Last updated: 2021-09-13

Checks: 7 0

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 72c8ef7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


working directory clean

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-a-248_Brain_Hypothalamus_known.Rmd) and HTML (docs/ukb-a-248_Brain_Hypothalamus_known.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 72c8ef7 wesleycrouse 2021-09-13 changing mart for biomart
Rmd a49c40e wesleycrouse 2021-09-13 updating with bystander analysis
html 7e22565 wesleycrouse 2021-09-13 updating reports
html 3a7fbc1 wesleycrouse 2021-09-08 generating reports for known annotations
Rmd cbf7408 wesleycrouse 2021-09-08 adding enrichment to reports

Overview

These are the results of a ctwas analysis of the UK Biobank trait Body mass index (BMI) using Brain_Hypothalamus gene weights.

The GWAS was conducted by the Neale Lab, and the biomarker traits we analyzed are discussed here. Summary statistics were obtained from IEU OpenGWAS using GWAS ID: ukb-a-248. Results were obtained from from IEU rather than Neale Lab because they are in a standardard format (GWAS VCF). Note that 3 of the 34 biomarker traits were not available from IEU and were excluded from analysis.

The weights are mashr GTEx v8 models on Brain_Hypothalamus eQTL obtained from PredictDB. We performed a full harmonization of the variants, including recovering strand ambiguous variants. This procedure is discussed in a separate document. (TO-DO: add report that describes harmonization)

LD matrices were computed from a 10% subset of Neale lab subjects. Subjects were matched using the plate and well information from genotyping. We included only biallelic variants with MAF>0.01 in the original Neale Lab GWAS. (TO-DO: add more details [number of subjects, variants, etc])

Weight QC

TO-DO: add enhanced QC reporting (total number of weights, why each variant was missing for all genes)

qclist_all <- list()

qc_files <- paste0(results_dir, "/", list.files(results_dir, pattern="exprqc.Rd"))

for (i in 1:length(qc_files)){
  load(qc_files[i])
  chr <- unlist(strsplit(rev(unlist(strsplit(qc_files[i], "_")))[1], "[.]"))[1]
  qclist_all[[chr]] <- cbind(do.call(rbind, lapply(qclist,unlist)), as.numeric(substring(chr,4)))
}

qclist_all <- data.frame(do.call(rbind, qclist_all))
colnames(qclist_all)[ncol(qclist_all)] <- "chr"

rm(qclist, wgtlist, z_gene_chr)

#number of imputed weights
nrow(qclist_all)
[1] 11083
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
1107  757  667  439  549  622  531  429  416  429  660  610  213  357  369 
  16   17   18   19   20   21   22 
 492  680  168  851  327  134  276 
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8005053

Load ctwas results

#load ctwas results
ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))

#make unique identifier for regions
ctwas_res$region_tag <- paste(ctwas_res$region_tag1, ctwas_res$region_tag2, sep="_")

#load z scores for SNPs and collect sample size
load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))

sample_size <- z_snp$ss
sample_size <- as.numeric(names(which.max(table(sample_size))))

#compute PVE for each gene/SNP
ctwas_res$PVE = ctwas_res$susie_pip*ctwas_res$mu2/sample_size

#separate gene and SNP results
ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
ctwas_gene_res <- data.frame(ctwas_gene_res)
ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
ctwas_snp_res <- data.frame(ctwas_snp_res)

#add gene information to results
sqlite <- RSQLite::dbDriver("SQLite")
db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
query <- function(...) RSQLite::dbGetQuery(db, ...)
gene_info <- query("select gene, genename from extra")
gene_info <- query("select gene, genename, gene_type from extra")
RSQLite::dbDisconnect(db)

ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])

#add z scores to results
load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z

z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,]
ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)]

#formatting and rounding for tables
ctwas_gene_res$z <- round(ctwas_gene_res$z,2)
ctwas_snp_res$z <- round(ctwas_snp_res$z,2)
ctwas_gene_res$susie_pip <- round(ctwas_gene_res$susie_pip,3)
ctwas_snp_res$susie_pip <- round(ctwas_snp_res$susie_pip,3)
ctwas_gene_res$mu2 <- round(ctwas_gene_res$mu2,2)
ctwas_snp_res$mu2 <- round(ctwas_snp_res$mu2,2)
ctwas_gene_res$PVE <- signif(ctwas_gene_res$PVE, 2)
ctwas_snp_res$PVE <- signif(ctwas_snp_res$PVE, 2)

#merge gene and snp results with added information
ctwas_snp_res$genename=NA
ctwas_snp_res$gene_type=NA

ctwas_res <- rbind(ctwas_gene_res,
                   ctwas_snp_res[,colnames(ctwas_gene_res)])

#store columns to report
report_cols <- colnames(ctwas_gene_res)[!(colnames(ctwas_gene_res) %in% c("type", "region_tag1", "region_tag2", "cs_index", "gene_type", "z_flag", "id", "chrom", "pos"))]
first_cols <- c("genename", "region_tag")
report_cols <- c(first_cols, report_cols[!(report_cols %in% first_cols)])

report_cols_snps <- c("id", report_cols[-1])

#get number of SNPs from s1 results; adjust for thin
ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
rm(ctwas_res_s1)

Check convergence of parameters

library(ggplot2)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
  
df <- data.frame(niter = rep(1:ncol(group_prior_rec), 2),
                 value = c(group_prior_rec[1,], group_prior_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_rec)))
df$group <- as.factor(df$group)

df$value[df$group=="SNP"] <- df$value[df$group=="SNP"]*thin #adjust parameter to account for thin argument

p_pi <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(pi)) +
  ggtitle("Prior mean") +
  theme_cowplot()

df <- data.frame(niter = rep(1:ncol(group_prior_var_rec), 2),
                 value = c(group_prior_var_rec[1,], group_prior_var_rec[2,]),
                 group = rep(c("Gene", "SNP"), each = ncol(group_prior_var_rec)))
df$group <- as.factor(df$group)
p_sigma2 <- ggplot(df, aes(x=niter, y=value, group=group)) +
  geom_line(aes(color=group)) +
  geom_point(aes(color=group)) +
  xlab("Iteration") + ylab(bquote(sigma^2)) +
  ggtitle("Prior variance") +
  theme_cowplot()

plot_grid(p_pi, p_sigma2)

Version Author Date
3a7fbc1 wesleycrouse 2021-09-08
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
        gene          snp 
0.0049608595 0.0002982899 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
    gene      snp 
15.52429 17.75596 
#report sample size
print(sample_size)
[1] 336107
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]   11083 7535010
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
       gene         snp 
0.002539502 0.118737825 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1]  0.01272535 15.94833250

Genes with highest PIPs

#distribution of PIPs
hist(ctwas_gene_res$susie_pip, xlim=c(0,1), main="Distribution of Gene PIPs")

Version Author Date
3a7fbc1 wesleycrouse 2021-09-08
#genes with PIP>0.8 or 20 highest PIPs
head(ctwas_gene_res[order(-ctwas_gene_res$susie_pip),report_cols], max(sum(ctwas_gene_res$susie_pip>0.8), 20))
            genename region_tag susie_pip    mu2     PVE     z
7493           PPM1M       3_36     1.000 244.75 7.3e-04  4.54
3276           CCND2       12_4     0.940  28.26 7.9e-05 -5.12
7598           ZNF12        7_9     0.781  26.90 6.3e-05  5.09
7840          ALKBH3      11_27     0.768  28.50 6.5e-05 -5.13
13153 RP11-1109F11.3      12_54     0.765  30.71 7.0e-05  6.46
8379           CENPX      17_46     0.711  23.79 5.0e-05  4.11
8812            RARG      12_33     0.703  25.49 5.3e-05 -4.11
241             ISL1       5_30     0.701  26.16 5.5e-05 -5.01
7356        SERPINI1      3_103     0.698  23.16 4.8e-05 -4.06
4821           DCAF7      17_38     0.656  30.16 5.9e-05  5.44
3176          PRRC2C       1_84     0.625  28.14 5.2e-05 -5.17
584             NGFR      17_29     0.625  28.07 5.2e-05 -4.01
11412        NCKIPSD       3_34     0.600  26.30 4.7e-05  4.49
13194   CTC-498M16.4       5_52     0.592  52.95 9.3e-05  7.71
5798            ECE2      3_113     0.583  28.52 4.9e-05 -5.29
5712          THSD7B       2_81     0.549  27.38 4.5e-05  5.32
11611         HRAT92        7_1     0.548  24.31 4.0e-05 -3.93
7806         R3HCC1L      10_62     0.546  39.55 6.4e-05  7.44
5498           CARM1       19_9     0.543  32.91 5.3e-05  5.02
155            CSDE1       1_71     0.535  22.42 3.6e-05 -4.74

Genes with largest effect sizes

#plot PIP vs effect size
plot(ctwas_gene_res$susie_pip, ctwas_gene_res$mu2, xlab="PIP", ylab="mu^2", main="Gene PIPs vs Effect Size")

Version Author Date
3a7fbc1 wesleycrouse 2021-09-08
#genes with 20 largest effect sizes
head(ctwas_gene_res[order(-ctwas_gene_res$mu2),report_cols],20)
       genename region_tag susie_pip      mu2     PVE      z
7665    CCDC171       9_13         0 50550.12 0.0e+00   8.03
8735      NEGR1       1_46         0 43383.72 0.0e+00 -10.70
9420      STX19       3_59         0 31106.49 0.0e+00  -5.06
7889       LEO1      15_21         0 27969.54 3.4e-14   4.60
5271      MFAP1      15_16         0 23764.59 0.0e+00   4.30
13397 LINC02019       3_35         0 22551.06 7.4e-17  -4.47
5098      TMOD3      15_21         0 22268.83 0.0e+00   5.41
4029      TMOD2      15_21         0 21601.60 0.0e+00   5.23
1293      WDR76      15_16         0 21486.56 0.0e+00   4.74
11601    CKMT1A      15_16         0 21284.13 0.0e+00   4.13
2876       CISH       3_35         0 20260.39 0.0e+00  -3.80
3017      PLCL1      2_117         0 18664.08 0.0e+00  -5.64
1015      CCNT2       2_80         0 18644.85 8.6e-17   3.69
2875      HEMK1       3_35         0 17517.21 0.0e+00  -3.88
4998    TUBGCP4      15_16         0 16916.45 0.0e+00   3.43
9416      DHFR2       3_59         0 16605.15 0.0e+00   2.76
9414      NSUN3       3_59         0 15678.49 0.0e+00   4.76
8261       ADAL      15_16         0 14821.09 0.0e+00  -2.86
125    CACNA2D2       3_35         0 14198.82 0.0e+00  -4.01
5136     CNOT6L       4_52         0 14094.61 0.0e+00   3.42

Genes with highest PVE

#genes with 20 highest pve
head(ctwas_gene_res[order(-ctwas_gene_res$PVE),report_cols],20)
            genename region_tag susie_pip     mu2     PVE     z
7493           PPM1M       3_36     1.000  244.75 7.3e-04  4.54
2953          LANCL1      2_124     0.042 4670.09 5.8e-04 -3.71
9392         FAM220A        7_8     0.216  445.76 2.9e-04 -1.29
13194   CTC-498M16.4       5_52     0.592   52.95 9.3e-05  7.71
2896           SPCS1       3_36     0.081  348.59 8.4e-05 -5.07
4791            RAC1        7_8     0.158  178.70 8.4e-05 -5.51
3276           CCND2       12_4     0.940   28.26 7.9e-05 -5.12
13153 RP11-1109F11.3      12_54     0.765   30.71 7.0e-05  6.46
12160         ATP5J2       7_62     0.458   50.81 6.9e-05 -7.12
2926           ITGB6       2_96     0.499   45.97 6.8e-05  5.45
7840          ALKBH3      11_27     0.768   28.50 6.5e-05 -5.13
7806         R3HCC1L      10_62     0.546   39.55 6.4e-05  7.44
7598           ZNF12        7_9     0.781   26.90 6.3e-05  5.09
13639         DHRS11      17_22     0.347   60.57 6.3e-05 -8.14
4821           DCAF7      17_38     0.656   30.16 5.9e-05  5.44
241             ISL1       5_30     0.701   26.16 5.5e-05 -5.01
8812            RARG      12_33     0.703   25.49 5.3e-05 -4.11
5498           CARM1       19_9     0.543   32.91 5.3e-05  5.02
3176          PRRC2C       1_84     0.625   28.14 5.2e-05 -5.17
584             NGFR      17_29     0.625   28.07 5.2e-05 -4.01

Genes with largest z scores

#genes with 20 largest z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip      mu2     PVE      z
7489     MST1R       3_35     0.002  1050.67 5.7e-06 -12.63
38        RBM6       3_35     0.000   906.71 9.6e-07  12.54
9046    KCTD13      16_24     0.045   109.28 1.5e-05 -11.49
9045    ASPHD1      16_24     0.009   101.21 2.7e-06 -11.34
7484    RNF123       3_35     0.000   823.16 1.2e-14 -10.96
6178     TAOK2      16_24     0.016    92.70 4.5e-06  10.74
8735     NEGR1       1_46     0.000 43383.72 0.0e+00 -10.70
10430     CLN3      16_23     0.052    86.01 1.3e-05  10.45
11930   NPIPB7      16_23     0.052    86.01 1.3e-05  10.45
8365    INO80E      16_24     0.015    78.23 3.5e-06  10.10
8032    ZNF646      16_24     0.051    75.84 1.2e-05 -10.00
7487     CAMKV       3_35     0.000  1446.64 1.4e-18   9.85
5486      SAE1      19_33     0.004    97.46 1.0e-06   9.85
2753  COL4A3BP       5_44     0.020    68.99 4.1e-06  -9.83
458      PRSS8      16_24     0.011    70.69 2.3e-06  -9.76
1830      KAT8      16_24     0.009    68.78 1.9e-06  -9.71
11411      LAT      16_23     0.106    83.00 2.6e-05  -9.55
8031    ZNF668      16_24     0.011    70.05 2.3e-06   9.55
2458     MTCH2      11_29     0.008    81.32 1.8e-06  -9.51
10711  SULT1A2      16_23     0.043    80.36 1.0e-05  -9.45

