Last updated: 2021-09-09

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 59e5f4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-d-30500_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30600_irnt_Liver.Rmd
    Modified:   analysis/ukb-d-30610_irnt_Liver.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-d-30610_irnt_Liver.Rmd) and HTML (docs/ukb-d-30610_irnt_Liver.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
html cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports
Rmd 4970e3e wesleycrouse 2021-09-08 updating reports
html 4970e3e wesleycrouse 2021-09-08 updating reports
Rmd 627a4e1 wesleycrouse 2021-09-07 adding heritability
Rmd dfd2b5f wesleycrouse 2021-09-07 regenerating reports
html dfd2b5f wesleycrouse 2021-09-07 regenerating reports
Rmd 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
html 61b53b3 wesleycrouse 2021-09-06 updated PVE calculation
Rmd 837dd01 wesleycrouse 2021-09-01 adding additional fixedsigma report
Rmd d0a5417 wesleycrouse 2021-08-30 adding new reports to the index
Rmd 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 0922de7 wesleycrouse 2021-08-18 updating all reports with locus plots
html 1c62980 wesleycrouse 2021-08-11 Updating reports
Rmd 5981e80 wesleycrouse 2021-08-11 Adding more reports
html 5981e80 wesleycrouse 2021-08-11 Adding more reports
Rmd 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 05a98b7 wesleycrouse 2021-08-07 adding additional results
html 03e541c wesleycrouse 2021-07-29 Cleaning up report generation
Rmd 276893d wesleycrouse 2021-07-29 Updating reports
html 276893d wesleycrouse 2021-07-29 Updating reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Alkaline phosphatase (quantile) using Liver gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-d-30610_irnt. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Liver eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 10901
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1070  768  652  417  494  611  548  408  405  434  634  629  195  365  354 
  16   17   18   19   20   21   22 
 526  663  160  859  306  114  289 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8366205

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size #check PVE calculation

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z score to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

#load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd")) #for new version, stored after harmonization
z_snp <- readRDS(paste0(results_dir, "/", trait_id, ".RDS")) #for old version, unharmonized

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,] #subset snps to those included in analysis, note some are duplicated, need to match which allele was used
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)] #for duplicated snps, this arbitrarily uses the first allele
ctwas_snp_res$z_flag <- as.numeric(ctwas_snp_res$id %in% z_snp$id[duplicated(z_snp$id)]) #mark the unclear z scores, flag=1

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_gene_res$z_flag=NA
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
       gene         snp 
0.019891227 0.000181867 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
27.05611 27.37420 
#report sample size
print(sample_size)
[1] 344292
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   10901 8697330
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
      gene        snp 
0.01703987 0.12576338 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.08040835 0.81837795

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
           genename region_tag susie_pip     mu2     PVE      z
3330         SEC16B       1_87     1.000 9596.71 2.8e-02   8.39
1114           SRRT       7_62     1.000   84.30 2.4e-04   9.14
5219          MFGE8      15_41     1.000  210.56 6.1e-04  -7.25
5252         OSGIN1      16_48     1.000   68.97 2.0e-04   7.99
721           WIPI1      17_39     1.000  128.13 3.7e-04 -11.22
12135         S1PR2       19_9     1.000   76.74 2.2e-04  -8.65
3714         MBOAT7      19_37     1.000  289.40 8.4e-04 -20.38
5544          CNIH4      1_114     0.997   32.90 9.5e-05  -5.51
8531           TNKS       8_12     0.996  122.13 3.5e-04 -14.12
7040          INHBB       2_70     0.991   57.72 1.7e-04  -7.51
9017           ERN1      17_37     0.991   32.74 9.4e-05  -5.30
11790        CYP2A6      19_28     0.991  218.23 6.3e-04 -20.07
2209           RIC1        9_6     0.990  118.78 3.4e-04 -14.15
1488          MIEF1      22_16     0.988  186.44 5.3e-04  -8.95
1188         KIF16B      20_12     0.985   44.43 1.3e-04   6.58
6100           ALLC        2_2     0.979   56.43 1.6e-04   7.53
6566          PEX10        1_2     0.977   72.84 2.1e-04   6.54
2025           CNFN      19_29     0.977   26.43 7.5e-05   4.93
578           SBNO2       19_2     0.976   41.23 1.2e-04   4.45
3562         ACVR1C       2_94     0.973   47.63 1.3e-04  -6.73
10399       ANKRD35       1_73     0.971   24.74 7.0e-05  -4.57
7136          THOC7       3_43     0.971   23.28 6.6e-05   4.47
10303       UGT2B17       4_48     0.971  157.92 4.5e-04 -12.62
6849          PGAP3      17_23     0.966  175.11 4.9e-04  13.11
1074         MAP3K4      6_104     0.965   26.63 7.5e-05   4.93
8187         GPRC5C      17_41     0.965   53.56 1.5e-04   7.17
10312        ZNF311       6_23     0.960   23.85 6.7e-05  -4.91
1339          CDC5L       6_34     0.953   26.78 7.4e-05  -4.43
9390           GAS6      13_62     0.952   33.95 9.4e-05  -5.75
6494          PHKG2      16_24     0.951   63.33 1.8e-04  -7.22
1429         SH3BP1      22_15     0.948   27.67 7.6e-05   5.93
2718            NNT       5_28     0.946   21.44 5.9e-05   4.06
9273         ZNF329      19_39     0.945   27.39 7.5e-05   5.11
5742          TNIP1       5_88     0.942   22.47 6.1e-05  -4.29
5751          MYLK4        6_3     0.939   34.46 9.4e-05  -5.41
4239          TRIM5       11_4     0.939  134.21 3.7e-04 -10.36
5769           MLIP       6_40     0.931   64.28 1.7e-04  -7.94
4035           DOHH       19_4     0.928   25.09 6.8e-05   4.70
8119         TM4SF4       3_92     0.925   25.03 6.7e-05   4.78
10709        ARID3C       9_26     0.922   41.47 1.1e-04  -5.54
1737          ELMO3      16_36     0.920   21.85 5.8e-05  -4.02
10637       NFKBIL1       6_25     0.918   25.64 6.8e-05  -4.87
6391         TTC39B       9_13     0.918   26.66 7.1e-05  -4.82
11330        ZBTB22       6_28     0.912   31.05 8.2e-05   3.94
6703          UROC1       3_79     0.908   24.09 6.3e-05  -4.46
8447           CTSW      11_36     0.908   27.97 7.4e-05   4.72
12467 RP11-219B17.3      15_27     0.906   24.36 6.4e-05  -4.58
6223         GPR180      13_47     0.904  198.57 5.2e-04  16.33
10731       EXOC3L4      14_54     0.903   54.34 1.4e-04   7.37
1290            EZR      6_103     0.901   24.35 6.4e-05  -4.53
6906          LBHD1      11_35     0.898   20.66 5.4e-05   4.06
12687   RP4-781K5.7      1_121     0.896   36.73 9.6e-05  -6.56
6569            SKI        1_2     0.890   47.45 1.2e-04   5.13
7353         CHMP4C       8_58     0.885   21.60 5.6e-05   4.41
6115          VTI1A      10_70     0.884   38.32 9.8e-05   4.84
11710   KB-1732A1.1       8_69     0.870   45.97 1.2e-04   6.70
7616          CDYL2      16_45     0.868   62.52 1.6e-04   8.13
9516         SS18L1      20_36     0.868   50.21 1.3e-04   7.02
9462         NPIPA5      16_15     0.867   27.40 6.9e-05  -5.02
10513       L3MBTL3       6_86     0.863   25.62 6.4e-05  -4.73
10860           UBD       6_23     0.850   24.31 6.0e-05  -4.80
2621          PPARD       6_28     0.845   55.81 1.4e-04   7.62
10582         BMPR2      2_120     0.840   30.60 7.5e-05   5.93
6490          ATAD2       8_80     0.827   23.42 5.6e-05   4.38
1848          CD276      15_35     0.824   22.49 5.4e-05   4.37
7656       CATSPER2      15_16     0.820   73.64 1.8e-04  -8.61
9445         ZNF530      19_39     0.816   21.92 5.2e-05  -4.40
12229 RP11-346C20.3      16_39     0.815   20.83 4.9e-05   4.16
10551         LIME1      20_38     0.810   22.14 5.2e-05  -4.45
9126         CRIPAK        4_2     0.802   32.97 7.7e-05   5.22

