Last updated: 2022-03-03

Checks: 6 1

Knit directory: ctwas_applied/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210726) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 380982d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Unstaged changes:
    Modified:   analysis/ukb-a-232_allweights.Rmd
    Modified:   analysis/ukb-a-249_allweights.Rmd
    Modified:   analysis/ukb-a-389_allweights.Rmd
    Modified:   analysis/ukb-a-66_allweights.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ukb-a-232_allweights.Rmd) and HTML (docs/ukb-a-232_allweights.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 380982d wesleycrouse 2022-03-01 fixing typo in all weight reports
Rmd 76fa2cd wesleycrouse 2022-03-01 cleaning up all weight reports
html 76fa2cd wesleycrouse 2022-03-01 cleaning up all weight reports
html 2509c32 wesleycrouse 2022-03-01 additional traits for all weight analysis
Rmd 962fd16 wesleycrouse 2022-03-01 additional traits for all weight analysis

trait_id <- "ukb-a-232"
trait_name <- "Forced vital capacity (FVC) Best measure"

source("/project2/mstephens/wcrouse/UKB_analysis_allweights/ctwas_config.R")

trait_dir <- paste0("/project2/mstephens/wcrouse/UKB_analysis_allweights/", trait_id)

results_dirs <- list.dirs(trait_dir, recursive=F)

Load cTWAS results for all weights

# df <- list()
# 
# for (i in 1:length(results_dirs)){
#   #print(i)
# 
#   results_dir <- results_dirs[i]
#   weight <- rev(unlist(strsplit(results_dir, "/")))[1]
#   analysis_id <- paste(trait_id, weight, sep="_")
# 
#   #load ctwas results
#   ctwas_res <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.susieIrss.txt"))
# 
#   #load z scores for SNPs and collect sample size
#   load(paste0(results_dir, "/", analysis_id, "_expr_z_snp.Rd"))
# 
#   sample_size <- z_snp$ss
#   sample_size <- as.numeric(names(which.max(table(sample_size))))
# 
#   #separate gene and SNP results
#   ctwas_gene_res <- ctwas_res[ctwas_res$type == "gene", ]
#   ctwas_gene_res <- data.frame(ctwas_gene_res)
#   ctwas_snp_res <- ctwas_res[ctwas_res$type == "SNP", ]
#   ctwas_snp_res <- data.frame(ctwas_snp_res)
# 
#   #add gene information to results
#   sqlite <- RSQLite::dbDriver("SQLite")
#   db = RSQLite::dbConnect(sqlite, paste0("/project2/compbio/predictdb/mashr_models/mashr_", weight, ".db"))
#   query <- function(...) RSQLite::dbGetQuery(db, ...)
#   gene_info <- query("select gene, genename, gene_type from extra")
#   RSQLite::dbDisconnect(db)
# 
#   ctwas_gene_res <- cbind(ctwas_gene_res, gene_info[sapply(ctwas_gene_res$id, match, gene_info$gene), c("genename", "gene_type")])
# 
#   #add z scores to results
#   load(paste0(results_dir, "/", analysis_id, "_expr_z_gene.Rd"))
#   ctwas_gene_res$z <- z_gene[ctwas_gene_res$id,]$z
# 
#   z_snp <- z_snp[z_snp$id %in% ctwas_snp_res$id,]
#   ctwas_snp_res$z <- z_snp$z[match(ctwas_snp_res$id, z_snp$id)]
# 
#   #merge gene and snp results with added information
#   ctwas_snp_res$genename=NA
#   ctwas_snp_res$gene_type=NA
# 
#   ctwas_res <- rbind(ctwas_gene_res,
#                    ctwas_snp_res[,colnames(ctwas_gene_res)])
# 
#   #get number of SNPs from s1 results; adjust for thin argument
#   ctwas_res_s1 <- data.table::fread(paste0(results_dir, "/", analysis_id, "_ctwas.s1.susieIrss.txt"))
#   n_snps <- sum(ctwas_res_s1$type=="SNP")/thin
#   rm(ctwas_res_s1)
# 
#   #load estimated parameters
#   load(paste0(results_dir, "/", analysis_id, "_ctwas.s2.susieIrssres.Rd"))
# 
#   #estimated group prior
#   estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
#   names(estimated_group_prior) <- c("gene", "snp")
#   estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
# 
#   #estimated group prior variance
#   estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
#   names(estimated_group_prior_var) <- c("gene", "snp")
# 
#   #report group size
#   group_size <- c(nrow(ctwas_gene_res), n_snps)
# 
#   #estimated group PVE
#   estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size
#   names(estimated_group_pve) <- c("gene", "snp")
# 
#   #ctwas genes using PIP>0.8
#   ctwas_genes <- ctwas_gene_res$genename[ctwas_gene_res$susie_pip>0.8]
# 
#   #twas genes using bonferroni threshold
#   alpha <- 0.05
#   sig_thresh <- qnorm(1-(alpha/nrow(ctwas_gene_res)/2), lower=T)
#   twas_genes <- ctwas_gene_res$genename[abs(ctwas_gene_res$z) > sig_thresh]
# 
# 
#   df[[weight]] <- list(prior=estimated_group_prior,
#                      prior_var=estimated_group_prior_var,
#                      pve=estimated_group_pve,
#                      ctwas=ctwas_genes,
#                      twas=twas_genes )
# }
# 
# save(df, file=paste(trait_dir, "results_df.RData", sep="/"))
load(paste(trait_dir, "results_df.RData", sep="/"))