Comparing z scores and PIPs

#set nominal signifiance threshold for z scores
alpha <- 0.05

#bonferroni adjusted threshold for z scores
sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)

#Q-Q plot for z scores
obs_z <- ctwas_gene_res$z[order(ctwas_gene_res$z)]
exp_z <- qnorm((1:nrow(ctwas_gene_res))/nrow(ctwas_gene_res))

plot(exp_z, obs_z, xlab="Expected z", ylab="Observed z", main="Gene z score Q-Q plot")
abline(a=0,b=1)

Version Author Date
3a7fbc1 wesleycrouse 2021-09-08
#plot z score vs PIP
plot(abs(ctwas_gene_res$z), ctwas_gene_res$susie_pip, xlab="abs(z)", ylab="PIP")
abline(v=sig_thresh, col="red", lty=2)

Version Author Date
3a7fbc1 wesleycrouse 2021-09-08
#proportion of significant z scores
mean(abs(ctwas_gene_res$z) > sig_thresh)
[1] 0.02012091
#genes with most significant z scores
head(ctwas_gene_res[order(-abs(ctwas_gene_res$z)),report_cols],20)
      genename region_tag susie_pip      mu2     PVE      z
7489     MST1R       3_35     0.002  1050.67 5.7e-06 -12.63
38        RBM6       3_35     0.000   906.71 9.6e-07  12.54
9046    KCTD13      16_24     0.045   109.28 1.5e-05 -11.49
9045    ASPHD1      16_24     0.009   101.21 2.7e-06 -11.34
7484    RNF123       3_35     0.000   823.16 1.2e-14 -10.96
6178     TAOK2      16_24     0.016    92.70 4.5e-06  10.74
8735     NEGR1       1_46     0.000 43383.72 0.0e+00 -10.70
10430     CLN3      16_23     0.052    86.01 1.3e-05  10.45
11930   NPIPB7      16_23     0.052    86.01 1.3e-05  10.45
8365    INO80E      16_24     0.015    78.23 3.5e-06  10.10
8032    ZNF646      16_24     0.051    75.84 1.2e-05 -10.00
7487     CAMKV       3_35     0.000  1446.64 1.4e-18   9.85
5486      SAE1      19_33     0.004    97.46 1.0e-06   9.85
2753  COL4A3BP       5_44     0.020    68.99 4.1e-06  -9.83
458      PRSS8      16_24     0.011    70.69 2.3e-06  -9.76
1830      KAT8      16_24     0.009    68.78 1.9e-06  -9.71
11411      LAT      16_23     0.106    83.00 2.6e-05  -9.55
8031    ZNF668      16_24     0.011    70.05 2.3e-06   9.55
2458     MTCH2      11_29     0.008    81.32 1.8e-06  -9.51
10711  SULT1A2      16_23     0.043    80.36 1.0e-05  -9.45

Locus plots for genes and SNPs

ctwas_gene_res_sortz <- ctwas_gene_res[order(-abs(ctwas_gene_res$z)),]

n_plots <- 5
for (region_tag_plot in head(unique(ctwas_gene_res_sortz$region_tag), n_plots)){
  ctwas_res_region <-  ctwas_res[ctwas_res$region_tag==region_tag_plot,]
  start <- min(ctwas_res_region$pos)
  end <- max(ctwas_res_region$pos)
  
  ctwas_res_region <- ctwas_res_region[order(ctwas_res_region$pos),]
  ctwas_res_region_gene <- ctwas_res_region[ctwas_res_region$type=="gene",]
  ctwas_res_region_snp <- ctwas_res_region[ctwas_res_region$type=="SNP",]
  
  #region name
  print(paste0("Region: ", region_tag_plot))
  
  #table of genes in region
  print(ctwas_res_region_gene[,report_cols])
  
  par(mfrow=c(4,1))
  
  #gene z scores
  plot(ctwas_res_region_gene$pos, abs(ctwas_res_region_gene$z), xlab="Position", ylab="abs(gene_z)", xlim=c(start,end),
   ylim=c(0,max(sig_thresh, abs(ctwas_res_region_gene$z))),
   main=paste0("Region: ", region_tag_plot))
  abline(h=sig_thresh,col="red",lty=2)
  
  #significance threshold for SNPs
  alpha_snp <- 5*10^(-8)
  sig_thresh_snp <- qnorm(1-alpha_snp/2, lower=T)
  
  #snp z scores
  plot(ctwas_res_region_snp$pos, abs(ctwas_res_region_snp$z), xlab="Position", ylab="abs(snp_z)",xlim=c(start,end),
   ylim=c(0,max(sig_thresh_snp, max(abs(ctwas_res_region_snp$z)))))
  abline(h=sig_thresh_snp,col="purple",lty=2)
  
  #gene pips
  plot(ctwas_res_region_gene$pos, ctwas_res_region_gene$susie_pip, xlab="Position", ylab="Gene PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
  
  #snp pips
  plot(ctwas_res_region_snp$pos, ctwas_res_region_snp$susie_pip, xlab="Position", ylab="SNP PIP", xlim=c(start,end), ylim=c(0,1))
  abline(h=0.8,col="blue",lty=2)
}
[1] "Region: 3_35"
       genename region_tag susie_pip      mu2     PVE      z
2843       USP4       3_35     0.000   382.53 0.0e+00   2.17
11932      GPX1       3_35     0.000    79.24 0.0e+00  -5.84
5786       TCTA       3_35     0.000  1761.03 0.0e+00  -0.82
671        RHOA       3_35     0.000   343.56 0.0e+00  -8.35
5785        AMT       3_35     0.000    77.23 0.0e+00  -0.16
5787      NICN1       3_35     0.000    65.14 0.0e+00   5.57
11724   BSN-AS2       3_35     0.000   370.01 0.0e+00   5.67
7482       APEH       3_35     0.000   176.23 0.0e+00   3.42
8898       MST1       3_35     0.000   504.57 0.0e+00   4.77
7484     RNF123       3_35     0.000   823.16 1.2e-14 -10.96
10102   FAM212A       3_35     0.000    59.54 0.0e+00   2.35
9891      TRAIP       3_35     0.000   756.55 0.0e+00  -6.90
7487      CAMKV       3_35     0.000  1446.64 1.4e-18   9.85
7489      MST1R       3_35     0.002  1050.67 5.7e-06 -12.63
38         RBM6       3_35     0.000   906.71 9.6e-07  12.54
10406   SLC38A3       3_35     0.000  1504.12 0.0e+00   6.73
208      SEMA3B       3_35     0.000  2779.61 0.0e+00   2.68
10243     HYAL3       3_35     0.000    56.46 0.0e+00   5.62
12211      NAT6       3_35     0.000    68.10 0.0e+00  -7.17
679      RASSF1       3_35     0.000  2345.02 0.0e+00   2.76
125    CACNA2D2       3_35     0.000 14198.82 0.0e+00  -4.01
2875      HEMK1       3_35     0.000 17517.21 0.0e+00  -3.88
2877   MAPKAPK3       3_35     0.000   250.87 0.0e+00  -3.08
2876       CISH       3_35     0.000 20260.39 0.0e+00  -3.80
13397 LINC02019       3_35     0.000 22551.06 7.4e-17  -4.47
5789       MANF       3_35     0.000   107.52 0.0e+00   3.78
12724    RBM15B       3_35     0.000    98.84 0.0e+00  -3.58
7490    RAD54L2       3_35     0.000   189.71 0.0e+00  -3.26
7491     TEX264       3_35     0.000 10476.85 0.0e+00   5.21
7492       GRM2       3_35     0.000   144.73 0.0e+00   1.98

Version Author Date
3a7fbc1 wesleycrouse 2021-09-08
[1] "Region: 16_24"
           genename region_tag susie_pip    mu2     PVE      z
12759 RP11-426C22.5      16_24     0.012   9.21 3.2e-07   1.45
10764           SPN      16_24     0.014  14.07 5.9e-07   2.68
1824           QPRT      16_24     0.008   6.31 1.4e-07  -1.75
10146      C16orf54      16_24     0.032  16.90 1.6e-06   0.85
13675         PAGR1      16_24     0.022  15.44 9.9e-07   0.87
8026          PRRT2      16_24     0.043  20.03 2.6e-06  -0.94
1828          CDIPT      16_24     0.008  16.30 3.7e-07  -4.38
8365         INO80E      16_24     0.015  78.23 3.5e-06  10.10
9044         SEZ6L2      16_24     0.008  19.97 4.7e-07  -5.26
9045         ASPHD1      16_24     0.009 101.21 2.7e-06 -11.34
9046         KCTD13      16_24     0.045 109.28 1.5e-05 -11.49
6178          TAOK2      16_24     0.016  92.70 4.5e-06  10.74
6177          DOC2A      16_24     0.012  30.66 1.1e-06   5.85
6176         FAM57B      16_24     0.008   9.35 2.1e-07   2.95
6175          PPP4C      16_24     0.013  47.36 1.8e-06   7.40
6174           TBX6      16_24     0.008  13.13 3.1e-07  -3.53
1224          YPEL3      16_24     0.013  45.87 1.7e-06  -7.28
1748          MAPK3      16_24     0.010  66.63 2.0e-06   8.83
1747         CORO1A      16_24     0.013  13.85 5.4e-07   2.87
9545          SEPT1      16_24     0.011  18.94 6.3e-07   3.79
9535         ZNF771      16_24     0.010   9.35 2.8e-07   1.51
8419         ZNF768      16_24     0.010   6.40 1.9e-07  -0.20
8418         ZNF747      16_24     0.016  33.70 1.6e-06   5.80
6678         ZNF689      16_24     0.013  30.85 1.2e-06  -6.01
6679          PRR14      16_24     0.008   6.86 1.7e-07  -0.49
1746         ZNF629      16_24     0.011  20.28 6.6e-07   4.34
1379          BCL7C      16_24     0.008   9.11 2.2e-07   1.28
1378         SETD1A      16_24     0.008  27.14 6.2e-07  -5.63
13501 RP11-1072A3.4      16_24     0.008  27.14 6.2e-07   5.63
1827           STX4      16_24     0.008  29.63 6.9e-07   5.78
12790 RP11-196G11.2      16_24     0.008  27.60 6.2e-07  -5.65
8031         ZNF668      16_24     0.011  70.05 2.3e-06   9.55
8032         ZNF646      16_24     0.051  75.84 1.2e-05 -10.00
1829          BCKDK      16_24     0.009  12.66 3.3e-07  -3.44
1830           KAT8      16_24     0.009  68.78 1.9e-06  -9.71
458           PRSS8      16_24     0.011  70.69 2.3e-06  -9.76
9270         TRIM72      16_24     0.020  47.02 2.8e-06   7.27
8408          PYDC1      16_24     0.019  46.30 2.7e-06  -7.22
8407          ITGAM      16_24     0.033  34.55 3.4e-06   5.20
5332          ITGAX      16_24     0.021  14.42 9.0e-07   1.63

Version Author Date
3a7fbc1 wesleycrouse 2021-09-08
[1] "Region: 1_46"
     genename region_tag susie_pip      mu2 PVE     z
8735    NEGR1       1_46         0 43383.72   0 -10.7

Version Author Date
3a7fbc1 wesleycrouse 2021-09-08
[1] "Region: 16_23"
      genename region_tag susie_pip   mu2     PVE     z
900     GTF3C1      16_23     0.005  5.54 8.3e-08  0.48
406   KIAA0556      16_23     0.005  4.93 6.9e-08 -0.29
8310     GSG1L      16_23     0.007  9.20 1.9e-07  1.12
8309      XPO6      16_23     0.012 12.40 4.5e-07  0.71
10430     CLN3      16_23     0.052 86.01 1.3e-05 10.45
11930   NPIPB7      16_23     0.052 86.01 1.3e-05 10.45
11298   EIF3CL      16_23     0.009 60.23 1.7e-06 -8.73
10728     IL27      16_23     0.014 68.25 2.9e-06  9.14
9162     NUPR1      16_23     0.020 72.43 4.4e-06 -9.33
9201     SGF29      16_23     0.005  5.99 8.4e-08 -1.33
10711  SULT1A2      16_23     0.043 80.36 1.0e-05 -9.45
9286      CD19      16_23     0.005  5.94 8.6e-08  1.16
11411      LAT      16_23     0.106 83.00 2.6e-05 -9.55