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
           genename region_tag susie_pip     mu2     PVE      z
3330         SEC16B       1_87     1.000 9596.71 2.8e-02   8.39
7802         ZNF283      19_30     0.714 4786.31 9.9e-03   5.01
8812         ZNF404      19_30     0.014 2660.98 1.1e-04   5.72
12106   RP11-15A1.3      19_30     0.013 2659.39 9.7e-05   5.72
5418          NBPF3       1_15     0.000 2506.10 0.0e+00  47.78
6715          LYPD5      19_30     0.000 1973.37 8.0e-15  -3.31
8865           FUT2      19_33     0.000 1125.51 1.1e-06  47.24
837          RASAL2       1_87     0.000  811.13 0.0e+00  -3.36
164           PRSS3       9_26     0.003  749.83 6.6e-06   2.21
2228         UBE2R2       9_26     0.002  695.48 4.0e-06   2.00
11699  RP11-10A14.4       8_11     0.000  669.93 0.0e+00   7.45
2649        ALDH5A1       6_18     0.000  660.73 0.0e+00 -33.49
2041         FAM83E      19_33     0.001  601.15 9.4e-07 -33.72
6567           RER1        1_2     0.000  568.33 2.2e-08   2.16
8862         MAMSTR      19_33     0.001  565.51 2.1e-06 -32.25
11738 RP11-115J16.2       8_12     0.008  551.89 1.2e-05 -27.56
4798          UBAP2       9_26     0.002  447.26 2.6e-06  -1.27
11684 RP11-136O12.2       8_83     0.006  440.20 7.6e-06  15.50
10689        ZNF155      19_30     0.000  432.89 8.4e-17   3.73
11726        CLDN23       8_11     0.000  419.16 0.0e+00   5.74

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
      genename region_tag susie_pip     mu2     PVE      z
3330    SEC16B       1_87     1.000 9596.71 0.02800   8.39
7802    ZNF283      19_30     0.714 4786.31 0.00990   5.01
3714    MBOAT7      19_37     1.000  289.40 0.00084 -20.38
11790   CYP2A6      19_28     0.991  218.23 0.00063 -20.07
5219     MFGE8      15_41     1.000  210.56 0.00061  -7.25
1488     MIEF1      22_16     0.988  186.44 0.00053  -8.95
6223    GPR180      13_47     0.904  198.57 0.00052  16.33
6849     PGAP3      17_23     0.966  175.11 0.00049  13.11
10303  UGT2B17       4_48     0.971  157.92 0.00045 -12.62
75        YBX2       17_6     0.500  282.68 0.00041 -16.48
9270    SLC2A4       17_6     0.500  282.68 0.00041 -16.48
4239     TRIM5       11_4     0.939  134.21 0.00037 -10.36
721      WIPI1      17_39     1.000  128.13 0.00037 -11.22
8531      TNKS       8_12     0.996  122.13 0.00035 -14.12
2209      RIC1        9_6     0.990  118.78 0.00034 -14.15
1114      SRRT       7_62     1.000   84.30 0.00024   9.14
12135    S1PR2       19_9     1.000   76.74 0.00022  -8.65
6566     PEX10        1_2     0.977   72.84 0.00021   6.54
2437    B3GAT1      11_84     0.783   90.61 0.00021  -9.38
5917    INPP5E       9_73     0.556  122.04 0.00020  11.45

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip     mu2     PVE      z
5418          NBPF3       1_15     0.000 2506.10 0.0e+00  47.78
8865           FUT2      19_33     0.000 1125.51 1.1e-06  47.24
2041         FAM83E      19_33     0.001  601.15 9.4e-07 -33.72
2649        ALDH5A1       6_18     0.000  660.73 0.0e+00 -33.49
8862         MAMSTR      19_33     0.001  565.51 2.1e-06 -32.25
6767         CACFD1       9_70     0.001  336.29 6.8e-07 -29.33
11738 RP11-115J16.2       8_12     0.008  551.89 1.2e-05 -27.56
4547          HNF1A      12_74     0.009  349.19 8.7e-06 -22.68
3714         MBOAT7      19_37     1.000  289.40 8.4e-04 -20.38
11790        CYP2A6      19_28     0.991  218.23 6.3e-04 -20.07
7794           TMC4      19_37     0.083  285.24 6.9e-05  20.02
5991          FADS1      11_34     0.026  379.42 2.8e-05 -19.39
4507          FADS2      11_34     0.009  341.06 8.5e-06 -18.28
7955           FEN1      11_34     0.009  341.06 8.5e-06 -18.28
7364      TNFRSF11B       8_79     0.001  131.85 3.2e-07 -17.38
11994        MAFTRR      16_44     0.050  269.73 3.9e-05 -16.97
75             YBX2       17_6     0.500  282.68 4.1e-04 -16.48
9270         SLC2A4       17_6     0.500  282.68 4.1e-04 -16.48
6223         GPR180      13_47     0.904  198.57 5.2e-04  16.33
11684 RP11-136O12.2       8_83     0.006  440.20 7.6e-06  15.50

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.03917072
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
           genename region_tag susie_pip     mu2     PVE      z
5418          NBPF3       1_15     0.000 2506.10 0.0e+00  47.78
8865           FUT2      19_33     0.000 1125.51 1.1e-06  47.24
2041         FAM83E      19_33     0.001  601.15 9.4e-07 -33.72
2649        ALDH5A1       6_18     0.000  660.73 0.0e+00 -33.49
8862         MAMSTR      19_33     0.001  565.51 2.1e-06 -32.25
6767         CACFD1       9_70     0.001  336.29 6.8e-07 -29.33
11738 RP11-115J16.2       8_12     0.008  551.89 1.2e-05 -27.56
4547          HNF1A      12_74     0.009  349.19 8.7e-06 -22.68
3714         MBOAT7      19_37     1.000  289.40 8.4e-04 -20.38
11790        CYP2A6      19_28     0.991  218.23 6.3e-04 -20.07
7794           TMC4      19_37     0.083  285.24 6.9e-05  20.02
5991          FADS1      11_34     0.026  379.42 2.8e-05 -19.39
4507          FADS2      11_34     0.009  341.06 8.5e-06 -18.28
7955           FEN1      11_34     0.009  341.06 8.5e-06 -18.28
7364      TNFRSF11B       8_79     0.001  131.85 3.2e-07 -17.38
11994        MAFTRR      16_44     0.050  269.73 3.9e-05 -16.97
75             YBX2       17_6     0.500  282.68 4.1e-04 -16.48
9270         SLC2A4       17_6     0.500  282.68 4.1e-04 -16.48
6223         GPR180      13_47     0.904  198.57 5.2e-04  16.33
11684 RP11-136O12.2       8_83     0.006  440.20 7.6e-06  15.50

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 1_15"
       genename region_tag susie_pip     mu2 PVE      z
5418      NBPF3       1_15         0 2506.10   0  47.78
1235      USP48       1_15         0   63.74   0  -4.75
9856    LDLRAD2       1_15         0  197.65   0  -2.33
5419      HSPG2       1_15         0   46.06   0  -2.81
5417     CELA3A       1_15         0    9.97   0   0.49
10971 LINC00339       1_15         0  254.14   0 -10.52
735       CDC42       1_15         0   12.33   0  -4.33
6947       WNT4       1_15         0   42.75   0  -2.54
9541     ZBTB40       1_15         0   18.99   0  -2.56