output <- data.frame(weight=names(df),
                     prior_g=unlist(lapply(df, function(x){x$prior["gene"]})),
                     prior_s=unlist(lapply(df, function(x){x$prior["snp"]})),
                     prior_var_g=unlist(lapply(df, function(x){x$prior_var["gene"]})),
                     prior_var_s=unlist(lapply(df, function(x){x$prior_var["snp"]})),
                     pve_g=unlist(lapply(df, function(x){x$pve["gene"]})),
                     pve_s=unlist(lapply(df, function(x){x$pve["snp"]})),
                     n_ctwas=unlist(lapply(df, function(x){length(x$ctwas)})),
                     n_twas=unlist(lapply(df, function(x){length(x$twas)})),
                     row.names=NULL)

Plot estimated prior parameters and PVE

#plot estimated group prior

output <- output[order(-output$prior_g),]

par(mar=c(10.1, 4.1, 4.1, 2.1))

plot(output$prior_g, type="l", ylim=c(0, max(output$prior_g, output$prior_s)*1.1),
     xlab="", ylab="Estimated Group Prior", xaxt = "n", col="blue")
lines(output$prior_s)

axis(1, at = 1:nrow(output),
     labels = output$weight,
     las=2,
     cex.axis=0.6)

Version Author Date
2509c32 wesleycrouse 2022-03-01
####################
#plot estimated group prior variance

par(mar=c(10.1, 4.1, 4.1, 2.1))

plot(output$prior_var_g, type="l", ylim=c(0, max(output$prior_var_g, output$prior_var_s)*1.1),
     xlab="", ylab="Estimated Group Prior Variance", xaxt = "n", col="blue")
lines(output$prior_var_s)

axis(1, at = 1:nrow(output),
     labels = output$weight,
     las=2,
     cex.axis=0.6)

Version Author Date
2509c32 wesleycrouse 2022-03-01
####################
#plot PVE

output <- output[order(-output$pve_g),]

par(mar=c(10.1, 4.1, 4.1, 2.1))

#plot(output$pve_g, type="l", ylim=c(0, max(output$pve_g, output$pve_s)*1.1),
plot(output$pve_g, type="l", ylim=c(0, max(output$pve_g+output$pve_s)*1.1),
     xlab="", ylab="Estimated PVE", xaxt = "n", col="blue")
lines(output$pve_s)
lines(output$pve_g+output$pve_s, lty=2)

axis(1, at = 1:nrow(output),
     labels = output$weight,
     las=2,
     cex.axis=0.6)

Version Author Date
2509c32 wesleycrouse 2022-03-01

Number of cTWAS and TWAS genes

cTWAS genes are the set of genes with PIP>0.8 in any tissue. TWAS genes are the set of genes with significant z score (Bonferroni within tissue) in any tissue.