Version Author Date
3a7fbc1 wesleycrouse 2021-09-08
[1] "Region: 19_33"
           genename region_tag susie_pip   mu2     PVE     z
2015          PRKD2      19_33     0.004  5.12 5.4e-08  0.27
9631           FKRP      19_33     0.010 15.07 4.5e-07 -1.71
1229          STRN4      19_33     0.008 12.93 3.2e-07  1.51
4204          NPAS1      19_33     0.003  4.75 4.8e-08 -0.02
4202        TMEM160      19_33     0.006 14.36 2.4e-07 -1.98
5486           SAE1      19_33     0.004 97.46 1.0e-06  9.85
4203          ZC3H4      19_33     0.089 33.13 8.7e-06  1.43
2019          CCDC9      19_33     0.007 10.37 2.1e-07  0.38
4599          C5AR2      19_33     0.004  5.73 6.6e-08 -0.13
4596          DHX34      19_33     0.003  5.95 6.0e-08  1.08
2041          MEIS3      19_33     0.004  5.97 6.4e-08 -0.90
3214         ZNF541      19_33     0.005  7.64 1.1e-07  0.94
563         GLTSCR1      19_33     0.004  6.00 7.0e-08  0.67
288            EHD2      19_33     0.003  4.71 4.7e-08 -0.01
2037        SULT2A1      19_33     0.004  7.08 9.2e-08  0.95
2053        PLA2G4C      19_33     0.052 30.46 4.7e-06 -2.63
2051           LIG1      19_33     0.008 12.33 2.9e-07  1.35
10082      C19orf68      19_33     0.036 27.21 2.9e-06  2.38
2050          CARD8      19_33     0.003  4.75 4.8e-08  0.04
9367         ZNF114      19_33     0.003  4.73 4.8e-08  0.03
5485           EMP3      19_33     0.004  5.40 5.8e-08  0.46
2049        CCDC114      19_33     0.003  4.78 4.8e-08  0.22
9730         KCNJ14      19_33     0.060 31.31 5.6e-06 -3.03
2044          CYTH2      19_33     0.011 15.26 4.9e-07  1.96
5488          LMTK3      19_33     0.003  4.81 4.9e-08  0.07
13078 CTC-273B12.10      19_33     0.003  4.81 4.9e-08 -0.07
1148        SULT2B1      19_33     0.006  9.84 1.7e-07 -1.00
2057         FAM83E      19_33     0.004  6.90 8.7e-08  1.01
564           SPHK2      19_33     0.007 11.21 2.2e-07  1.21
565            CA11      19_33     0.004  5.73 6.4e-08 -0.47
9236           FUT2      19_33     0.004  5.66 6.1e-08  0.91
9233         MAMSTR      19_33     0.005  8.09 1.2e-07  1.58
9051           FUT1      19_33     0.116 28.66 9.9e-06  3.37
2058         RASIP1      19_33     0.008 12.30 3.0e-07  2.01
9726         IZUMO1      19_33     0.005  7.19 9.7e-08  0.52