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 19_33"
      genename region_tag susie_pip     mu2     PVE      z
10231    DACT3      19_33     0.000    4.85 3.4e-09  -0.03
1999     PRKD2      19_33     0.000    6.45 5.2e-09   0.77
1219     STRN4      19_33     0.000    6.72 5.8e-09  -0.48
9210      FKRP      19_33     0.002   27.40 2.0e-07   2.17
1998    SLC1A5      19_33     0.000    5.33 3.9e-09  -0.49
6725  ARHGAP35      19_33     0.000    8.70 9.5e-09   0.88
4115     NPAS1      19_33     0.000    6.01 4.8e-09  -0.45
4114     ZC3H4      19_33     0.001   19.73 6.6e-08  -0.93
5375      SAE1      19_33     0.001   19.73 6.6e-08  -0.93
2002     CCDC9      19_33     0.000    8.37 8.5e-09   0.54
10232    C5AR1      19_33     0.000    6.34 5.6e-09  -1.04
11840   INAFM1      19_33     0.000   10.00 1.2e-08   1.82
4510     C5AR2      19_33     0.001   11.80 1.8e-08  -1.28
4505     DHX34      19_33     0.000    7.28 6.5e-09  -0.21
3155    ZNF541      19_33     0.000    5.94 4.3e-09  -0.71
546    GLTSCR1      19_33     0.000    5.81 4.8e-09   0.19
285       EHD2      19_33     0.000   10.31 1.2e-08   1.63
2021   SULT2A1      19_33     0.643   45.37 8.5e-05  -7.90
2035   PLA2G4C      19_33     0.000    6.26 4.4e-09   2.15
2033      LIG1      19_33     0.000    8.16 9.4e-09   0.02
9623  C19orf68      19_33     0.000    6.91 5.8e-09  -0.81
2032     CARD8      19_33     0.000    6.18 5.4e-09  -0.48
2031   CCDC114      19_33     0.000    5.17 3.6e-09  -0.70
5374      EMP3      19_33     0.000   10.99 8.0e-09  -3.79
2028     GRWD1      19_33     0.000    7.62 5.6e-09  -1.71
9317    KCNJ14      19_33     0.000   12.42 9.0e-09  -3.68
2027     CYTH2      19_33     0.000    6.12 5.0e-09   0.39
5376     LMTK3      19_33     0.000    6.75 4.8e-09  -2.47
1139   SULT2B1      19_33     0.000    6.40 4.5e-09   1.73
2041    FAM83E      19_33     0.001  601.15 9.4e-07 -33.72
547      SPHK2      19_33     0.000  109.30 7.6e-08  14.72
2037       DBP      19_33     0.002   36.85 2.2e-07  -4.38
548       CA11      19_33     0.000   49.24 5.2e-08   8.63
8865      FUT2      19_33     0.000 1125.51 1.1e-06  47.24
8862    MAMSTR      19_33     0.001  565.51 2.1e-06 -32.25
9314    IZUMO1      19_33     0.000    5.64 4.1e-09  -0.67

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 6_18"
     genename region_tag susie_pip    mu2     PVE      z
2649  ALDH5A1       6_18         0 660.73 0.0e+00 -33.49
2648    GPLD1       6_18         0 382.97 2.3e-07 -12.58
2652   ACOT13       6_18         0  20.53 0.0e+00  -2.83
2598     TDP2       6_18         0  92.75 0.0e+00  11.43
2655  C6orf62       6_18         0 100.95 0.0e+00  11.27
2657     GMNN       6_18         0  20.36 0.0e+00  -4.28

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 9_70"
       genename region_tag susie_pip    mu2     PVE      z
3712      DDX31       9_70     0.004  42.16 4.9e-07  -3.34
7490     SPACA9       9_70     0.005  26.55 3.7e-07  -2.64
7491       TSC1       9_70     0.001   9.87 2.1e-08  -1.64
5908     GTF3C5       9_70     0.004  21.01 2.3e-07   1.51
5904      SURF6       9_70     0.001  97.13 2.4e-07 -11.31
5905      MED22       9_70     0.003  75.87 5.7e-07 -12.29
5907      RPL7A       9_70     0.001 126.04 2.5e-07  14.19
5903      SURF2       9_70     0.001  76.08 1.6e-07  11.85
10488    STKLD1       9_70     0.001 120.52 2.4e-07 -14.38
5901      SURF4       9_70     0.001  43.30 1.5e-07   7.16
6766   ADAMTS13       9_70     0.001  51.66 2.2e-07  -5.23
5906      REXO4       9_70     0.002  55.96 3.9e-07  14.80
6767     CACFD1       9_70     0.001 336.29 6.8e-07 -29.33
5902      SURF1       9_70     0.006  63.72 1.1e-06   6.23
3553        DBH       9_70     0.001  10.88 3.4e-08   1.34
10168   FAM163B       9_70     0.001   6.86 1.6e-08  -1.19
3552      SARDH       9_70     0.001  16.78 4.5e-08  -3.92
11306 LINC00094       9_70     0.002  15.81 7.5e-08  -2.24
8124       BRD3       9_70     0.001   8.15 2.0e-08   1.49
10061      WDR5       9_70     0.001   9.86 3.2e-08  -1.15

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
[1] "Region: 8_12"
           genename region_tag susie_pip    mu2     PVE      z
8531           TNKS       8_12     0.996 122.13 3.5e-04 -14.12
11738 RP11-115J16.2       8_12     0.008 551.89 1.2e-05 -27.56