#plot number of significant cTWAS and TWAS genes in each tissue
plot(output$n_ctwas, output$n_twas, xlab="Number of cTWAS Genes", ylab="Number of TWAS Genes")

Version Author Date
2509c32 wesleycrouse 2022-03-01
#number of ctwas_genes
ctwas_genes <- unique(unlist(lapply(df, function(x){x$ctwas})))
length(ctwas_genes)
[1] 227
#number of twas_genes
twas_genes <- unique(unlist(lapply(df, function(x){x$twas})))
length(twas_genes)
[1] 995

Enrichment analysis for cTWAS genes

#enrichment for cTWAS genes
library(enrichR)
Welcome to enrichR
Checking connection ... 
Enrichr ... Connection is Live!
FlyEnrichr ... Connection is available!
WormEnrichr ... Connection is available!
YeastEnrichr ... Connection is available!
FishEnrichr ... Connection is available!
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")

GO_enrichment <- enrichr(ctwas_genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
for (db in dbs){
  print(db)
  enrich_results <- GO_enrichment[[db]]
  print(plotEnrich(GO_enrichment[[db]]))
  enrich_results <- enrich_results[enrich_results$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
  print(enrich_results)
}
[1] "GO_Biological_Process_2021"

Version Author Date
2509c32 wesleycrouse 2022-03-01
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

Version Author Date
2509c32 wesleycrouse 2022-03-01
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
2509c32 wesleycrouse 2022-03-01
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

Enrichment analysis for TWAS genes

#enrichment for TWAS genes
dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")

GO_enrichment <- enrichr(twas_genes, dbs)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
for (db in dbs){
  print(db)
  enrich_results <- GO_enrichment[[db]]
  print(plotEnrich(GO_enrichment[[db]]))
  enrich_results <- enrich_results[enrich_results$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
  print(enrich_results)
}
[1] "GO_Biological_Process_2021"

Version Author Date
2509c32 wesleycrouse 2022-03-01
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

Version Author Date
2509c32 wesleycrouse 2022-03-01
                                                                                Term
1  integral component of lumenal side of endoplasmic reticulum membrane (GO:0071556)
2                        lumenal side of endoplasmic reticulum membrane (GO:0098553)
3                                                   MHC protein complex (GO:0042611)
4                                ER to Golgi transport vesicle membrane (GO:0012507)
5                                               coated vesicle membrane (GO:0030662)
6                                          MHC class II protein complex (GO:0042613)
7                            COPII-coated ER to Golgi transport vesicle (GO:0030134)
8                                            transport vesicle membrane (GO:0030658)
9                                            endocytic vesicle membrane (GO:0030666)
10                        triglyceride-rich plasma lipoprotein particle (GO:0034385)
11                                very-low-density lipoprotein particle (GO:0034361)
12                                    high-density lipoprotein particle (GO:0034364)
13                                         trans-Golgi network membrane (GO:0032588)
14                                                          microfibril (GO:0001527)
15                 integral component of endoplasmic reticulum membrane (GO:0030176)
16                                                 supramolecular fiber (GO:0099512)
17                                          MHC class I protein complex (GO:0042612)
18                                                    endocytic vesicle (GO:0030139)
19                                     U2-type precatalytic spliceosome (GO:0071005)
   Overlap Adjusted.P.value
1    11/28     6.580973e-06
2    11/28     6.580973e-06
3     9/20     1.877092e-05
4    12/54     7.947428e-04
5    12/55     7.947428e-04
6     6/13     9.665871e-04
7    14/79     1.259659e-03
8    12/60     1.259659e-03
9   21/158     1.305060e-03
10    6/15     1.410980e-03
11    6/15     1.410980e-03
12    6/19     5.906028e-03
13   14/99     8.972080e-03
14    4/11     3.314618e-02
15  16/142     3.739480e-02
16    5/19     3.739480e-02
17     3/6     3.945998e-02
18  19/189     4.851940e-02
19    8/50     4.910404e-02
                                                                                                                                            Genes
1                                                          HLA-DRB5;SPPL2C;HLA-B;HLA-C;HLA-DRA;HLA-DQA2;HLA-G;HLA-DQA1;HLA-DQB2;HLA-DRB1;HLA-DQB1
2                                                          HLA-DRB5;SPPL2C;HLA-B;HLA-C;HLA-DRA;HLA-DQA2;HLA-G;HLA-DQA1;HLA-DQB2;HLA-DRB1;HLA-DQB1
3                                                                            HLA-DRB5;HFE;HLA-B;HLA-C;HLA-DRA;HLA-DQA1;HLA-DQB2;HLA-DRB1;HLA-DQB1
4                                                    HLA-DRB5;SAR1B;HLA-B;HLA-C;HLA-DRA;HLA-G;HLA-DQA2;SEC24C;HLA-DQB2;HLA-DQA1;HLA-DRB1;HLA-DQB1
5                                                    HLA-DRB5;SAR1B;HLA-B;HLA-C;HLA-DRA;HLA-G;HLA-DQA2;SEC24C;HLA-DQB2;HLA-DQA1;HLA-DRB1;HLA-DQB1
6                                                                                            HLA-DRB5;HLA-DRA;HLA-DQA1;HLA-DQB2;HLA-DRB1;HLA-DQB1
7                                       HLA-DRB5;SAR1B;HLA-B;HLA-C;HLA-G;HLA-DRA;TMED6;ERGIC2;HLA-DQA2;SEC24C;HLA-DQB2;HLA-DQA1;HLA-DRB1;HLA-DQB1
8                                                    HLA-DRB5;SAR1B;HLA-B;HLA-C;HLA-DRA;HLA-G;HLA-DQA2;SEC24C;HLA-DQB2;HLA-DQA1;HLA-DRB1;HLA-DQB1
9  CAMK2B;HLA-DRB5;PTCH1;HLA-B;TAP2;HLA-C;TAP1;TCIRG1;HLA-G;DNM2;NOSTRIN;HLA-DRA;STX4;APOE;HLA-DQA2;HLA-DQA1;WNT3;HLA-DRB1;HLA-DQB2;WNT4;HLA-DQB1
10                                                                                                             APOM;APOC1;APOC4;APOE;APOA5;PCYOX1
11                                                                                                             APOM;APOC1;APOC4;APOE;APOA5;PCYOX1
12                                                                                                               APOM;APOC1;APOC4;APOE;APOA5;PLTP
13                                          COG8;HLA-DRB5;COG4;AP4E1;BAIAP3;ARFRP1;AP1S1;HLA-DRA;HLA-DQA2;HLA-DQA1;HLA-DRB1;HLA-DQB2;BOK;HLA-DQB1
14                                                                                                                      FBN2;MFAP2;LTBP4;ADAMTS10
15                            HLA-DRB5;CAMLG;ATF6B;SPPL2C;CCDC47;HLA-B;TAP2;HLA-C;TAP1;HLA-G;HLA-DRA;HLA-DQA2;HLA-DQA1;HLA-DRB1;HLA-DQB2;HLA-DQB1
16                                                                                                                  FBN2;ELN;MFAP2;LTBP4;ADAMTS10
17                                                                                                                                HFE;HLA-B;HLA-C
18             CAMK2B;RAB5B;HLA-DRB5;PTCH1;LPAR1;DYSF;DNM2;RAB24;NOSTRIN;HLA-DRA;RIN3;APOE;HLA-DQA2;HLA-DQA1;WNT3;HLA-DRB1;HLA-DQB2;WNT4;HLA-DQB1
19                                                                                                 EFTUD2;SF3A3;SART1;IK;SF3B2;SNRPD2;ZMAT2;SNRPG
[1] "GO_Molecular_Function_2021"