Version Author Date
3a7fbc1 wesleycrouse 2021-09-08

SNPs with highest PIPs

#snps with PIP>0.8 or 20 highest PIPs
head(ctwas_snp_res[order(-ctwas_snp_res$susie_pip),report_cols_snps],
max(sum(ctwas_snp_res$susie_pip>0.8), 20))
                id region_tag susie_pip       mu2     PVE      z
15430   rs12140153       1_39     1.000     66.95 2.0e-04  -7.64
16297    rs7526141       1_41     1.000   7867.00 2.3e-02   3.66
16303    rs6662904       1_41     1.000   7811.51 2.3e-02  -3.97
18757   rs71658797       1_48     1.000     68.02 2.0e-04   9.19
22190    rs7532966       1_54     1.000   4619.65 1.4e-02   3.03
22196    rs2061480       1_54     1.000   4695.91 1.4e-02  -3.06
24289   rs41285694       1_60     1.000  28198.83 8.4e-02  -5.00
24292    rs2154403       1_60     1.000  28224.41 8.4e-02  -4.94
28142    rs2618039       1_69     1.000     40.40 1.2e-04   6.27
31329  rs111360475       1_76     1.000   2692.80 8.0e-03   2.73
31332   rs72704175       1_76     1.000   2757.14 8.2e-03  -3.17
31470    rs1778830       1_77     1.000     45.14 1.3e-04   5.61
32046    rs1557615       1_78     1.000   8111.50 2.4e-02   2.78
32048     rs857716       1_78     1.000   8084.64 2.4e-02  -2.72
35492   rs10919376       1_83     1.000   8367.68 2.5e-02   2.49
36432   rs75222047       1_85     1.000  16772.48 5.0e-02   3.96
36451    rs2179109       1_85     1.000  16675.33 5.0e-02  -3.93
36454   rs60240702       1_85     1.000  16638.22 5.0e-02  -3.96
40780   rs12754976       1_95     1.000  13447.65 4.0e-02   3.47
41980   rs12122131       1_97     1.000     45.13 1.3e-04   1.20
45640   rs17014375      1_106     1.000  18204.62 5.4e-02   5.71
45642    rs1507336      1_106     1.000  18067.57 5.4e-02  -5.77
46753   rs41296674      1_108     1.000   3265.82 9.7e-03   3.35
57401  rs192754985        2_1     1.000     70.72 2.1e-04  -9.32
64889   rs10865322       2_15     1.000    284.30 8.5e-04  14.46
64914   rs72807675       2_15     1.000    151.79 4.5e-04   9.41
64920   rs10192245       2_15     1.000    257.80 7.7e-04  -4.83
64938    rs2304429       2_15     1.000    105.99 3.2e-04  -3.21
66727   rs56232255       2_20     1.000   1520.34 4.5e-03   2.22
66736   rs72798763       2_20     1.000   1477.39 4.4e-03  -2.15
73076   rs10205893       2_33     1.000  17810.95 5.3e-02  -3.69
73077    rs9711404       2_33     1.000  17770.01 5.3e-02   3.71
74300    rs9808435       2_36     1.000   7700.88 2.3e-02   3.61
74303    rs3821112       2_36     1.000   7573.43 2.3e-02  -3.63
74836    rs1117259       2_37     1.000   4414.99 1.3e-02   3.05
74840   rs13410457       2_37     1.000   4347.72 1.3e-02   3.37
74842    rs1030334       2_37     1.000   4447.88 1.3e-02  -2.89
77567   rs79792870       2_44     1.000   1460.92 4.3e-03  -3.83
77568    rs3885079       2_44     1.000   2128.27 6.3e-03   4.80
79785   rs78841558       2_49     1.000  10976.39 3.3e-02   3.00
79788   rs76340200       2_49     1.000  11003.01 3.3e-02  -2.90
80171    rs6739222       2_50     1.000  12337.24 3.7e-02  -3.57
80173    rs4853289       2_50     1.000  12407.67 3.7e-02   3.48
80182    rs6547116       2_50     1.000  12083.56 3.6e-02  -3.38
81555   rs13407148       2_53     1.000  27215.33 8.1e-02  -4.64
81567    rs7593114       2_53     1.000  27282.39 8.1e-02   4.67
84470   rs11123893       2_59     1.000  11379.99 3.4e-02   3.03
84472   rs12053430       2_59     1.000  11351.64 3.4e-02  -2.97
85037   rs17417204       2_61     1.000  11281.87 3.4e-02   3.78
85044   rs79795961       2_61     1.000  11341.02 3.4e-02  -3.85
87219   rs45586833       2_67     1.000  12297.67 3.7e-02  -3.41
87220   rs45627132       2_67     1.000  12256.92 3.6e-02   3.35
88244    rs1979190       2_68     1.000   7977.18 2.4e-02   3.40
88246     rs334844       2_68     1.000   8034.01 2.4e-02   3.24
89752   rs17367752       2_71     1.000  16508.04 4.9e-02   3.50
92880   rs10175818       2_80     1.000  18971.31 5.6e-02  -3.74
92881    rs6737606       2_80     1.000  18932.13 5.6e-02   3.73
95861   rs12992878       2_87     1.000   8917.52 2.7e-02  -2.88
95865    rs4358069       2_87     1.000   8949.37 2.7e-02   3.00
99188    rs7576002       2_96     1.000   3165.74 9.4e-03  -2.93
99687   rs62187751       2_97     1.000  22526.67 6.7e-02   4.07
103887   rs1918345      2_107     1.000   1065.24 3.2e-03   2.85
104740  rs72888751      2_109     1.000   2790.01 8.3e-03   2.34
104748  rs16867321      2_109     1.000   9720.80 2.9e-02  -4.65
107902  rs72912537      2_114     1.000     49.50 1.5e-04   3.02
108787   rs7587598      2_117     1.000  19417.85 5.8e-02   5.70
108793   rs1595824      2_117     1.000  19384.14 5.8e-02  -5.59
111682   rs6749711      2_124     1.000   1573.96 4.7e-03  -0.25
111683   rs2007748      2_124     1.000   5912.06 1.8e-02  -3.64
117753    rs878444      2_136     1.000   5027.22 1.5e-02   4.48
117755  rs10170567      2_136     1.000   6318.68 1.9e-02   4.07
117759   rs6723277      2_136     1.000   6399.49 1.9e-02  -4.28
128319   rs6550786       3_17     1.000   8033.77 2.4e-02  -2.65
128320   rs6550787       3_17     1.000   8056.87 2.4e-02   2.62
134728 rs113569731       3_33     1.000     40.72 1.2e-04   5.41
135222  rs60898829       3_35     1.000  22931.95 6.8e-02   4.51
140456  rs17008124       3_48     1.000    113.56 3.4e-04  -1.30
140459  rs66590721       3_48     1.000     95.71 2.8e-04   2.36
140461  rs11720703       3_48     1.000    630.82 1.9e-03  -4.01
140462   rs7635544       3_48     1.000    588.66 1.8e-03   2.93
143466   rs7635267       3_54     1.000  54696.47 1.6e-01   6.70
143468   rs6793322       3_54     1.000  54557.44 1.6e-01  -6.58
143517  rs34666414       3_55     1.000   4329.89 1.3e-02  -2.38
144082  rs66855166       3_56     1.000   6816.39 2.0e-02  -4.00
144096 rs142356570       3_56     1.000   6831.65 2.0e-02   4.08
144169 rs116560608       3_56     1.000    488.47 1.5e-03  -1.04
145526   rs9872445       3_59     1.000 108672.61 3.2e-01   8.95
147931   rs9875534       3_65     1.000  12730.85 3.8e-02  -3.07
149161    rs607878       3_67     1.000   8118.97 2.4e-02   2.69
152096   rs9846585       3_73     1.000   8198.24 2.4e-02   2.48
154178  rs11706854       3_78     1.000   7996.86 2.4e-02   2.83
154183  rs62270870       3_78     1.000   8027.39 2.4e-02  -2.86
155656  rs10934978       3_81     1.000  70082.07 2.1e-01   7.19
155659   rs9828720       3_81     1.000  69935.22 2.1e-01  -7.22
158667   rs6440207       3_88     1.000   8653.67 2.6e-02  -2.53
161598    rs896015       3_95     1.000  18711.99 5.6e-02  -4.20
163531   rs4856719       3_99     1.000  37336.21 1.1e-01   5.61
163532   rs4856720       3_99     1.000  37232.78 1.1e-01  -5.66
163998  rs13091802      3_100     1.000  12662.93 3.8e-02   3.07
167119   rs1388475      3_107     1.000   5510.87 1.6e-02   4.01
167120  rs13071192      3_107     1.000   5438.38 1.6e-02  -3.95
167122  rs13081434      3_107     1.000   5324.01 1.6e-02  -3.93
172327  rs35941299      3_118     1.000   9898.39 2.9e-02  -2.88
172328  rs35544990      3_118     1.000   9870.56 2.9e-02   2.91
174722  rs73791842        4_3     1.000   6633.68 2.0e-02   2.44
174723  rs28843679        4_3     1.000   6634.46 2.0e-02  -2.45
176671  rs28649910        4_9     1.000   3078.27 9.2e-03   2.17
180094    rs988964       4_17     1.000     52.83 1.6e-04   2.31
180956   rs9631706       4_19     1.000    610.46 1.8e-03   3.81
180957  rs77006543       4_19     1.000    143.79 4.3e-04   1.23
180959  rs60734157       4_19     1.000    670.59 2.0e-03  -3.88
182224  rs34811474       4_21     1.000    106.53 3.2e-04 -10.76
183146    rs567993       4_24     1.000   9672.23 2.9e-02  -2.77
188642   rs2348930       4_35     1.000  12301.11 3.7e-02   3.30
191156   rs1441067       4_41     1.000   7227.45 2.2e-02  -2.80
191159  rs71601696       4_41     1.000   7254.28 2.2e-02   2.64
196715  rs28706514       4_51     1.000    386.99 1.2e-03  -3.38
196716  rs13101593       4_51     1.000    402.38 1.2e-03   2.17
197368   rs6827822       4_52     1.000  15799.77 4.7e-02  -3.49
201596  rs35992541       4_63     1.000   2468.23 7.3e-03   3.40
201606  rs13145086       4_63     1.000   2593.30 7.7e-03  -3.88
201609  rs13121813       4_63     1.000   2450.14 7.3e-03   3.55
203956  rs35518360       4_67     1.000     86.54 2.6e-04  10.86
204014  rs13140033       4_68     1.000     76.65 2.3e-04   8.96
206252   rs2199342       4_72     1.000  13975.63 4.2e-02   3.40
206253    rs421160       4_72     1.000  14012.12 4.2e-02  -3.37
206878   rs4273539       4_73     1.000  27559.02 8.2e-02   4.60
206884   rs4428352       4_73     1.000  27620.23 8.2e-02  -4.57
210796  rs72616928       4_84     1.000   7009.81 2.1e-02   2.35
211044   rs4975290       4_85     1.000   5426.41 1.6e-02  -2.04
212668  rs75943774       4_89     1.000   6556.17 2.0e-02   2.43
215108   rs2165301       4_94     1.000   7063.63 2.1e-02   3.08
219719  rs11100346      4_104     1.000  36750.16 1.1e-01   5.20
225836   rs1862375      4_116     1.000    267.09 7.9e-04  -3.79
225865   rs3113743      4_116     1.000    352.12 1.0e-03  -3.60
229429   rs2115271        5_1     1.000   9760.92 2.9e-02  -3.03
229431      rs6962        5_1     1.000   9776.44 2.9e-02   3.06
241553    rs388377       5_28     1.000   1853.08 5.5e-03  -1.87
244694   rs1202500       5_35     1.000   9282.55 2.8e-02   2.64
244695   rs1202499       5_35     1.000   9262.64 2.8e-02  -2.63
246147  rs10063060       5_39     1.000  20544.75 6.1e-02   4.04
248523     rs34360       5_44     1.000     96.91 2.9e-04  11.50
256714   rs1345613       5_64     1.000  66238.35 2.0e-01   6.99
256716   rs1477283       5_64     1.000  66375.33 2.0e-01  -6.99
264358    rs329123       5_80     1.000     44.27 1.3e-04  -6.70
268852    rs973184       5_89     1.000  14446.18 4.3e-02   3.29
269889   rs7714176       5_92     1.000   5668.80 1.7e-02   2.11
269894    rs280460       5_92     1.000   5681.98 1.7e-02  -2.08
270484   rs2946171       5_93     1.000  11543.29 3.4e-02  -3.63
270485   rs2946173       5_93     1.000  11492.38 3.4e-02   3.59
274288  rs17703470      5_103     1.000   9764.34 2.9e-02   3.19
274291  rs10078465      5_103     1.000   9845.16 2.9e-02  -3.31
274301  rs10068324      5_103     1.000   9802.20 2.9e-02   3.15
275336  rs60793167      5_105     1.000   1177.51 3.5e-03  -0.08
275339    rs273077      5_105     1.000   2060.22 6.1e-03  -2.86
284250   rs9393470       6_17     1.000  30152.40 9.0e-02   4.81
285580  rs34662244       6_22     1.000  14770.85 4.4e-02   3.35
285598  rs67297533       6_22     1.000  14802.45 4.4e-02  -3.31
287666  rs17200698       6_25     1.000     37.66 1.1e-04  -5.62
288206   rs9272679       6_26     1.000    620.92 1.8e-03  -2.78
288236   rs3134996       6_26     1.000    570.65 1.7e-03   3.76
288757   rs3130266       6_28     1.000   5224.94 1.6e-02   3.12
288758   rs3130267       6_28     1.000   5129.99 1.5e-02  -3.16
290785   rs3734554       6_32     1.000     86.86 2.6e-04   9.47
291641 rs140163521       6_33     1.000     35.71 1.1e-04  -5.84
293849   rs1751684       6_38     1.000   1360.55 4.0e-03  -3.86
293879  rs67271941       6_38     1.000   1159.26 3.4e-03   4.28
295505  rs41271856       6_42     1.000  11914.18 3.5e-02  -2.99
302452  rs12208210       6_56     1.000   1257.24 3.7e-03   1.04
302460   rs4324818       6_56     1.000   6921.15 2.1e-02   3.50
302461   rs1935000       6_56     1.000   5866.77 1.7e-02  -3.37
309722   rs7755970       6_73     1.000  15318.49 4.6e-02   3.83
309729   rs9320282       6_73     1.000  15376.26 4.6e-02  -4.01
312472  rs76690375       6_80     1.000   9210.11 2.7e-02  -2.78
312478  rs60033756       6_80     1.000   9186.25 2.7e-02   2.70
316366   rs1535118       6_89     1.000   6990.56 2.1e-02   2.52
316372   rs6928242       6_89     1.000   6988.62 2.1e-02  -2.36
317942   rs9389867       6_93     1.000  16212.70 4.8e-02   3.46
317943   rs9376575       6_93     1.000  16178.16 4.8e-02  -3.46
322405   rs9371421      6_101     1.000   4714.33 1.4e-02   3.57
322407   rs9322572      6_101     1.000   3839.76 1.1e-02  -3.77
324871   rs4709799      6_107     1.000  10340.73 3.1e-02   2.79
341924   rs6962280       7_33     1.000     64.98 1.9e-04   8.11
347829  rs11977982       7_44     1.000   6541.60 1.9e-02   3.40
348491  rs74994417       7_46     1.000   2625.47 7.8e-03  -2.72
348496  rs10253217       7_46     1.000   2618.22 7.8e-03   2.58
356571  rs10215861       7_64     1.000  12144.79 3.6e-02   3.28
364837    rs161341       7_84     1.000  14491.74 4.3e-02   3.28
369471 rs113209692       7_96     1.000  10043.21 3.0e-02  -2.79
370856   rs1733145       7_99     1.000  11661.01 3.5e-02  -2.93
373551  rs75536128        8_7     1.000    305.18 9.1e-04  -4.05
373561   rs1821880        8_7     1.000    260.98 7.8e-04   3.08
376916   rs7009267       8_15     1.000   5553.09 1.7e-02  -3.80
377842  rs13269000       8_17     1.000   6867.85 2.0e-02  -5.93
382364  rs74571250       8_26     1.000  13361.95 4.0e-02  -3.14
382365  rs12545146       8_26     1.000  13334.00 4.0e-02   3.15
384052   rs7463426       8_30     1.000   5290.20 1.6e-02  -2.30
384053   rs4351381       8_30     1.000   5269.16 1.6e-02   2.50
384704  rs12544860       8_32     1.000  10547.00 3.1e-02  -2.78
384707   rs9297216       8_32     1.000  10525.04 3.1e-02   2.78
391743  rs13248755       8_49     1.000  11010.54 3.3e-02  -2.85
394761   rs1096313       8_56     1.000  17163.58 5.1e-02   4.72
394762   rs2383965       8_56     1.000  17153.40 5.1e-02  -4.34
397439  rs13277670       8_61     1.000   4425.60 1.3e-02  -1.97
403711   rs6469376       8_76     1.000  10338.06 3.1e-02  -3.13
412534  rs13257833       8_93     1.000    450.93 1.3e-03  -2.73
412543 rs115994079       8_93     1.000    181.46 5.4e-04  -1.33
417762   rs2105054       9_11     1.000  14145.14 4.2e-02   4.88
417769   rs7043405       9_11     1.000  14245.25 4.2e-02  -4.92
418857  rs78767291       9_12     1.000  17389.54 5.2e-02   3.73