Version Author Date
dfd2b5f wesleycrouse 2021-09-07

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                 id region_tag susie_pip      mu2     PVE       z
6145     rs77025042       1_14     1.000   203.14 5.9e-04  -13.03
6161    rs148717955       1_14     1.000   527.41 1.5e-03    5.52
6167     rs72657133       1_14     1.000  1222.26 3.5e-03  -23.99
6192     rs12047493       1_15     1.000  2164.71 6.3e-03  -49.86
6211     rs76372215       1_15     1.000  1283.52 3.7e-03  -39.58
6250     rs34605986       1_15     1.000   907.31 2.6e-03   33.59
6260    rs148785605       1_15     1.000  1282.24 3.7e-03  -49.46
6279     rs16825755       1_15     1.000   881.94 2.6e-03  -18.84
32544     rs6679677       1_70     1.000    81.88 2.4e-04   -7.89
52092     rs1223802      1_108     1.000   112.90 3.3e-04  -10.30
62234    rs12239046      1_131     1.000    89.31 2.6e-04    9.72
101067    rs2277882       2_79     1.000    80.81 2.3e-04   -7.09
101120    rs1257220       2_79     1.000   133.34 3.9e-04  -10.61
110771    rs1862069      2_102     1.000   137.21 4.0e-04  -16.41
119287    rs2041080      2_117     1.000    50.75 1.5e-04   10.17
240484   rs72727873       4_98     1.000    39.31 1.1e-04   -4.44
267469    rs1428967       5_25     1.000   114.10 3.3e-04   11.11
316466  rs151189505       6_17     1.000   130.68 3.8e-04   10.73
316703    rs9393530       6_18     1.000   210.91 6.1e-04    0.12
316815   rs10946700       6_18     1.000  2030.55 5.9e-03   44.85
316996  rs114584234       6_19     1.000   149.96 4.4e-04   13.26
317000    rs7738816       6_19     1.000    58.67 1.7e-04    9.22
317007    rs9461081       6_19     1.000   135.48 3.9e-04  -13.60
417071       rs2428       8_11     1.000  2989.50 8.7e-03   15.16
417076  rs758184196       8_11     1.000  3117.01 9.1e-03   -3.89
417318    rs2048656       8_13     1.000   163.79 4.8e-04   13.82
418004   rs10105588       8_14     1.000   184.19 5.3e-04   -4.87
418012   rs10092177       8_14     1.000   271.13 7.9e-04  -12.10
418014  rs779417490       8_14     1.000   261.94 7.6e-04   -4.17
449446   rs10505348       8_79     1.000   202.31 5.9e-04   19.99
450445   rs13252684       8_83     1.000   388.25 1.1e-03   16.92
450446    rs6987702       8_83     1.000   362.13 1.1e-03   15.28
481145    rs2183745       9_50     1.000   367.64 1.1e-03  -21.03
481162  rs146562086       9_50     1.000    77.04 2.2e-04   -8.01
481176   rs35381859       9_50     1.000   178.85 5.2e-04    7.49
481233   rs10448294       9_50     1.000   119.66 3.5e-04   -0.68
491310  rs115478735       9_70     1.000  3936.95 1.1e-02 -108.55
526254   rs78362087      10_66     1.000    86.12 2.5e-04  -11.13
536102   rs72636980       11_1     1.000   143.10 4.2e-04   13.97
536142   rs55642248       11_1     1.000   208.14 6.0e-04  -13.11
554249     rs174553      11_34     1.000   400.56 1.2e-03   19.87
554441   rs17157266      11_34     1.000    83.55 2.4e-04   -7.15
573637  rs116891075      11_77     1.000    46.13 1.3e-04   -8.07
573685     rs240536      11_77     1.000    89.88 2.6e-04  -14.18
573693   rs10893498      11_77     1.000   320.69 9.3e-04  -18.84
573702   rs10790802      11_77     1.000   396.65 1.2e-03   25.30
573705  rs112282958      11_77     1.000    81.21 2.4e-04  -11.11
576585    rs2191159       12_1     1.000   240.91 7.0e-04   15.88
576586    rs6489532       12_1     1.000    56.85 1.7e-04    5.60
577935   rs61909253       12_5     1.000    45.18 1.3e-04   -5.67
606967  rs117615171      12_59     1.000    36.09 1.0e-04    5.58
672136   rs11439803      14_48     1.000   219.62 6.4e-04    0.83
672143    rs1243165      14_48     1.000   236.36 6.9e-04    4.28
722895  rs185342176       17_6     1.000   202.13 5.9e-04   13.69
723012  rs371440902       17_6     1.000   336.86 9.8e-04   14.78
723023    rs4796403       17_6     1.000   255.01 7.4e-04   13.71
723092  rs144129583       17_7     1.000   181.73 5.3e-04   13.93
769381    rs3794991      19_15     1.000   264.14 7.7e-04  -18.28
776080   rs71339519      19_30     1.000  4754.91 1.4e-02   -4.93
776081  rs769162207      19_30     1.000  4869.04 1.4e-02   -0.37
776428     rs814573      19_32     1.000   133.96 3.9e-04  -12.40
776429  rs117664574      19_32     1.000    47.94 1.4e-04    7.98
789938    rs2902942      20_24     1.000    99.91 2.9e-04  -10.36
805938    rs2836882      21_18     1.000    47.74 1.4e-04   -6.71
815529   rs16996442      22_14     1.000    45.11 1.3e-04    7.43
821604  rs199779538        1_2     1.000  2727.10 7.9e-03   -3.23
844953   rs58288190       1_87     1.000 25956.96 7.5e-02    1.61
868827    rs1260326       2_16     1.000   468.83 1.4e-03  -22.20
924841  rs201939100       4_48     1.000    64.83 1.9e-04   -2.32
1062621  rs60158239       9_26     1.000  4604.71 1.3e-02    3.58
1087530  rs11601507       11_4     1.000   280.88 8.2e-04   16.49
1128070  rs11621792       14_3     1.000   195.00 5.7e-04  -13.84
1154892 rs766871218      15_41     1.000   276.70 8.0e-04   -7.03
1178897   rs9302635      16_38     1.000   354.35 1.0e-03   17.64
1202316  rs11078597       17_2     1.000   100.50 2.9e-04  -12.61
1205039 rs201963278      17_23     1.000   487.60 1.4e-03    3.44
1274807   rs2387343      19_34     1.000   136.29 4.0e-04  -14.60
1274903   rs4801776      19_34     1.000    96.33 2.8e-04  -13.79
1316504  rs78645897      22_16     1.000   936.60 2.7e-03    3.83
1316505  rs62228479      22_16     1.000   923.05 2.7e-03    3.48
31143      rs507482       1_67     0.999    68.31 2.0e-04   -8.07
188128   rs56328339      3_115     0.999    35.63 1.0e-04   -5.73
313586   rs10456776       6_13     0.999    55.10 1.6e-04   -7.65
355227    rs6557156       6_99     0.999    33.27 9.7e-05    6.08
370779   rs11983782       7_20     0.999    41.51 1.2e-04   -6.32
402062    rs3757387       7_78     0.999    42.64 1.2e-04    6.42
469461    rs2812357       9_27     0.999    41.20 1.2e-04    6.36
608825    rs1215606      12_64     0.999    34.28 9.9e-05    5.68
767918   rs10405035      19_12     0.999    35.17 1.0e-04   -5.70
791573    rs4812975      20_28     0.999    64.82 1.9e-04    8.02
821611    rs7519807        1_2     0.999  2721.40 7.9e-03   -3.16
6104      rs3026894       1_14     0.998   229.94 6.7e-04    4.48
119299    rs7595923      2_118     0.998    34.79 1.0e-04    6.90
216927    rs6811535       4_52     0.998    50.27 1.5e-04    7.67
294045    rs4705986       5_80     0.998    38.47 1.1e-04   -6.01
393439    rs1207731       7_59     0.998    32.08 9.3e-05   -5.32
409072    rs7807051       7_94     0.998    31.59 9.2e-05    5.34
417270    rs2929451       8_11     0.998  1863.76 5.4e-03  -16.29
492558    rs1886296       9_73     0.998    33.16 9.6e-05    4.68
525676    rs7069475      10_64     0.998    47.75 1.4e-04   -8.16
736009    rs1801689      17_38     0.998    31.41 9.1e-05   -4.95
758057   rs62098355      18_34     0.998    43.18 1.3e-04    8.78
785036   rs34507316      20_13     0.998    37.04 1.1e-04   -2.87
137409   rs56395424        3_9     0.997    42.34 1.2e-04   -6.28
376037    rs6974574       7_28     0.997    33.42 9.7e-05   -4.93
592909     rs930900      12_33     0.997    89.20 2.6e-04   11.32
593829    rs7397189      12_36     0.997    41.53 1.2e-04   -6.46
753721   rs11872765      18_27     0.997    31.17 9.0e-05   -5.52
758062   rs56051253      18_34     0.997    62.25 1.8e-04   -8.96
768954   rs35576020      19_14     0.997    33.98 9.8e-05    6.23
671564   rs11624512      14_46     0.996    63.02 1.8e-04   -7.98
36257    rs61804205       1_79     0.995    44.93 1.3e-04    7.48
301115   rs13167291       5_93     0.995    60.54 1.7e-04    7.57
721237    rs2240731       17_3     0.995    38.44 1.1e-04   -6.17
753544    rs2878889      18_27     0.995    34.56 1.0e-04   -6.11
804217   rs12482821      21_15     0.995    30.21 8.7e-05   -4.85
597378  rs113479946      12_42     0.994    36.24 1.0e-04   -5.71
54030      rs884127      1_112     0.993    42.74 1.2e-04    6.44
167811     rs189174       3_74     0.993    61.78 1.8e-04    7.69
220002   rs13134099       4_58     0.993    29.51 8.5e-05    4.99
322894   rs78470916       6_32     0.993    32.88 9.5e-05    4.84
709533   rs17616063      16_27     0.993    30.88 8.9e-05    5.32
576587    rs7137297       12_1     0.991    81.84 2.4e-04   -9.53
92228    rs13014084       2_60     0.990    29.60 8.5e-05    4.64
842331   rs12083537       1_75     0.990    50.16 1.4e-04   -8.38
1277481 rs117080418      19_34     0.990    44.95 1.3e-04    6.39
6716     rs34957055       1_16     0.989    31.57 9.1e-05   -5.42
593765    rs1874888      12_35     0.989    29.95 8.6e-05    5.24
613364    rs2393775      12_74     0.989   400.52 1.2e-03  -24.49
619343    rs9552620       13_3     0.989    27.02 7.8e-05    4.84