Version Author Date
2509c32 wesleycrouse 2022-03-01
                                         Term Overlap Adjusted.P.value
1 MHC class II receptor activity (GO:0032395)    6/10      0.001583806
                                                 Genes
1 HLA-DRA;HLA-DQA2;HLA-DQA1;HLA-DQB2;HLA-DRB1;HLA-DQB1

Enrichment analysis for cTWAS genes in top tissues separately

output <- output[order(-output$pve_g),]
top_tissues <- output$weight[1:5]

for (tissue in top_tissues){
  ctwas_genes_tissue <- df[[tissue]]$ctwas
  
  dbs <- c("GO_Biological_Process_2021", "GO_Cellular_Component_2021", "GO_Molecular_Function_2021")

  GO_enrichment <- enrichr(ctwas_genes_tissue, dbs)

  for (db in dbs){
    print(db)
    enrich_results <- GO_enrichment[[db]]
    print(plotEnrich(GO_enrichment[[db]]))
    enrich_results <- enrich_results[enrich_results$Adjusted.P.value<0.05,c("Term", "Overlap", "Adjusted.P.value", "Genes")]
    print(enrich_results)
  }
}
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                                   Term Overlap
1  hematopoietic stem cell differentiation (GO:0060218)    2/10
2     cellular response to gamma radiation (GO:0071480)    2/17
3 regulation of adenylate cyclase activity (GO:0045761)    2/22
4              response to gamma radiation (GO:0010332)    2/24
  Adjusted.P.value       Genes
1       0.03205870  HOXB4;TP53
2       0.04812932  XRCC5;TP53
3       0.04851960 EDNRB;CRHR1
4       0.04851960  XRCC5;TP53
[1] "GO_Cellular_Component_2021"