418858   rs7875776       9_12     1.000  17344.64 5.2e-02  -3.80
419266   rs9407657       9_13     1.000  69686.82 2.1e-01  -7.40
428597 rs111698663       9_36     1.000    505.38 1.5e-03   2.83
428613  rs74580383       9_36     1.000    499.64 1.5e-03  -2.88
430116  rs75013842       9_40     1.000   1706.17 5.1e-03  -2.69
430119 rs111845590       9_40     1.000   1703.54 5.1e-03   2.61
432208 rs149431788       9_45     1.000   1620.12 4.8e-03  -0.28
432210  rs12236183       9_45     1.000   8477.64 2.5e-02   4.77
432211  rs13286354       9_45     1.000   7929.48 2.4e-02   5.51
432212   rs7468622       9_45     1.000   8757.78 2.6e-02  -5.14
440716  rs72767233       9_60     1.000    278.03 8.3e-04   2.28
449674  rs10490955      10_10     1.000  10734.35 3.2e-02   3.64
449678  rs17149511      10_10     1.000  10784.34 3.2e-02  -3.51
458081 rs193060593      10_28     1.000   9734.28 2.9e-02   2.69
462369   rs7898163      10_38     1.000   9373.66 2.8e-02   2.65
463839  rs10740103      10_42     1.000  50803.94 1.5e-01   6.14
470598  rs56330831      10_55     1.000  22778.95 6.8e-02   4.82
470599  rs17106600      10_55     1.000  22679.55 6.7e-02  -5.02
470601   rs2114828      10_55     1.000  22676.14 6.7e-02  -4.85
471392 rs145032088      10_57     1.000    438.93 1.3e-03   2.03
471423  rs34993776      10_57     1.000   6143.39 1.8e-02  -3.22
471926 rs143558140      10_59     1.000    746.59 2.2e-03   2.51
471934  rs56387205      10_59     1.000    814.73 2.4e-03  -2.75
479368  rs10886653      10_74     1.000    984.83 2.9e-03   3.80
479372  rs10749368      10_74     1.000   1029.44 3.1e-03  -3.94
497491   rs4755969      11_28     1.000  18654.01 5.6e-02  -3.80
497908  rs11039324      11_29     1.000    102.70 3.1e-04  10.76
498669 rs113527193      11_30     1.000   1713.69 5.1e-03   3.12
499000  rs11603701      11_30     1.000   1681.02 5.0e-03  -3.06
502402    rs584108      11_38     1.000  24105.67 7.2e-02   4.32
502404    rs669659      11_38     1.000  24072.94 7.2e-02  -4.31
502407    rs592697      11_38     1.000  24072.92 7.2e-02   4.38
505497  rs10792522      11_44     1.000   8656.53 2.6e-02  -3.05
505506   rs4945455      11_44     1.000   8619.44 2.6e-02   3.19
506776 rs140379586      11_47     1.000   2090.50 6.2e-03  -4.33
506792   rs3911272      11_47     1.000   2100.05 6.2e-03   3.77
521715  rs11611246       12_1     1.000     66.85 2.0e-04   7.81
524709  rs12422552      12_12     1.000     37.49 1.1e-04  -5.95
532343 rs187217275      12_27     1.000   6610.94 2.0e-02  -2.94
532350   rs1922758      12_27     1.000   6611.39 2.0e-02   2.98
533294   rs2307061      12_29     1.000  11819.24 3.5e-02  -2.95
535377   rs7961836      12_34     1.000  10102.17 3.0e-02   2.73
547960  rs75472396      12_62     1.000   9944.43 3.0e-02  -3.64
547961  rs12425537      12_62     1.000   9944.73 3.0e-02   3.77
562022 rs117385675      13_12     1.000   8986.18 2.7e-02  -2.57
562356  rs17068386      13_13     1.000  10316.48 3.1e-02  -2.78
566876   rs9568859      13_23     1.000     47.66 1.4e-04   6.19
567875   rs9285214      13_26     1.000     46.42 1.4e-04  -7.70
568138   rs9527903      13_28     1.000   1715.23 5.1e-03  -2.41
568140   rs4334175      13_28     1.000    608.90 1.8e-03  -5.71
568141   rs7318466      13_28     1.000   1779.04 5.3e-03   2.86
568207  rs74082058      13_28     1.000    167.13 5.0e-04   1.17
576176   rs9594084      13_43     1.000  20983.97 6.2e-02  -3.99
587653 rs147593816       14_6     1.000   2704.40 8.0e-03   4.45
587661 rs139279213       14_6     1.000   2705.04 8.0e-03  -3.83
596256  rs10150849      14_27     1.000  22649.89 6.7e-02  -4.26
596260  rs11848764      14_27     1.000  22637.07 6.7e-02   4.26
596263  rs34456481      14_27     1.000  22656.34 6.7e-02  -4.18
608033   rs7161194      14_52     1.000     40.51 1.2e-04  -6.36
608395   rs8003089      14_53     1.000  11442.17 3.4e-02  -2.93
608396  rs11846359      14_53     1.000  11467.27 3.4e-02   2.93
611914   rs4779903       15_8     1.000  10058.76 3.0e-02  -2.72
614928  rs12441984      15_16     1.000  24636.90 7.3e-02   4.31
621933  rs16957683      15_34     1.000   7979.27 2.4e-02  -2.80
621937   rs8043494      15_34     1.000   7980.59 2.4e-02   2.74
622773  rs62009152      15_36     1.000     57.90 1.7e-04  -7.16
623957  rs11633587      15_38     1.000  19900.27 5.9e-02  -3.89
623958  rs34505358      15_38     1.000  19945.89 5.9e-02   3.90
631229   rs2601781       16_4     1.000     80.65 2.4e-04   9.23
632615   rs8062832       16_7     1.000    688.84 2.0e-03  -3.07
632619   rs7202388       16_7     1.000    892.37 2.7e-03   2.70
632622  rs78549225       16_7     1.000    115.69 3.4e-04  -1.83
632623  rs11643321       16_7     1.000    695.07 2.1e-03  -1.21
634323  rs13331085      16_10     1.000  12513.81 3.7e-02  -3.03
638202  rs72768669      16_21     1.000   2590.31 7.7e-03   2.16
645883 rs111742588      16_38     1.000     59.31 1.8e-04  -3.04
646048  rs62053193      16_39     1.000     36.76 1.1e-04  -5.82
655027   rs4790233       17_5     1.000    767.34 2.3e-03  -4.64
655032   rs8072531       17_5     1.000    765.93 2.3e-03  -4.77
655075 rs149547578       17_5     1.000     97.61 2.9e-04   2.01
659425   rs8078135      17_16     1.000     59.96 1.8e-04  -8.09
660821   rs4794948      17_20     1.000   5551.66 1.7e-02  -3.05
660824   rs8075637      17_20     1.000   5551.07 1.7e-02   2.94
683502  rs62092691      18_24     1.000   6622.53 2.0e-02   2.44
684971   rs8087074      18_26     1.000     38.81 1.2e-04   6.19
688359  rs17066442      18_33     1.000    822.82 2.4e-03   2.54
691898   rs9946398      18_41     1.000   5720.84 1.7e-02  -3.04
691913   rs6566529      18_41     1.000   5734.98 1.7e-02   3.05
691921    rs334437      18_41     1.000   5587.37 1.7e-02  -3.41
696137   rs8101696       19_4     1.000  10849.14 3.2e-02   3.15
696139  rs62132105       19_4     1.000  10849.79 3.2e-02  -3.16
698018   rs4087786       19_9     1.000   7258.44 2.2e-02   2.54
700394  rs11673702      19_14     1.000  62755.69 1.9e-01   7.16
700395  rs11670228      19_14     1.000  62594.86 1.9e-01  -7.12
700577  rs11881199      19_15     1.000     57.98 1.7e-04  -7.72
702899   rs4513213      19_20     1.000   2508.05 7.5e-03   3.74
702933 rs117031997      19_20     1.000    263.63 7.8e-04  -0.40
702934  rs12462550      19_20     1.000   2507.30 7.5e-03  -3.80
707359  rs34783010      19_32     1.000    112.64 3.4e-04 -10.77
707741  rs12609461      19_33     1.000    120.03 3.6e-04  10.91
712201   rs6113024       20_2     1.000  11549.70 3.4e-02  -3.27
712203   rs4814992       20_2     1.000  11586.27 3.4e-02   3.24
730342  rs62207571       21_6     1.000  17707.51 5.3e-02  -3.62
733571   rs2284480      21_12     1.000  10441.84 3.1e-02  -3.04
733572   rs2250858      21_12     1.000  10411.37 3.1e-02   3.05
734064   rs9976483      21_13     1.000   4606.07 1.4e-02  -2.60
734065   rs2833998      21_13     1.000   4641.00 1.4e-02   3.04
734831   rs4816515      21_16     1.000   1847.10 5.5e-03  -3.81
734837   rs2242793      21_16     1.000   1587.15 4.7e-03  -2.96
734843 rs141274106      21_16     1.000    404.25 1.2e-03  -1.04
742210 rs112616484      22_10     1.000   8730.74 2.6e-02   2.71
742217  rs60805530      22_10     1.000   8707.68 2.6e-02  -2.64
750921   rs6699744       1_46     1.000  56078.00 1.7e-01  -9.04
760009   rs2082511        3_9     1.000   9973.07 3.0e-02   4.89
760012   rs2569993        3_9     1.000  10042.13 3.0e-02   5.14
761361  rs13094915       3_36     1.000    448.89 1.3e-03  -2.66
773023 rs112063207        7_8     1.000   1050.60 3.1e-03   4.18
773024 rs111342484        7_8     1.000    784.76 2.3e-03  -3.94
774941  rs61877763       11_1     1.000  14313.83 4.3e-02  -3.37
788634   rs2959291      15_21     1.000  28637.24 8.5e-02   4.60
791160 rs113079635      20_19     1.000  16393.41 4.9e-02   3.47
23933    rs6679458       1_59     0.999     42.98 1.3e-04   7.36
88242    rs1597927       2_68     0.999   7686.33 2.3e-02   3.23
169157   rs6443750      3_111     0.999     32.07 9.5e-05   5.70
246148   rs6449710       5_39     0.999  20461.81 6.1e-02  -4.14
289423  rs12210757       6_29     0.999     47.70 1.4e-04  -5.94
316376  rs73554512       6_89     0.999   6980.98 2.1e-02  -2.39
322406  rs62433782      6_101     0.999   3813.01 1.1e-02   0.33
347826   rs6460436       7_44     0.999   6494.52 1.9e-02  -3.27
370857   rs1733144       7_99     0.999  11685.79 3.5e-02   2.94
479374  rs10788066      10_74     0.999    537.73 1.6e-03   4.40
568072   rs9569901      13_27     0.999     39.21 1.2e-04  -3.48
621826   rs8033580      15_34     0.999    844.72 2.5e-03   6.60
634322  rs13331030      16_10     0.999  12539.80 3.7e-02   3.04
664348  rs68085814      17_28     0.999     59.13 1.8e-04  -7.44
203     rs72634816        1_1     0.998     45.71 1.4e-04  -6.24
24281   rs61789077       1_60     0.998  28067.28 8.3e-02   5.06
66721   rs72798736       2_20     0.998   1179.06 3.5e-03  -2.44
110150   rs4482463      2_120     0.998     55.59 1.6e-04  -7.50
215100  rs11100782       4_94     0.998   7063.77 2.1e-02  -3.16
412323   rs1078141       8_92     0.998     35.41 1.1e-04   5.75
515610   rs6589497      11_69     0.998     30.99 9.2e-05   4.83
632618  rs78686779       16_7     0.998     98.20 2.9e-04  -2.54
8889    rs12031634       1_21     0.997     36.18 1.1e-04  -6.01
31425   rs74634803       1_76     0.997     37.75 1.1e-04   6.49
284251   rs9295599       6_17     0.997  30064.26 8.9e-02  -4.81
349508   rs6944634       7_48     0.997     46.22 1.4e-04   7.23
467010  rs35972789      10_49     0.997     37.82 1.1e-04  -5.28
673886  rs60764613       18_2     0.997     47.67 1.4e-04   6.88
683504  rs62092692      18_24     0.997   6621.37 2.0e-02  -2.46
704425     rs29939      19_24     0.997     31.79 9.4e-05   5.45
26904    rs1730862       1_66     0.996     31.89 9.5e-05  -5.45
85359   rs61678503       2_62     0.996     28.96 8.6e-05  -5.18
89749   rs62167881       2_71     0.996  16542.28 4.9e-02  -3.49
376917  rs13260261       8_15     0.996   5543.44 1.6e-02   3.83
521019  rs28428505      11_83     0.996     33.91 1.0e-04  -5.23
37273     rs545608       1_87     0.995    216.83 6.4e-04  15.87
220523 rs148636479      4_105     0.995     28.01 8.3e-05  -5.10
312273   rs9489622       6_79     0.995     33.80 1.0e-04   5.78
349224 rs141884613       7_47     0.995     28.12 8.3e-05   5.01
368322   rs2968863       7_93     0.995     39.34 1.2e-04  -6.36
774948 rs141041623       11_1     0.995  14345.11 4.2e-02   3.44
77579   rs11126139       2_44     0.994   2016.93 6.0e-03  -5.82
471938  rs11186623      10_59     0.994    526.75 1.6e-03   3.17
708741  rs78081759      19_35     0.994     31.03 9.2e-05   5.31
760015 rs140219604        3_9     0.994   1192.43 3.5e-03   0.64
399385   rs3133605       8_66     0.993     37.42 1.1e-04   6.76
492800  rs56133711      11_19     0.993     84.74 2.5e-04  11.77
562019 rs138674996      13_12     0.993   8967.68 2.6e-02   2.58
380790  rs10101364       8_22     0.992     31.78 9.4e-05   5.40
412612  rs34655607       8_93     0.992    161.16 4.8e-04   3.71
433489  rs10992841       9_47     0.992     48.97 1.4e-04  -7.19
133562   rs4683150       3_30     0.991     27.52 8.1e-05   5.07
321620  rs75426130      6_100     0.991     74.26 2.2e-04   6.60
607577   rs4905808      14_52     0.991     30.53 9.0e-05  -5.35
700490  rs10424912      19_15     0.991     33.56 9.9e-05  -6.28
716500  rs16996644      20_11     0.991     28.50 8.4e-05   4.51
760951   rs3852070       3_36     0.991     67.00 2.0e-04  -5.46
596679    rs217671      14_28     0.990     34.93 1.0e-04   5.81
641359  rs62048379      16_29     0.990     39.35 1.2e-04   2.13
184038   rs6811926       4_26     0.989     31.11 9.2e-05   5.93
251853   rs7700278       5_51     0.989     26.99 7.9e-05   5.30
272876  rs35589491      5_100     0.989     30.52 9.0e-05  -5.30
365311  rs11525873       7_85     0.989     26.30 7.7e-05  -4.83
497024  rs35243581      11_27     0.989     81.85 2.4e-04   9.36
149160    rs622745       3_67     0.988   8119.11 2.4e-02  -2.71
203941    rs457134       4_67     0.987     36.53 1.1e-04  -7.61
84044   rs11690335       2_58     0.986     36.82 1.1e-04  -7.18
136997  rs80071299       3_40     0.986     27.65 8.1e-05   5.03
432777  rs10991925       9_47     0.986     39.94 1.2e-04  -6.30
482388   rs7087215      10_81     0.986     31.00 9.1e-05  -5.48
487935   rs1037587       11_9     0.986     31.93 9.4e-05   5.58
492796   rs4923464      11_19     0.986    104.42 3.1e-04 -12.61
517569  rs56919486      11_75     0.986     27.90 8.2e-05   5.00
574140   rs9530843      13_39     0.986     38.72 1.1e-04  -5.77
140229 rs187389430       3_47     0.985     28.52 8.4e-05   4.95
152098   rs4507245       3_73     0.985   8181.18 2.4e-02   2.49
305792  rs17708311       6_65     0.985     38.01 1.1e-04  -6.06
327842 rs148120173        7_4     0.985     28.15 8.2e-05   2.73
329171  rs62441156        7_6     0.985     29.51 8.6e-05   5.48
197374  rs77774368       4_52     0.984  15836.49 4.6e-02   3.51
302464   rs9294235       6_56     0.984   6522.65 1.9e-02  -2.26
576178  rs61963232      13_43     0.983  20930.02 6.1e-02   4.01
734839  rs75925138      21_16     0.983   1664.23 4.9e-03   1.06
552578  rs61945850      12_74     0.982     35.67 1.0e-04  -5.73
273070  rs12055261      5_100     0.981     29.13 8.5e-05  -5.00
627787   rs7168523      15_45     0.981     34.06 9.9e-05  -5.82
24034   rs11165740       1_59     0.980     29.78 8.7e-05   5.38
266060    rs153662       5_84     0.980     29.77 8.7e-05   4.57
497487   rs7124597      11_28     0.980  18609.12 5.4e-02   3.82
124623  rs59302296        3_7     0.979     33.87 9.9e-05   5.70
745190  rs12160369      22_17     0.979     45.06 1.3e-04  -6.88
99689   rs62188765       2_97     0.977  22573.36 6.6e-02  -4.09
286841  rs56026300       6_24     0.977     26.83 7.8e-05   4.11
534173  rs11836282      12_32     0.977     45.70 1.3e-04   8.57