790052    rs6029393      20_24     0.989    41.68 1.2e-04   -6.47
72350    rs17820747       2_20     0.988    39.00 1.1e-04   -5.66
1225097  rs77542162      17_39     0.986    43.94 1.3e-04    6.53
1118712   rs9604045      13_62     0.985    32.68 9.3e-05   -5.67
417589   rs11777976       8_13     0.984   170.78 4.9e-04  -15.73
132142   rs12619647      2_144     0.983    36.55 1.0e-04   -6.85
320857   rs78945013       6_29     0.982    27.98 8.0e-05   -5.07
316571   rs34350323       6_17     0.981    46.65 1.3e-04    5.16
401605   rs17864212       7_78     0.981    30.90 8.8e-05    4.75
818070     rs135577      22_21     0.981    32.22 9.2e-05    4.48
288247   rs12521324       5_69     0.980    29.84 8.5e-05    5.03
1197410  rs72791573      16_48     0.980    69.80 2.0e-04    8.98
557104     rs695110      11_42     0.979    52.02 1.5e-04   -6.76
776431   rs77719426      19_32     0.979    39.66 1.1e-04    6.57
1154881 rs546764840      15_41     0.978   307.03 8.7e-04   -7.25
576595   rs11513717       12_1     0.977    45.20 1.3e-04    1.23
418307    rs4841659       8_15     0.976   102.79 2.9e-04   15.90
431895  rs140753685       8_42     0.975    28.95 8.2e-05    4.94
39848     rs1063412       1_84     0.974    28.50 8.1e-05   -4.82
59662    rs12044944      1_126     0.974    26.51 7.5e-05   -4.78
416512    rs2928619       8_10     0.974    44.61 1.3e-04    6.51
422405   rs11986461       8_21     0.974    31.43 8.9e-05   -5.93
317304   rs75080831       6_19     0.973    53.72 1.5e-04    8.29
464027     rs776756       9_14     0.973    27.53 7.8e-05   -4.45
781704    rs6140010       20_5     0.973    41.17 1.2e-04   -6.12
721871  rs140384878       17_4     0.971    26.03 7.3e-05    4.77
239697   rs59435073       4_97     0.969    51.09 1.4e-04   -7.43
427977   rs11997272       8_34     0.968    25.98 7.3e-05   -4.47
94960    rs10170168       2_66     0.967    40.91 1.1e-04   -3.38
490480    rs8181197       9_68     0.966    64.61 1.8e-04    8.09
623412   rs11424749      13_10     0.966    31.33 8.8e-05    5.35
719793    rs7206699      16_53     0.966    41.98 1.2e-04    6.27
758070    rs2957132      18_34     0.966    28.68 8.0e-05   -5.10
942534    rs4074793       5_31     0.964    41.09 1.2e-04    6.24
43024   rs146203975       1_92     0.963    45.92 1.3e-04   -6.84
369650    rs7796210       7_18     0.961    33.18 9.3e-05    5.51
492706     rs914738       9_74     0.961    26.36 7.4e-05    4.74
526208   rs11594179      10_66     0.961    31.84 8.9e-05   -0.73
513925    rs9414798      10_42     0.960   102.43 2.9e-04  -14.18
310812    rs6597256        6_7     0.959    40.81 1.1e-04   -5.57
778488  rs146279443      19_36     0.959    26.34 7.3e-05    4.62
316540  rs554542699       6_17     0.958    33.86 9.4e-05    4.54
773532   rs17841839      19_23     0.957    72.87 2.0e-04   10.03
276683    rs4133339       5_45     0.956    46.16 1.3e-04    6.71
317037   rs34888581       6_19     0.955    35.11 9.7e-05   -5.03
626510  rs116944862      13_17     0.955    31.09 8.6e-05   -2.20
738079   rs11658216      17_44     0.955    26.37 7.3e-05    4.75
51242    rs74704885      1_107     0.951    42.33 1.2e-04   -5.25
756611   rs12373325      18_31     0.951    71.44 2.0e-04   -9.66
776500   rs77332277      19_32     0.951    45.90 1.3e-04    7.13
32      rs112905931        1_1     0.950    39.98 1.1e-04    6.18
351049   rs62432712       6_91     0.947    26.00 7.2e-05    4.68
482662   rs10991458       9_53     0.947    51.74 1.4e-04    4.42
693503   rs12915099      15_42     0.946    29.98 8.2e-05    3.33
758314    rs7242402      18_35     0.945    25.24 6.9e-05    4.60
132120   rs61747382      2_144     0.943    34.78 9.5e-05    6.60
70962     rs7606480       2_17     0.942    43.97 1.2e-04   -6.65
736346     rs189323      17_40     0.942    25.26 6.9e-05    3.87
319613    rs9270527       6_26     0.941   125.99 3.4e-04   -8.84
316843   rs78808915       6_18     0.940  1594.26 4.4e-03  -35.32
472623   rs11144105       9_35     0.940    25.05 6.8e-05    4.53
482636    rs2900388       9_53     0.940    42.17 1.2e-04   -2.86
776085     rs239943      19_30     0.940  3091.04 8.4e-03   -5.30
829619   rs75460349       1_18     0.940    64.04 1.7e-04   -7.78
555146   rs72917317      11_38     0.937    29.18 7.9e-05    5.31
671541   rs67868394      14_46     0.937    28.51 7.8e-05    5.32
844940  rs139385919       1_87     0.934 25967.26 7.0e-02    4.54
580451    rs2417261      12_12     0.933    26.77 7.3e-05   -4.81
417092   rs13265731       8_11     0.927  2850.98 7.7e-03   13.94
449500    rs7017788       8_79     0.927    44.01 1.2e-04    8.60
310740    rs2765359        6_7     0.926    36.17 9.7e-05    4.79
320980    rs9470183       6_29     0.926    25.34 6.8e-05    4.10
984505   rs33959228       6_28     0.926    48.25 1.3e-04   -7.13
585150  rs146970907      12_18     0.925    29.59 8.0e-05    5.27
703510    rs4780401      16_12     0.921    46.57 1.2e-04    7.45
1204998     rs16532      17_23     0.921   372.34 1.0e-03    6.07
72347   rs564066844       2_20     0.920    25.15 6.7e-05   -4.40
168860   rs72964564       3_76     0.920    32.96 8.8e-05    5.40
524510   rs10786262      10_61     0.919    31.73 8.5e-05    5.22
571309    rs7104819      11_71     0.916    29.26 7.8e-05    3.32
715031  rs557791532      16_41     0.916    25.29 6.7e-05    4.51
804656     rs928287      21_17     0.915    46.22 1.2e-04   -6.52
258569  rs112622661        5_9     0.913    24.03 6.4e-05   -4.43
524517    rs2039616      10_62     0.912    29.33 7.8e-05    5.09
538642    rs7102759       11_8     0.908    27.25 7.2e-05   -4.83
794204    rs2585441      20_32     0.908    25.11 6.6e-05   -4.63
1012466 rs146203232      6_103     0.907    75.97 2.0e-04    6.83
194503  rs113840252        4_9     0.906    26.31 6.9e-05   -4.82
146052    rs2844400       3_27     0.903    23.79 6.2e-05   -4.23
756220    rs1217565      18_30     0.900    34.96 9.1e-05   -5.56
805011     rs219783      21_17     0.898    42.58 1.1e-04   -6.43
70576   rs368027631       2_15     0.897    30.79 8.0e-05   -5.39
377219   rs12155027       7_30     0.894    24.87 6.5e-05   -4.59
273525     rs253232       5_40     0.893    25.21 6.5e-05   -4.54
584690   rs10842642      12_18     0.892    26.39 6.8e-05   -4.69
553089       rs4926      11_32     0.883    28.71 7.4e-05   -4.75
79938    rs75536720       2_34     0.877    24.81 6.3e-05   -4.46
213399  rs186589299       4_45     0.877    24.23 6.2e-05   -4.35
417539    rs2975676       8_13     0.876    40.46 1.0e-04   -1.41
148969  rs116643069       3_35     0.874    29.29 7.4e-05   -4.67
316901    rs9358773       6_18     0.873   183.11 4.6e-04   18.18
580903    rs4764086      12_12     0.873    46.98 1.2e-04    6.80
421583    rs2015440       8_20     0.871    27.04 6.8e-05   -4.81
488749   rs72759301       9_64     0.870    28.72 7.3e-05   -4.91
366409  rs115412782       7_13     0.864    23.97 6.0e-05    4.15
636302    rs9592980      13_36     0.864    63.53 1.6e-04    7.94
51188     rs1962918      1_107     0.859    29.24 7.3e-05   -5.64
776417    rs3729640      19_32     0.859    44.61 1.1e-04   -6.69
718200   rs60239983      16_50     0.858    25.94 6.5e-05   -4.64
523951   rs10509670      10_60     0.856    39.75 9.9e-05   -6.08
361351   rs78894484        7_2     0.855    29.74 7.4e-05    6.04
197752   rs10034719       4_16     0.854    26.80 6.6e-05    4.72
490999   rs71481395       9_69     0.854    26.54 6.6e-05    4.70
752380   rs73425984      18_24     0.852    27.44 6.8e-05    4.84
464011   rs71506880       9_14     0.847    33.06 8.1e-05    5.00
716502   rs17689455      16_44     0.846   331.34 8.1e-04   18.92
464366  rs556587401       9_15     0.845    29.41 7.2e-05    5.02
518422    rs1248889      10_50     0.845    56.50 1.4e-04    9.01
293926    rs6894249       5_79     0.844    27.55 6.8e-05   -4.87
25631    rs34303579       1_55     0.841    25.10 6.1e-05   -3.66
626492   rs34001253      13_16     0.841    48.11 1.2e-04   -8.90
8866     rs75339626       1_21     0.840    24.30 5.9e-05    4.30
526128   rs77041839      10_65     0.836   242.45 5.9e-04  -16.11
134677   rs12497013        3_4     0.821    28.06 6.7e-05   -4.78
54690    rs12132342      1_115     0.820    25.61 6.1e-05    4.78
735412   rs12452590      17_36     0.820    24.59 5.9e-05   -4.28
696970   rs28693883      15_48     0.815    24.12 5.7e-05    4.00
11157   rs368949592       1_25     0.810    25.77 6.1e-05   -4.05
95294    rs12467534       2_67     0.809    27.19 6.4e-05   -5.12
205500   rs17578029       4_31     0.809    26.64 6.3e-05    5.10
46673     rs2994256       1_98     0.806    28.86 6.8e-05   -4.93
491305   rs34357864       9_70     0.806  4461.77 1.0e-02 -102.31
360119    rs2880362      6_110     0.801    26.13 6.1e-05    4.58