                                           Term Overlap Adjusted.P.value
1 heterotrimeric G-protein complex (GO:0005834)    2/33        0.0390495
       Genes
1 GNB1;GNG12
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                                                                                                        Term
1                                                           positive regulation of execution phase of apoptosis (GO:1900119)
2                                                                    regulation of execution phase of apoptosis (GO:1900117)
3                                                                     signal transduction by p53 class mediator (GO:0072331)
4  positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway (GO:1901030)
5                                                   intrinsic apoptotic signaling pathway by p53 class mediator (GO:0072332)
6                                                  positive regulation of intrinsic apoptotic signaling pathway (GO:2001244)
7                                               intrinsic apoptotic signaling pathway in response to DNA damage (GO:0008630)
8                                                           regulation of intrinsic apoptotic signaling pathway (GO:2001242)
9                                                             positive regulation of mitochondrion organization (GO:0010822)
10                                                           positive regulation of apoptotic signaling pathway (GO:2001235)
   Overlap Adjusted.P.value    Genes
1      2/8      0.006912061 TP53;BOK
2     2/22      0.028261114 TP53;BOK
3     2/33      0.030558564 TP53;BOK
4     2/34      0.030558564 TP53;BOK
5     2/36      0.030558564 TP53;BOK
6     2/40      0.031449036 TP53;BOK
7     2/51      0.039794497 TP53;BOK
8     2/52      0.039794497 TP53;BOK
9     2/58      0.040897644 TP53;BOK
10    2/59      0.040897644 TP53;BOK
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                                                  Term
1 negative regulation of small molecule metabolic process (GO:0062014)
2       negative regulation of lipid biosynthetic process (GO:0051055)
  Overlap Adjusted.P.value     Genes
1    2/22       0.03702394 SIK1;WNT4
2    2/22       0.03702394 SIK1;WNT4
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

                                                                                          Term
1                                                              mRNA transcription (GO:0009299)
2 positive regulation of transcription initiation from RNA polymerase II promoter (GO:0060261)
  Overlap Adjusted.P.value     Genes
1    2/12       0.02491316 MED1;TP53
2    2/23       0.04740195 MED1;TP53
[1] "GO_Cellular_Component_2021"

                                                       Term Overlap
1 intracellular non-membrane-bounded organelle (GO:0043232)  7/1158
2                                 chromocenter (GO:0010369)     1/6
3                                hemidesmosome (GO:0030056)     1/7
4                  PTW/PP1 phosphatase complex (GO:0072357)     1/7
5                                    nucleolus (GO:0005730)   4/733
6                                nuclear lumen (GO:0031981)   4/745
7 protein serine/threonine phosphatase complex (GO:0008287)     1/8
  Adjusted.P.value                                 Genes
1      0.005245655 MED1;SMTN;CCND2;SALL1;WDR82;RHOC;TP53
2      0.038828066                                 SALL1
3      0.038828066                                  PLEC
4      0.038828066                                 WDR82
5      0.038828066                 MED1;CCND2;WDR82;TP53
6      0.038828066                 MED1;CCND2;WDR82;TP53
7      0.038828066                                 WDR82
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] enrichR_3.0

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.6       compiler_3.6.1   pillar_1.6.1     later_0.8.0     
 [5] git2r_0.26.1     workflowr_1.6.2  tools_3.6.1      digest_0.6.20   
 [9] evaluate_0.14    lifecycle_1.0.0  tibble_3.1.2     gtable_0.3.0    
[13] pkgconfig_2.0.3  rlang_0.4.11     DBI_1.1.1        curl_3.3        
[17] yaml_2.2.0       xfun_0.8         httr_1.4.1       stringr_1.4.0   
[21] dplyr_1.0.7      knitr_1.23       generics_0.0.2   fs_1.3.1        
[25] vctrs_0.3.8      tidyselect_1.1.0 rprojroot_2.0.2  grid_3.6.1      
[29] glue_1.4.2       R6_2.5.0         fansi_0.5.0      rmarkdown_1.13  
[33] farver_2.1.0     purrr_0.3.4      ggplot2_3.3.3    magrittr_2.0.1  
[37] whisker_0.3-2    scales_1.1.0     promises_1.0.1   htmltools_0.3.6 
[41] ellipsis_0.3.2   colorspace_1.4-1 httpuv_1.5.1     labeling_0.3    
[45] utf8_1.2.1       stringi_1.4.3    munsell_0.5.0    rjson_0.2.20    
[49] crayon_1.4.1