546310  rs10860202      12_58     0.977     29.36 8.5e-05  -5.16
460383  rs10823885      10_34     0.976     31.44 9.1e-05   5.57
508349  rs11603498      11_50     0.976     25.73 7.5e-05   4.44
553127   rs7133768      12_75     0.976     32.60 9.5e-05  -6.97
744639  rs36033780      22_15     0.976     26.45 7.7e-05   3.04
307712   rs2224202       6_68     0.975     26.47 7.7e-05   4.62
397469   rs7006017       8_61     0.975   1122.39 3.3e-03  -5.32
482617 rs117118217      10_82     0.975     25.04 7.3e-05   4.74
660751   rs3930349      17_19     0.975     31.28 9.1e-05  -5.41
180101  rs66679256       4_17     0.974     72.53 2.1e-04   6.73
324873  rs12663301      6_107     0.973  10317.82 3.0e-02  -2.79
702928   rs8107061      19_20     0.973   2396.93 6.9e-03  -3.89
256127  rs13156252       5_62     0.972     27.84 8.1e-05  -5.42
369470    rs873878       7_96     0.972  10016.46 2.9e-02   2.88
480899  rs10901859      10_78     0.972     26.61 7.7e-05  -4.09
11890     rs977747       1_29     0.971     48.32 1.4e-04  -6.84
349525   rs1668935       7_48     0.971     38.76 1.1e-04   6.24
72828   rs10184537       2_32     0.970     38.06 1.1e-04  -6.47
138785   rs1482601       3_43     0.970     28.15 8.1e-05  -4.88
462938   rs7070670      10_39     0.970     25.63 7.4e-05  -4.88
546346   rs1349414      12_58     0.970     35.40 1.0e-04   5.84
557050  rs77622754       13_1     0.970     26.26 7.6e-05   4.30
46751   rs41307644      1_108     0.969   3295.10 9.5e-03  -3.42
501824   rs2303385      11_36     0.969     51.93 1.5e-04  -8.17
563492  rs17446299      13_15     0.969     26.24 7.6e-05   4.91
601196   rs1004667      14_37     0.968     28.73 8.3e-05   4.57
336663   rs4722601       7_23     0.967     26.79 7.7e-05   4.58
71671    rs4245812       2_29     0.966     27.15 7.8e-05  -5.40
174888  rs12500459        4_4     0.966     33.08 9.5e-05   6.49
663010    rs566168      17_25     0.966     32.75 9.4e-05  -5.54
649588  rs58070059      16_45     0.964     28.27 8.1e-05   5.00
477640   rs3121492      10_71     0.963     25.78 7.4e-05   4.51
5406      rs880554       1_13     0.961     33.57 9.6e-05  -5.62
74301    rs7560191       2_36     0.961   7502.91 2.1e-02  -3.52
211045   rs6821814       4_85     0.961   5415.16 1.5e-02   2.05
173452    rs939883      3_120     0.960     26.79 7.6e-05   5.02
522115    rs723672       12_2     0.960     26.92 7.7e-05   4.93
533293   rs7960147      12_29     0.960  11844.62 3.4e-02   2.99
44131   rs28579051      1_103     0.959     25.27 7.2e-05   4.85
271505  rs17486665       5_96     0.959     23.56 6.7e-05   4.48
521159  rs10750561      11_84     0.959     24.39 7.0e-05   4.69
535265   rs2293602      12_33     0.959     25.40 7.2e-05  -4.71
93441    rs4257433       2_81     0.958     25.15 7.2e-05  -4.86
350361  rs62467107       7_50     0.958     44.16 1.3e-04   5.68
175315 rs146902503        4_5     0.956     24.16 6.9e-05   4.55
210802  rs72616936       4_84     0.956   7024.95 2.0e-02  -2.35
72198    rs7561278       2_31     0.955     25.88 7.4e-05  -5.14
85852   rs66511537       2_64     0.955     26.54 7.5e-05  -4.67
593539  rs72681869      14_20     0.954     24.89 7.1e-05  -4.70
661688   rs7218876      17_22     0.954     25.71 7.3e-05   5.20
515797  rs10047413      11_69     0.951     25.26 7.1e-05   4.76
75473    rs4672266       2_39     0.950     29.35 8.3e-05  -5.16
170221  rs61587156      3_114     0.950     87.94 2.5e-04  -9.65
263763  rs34914000       5_79     0.949     27.40 7.7e-05   5.24
350221   rs4730115       7_49     0.949     31.56 8.9e-05   5.59
645812  rs11642529      16_38     0.949     51.57 1.5e-04   4.64
75248   rs13021589       2_38     0.948     23.42 6.6e-05   3.98
162227   rs9834519       3_97     0.945     31.69 8.9e-05  -5.68
290777   rs4714342       6_31     0.944     42.36 1.2e-04   6.71
76245  rs146416612       2_40     0.942     26.10 7.3e-05   4.74
492915  rs34906813      11_20     0.942     24.49 6.9e-05  -2.55
614926  rs28531819      15_16     0.942  24683.79 6.9e-02  -4.30
145684 rs114467488       3_60     0.940     24.41 6.8e-05  -4.41
166328   rs8192675      3_104     0.940     45.41 1.3e-04   7.22
307353   rs7754315       6_68     0.940     24.51 6.9e-05   4.62
10297   rs35042446       1_25     0.939     24.43 6.8e-05   4.49
35493   rs12133032       1_83     0.939   8384.86 2.3e-02  -2.53
462374   rs2110019      10_38     0.939   9388.19 2.6e-02  -2.67
664230   rs2555111      17_28     0.939     32.46 9.1e-05   4.19
696129  rs56356382       19_4     0.938    171.99 4.8e-04  -7.74
59232  rs116648994        2_4     0.937     25.86 7.2e-05   4.76
144300   rs9813436       3_57     0.937     33.33 9.3e-05   6.99
274789   rs2340010      5_104     0.937     24.54 6.8e-05   4.74
281057   rs9381812       6_11     0.936     36.53 1.0e-04  -5.98
629002  rs75422555      15_47     0.936     25.22 7.0e-05  -4.82
605577    rs942066      14_47     0.934     66.27 1.8e-04   8.96
522553  rs78470967       12_5     0.933     22.88 6.4e-05   4.11
217022    rs919013       4_98     0.932     33.18 9.2e-05   5.57
750941  rs11209950       1_46     0.932  56245.78 1.6e-01   8.98
230582   rs1691101        5_3     0.931     29.71 8.2e-05   5.12
639436  rs11642933      16_24     0.931    118.31 3.3e-04  11.97
703375  rs17530179      19_21     0.929     25.48 7.0e-05   5.41
548997 rs111260184      12_66     0.928     32.71 9.0e-05   5.28
394766   rs9774039       8_56     0.926    854.68 2.4e-03  -1.45
638211  rs11074653      16_21     0.925    492.07 1.4e-03  -5.91
515484   rs1048932      11_69     0.924     50.02 1.4e-04  -6.75
780890   rs4759228      12_35     0.923     57.54 1.6e-04  -7.55
388082  rs35707769       8_40     0.921     26.01 7.1e-05  -4.76
412547   rs4072917       8_93     0.921     68.12 1.9e-04   5.49
295506 rs139359522       6_42     0.920  11888.09 3.3e-02   2.99
708331      rs8044      19_35     0.920     29.37 8.0e-05  -5.14
304515   rs1209058       6_61     0.916     27.45 7.5e-05  -5.32
356577 rs112588752       7_64     0.914  12143.78 3.3e-02  -3.30
300032  rs72942627       6_51     0.912     26.66 7.2e-05  -4.95
664416 rs150619217      17_28     0.911     24.15 6.5e-05  -4.40
188678   rs1392615       4_36     0.910     45.39 1.2e-04   6.91
60762   rs62120278        2_7     0.908     27.73 7.5e-05   5.00
234858  rs56846084       5_13     0.908     23.52 6.4e-05   4.46
253445  rs34976806       5_56     0.907     40.18 1.1e-04  -6.36
682339  rs10853457      18_21     0.905     25.33 6.8e-05  -4.47
11559    rs3014211       1_28     0.904     26.66 7.2e-05   5.39
268854  rs10044974       5_89     0.904  14413.69 3.9e-02  -3.30
213059  rs10018743       4_90     0.902     53.29 1.4e-04   7.45
576167   rs9602895      13_43     0.902  20875.27 5.6e-02   4.10
24055     rs158636       1_59     0.901     27.60 7.4e-05   4.96
283220   rs3806114       6_15     0.901     26.55 7.1e-05  -4.57
689295  rs73963711      18_35     0.901     27.56 7.4e-05   5.09
416629   rs2254372        9_9     0.900     28.05 7.5e-05   5.01
423818  rs10969334       9_22     0.899     35.02 9.4e-05  -5.68
730343  rs62207573       21_6     0.898  17744.71 4.7e-02   3.62
324737   rs4709728      6_106     0.897     24.23 6.5e-05   4.58
666545   rs7224664      17_34     0.897     25.55 6.8e-05  -4.76
196697   rs6531902       4_51     0.896    125.46 3.3e-04  -2.04
615399   rs7183417      15_17     0.895     39.01 1.0e-04   6.14
261502   rs1582931       5_75     0.894     37.99 1.0e-04  -6.13
430124 rs111228813       9_40     0.893   1080.39 2.9e-03   3.61
688437  rs17773471      18_33     0.893     76.23 2.0e-04  12.58
725241   rs6127658      20_33     0.893     25.91 6.9e-05  -4.64
95552  rs115590225       2_86     0.892     34.17 9.1e-05   5.90
686903  rs11152029      18_30     0.892     39.35 1.0e-04   5.96
39045   rs12032144       1_92     0.890     29.47 7.8e-05   5.31
381716   rs3174040       8_24     0.889     26.92 7.1e-05  -5.04
161596   rs1727936       3_95     0.887  18774.11 5.0e-02   4.19
363100   rs3909553       7_79     0.887     23.53 6.2e-05  -4.14
521273  rs73041988      11_84     0.887     40.33 1.1e-04  -7.08
614934  rs16977724      15_16     0.884  24666.04 6.5e-02  -4.34
37280   rs74128490       1_87     0.882     36.99 9.7e-05  -7.67
112365  rs13001305      2_125     0.880     31.13 8.1e-05   1.00
668311 rs117808679      17_38     0.880     25.61 6.7e-05   4.67
307348   rs9496567       6_67     0.879     24.86 6.5e-05   4.56
318616   rs3819810       6_94     0.879     25.05 6.5e-05   4.55
622123    rs876383      15_35     0.879     27.20 7.1e-05  -5.48
20656   rs28726372       1_51     0.878     30.19 7.9e-05   5.44
404710   rs2737251       8_78     0.878     48.43 1.3e-04  -7.15
377839  rs13273446       8_17     0.877   6878.29 1.8e-02   5.76
696510  rs77233515       19_5     0.877     24.90 6.5e-05  -4.57
451540   rs7075283      10_14     0.876     30.73 8.0e-05   5.41
736295   rs2837398      21_20     0.876     28.67 7.5e-05   5.13
383857   rs2543601       8_29     0.875     35.88 9.3e-05  -5.63
727923 rs113298497      20_38     0.875     24.25 6.3e-05  -4.26
738136   rs9637192      21_23     0.873     45.38 1.2e-04   6.82
437986  rs10119402       9_55     0.872     26.76 6.9e-05  -4.76
623211   rs1838200      15_37     0.872     41.03 1.1e-04  -6.32
641459  rs62034144      16_29     0.871     26.20 6.8e-05  -4.39
760758  rs66530305       3_36     0.871     49.63 1.3e-04  -5.33
293833  rs11757533       6_38     0.870   1257.41 3.3e-03   4.44
474257   rs2495708      10_64     0.870     53.41 1.4e-04  -3.56
285090   rs4486004       6_20     0.869     30.61 7.9e-05  -6.45
410292   rs4909854       8_88     0.869     26.05 6.7e-05  -4.77
433315   rs6479463       9_47     0.868     27.50 7.1e-05   4.50
186609  rs34494851       4_31     0.867     29.66 7.6e-05  -5.26
393722   rs7845090       8_53     0.867     64.99 1.7e-04  -8.23
490454   rs8176786      11_14     0.866     23.82 6.1e-05   4.41
200064 rs149027545       4_59     0.864     25.36 6.5e-05  -4.72
250199  rs10942267       5_48     0.863     37.48 9.6e-05  -5.73
672411  rs12601423      17_45     0.863     46.60 1.2e-04  -6.08
197913  rs13123414       4_53     0.862     36.45 9.4e-05   6.46
405771 rs182730147       8_79     0.862     23.98 6.1e-05  -4.46
560072  rs77229024       13_7     0.862     25.46 6.5e-05  -4.51
723132  rs34696920      20_30     0.862     33.99 8.7e-05  -5.67
713686   rs6054392       20_5     0.860     68.84 1.8e-04   8.48
180965  rs73101743       4_19     0.858    565.97 1.4e-03   3.10
788637   rs2414122      15_21     0.858  28577.43 7.3e-02  -4.60
419264   rs2153726       9_13     0.857  69522.79 1.8e-01   7.36
275332 rs114999886      5_105     0.856    650.77 1.7e-03  -0.21
410883  rs73712231       8_90     0.855     24.24 6.2e-05  -4.40
414174  rs57263785        9_3     0.852     24.41 6.2e-05  -4.50
4502     rs9435734       1_12     0.851     27.85 7.0e-05  -4.86
349850  rs28796334       7_49     0.851     51.74 1.3e-04   7.55
302783    rs907843       6_57     0.850     37.22 9.4e-05  -6.17
419573  rs10756793       9_14     0.850     58.36 1.5e-04  -7.49
183148    rs292065       4_24     0.847   9694.83 2.4e-02   2.75
672131   rs1285245      17_45     0.847     30.03 7.6e-05  -5.23
415383 rs117723031        9_6     0.846     25.92 6.5e-05  -4.80
649935  rs11150461      16_46     0.846     27.58 6.9e-05  -5.16
714784   rs6039798       20_8     0.845     24.58 6.2e-05   4.42
128755   rs7619139       3_18     0.844     27.98 7.0e-05   5.26
274644     rs40796      5_104     0.842     27.22 6.8e-05  -4.89
480863  rs75274506      10_78     0.842     28.13 7.0e-05  -5.29
559687   rs1974200       13_7     0.841     34.79 8.7e-05  -5.70
678606  rs57440424      18_12     0.839     52.51 1.3e-04  -7.45
54525   rs12140220      1_125     0.838     24.02 6.0e-05  -4.38
607920  rs12880358      14_52     0.838     28.10 7.0e-05   5.35
143840 rs114593013       3_55     0.837     60.84 1.5e-04  -7.66
633445  rs72772932       16_8     0.837     31.98 8.0e-05  -5.45
306682  rs17057669       6_66     0.836     44.82 1.1e-04  -6.30
719673   rs2424994      20_21     0.833     25.69 6.4e-05  -5.03
364838    rs161342       7_84     0.832  14522.93 3.6e-02  -3.28
26975    rs4914945       1_66     0.831     36.71 9.1e-05  -5.89
517528  rs10750224      11_75     0.828     23.18 5.7e-05  -4.21
630934 rs181434970       16_3     0.827     23.46 5.8e-05   4.20
674320  rs73379103       18_3     0.826     31.38 7.7e-05   5.35
774973 rs115507748       11_1     0.824  14342.80 3.5e-02   3.40
116573  rs12479233      2_134     0.822     25.48 6.2e-05  -5.12
662972    rs665268      17_25     0.822     30.79 7.5e-05   5.67
225911   rs2613009      4_116     0.821     33.38 8.2e-05  -4.31
700484 rs113230003      19_15     0.821     36.73 9.0e-05  -7.17
147932  rs61581234       3_65     0.820  12704.57 3.1e-02   3.07
445324   rs1009473       9_72     0.815     24.72 6.0e-05   4.29
738555  rs73152864      21_24     0.812     24.31 5.9e-05   4.35
10054  rs113603865       1_24     0.811     40.04 9.7e-05   6.68
177549 rs150164330       4_11     0.811     24.51 5.9e-05  -4.42
579249    rs729174      13_48     0.811     45.47 1.1e-04   6.23
463239 rs117734506      10_41     0.810     26.26 6.3e-05  -4.86
637163  rs72771047      16_18     0.809     55.58 1.3e-04  -7.82
585407   rs1268403       14_2     0.808     24.79 6.0e-05  -4.43
265754   rs6874378       5_84     0.807     26.76 6.4e-05   4.62
525425  rs10840733      12_14     0.807     32.26 7.7e-05  -5.29
574361  rs11620422      13_40     0.804     25.66 6.1e-05  -4.48
616024  rs11854184      15_19     0.804     24.13 5.8e-05  -4.34
375468   rs7826654       8_11     0.803     53.14 1.3e-04   8.03
373388  rs78686130        8_7     0.802     25.35 6.0e-05  -4.33
451489  rs10904750      10_13     0.802     24.67 5.9e-05  -4.59
145529  rs12495822       3_59     0.801 108896.41 2.6e-01  -8.96