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
dfd2b5f wesleycrouse 2021-09-07
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
                id region_tag susie_pip      mu2     PVE    z
844940 rs139385919       1_87     0.934 25967.26 7.0e-02 4.54
844956 rs181563306       1_87     0.472 25964.43 3.6e-02 4.54
844958 rs190347640       1_87     0.472 25964.43 3.6e-02 4.54
844953  rs58288190       1_87     1.000 25956.96 7.5e-02 1.61
844943 rs111775313       1_87     0.000 25796.16 2.8e-12 4.47
844938  rs61393240       1_87     0.000 25796.10 2.8e-12 4.47
844970 rs111314699       1_87     0.000 25774.60 2.4e-12 4.46
844950 rs139675328       1_87     0.000 25629.69 3.3e-12 4.43
844951 rs147098930       1_87     0.000 25503.31 1.4e-12 4.40
844952 rs147709014       1_87     0.000 25503.31 1.4e-12 4.40
844925  rs17360628       1_87     0.000 25502.76 1.4e-12 4.40
844945 rs141788986       1_87     0.000 25492.51 1.7e-12 4.42
844890  rs17275780       1_87     0.000 25486.25 1.2e-12 4.38
844907  rs80123481       1_87     0.000 25477.41 1.1e-12 4.37
844901  rs76640045       1_87     0.000 25476.58 1.3e-12 4.40
844895 rs111671843       1_87     0.000 25475.65 1.3e-12 4.40
844888  rs77291888       1_87     0.000 25474.24 1.3e-12 4.39
844920 rs111880540       1_87     0.000 25472.47 1.2e-12 4.38
844882  rs76579149       1_87     0.000 25472.00 1.3e-12 4.39
844879  rs79078214       1_87     0.000 25471.32 1.4e-12 4.40
844976  rs75082966       1_87     0.000 25200.57 1.4e-13 4.18
844979  rs79371453       1_87     0.000 24571.68 4.9e-13 4.39
845036 rs111467463       1_87     0.000 23295.85 6.7e-15 4.04
845059 rs111965288       1_87     0.000 23256.98 2.2e-15 3.91
844994  rs16852323       1_87     0.000 23212.67 4.0e-15 3.99
845072  rs12081230       1_87     0.000 23035.04 1.8e-15 3.91
845083  rs10913496       1_87     0.000 22971.13 9.6e-16 3.85
845090   rs7541136       1_87     0.000 22963.20 1.3e-15 3.88
845015 rs144639089       1_87     0.000 16001.57 0.0e+00 3.26
844927  rs11376467       1_87     0.000 10835.07 0.0e+00 4.18
844926   rs7542067       1_87     0.000 10793.37 0.0e+00 4.19
844941  rs10158257       1_87     0.000 10789.53 0.0e+00 4.18
844942  rs10158263       1_87     0.000 10789.51 0.0e+00 4.18
844947   rs6684563       1_87     0.000 10789.36 0.0e+00 4.18
844935   rs7550982       1_87     0.000 10789.33 0.0e+00 4.18
844929   rs6682663       1_87     0.000 10788.65 0.0e+00 4.18
844928   rs6425460       1_87     0.000 10787.78 0.0e+00 4.17
844933   rs6425461       1_87     0.000 10784.13 0.0e+00 4.16
844937   rs7536711       1_87     0.000 10783.62 0.0e+00 4.16
844939  rs10157654       1_87     0.000 10783.22 0.0e+00 4.16
844930  rs12061823       1_87     0.000 10782.85 0.0e+00 4.16
844924   rs1556976       1_87     0.000 10775.08 0.0e+00 4.21
844934   rs6425462       1_87     0.000 10770.78 0.0e+00 4.20
844919   rs6425459       1_87     0.000 10762.21 0.0e+00 4.19
844897  rs12093558       1_87     0.000 10540.95 0.0e+00 4.13
844857 rs113069470       1_87     0.000  8222.57 0.0e+00 2.24
845102 rs137959039       1_87     0.000  7630.30 0.0e+00 1.95
844906  rs12095164       1_87     0.000  7520.58 0.0e+00 3.77
845004  rs78143410       1_87     0.000  6996.90 0.0e+00 2.13
845113    rs946818       1_87     0.000  6933.97 0.0e+00 4.79

