEDWHAMM gene(s) from the input list not found in DisGeNET CURATEDC18orf8 gene(s) from the input list not found in DisGeNET CURATEDEVA1C gene(s) from the input list not found in DisGeNET CURATEDCAMTA2 gene(s) from the input list not found in DisGeNET CURATEDHIST1H2BN gene(s) from the input list not found in DisGeNET CURATED
                                 Description        FDR Ratio BgRatio
64                         Splenic Neoplasms 0.01616818  1/17  1/9703
74                   Ataxia, Spinocerebellar 0.01616818  2/17 34/9703
80              Malignant neoplasm of spleen 0.01616818  1/17  1/9703
105               Sulfite oxidase deficiency 0.01616818  1/17  1/9703
115                        Woolly hair nevus 0.01616818  1/17  1/9703
137            Spinocerebellar Ataxia Type 1 0.01616818  2/17 34/9703
138            Spinocerebellar Ataxia Type 2 0.01616818  2/17 34/9703
139            Spinocerebellar Ataxia Type 4 0.01616818  2/17 35/9703
140            Spinocerebellar Ataxia Type 5 0.01616818  2/17 34/9703
141 Spinocerebellar Ataxia Type 6 (disorder) 0.01616818  2/17 34/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2