SNPs with largest effect sizes

#plot PIP vs effect size
plot(ctwas_snp_res$susie_pip, ctwas_snp_res$mu2, xlab="PIP", ylab="mu^2", main="SNP PIPs vs Effect Size")

Version Author Date
3a7fbc1 wesleycrouse 2021-09-08
#SNPs with 50 largest effect sizes
head(ctwas_snp_res[order(-ctwas_snp_res$mu2),report_cols_snps],50)
               id region_tag susie_pip       mu2     PVE     z
145529 rs12495822       3_59     0.801 108896.41 2.6e-01 -8.96
145523  rs4857339       3_59     0.694 108896.30 2.2e-01 -8.95
145526  rs9872445       3_59     1.000 108672.61 3.2e-01  8.95
145522  rs9289735       3_59     0.000 108589.14 0.0e+00 -8.99
145517  rs3887491       3_59     0.000 106304.67 0.0e+00 -8.85
145509  rs1584927       3_59     0.000 105450.50 0.0e+00 -8.85
155656 rs10934978       3_81     1.000  70082.07 2.1e-01  7.19
155659  rs9828720       3_81     1.000  69935.22 2.1e-01 -7.22
419266  rs9407657       9_13     1.000  69686.82 2.1e-01 -7.40
419264  rs2153726       9_13     0.857  69522.79 1.8e-01  7.36
419263  rs7024440       9_13     0.746  69521.92 1.5e-01  7.36
419262  rs7032634       9_13     0.383  69508.35 7.9e-02  7.36
419261  rs9406540       9_13     0.023  69479.68 4.8e-03  7.35
419260  rs7866641       9_13     0.000  69125.15 2.6e-14  7.37
419259  rs7849380       9_13     0.000  68563.08 0.0e+00  7.29
419258 rs13296360       9_13     0.000  68532.13 0.0e+00  7.36
256716  rs1477283       5_64     1.000  66375.33 2.0e-01 -6.99
256714  rs1345613       5_64     1.000  66238.35 2.0e-01  6.99
155660 rs62279048       3_81     0.000  66083.49 0.0e+00  6.76
155674 rs10934981       3_81     0.000  63283.03 0.0e+00  7.81
700394 rs11673702      19_14     1.000  62755.69 1.9e-01  7.16
700395 rs11670228      19_14     1.000  62594.86 1.9e-01 -7.12
419242  rs7019851       9_13     0.000  58460.88 0.0e+00  7.70
419250  rs7861802       9_13     0.000  58404.47 0.0e+00  7.67
419251  rs2382540       9_13     0.000  58396.48 0.0e+00  7.72
419247 rs12378499       9_13     0.000  58347.72 0.0e+00  7.66
419245 rs10962153       9_13     0.000  57841.83 0.0e+00  7.47
419249 rs10962156       9_13     0.000  56531.80 0.0e+00  7.76
750941 rs11209950       1_46     0.932  56245.78 1.6e-01  8.98
750919  rs6661921       1_46     0.160  56235.50 2.7e-02  8.98
750954  rs1841499       1_46     0.019  56233.84 3.1e-03  8.96
750918   rs990871       1_46     0.467  56230.63 7.8e-02  8.98
750920  rs6687024       1_46     0.205  56226.30 3.4e-02  8.99
750933 rs10889947       1_46     0.000  56208.43 1.1e-05  8.96
750957 rs11209951       1_46     0.000  56155.45 5.6e-11  8.91
750962 rs10789336       1_46     0.000  56148.22 8.0e-10  8.93
750904  rs2012697       1_46     0.000  56121.18 4.0e-09  8.97
750958 rs11209952       1_46     0.000  56120.61 3.4e-15  8.89
750921  rs6699744       1_46     1.000  56078.00 1.7e-01 -9.04
419236 rs36013000       9_13     0.000  55489.26 0.0e+00  7.74
419232  rs1396706       9_13     0.000  55264.82 0.0e+00  7.81
145530 rs12485753       3_59     0.000  54900.10 0.0e+00 -7.85
145531  rs6762431       3_59     0.000  54818.08 0.0e+00 -7.82
143466  rs7635267       3_54     1.000  54696.47 1.6e-01  6.70
143468  rs6793322       3_54     1.000  54557.44 1.6e-01 -6.58
155691  rs7428670       3_81     0.000  54348.48 0.0e+00  8.28
145515  rs4857299       3_59     0.000  54301.51 0.0e+00 -8.20
145513 rs12638900       3_59     0.000  54281.06 0.0e+00 -8.21
145511  rs2198619       3_59     0.000  54275.95 0.0e+00 -8.20
143465 rs62260874       3_54     0.000  54243.12 0.0e+00  6.79

SNPs with highest PVE

#SNPs with 50 highest pve
head(ctwas_snp_res[order(-ctwas_snp_res$PVE),report_cols_snps],50)
               id region_tag susie_pip       mu2   PVE     z
145526  rs9872445       3_59     1.000 108672.61 0.320  8.95
145529 rs12495822       3_59     0.801 108896.41 0.260 -8.96
145523  rs4857339       3_59     0.694 108896.30 0.220 -8.95
155656 rs10934978       3_81     1.000  70082.07 0.210  7.19
155659  rs9828720       3_81     1.000  69935.22 0.210 -7.22
419266  rs9407657       9_13     1.000  69686.82 0.210 -7.40
256714  rs1345613       5_64     1.000  66238.35 0.200  6.99
256716  rs1477283       5_64     1.000  66375.33 0.200 -6.99
700394 rs11673702      19_14     1.000  62755.69 0.190  7.16
700395 rs11670228      19_14     1.000  62594.86 0.190 -7.12
419264  rs2153726       9_13     0.857  69522.79 0.180  7.36
750921  rs6699744       1_46     1.000  56078.00 0.170 -9.04
143466  rs7635267       3_54     1.000  54696.47 0.160  6.70
143468  rs6793322       3_54     1.000  54557.44 0.160 -6.58
750941 rs11209950       1_46     0.932  56245.78 0.160  8.98
419263  rs7024440       9_13     0.746  69521.92 0.150  7.36
463839 rs10740103      10_42     1.000  50803.94 0.150  6.14
163531  rs4856719       3_99     1.000  37336.21 0.110  5.61
163532  rs4856720       3_99     1.000  37232.78 0.110 -5.66
219719 rs11100346      4_104     1.000  36750.16 0.110  5.20
284250  rs9393470       6_17     1.000  30152.40 0.090  4.81
284251  rs9295599       6_17     0.997  30064.26 0.089 -4.81
788634  rs2959291      15_21     1.000  28637.24 0.085  4.60
24289  rs41285694       1_60     1.000  28198.83 0.084 -5.00
24292   rs2154403       1_60     1.000  28224.41 0.084 -4.94
24281  rs61789077       1_60     0.998  28067.28 0.083  5.06
206878  rs4273539       4_73     1.000  27559.02 0.082  4.60
206884  rs4428352       4_73     1.000  27620.23 0.082 -4.57
219721 rs13105180      4_104     0.747  36826.22 0.082 -5.20
219723  rs1523563      4_104     0.752  36826.20 0.082 -5.21
81555  rs13407148       2_53     1.000  27215.33 0.081 -4.64
81567   rs7593114       2_53     1.000  27282.39 0.081  4.67
419262  rs7032634       9_13     0.383  69508.35 0.079  7.36
750918   rs990871       1_46     0.467  56230.63 0.078  8.98
614928 rs12441984      15_16     1.000  24636.90 0.073  4.31
788637  rs2414122      15_21     0.858  28577.43 0.073 -4.60
502402   rs584108      11_38     1.000  24105.67 0.072  4.32
502404   rs669659      11_38     1.000  24072.94 0.072 -4.31
502407   rs592697      11_38     1.000  24072.92 0.072  4.38
614926 rs28531819      15_16     0.942  24683.79 0.069 -4.30
135222 rs60898829       3_35     1.000  22931.95 0.068  4.51
470598 rs56330831      10_55     1.000  22778.95 0.068  4.82
99687  rs62187751       2_97     1.000  22526.67 0.067  4.07
470599 rs17106600      10_55     1.000  22679.55 0.067 -5.02
470601  rs2114828      10_55     1.000  22676.14 0.067 -4.85
596256 rs10150849      14_27     1.000  22649.89 0.067 -4.26
596260 rs11848764      14_27     1.000  22637.07 0.067  4.26
596263 rs34456481      14_27     1.000  22656.34 0.067 -4.18
99689  rs62188765       2_97     0.977  22573.36 0.066 -4.09
614934 rs16977724      15_16     0.884  24666.04 0.065 -4.34

SNPs with largest z scores

#SNPs with 50 largest z scores
head(ctwas_snp_res[order(-abs(ctwas_snp_res$z)),report_cols_snps],50)
               id region_tag susie_pip    mu2     PVE      z
641365 rs17817712      16_29     0.736 766.63 1.7e-03  28.57
641369 rs79994966      16_29     0.176 763.40 4.0e-04  28.52
641368 rs62033403      16_29     0.089 762.19 2.0e-04  28.50
641361  rs9937354      16_29     0.012 769.43 2.7e-05  28.14
641362  rs9928094      16_29     0.012 769.40 2.7e-05  28.14
641371 rs62033413      16_29     0.000 699.76 9.4e-07  27.32
641364  rs9933509      16_29     0.000 695.86 7.1e-07  27.16
641367  rs7201850      16_29     0.000 694.69 6.9e-07  27.14
641372  rs9922708      16_29     0.000 638.19 5.9e-07  26.03
641360  rs7206790      16_29     0.006 559.95 1.0e-05  23.65
688406  rs7240682      18_33     0.572 234.50 4.0e-04  18.11
688408 rs12967878      18_33     0.428 233.78 3.0e-04  18.09
688411   rs921971      18_33     0.000 212.14 1.5e-12  17.25
688414  rs1942872      18_33     0.000 211.37 1.4e-12  17.23
688412 rs12954782      18_33     0.000 211.09 1.3e-12  17.22
688421 rs12970134      18_33     0.000 204.26 6.3e-13  17.04
688422 rs11665439      18_33     0.000 200.37 4.7e-13  16.88
688424 rs12964203      18_33     0.000 198.64 4.2e-13  16.85
688401 rs72982988      18_33     0.000 184.43 3.1e-14  16.67
688397  rs8084085      18_33     0.000 182.08 1.4e-14  16.15
57453   rs6735049        2_1     0.070 208.26 4.3e-05  16.01
57451  rs12997450        2_1     0.063 208.07 3.9e-05  16.00
57454   rs6731688        2_1     0.067 208.15 4.1e-05  16.00
57452   rs6725549        2_1     0.057 207.75 3.5e-05  15.99
57456   rs7588007        2_1     0.053 207.58 3.3e-05  15.99
57461  rs11127487        2_1     0.062 207.96 3.8e-05  15.99
57455   rs5017300        2_1     0.051 207.44 3.1e-05  15.98
57459  rs62105304        2_1     0.047 207.27 2.9e-05  15.98
57450  rs66906321        2_1     0.056 209.17 3.5e-05  15.97
57458  rs13013021        2_1     0.046 207.20 2.8e-05  15.97
57462   rs7558910        2_1     0.049 207.41 3.0e-05  15.97
57463  rs11127489        2_1     0.046 207.23 2.8e-05  15.97
57464  rs10172769        2_1     0.046 207.23 2.8e-05  15.97
57470  rs13396935        2_1     0.050 207.59 3.1e-05 -15.97
57471  rs13412194        2_1     0.055 207.80 3.4e-05 -15.97
57446    rs939583        2_1     0.023 207.65 1.4e-05  15.96
57448   rs6711039        2_1     0.024 207.75 1.5e-05  15.96
57457  rs12992672        2_1     0.036 206.63 2.2e-05  15.96
57467   rs1320337        2_1     0.036 206.67 2.2e-05 -15.95
57468   rs4613321        2_1     0.034 206.52 2.1e-05 -15.94
57466   rs4854349        2_1     0.028 206.15 1.7e-05  15.93
37273    rs545608       1_87     0.995 216.83 6.4e-04  15.87
57469   rs2867112        2_1     0.002 200.73 1.2e-06 -15.65
37264    rs571567       1_87     0.008 205.60 5.1e-06  15.50
37266    rs532504       1_87     0.006 203.51 3.7e-06  15.44
64889  rs10865322       2_15     1.000 284.30 8.5e-04  14.46
37258   rs2094510       1_87     0.004 167.41 2.1e-06  14.03
688431   rs718475      18_33     0.062  94.05 1.7e-05  13.57
688387  rs9959028      18_33     0.000 124.40 4.7e-15 -13.50
64885   rs6717671       2_15     0.000 258.98 4.3e-10  13.48

Gene set enrichment for genes with PIP>0.8

#GO enrichment analysis
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")
genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]

#number of genes for gene set enrichment
length(genes)
[1] 2
if (length(genes)>0){
  GO_enrichment <- enrichr(genes, dbs)

  for (db in dbs){
    print(db)
    df <- GO_enrichment[[db]]
    df <- df[df$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(df)
  }
  
  #DisGeNET enrichment
  
  # devtools::install_bitbucket("ibi_group/disgenet2r")
  library(disgenet2r)
  
  disgenet_api_key <- get_disgenet_api_key(
                    email = "wesleycrouse@gmail.com", 
                    password = "uchicago1" )
  
  Sys.setenv(DISGENET_API_KEY= disgenet_api_key)
  
  res_enrich <-disease_enrichment(entities=genes, vocabulary = "HGNC",
                               database = "CURATED" )
  
  df <- res_enrich@qresult[1:10, c("Description", "FDR", "Ratio",  "BgRatio")]
  print(df)
  