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
                 id region_tag susie_pip      mu2    PVE       z
844953   rs58288190       1_87     1.000 25956.96 0.0750    1.61
844940  rs139385919       1_87     0.934 25967.26 0.0700    4.54
844956  rs181563306       1_87     0.472 25964.43 0.0360    4.54
844958  rs190347640       1_87     0.472 25964.43 0.0360    4.54
776080   rs71339519      19_30     1.000  4754.91 0.0140   -4.93
776081  rs769162207      19_30     1.000  4869.04 0.0140   -0.37
1062621  rs60158239       9_26     1.000  4604.71 0.0130    3.58
491310  rs115478735       9_70     1.000  3936.95 0.0110 -108.55
491305   rs34357864       9_70     0.806  4461.77 0.0100 -102.31
417076  rs758184196       8_11     1.000  3117.01 0.0091   -3.89
417071       rs2428       8_11     1.000  2989.50 0.0087   15.16
776085     rs239943      19_30     0.940  3091.04 0.0084   -5.30
821604  rs199779538        1_2     1.000  2727.10 0.0079   -3.23
821611    rs7519807        1_2     0.999  2721.40 0.0079   -3.16
417092   rs13265731       8_11     0.927  2850.98 0.0077   13.94
491306     rs677355       9_70     0.502  4463.81 0.0065 -102.39
6192     rs12047493       1_15     1.000  2164.71 0.0063  -49.86
316815   rs10946700       6_18     1.000  2030.55 0.0059   44.85
417270    rs2929451       8_11     0.998  1863.76 0.0054  -16.29
316843   rs78808915       6_18     0.940  1594.26 0.0044  -35.32
6211     rs76372215       1_15     1.000  1283.52 0.0037  -39.58
6260    rs148785605       1_15     1.000  1282.24 0.0037  -49.46
6167     rs72657133       1_14     1.000  1222.26 0.0035  -23.99
491284   rs10793962       9_70     0.658  1506.33 0.0029    9.89
1316504  rs78645897      22_16     1.000   936.60 0.0027    3.83
1316505  rs62228479      22_16     1.000   923.05 0.0027    3.48
6250     rs34605986       1_15     1.000   907.31 0.0026   33.59
6279     rs16825755       1_15     1.000   881.94 0.0026  -18.84
1062670 rs139424801       9_26     0.182  4590.82 0.0024    0.35
491309     rs674302       9_70     0.171  4459.09 0.0022 -102.40
1062668 rs117622511       9_26     0.163  4589.33 0.0022    0.37
491307     rs676457       9_70     0.160  4458.93 0.0021 -102.40
776076    rs2883946      19_30     0.150  4841.12 0.0021    4.77
1062666  rs17341977       9_26     0.142  4588.50 0.0019    0.37
1062669 rs150804130       9_26     0.134  4588.88 0.0018    0.36
1316489  rs62652622      22_16     0.673   890.34 0.0017    3.99
6161    rs148717955       1_14     1.000   527.41 0.0015    5.52
491286    rs8176759       9_70     0.342  1506.11 0.0015    9.85
513938   rs10640079      10_42     0.421  1227.15 0.0015   37.62
868827    rs1260326       2_16     1.000   468.83 0.0014  -22.20
1205039 rs201963278      17_23     1.000   487.60 0.0014    3.44
1274522    rs492602      19_33     0.364  1320.27 0.0014  -50.97
450444    rs2980858       8_83     0.730   603.69 0.0013  -17.16
722992   rs56244095       17_6     0.512   865.82 0.0013   33.93
554249     rs174553      11_34     1.000   400.56 0.0012   19.87
573702   rs10790802      11_77     1.000   396.65 0.0012   25.30
613364    rs2393775      12_74     0.989   400.52 0.0012  -24.49
722991   rs56115403       17_6     0.488   865.69 0.0012   33.92
450445   rs13252684       8_83     1.000   388.25 0.0011   16.92
450446    rs6987702       8_83     1.000   362.13 0.0011   15.28

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
                 id region_tag susie_pip     mu2     PVE       z
491310  rs115478735       9_70     1.000 3936.95 1.1e-02 -108.55
491307     rs676457       9_70     0.160 4458.93 2.1e-03 -102.40
491309     rs674302       9_70     0.171 4459.09 2.2e-03 -102.40
491306     rs677355       9_70     0.502 4463.81 6.5e-03 -102.39
491305   rs34357864       9_70     0.806 4461.77 1.0e-02 -102.31
491308  rs782455289       9_70     0.003 4428.63 3.8e-05 -101.92
491314     rs495828       9_70     0.000 3321.04 1.7e-06  -99.78
491356    rs3758348       9_70     0.000 1454.46 1.4e-06  -69.56
491365   rs17474001       9_70     0.000 1361.73 1.2e-06  -67.32
491311     rs559723       9_70     0.000 1883.88 3.6e-07  -66.38
491295    rs2073828       9_70     0.001 1551.43 2.7e-06   62.33
491304    rs7036642       9_70     0.000 1363.11 9.8e-07   59.55
1274522    rs492602      19_33     0.364 1320.27 1.4e-03  -50.97
1274525    rs601338      19_33     0.237 1319.45 9.1e-04  -50.96
1274523    rs681343      19_33     0.279 1319.47 1.1e-03  -50.95
1274519    rs679574      19_33     0.047 1313.49 1.8e-04  -50.90
1274520    rs516316      19_33     0.038 1312.83 1.5e-04  -50.89
1274521    rs516246      19_33     0.034 1312.40 1.3e-04  -50.89
1274536    rs507855      19_33     0.109 1243.39 3.9e-04  -50.16
1274537    rs507766      19_33     0.125 1243.84 4.5e-04  -50.16
1274538    rs507711      19_33     0.101 1243.02 3.6e-04  -50.16
1274542    rs503279      19_33     0.075 1242.50 2.7e-04  -50.16
1274531    rs571689      19_33     0.053 1241.17 1.9e-04  -50.15
1274532    rs570794      19_33     0.055 1241.38 2.0e-04  -50.15
1274533    rs569970      19_33     0.051 1240.95 1.8e-04  -50.15
1274539    rs506897      19_33     0.054 1241.07 1.9e-04  -50.15
1274534   rs2251034      19_33     0.010 1235.90 3.5e-05  -50.11
1274540    rs504963      19_33     0.036 1238.86 1.3e-04  -50.11
1274543    rs633372      19_33     0.009 1235.12 3.3e-05  -50.10
1274548   rs1688264      19_33     0.182 1244.14 6.6e-04  -50.10
1274547    rs692854      19_33     0.109 1239.28 3.9e-04  -50.05
1274541    rs632111      19_33     0.004 1230.81 1.4e-05  -50.04
1274546   rs2548459      19_33     0.003 1230.03 1.2e-05  -50.04
1274549   rs1704773      19_33     0.017 1233.02 6.0e-05  -50.00
1274527    rs602662      19_33     0.001 1222.95 1.9e-06  -49.90
1274544   rs2638280      19_33     0.004 1229.59 1.5e-05  -49.87
6192     rs12047493       1_15     1.000 2164.71 6.3e-03  -49.86
1274545   rs2548458      19_33     0.001 1221.73 2.9e-06  -49.62
1274528    rs485186      19_33     0.000 1199.45 2.8e-08  -49.58
1274530    rs603985      19_33     0.000 1203.08 6.1e-08  -49.58
1274529    rs485073      19_33     0.000 1201.43 4.5e-08  -49.57
1274550    rs646327      19_33     0.002 1215.95 6.8e-06  -49.57
6260    rs148785605       1_15     1.000 1282.24 3.7e-03  -49.46
1274566    rs281379      19_33     0.000 1173.45 1.1e-08  -48.65
1274558    rs584768      19_33     0.000 1145.05 8.4e-09  -48.30
1274560  rs28894750      19_33     0.000 1150.12 9.0e-09  -48.29
1274559   rs2452170      19_33     0.000 1143.14 8.3e-09  -48.27
6205      rs3820292       1_15     0.000 1995.11 0.0e+00  -48.26
1274563   rs2638282      19_33     0.000 1142.57 8.3e-09  -48.26
1274556    rs676388      19_33     0.000 1140.40 8.3e-09  -48.25

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 70
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
RP11-346C20.3 gene(s) from the input list not found in DisGeNET CURATEDTHOC7 gene(s) from the input list not found in DisGeNET CURATEDCTSW gene(s) from the input list not found in DisGeNET CURATEDSH3BP1 gene(s) from the input list not found in DisGeNET CURATEDCDYL2 gene(s) from the input list not found in DisGeNET CURATEDELMO3 gene(s) from the input list not found in DisGeNET CURATEDTTC39B gene(s) from the input list not found in DisGeNET CURATEDANKRD35 gene(s) from the input list not found in DisGeNET CURATEDKB-1732A1.1 gene(s) from the input list not found in DisGeNET CURATEDZNF311 gene(s) from the input list not found in DisGeNET CURATEDARID3C gene(s) from the input list not found in DisGeNET CURATEDMLIP gene(s) from the input list not found in DisGeNET CURATEDLIME1 gene(s) from the input list not found in DisGeNET CURATEDRIC1 gene(s) from the input list not found in DisGeNET CURATEDCNFN gene(s) from the input list not found in DisGeNET CURATEDCNIH4 gene(s) from the input list not found in DisGeNET CURATEDCRIPAK gene(s) from the input list not found in DisGeNET CURATEDATAD2 gene(s) from the input list not found in DisGeNET CURATEDRP11-219B17.3 gene(s) from the input list not found in DisGeNET CURATEDNPIPA5 gene(s) from the input list not found in DisGeNET CURATEDDOHH gene(s) from the input list not found in DisGeNET CURATEDEXOC3L4 gene(s) from the input list not found in DisGeNET CURATEDZNF329 gene(s) from the input list not found in DisGeNET CURATEDZBTB22 gene(s) from the input list not found in DisGeNET CURATEDALLC gene(s) from the input list not found in DisGeNET CURATEDCDC5L gene(s) from the input list not found in DisGeNET CURATEDMIEF1 gene(s) from the input list not found in DisGeNET CURATEDLBHD1 gene(s) from the input list not found in DisGeNET CURATEDTNKS gene(s) from the input list not found in DisGeNET CURATEDRP4-781K5.7 gene(s) from the input list not found in DisGeNET CURATEDGPRC5C gene(s) from the input list not found in DisGeNET CURATED
                                                                 Description
65                                                           Opisthorchiasis
110                                                         Hyperandrogenism
125                                                     Urocanase deficiency
126                                          Opisthorchis felineus Infection
127                                         Opisthorchis viverrini Infection
138                          Pulmonary arterial hypertension induced by drug
169                                            Ovarian Serous Adenocarcinoma
178                                         DEAFNESS, AUTOSOMAL RECESSIVE 68
189                         BONE MINERAL DENSITY QUANTITATIVE TRAIT LOCUS 12
199 GLUCOCORTICOID DEFICIENCY 4 WITH OR WITHOUT MINERALOCORTICOID DEFICIENCY
           FDR Ratio BgRatio
65  0.05502087  1/39  1/9703
110 0.05502087  1/39  1/9703
125 0.05502087  1/39  1/9703
126 0.05502087  1/39  1/9703
127 0.05502087  1/39  1/9703
138 0.05502087  1/39  1/9703
169 0.05502087  2/39 23/9703
178 0.05502087  1/39  1/9703
189 0.05502087  1/39  1/9703
199 0.05502087  1/39  1/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.0.0    
[5] ggplot2_3.3.3    

loaded via a namespace (and not attached):
  [1] bitops_1.0-6                matrixStats_0.57.0         
  [3] fs_1.3.1                    bit64_4.0.5                
  [5] doParallel_1.0.16           progress_1.2.2             
  [7] httr_1.4.1                  rprojroot_2.0.2            
  [9] GenomeInfoDb_1.20.0         doRNG_1.8.2                
 [11] tools_3.6.1                 utf8_1.2.1                 
 [13] R6_2.5.0                    DBI_1.1.1                  
 [15] BiocGenerics_0.30.0         colorspace_1.4-1           
 [17] withr_2.4.1                 tidyselect_1.1.0           
 [19] prettyunits_1.0.2           bit_4.0.4                  
 [21] curl_3.3                    compiler_3.6.1             
 [23] git2r_0.26.1                Biobase_2.44.0             
 [25] DelayedArray_0.10.0         rtracklayer_1.44.0         
 [27] labeling_0.3                scales_1.1.0               
 [29] readr_1.4.0                 apcluster_1.4.8            
 [31] stringr_1.4.0               digest_0.6.20              
 [33] Rsamtools_2.0.0             svglite_1.2.2              
 [35] rmarkdown_1.13              XVector_0.24.0             
 [37] pkgconfig_2.0.3             htmltools_0.3.6            
 [39] fastmap_1.1.0               BSgenome_1.52.0            
 [41] rlang_0.4.11                RSQLite_2.2.7              
 [43] generics_0.0.2              farver_2.1.0               
 [45] jsonlite_1.6                BiocParallel_1.18.0        
 [47] dplyr_1.0.7                 VariantAnnotation_1.30.1   
 [49] RCurl_1.98-1.1              magrittr_2.0.1             
 [51] GenomeInfoDbData_1.2.1      Matrix_1.2-18              
 [53] Rcpp_1.0.6                  munsell_0.5.0              
 [55] S4Vectors_0.22.1            fansi_0.5.0                
 [57] gdtools_0.1.9               lifecycle_1.0.0            
 [59] stringi_1.4.3               whisker_0.3-2              
 [61] yaml_2.2.0                  SummarizedExperiment_1.14.1
 [63] zlibbioc_1.30.0             plyr_1.8.4                 
 [65] grid_3.6.1                  blob_1.2.1                 
 [67] parallel_3.6.1              promises_1.0.1             
 [69] crayon_1.4.1                lattice_0.20-38            
 [71] Biostrings_2.52.0           GenomicFeatures_1.36.3     
 [73] hms_1.1.0                   knitr_1.23                 
 [75] pillar_1.6.1                igraph_1.2.4.1             
 [77] GenomicRanges_1.36.0        rjson_0.2.20               
 [79] rngtools_1.5                codetools_0.2-16           
 [81] reshape2_1.4.3              biomaRt_2.40.1             
 [83] stats4_3.6.1                XML_3.98-1.20              
 [85] glue_1.4.2                  evaluate_0.14              
 [87] data.table_1.14.0           foreach_1.5.1              
 [89] vctrs_0.3.8                 httpuv_1.5.1               
 [91] gtable_0.3.0                purrr_0.3.4                
 [93] assertthat_0.2.1            cachem_1.0.5               
 [95] xfun_0.8                    later_0.8.0                
 [97] tibble_3.1.2                iterators_1.0.13           
 [99] GenomicAlignments_1.20.1    AnnotationDbi_1.46.0       
[101] memoise_2.0.0               IRanges_2.18.1             
[103] workflowr_1.6.2             ellipsis_0.3.2