  #WebGestalt enrichment
  library(WebGestaltR)
  
  background <- ctwas_gene_res$genename
  
  #listGeneSet()
  databases <- c("pathway_KEGG", "disease_GLAD4U", "disease_OMIM")
  
  enrichResult <- WebGestaltR(enrichMethod="ORA", organism="hsapiens",
                              interestGene=genes, referenceGene=background,
                              enrichDatabase=databases, interestGeneType="genesymbol",
                              referenceGeneType="genesymbol", isOutput=F)
  print(enrichResult[,c("description", "size", "overlap", "FDR", "database", "userId")])
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"
                                                                                            Term
1  positive regulation of cyclin-dependent protein serine/threonine kinase activity (GO:0045737)
2                   positive regulation of cyclin-dependent protein kinase activity (GO:1904031)
3                      positive regulation of G1/S transition of mitotic cell cycle (GO:1900087)
4                           positive regulation of cell cycle G1/S phase transition (GO:1902808)
5                            regulation of cyclin-dependent protein kinase activity (GO:1904029)
6                        positive regulation of mitotic cell cycle phase transition (GO:1901992)
7                                                 positive regulation of cell cycle (GO:0045787)
8                               regulation of G1/S transition of mitotic cell cycle (GO:2000045)
9           regulation of cyclin-dependent protein serine/threonine kinase activity (GO:0000079)
10                  positive regulation of protein serine/threonine kinase activity (GO:0071902)
11                           regulation of protein serine/threonine kinase activity (GO:0071900)
12                                                        protein dephosphorylation (GO:0006470)
13                                                                dephosphorylation (GO:0016311)
14                                              mitotic cell cycle phase transition (GO:0044772)
15                              positive regulation of protein modification process (GO:0031401)
16                                           positive regulation of phosphorylation (GO:0042327)
17                                            regulation of protein phosphorylation (GO:0001932)
18                                   positive regulation of protein phosphorylation (GO:0001934)
19                                     negative regulation of programmed cell death (GO:0043069)
   Overlap Adjusted.P.value Genes
1     1/17       0.02165276 CCND2
2     1/20       0.02165276 CCND2
3     1/26       0.02165276 CCND2
4     1/35       0.02185607 CCND2
5     1/54       0.02214841 CCND2
6     1/58       0.02214841 CCND2
7     1/66       0.02214841 CCND2
8     1/71       0.02214841 CCND2
9     1/82       0.02273140 CCND2
10   1/106       0.02515765 CCND2
11   1/111       0.02515765 CCND2
12   1/139       0.02885817 PPM1M
13   1/153       0.02931101 PPM1M
14   1/209       0.03547647 CCND2
15   1/214       0.03547647 CCND2
16   1/253       0.03885823 CCND2
17   1/266       0.03885823 CCND2
18   1/371       0.04965504 CCND2
19   1/381       0.04965504 CCND2
[1] "GO_Cellular_Component_2021"
                                                             Term Overlap
1 cyclin-dependent protein kinase holoenzyme complex (GO:0000307)    1/30
2            serine/threonine protein kinase complex (GO:1902554)    1/37
  Adjusted.P.value Genes
1       0.01478646 CCND2
2       0.01478646 CCND2
[1] "GO_Molecular_Function_2021"
                                                                              Term
1 cyclin-dependent protein serine/threonine kinase regulator activity (GO:0016538)
2                                               manganese ion binding (GO:0030145)
3                       protein serine/threonine phosphatase activity (GO:0004722)
4                                   protein kinase regulator activity (GO:0019887)
5                                        transition metal ion binding (GO:0046914)
6                                                      kinase binding (GO:0019900)
7                                              protein kinase binding (GO:0019901)
  Overlap Adjusted.P.value Genes
1    1/44       0.01444442 CCND2
2    1/48       0.01444442 PPM1M
3    1/62       0.01444442 PPM1M
4    1/98       0.01710823 CCND2
5   1/445       0.04996091 PPM1M
6   1/461       0.04996091 CCND2
7   1/506       0.04996091 CCND2
PPM1M gene(s) from the input list not found in DisGeNET CURATED
                                                         Description
6                                        Communicating Hydrocephalus
19                                            POLYDACTYLY, POSTAXIAL
22                                            Hydrocephalus Ex-Vacuo
24                                      Post-Traumatic Hydrocephalus
25                                         Obstructive Hydrocephalus
30                                         Cerebral ventriculomegaly
32                                              Perisylvian syndrome
33 Megalanecephaly Polymicrogyria-Polydactyly Hydrocephalus Syndrome
34                                     POSTAXIAL POLYDACTYLY, TYPE B
36                                                  Alcohol Toxicity
           FDR Ratio BgRatio
6  0.002020202   1/1  7/9703
19 0.002020202   1/1  4/9703
22 0.002020202   1/1  7/9703
24 0.002020202   1/1  7/9703
25 0.002020202   1/1  7/9703
30 0.002020202   1/1  7/9703
32 0.002020202   1/1  4/9703
33 0.002020202   1/1  4/9703
34 0.002020202   1/1  3/9703
36 0.002020202   1/1  2/9703
******************************************

*                                        *

*          Welcome to WebGestaltR !      *

*                                        *

******************************************
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet,
minNum = minNum, : No significant gene set is identified based on FDR 0.05!
NULL

Sensitivity, specificity and precision for silver standard genes

library("readxl")

known_annotations <- read_xlsx("data/summary_known_genes_annotations.xlsx", sheet="BMI")
known_annotations <- unique(known_annotations$`Gene Symbol`)

unrelated_genes <- ctwas_gene_res$genename[!(ctwas_gene_res$genename %in% known_annotations)]

#number of genes in known annotations
print(length(known_annotations))
[1] 41
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 22
#assign ctwas, TWAS, and bystander genes
ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh]
novel_genes <- ctwas_genes[!(ctwas_genes %in% twas_genes)]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.586313
#number of ctwas genes
length(ctwas_genes)
[1] 2
#number of TWAS genes
length(twas_genes)
[1] 223
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip    mu2     PVE    z
7493    PPM1M       3_36         1 244.75 0.00073 4.54
#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
     ctwas       TWAS 
0.00000000 0.07317073 
#specificity
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
0.9998192 0.9801103 
#precision / PPV
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
     ctwas       TWAS 
0.00000000 0.01345291 
#ROC curves

pip_range <- (0:1000)/1000
sensitivity <- rep(NA, length(pip_range))
specificity <- rep(NA, length(pip_range))

for (index in 1:length(pip_range)){
  pip <- pip_range[index]
  ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>=pip]
  sensitivity[index] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
}

plot(1-specificity, sensitivity, type="l", xlim=c(0,1), ylim=c(0,1))

sig_thresh_range <- seq(from=0, to=max(abs(ctwas_gene_res$z)), length.out=length(pip_range))

for (index in 1:length(sig_thresh_range)){
  sig_thresh_plot <- sig_thresh_range[index]
  twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>=sig_thresh_plot]
  sensitivity[index] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
  specificity[index] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
}

lines(1-specificity, sensitivity, xlim=c(0,1), ylim=c(0,1), col="red", lty=2)

Version Author Date
3a7fbc1 wesleycrouse 2021-09-08

Sensitivity, specificity and precision for silver standard genes - bystanders only

This section first uses all silver standard genes to identify bystander genes within 1Mb. The silver standard and bystander gene lists are then subset to only genes with imputed expression in this analysis. Then, the ctwas and TWAS gene lists from this analysis are subset to only genes that are in the (subset) silver standard and bystander genes. These gene lists are then used to compute sensitivity, specificity and precision for ctwas and TWAS.

library(biomaRt)
library(GenomicRanges)
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':

    anyDuplicated, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter,
    Find, get, grep, grepl, intersect, is.unsorted, lapply, Map,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, Position, rank, rbind, Reduce, rownames, sapply,
    setdiff, sort, table, tapply, union, unique, unsplit, which,
    which.max, which.min
Loading required package: S4Vectors

Attaching package: 'S4Vectors'
The following object is masked from 'package:base':

    expand.grid
Loading required package: IRanges
Loading required package: GenomeInfoDb
ensembl <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl")
G_list <- getBM(filters= "chromosome_name", attributes= c("hgnc_symbol","chromosome_name","start_position","end_position","gene_biotype"), values=1:22, mart=ensembl)
G_list <- G_list[G_list$hgnc_symbol!="",]
G_list <- G_list[G_list$gene_biotype %in% c("protein_coding","lncRNA"),]
G_list$start <- G_list$start_position
G_list$end <- G_list$end_position
G_list_granges <- makeGRangesFromDataFrame(G_list, keep.extra.columns=T)

known_annotations_positions <- G_list[G_list$hgnc_symbol %in% known_annotations,]
half_window <- 1000000
known_annotations_positions$start <- known_annotations_positions$start_position - half_window
known_annotations_positions$end <- known_annotations_positions$end_position + half_window
known_annotations_positions$start[known_annotations_positions$start<1] <- 1
known_annotations_granges <- makeGRangesFromDataFrame(known_annotations_positions, keep.extra.columns=T)

bystanders <- findOverlaps(known_annotations_granges,G_list_granges)
bystanders <- unique(subjectHits(bystanders))
bystanders <- G_list$hgnc_symbol[bystanders]
bystanders <- bystanders[!(bystanders %in% known_annotations)]
unrelated_genes <- bystanders

#number of genes in known annotations
print(length(known_annotations))
[1] 41
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 22
#number of bystander genes
print(length(unrelated_genes))
[1] 748
#number of bystander genes with imputed expression
print(sum(unrelated_genes %in% ctwas_gene_res$genename))
[1] 371
#remove genes without imputed expression from gene lists
known_annotations <- known_annotations[known_annotations %in% ctwas_gene_res$genename]
unrelated_genes <- unrelated_genes[unrelated_genes %in% ctwas_gene_res$genename]

#assign ctwas and TWAS genes
ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z)>sig_thresh]

#significance threshold for TWAS
print(sig_thresh)
[1] 4.586313
#number of ctwas genes
length(ctwas_genes)
[1] 2
#number of ctwas genes in known annotations or bystanders
sum(ctwas_genes %in% c(known_annotations, unrelated_genes))
[1] 0
#number of ctwas genes
length(twas_genes)
[1] 223
#number of TWAS genes
sum(twas_genes %in% c(known_annotations, unrelated_genes))
[1] 17
#remove genes not in known or bystander lists from results
ctwas_genes <- ctwas_genes[ctwas_genes %in% c(known_annotations, unrelated_genes)]
twas_genes <- twas_genes[twas_genes %in% c(known_annotations, unrelated_genes)]

#sensitivity / recall
sensitivity <- rep(NA,2)
names(sensitivity) <- c("ctwas", "TWAS")
sensitivity["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(known_annotations)
sensitivity["TWAS"] <- sum(twas_genes %in% known_annotations)/length(known_annotations)
sensitivity
    ctwas      TWAS 
0.0000000 0.1363636 
#specificity
specificity <- rep(NA,2)
names(specificity) <- c("ctwas", "TWAS")
specificity["ctwas"] <- sum(!(unrelated_genes %in% ctwas_genes))/length(unrelated_genes)
specificity["TWAS"] <- sum(!(unrelated_genes %in% twas_genes))/length(unrelated_genes)
specificity
    ctwas      TWAS 
1.0000000 0.9622642 
#precision / PPV
precision <- rep(NA,2)
names(precision) <- c("ctwas", "TWAS")
precision["ctwas"] <- sum(ctwas_genes %in% known_annotations)/length(ctwas_genes)
precision["TWAS"] <- sum(twas_genes %in% known_annotations)/length(twas_genes)
precision
    ctwas      TWAS 
      NaN 0.1764706 

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] GenomicRanges_1.36.0 GenomeInfoDb_1.20.0  IRanges_2.18.1      
 [4] S4Vectors_0.22.1     BiocGenerics_0.30.0  biomaRt_2.40.1      
 [7] readxl_1.3.1         WebGestaltR_0.4.4    disgenet2r_0.99.2   
[10] enrichR_3.0          cowplot_1.0.0        ggplot2_3.3.3       

loaded via a namespace (and not attached):
 [1] bitops_1.0-6           fs_1.3.1               bit64_4.0.5           
 [4] doParallel_1.0.16      progress_1.2.2         httr_1.4.1            
 [7] rprojroot_2.0.2        tools_3.6.1            doRNG_1.8.2           
[10] utf8_1.2.1             R6_2.5.0               DBI_1.1.1             
[13] colorspace_1.4-1       withr_2.4.1            tidyselect_1.1.0      
[16] prettyunits_1.0.2      bit_4.0.4              curl_3.3              
[19] compiler_3.6.1         git2r_0.26.1           Biobase_2.44.0        
[22] labeling_0.3           scales_1.1.0           readr_1.4.0           
[25] stringr_1.4.0          apcluster_1.4.8        digest_0.6.20         
[28] rmarkdown_1.13         svglite_1.2.2          XVector_0.24.0        
[31] pkgconfig_2.0.3        htmltools_0.3.6        fastmap_1.1.0         
[34] rlang_0.4.11           RSQLite_2.2.7          farver_2.1.0          
[37] generics_0.0.2         jsonlite_1.6           dplyr_1.0.7           
[40] RCurl_1.98-1.1         magrittr_2.0.1         GenomeInfoDbData_1.2.1
[43] Matrix_1.2-18          Rcpp_1.0.6             munsell_0.5.0         
[46] fansi_0.5.0            gdtools_0.1.9          lifecycle_1.0.0       
[49] stringi_1.4.3          whisker_0.3-2          yaml_2.2.0            
[52] zlibbioc_1.30.0        plyr_1.8.4             grid_3.6.1            
[55] blob_1.2.1             promises_1.0.1         crayon_1.4.1          
[58] lattice_0.20-38        hms_1.1.0              knitr_1.23            
[61] pillar_1.6.1           igraph_1.2.4.1         rjson_0.2.20          
[64] rngtools_1.5           reshape2_1.4.3         codetools_0.2-16      
[67] XML_3.98-1.20          glue_1.4.2             evaluate_0.14         
[70] data.table_1.14.0      vctrs_0.3.8            httpuv_1.5.1          
[73] foreach_1.5.1          cellranger_1.1.0       gtable_0.3.0          
[76] purrr_0.3.4            assertthat_0.2.1       cachem_1.0.5          
[79] xfun_0.8               later_0.8.0            tibble_3.1.2          
[82] iterators_1.0.13       AnnotationDbi_1.46.0   memoise_2.0.0         
[85] workflowr_1.6.2        ellipsis_0.3.2